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MODEL-THEORETIC PROPERTIES OF ULTRAFILTERS BUILT
BY INDEPENDENT FAMILIES OF FUNCTIONS

M. MALLIARIS AND S. SHELAH

Abstract. Our results in this paper increase the model-theoretic precision of a widely used method for
building ultrafilters, and so advance the general problem of constructing ultrafilters whose ultrapowers
have a precise degree of saturation. We begin by showing that any flexible regular ultrafilter makes the
product of an unbounded sequence of finite cardinals large, thus saturating any stable theory. We then
prove directly that a “bottleneck” in the inductive construction of a regular ultrafilter on � (i.e., a point
after which all antichains of P(�)/D have cardinality less than �) essentially prevents any subsequent
ultrafilter from being flexible, thus from saturating any nonlow theory. The constructions are as follows.
First, we construct a regular filterD on � so that any ultrafilter extendingD fails to �+-saturate ultrapowers
of the random graph, thus of any unstable theory. The proof constructs the omitted random graph type
directly. Second, assuming existence of a measurable cardinal κ, we construct a regular ultrafilter on � > κ
which is �-flexible but not κ++-good, improving our previous answer to a question raised in Dow (1985).
Third, assuming a weakly compact cardinal κ, we construct an ultrafilter to show that lcf(ℵ0) may be small
while all symmetric cuts of cofinality κ are realized. Thus certain families of precuts may be realized while
still failing to saturate any unstable theory.

§1. Introduction. Our work in this paper is framed by the longstanding open
problem of Keisler’s order, introduced in Keisler [8] and defined in 3.4. Roughly
speaking, this order allows one to compare the complexity of theories in terms of
the relative difficulty of producing saturated regular ultrapowers. An obstacle to
progress on this order has been the difficulty of building ultrafilters which produce
a precise degree of saturation.
Recent work of the authors (Malliaris [12, 13, 14], Malliaris and Shelah [15, 16,
17]) has substantially advanced our understanding of the interaction of ultrafilters
and theories. Building on this work, in the current paper and its companion [15]
we address the problem of building ultrafilters with specific amounts of saturation.
[15] focused on constructions of ultrafilters by products of regular and complete
ultrafilters, and here we use the method of independent families of functions.
First used by Kunen (1972) in his ZFC proof of the existence of good ultrafil-
ters, the method of independent families of functions has become fundamental for
constructing regular ultrafilters. The proofs in this paper leverage various inherent
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104 M. MALLIARIS AND S. SHELAH

constraints of this method to build filters with specified boolean combinations
of model-theoretically meaningful properties, i.e., properties which guarantee or
prevent realization of types.
Our main results are as follows. Statements and consequences are given in more
detail in Section 2. We prove that any ultrafilter D which is �-flexible (thus:
�-o.k.) must have �(D) = 2�, where �(D) is the minimum size of a product of
an unbounded sequence of natural numbers modulo D . Thus, a fortiori, D will
saturate any stable theory. We prove that if, at any point in a construction by inde-
pendent functions the cardinality of the range of the remaining independent family
is strictly smaller than the index set, then essentially no subsequent ultrafilter can be
flexible. We then give our three main constructions. First, we show how to construct
a filter so that no subsequent ultrafilter will saturate the random graph, thus no
subsequent ultrafilter will saturate any unstable theory (see Convention 3.19 for this
use of the word “saturate”). The proof explicitly builds an omitted type into the
construction. Second, assuming the existence of a measurable cardinal κ, we prove
that on any � ≥ κ+ there is a regular ultrafilter which is flexible but not good. This
result improves our prior answer, in [15], to a question fromDow [2] and introduces
a perspective which proved significant for [16]. Third, we construct an example prov-
ing an a priori surprising nonimplication between realization of symmetric cuts and
lcf(ℵ0,D), i.e., the coinitiality of � in (�,<)�/D. That is, assuming the existence of
a weakly compact cardinal κ, we prove that for ℵ0 < � = cf(�) < κ ≤ � there is a
regular ultrafilterD on � such that lcf(ℵ0,D) = � but (N, <)�/D has no (κ, κ)-cuts.
This appears counter to model-theoretic intuition, since it shows some families of
cuts in linear order can be realized without saturating any unstable theory. The proof
relies on building long indiscernible sequences in the quotient Boolean algebra.
For the model theoretic reader, we attempt to give a relatively self contained
account of independent families and construction of ultrafilters as used here. We
define all relevant properties of ultrafilters, many of which correspond naturally to
realizing certain kinds of types. For the reader interested primarily in combinatorial
set theory, note that while the model-theoretic point of view is fundamental, we deal
primarily with ultrapowers of the random graph and of linear order; the arguments
mainly require familiarity with saturation, the random graph, and, ideally, the
definitions of unstable, finite cover property, order property, independence property
and strict order property. [Definitions like “nonsimple” and “nonlow”may be taken
as black boxes in theorems about properties of filters.]
Familiarity with Keisler’s order beyond what is described below is not necessary
for reading the present paper. For the interested reader, however, ( [15] Sections 1–4)
are a lengthy expository introduction to Keisler’s order and what is known.
The paper is organized as follows. Our methods, results, and some consequences
are described in Section 2. Section 3 gives the key definitions and the neces-
sary background on constructing ultrafilters via independent families of functions.
Sections 4–8 contain the proofs.

§2. Description of results. This section presents the results of the paper in more
detail, under italicized headers, along with some consequences. We informally say
that a (regular) ultrafilter D on I saturates a theory T to mean that whenever
M |= T , MI/D is |I |+-saturated. This phrasing is justified by Theorem 3.3,
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MODEL-THEORETIC PROPERTIES OF ULTRAFILTERS 105

Section 3. “Minimum,” “maximum” refer to Keisler’s order �, defined in 3.4.
Theorem 3.5 in Section 3.2 may be a useful glossary for this introduction.

Flexible filters saturate stable theories.Flexibility was introduced inMalliaris [12, 13]
as a property of filters which was detected by nonlow theories, i.e., ifD is not flexible
and Th(M ) is not low then M�/D is not �+-saturated. Flexibility is presented in
Section 3.3. Stable theories are low.
The invariant �(D), Definition 4.1 describes the minimum size, modulo D,
of an unbounded sequence of finite cardinals. In Claim 4.3 we prove that any
�-flexible ultrafilter must have �(D) = 2�. Thus such an ultrafilter will �+-saturate
any stable theory, Conclusion 4.4. By a previous paper ([15] Theorem 6.4) con-
sistently flexibility does not imply saturation of the minimum unstable theory, the
random graph; so this is best possible.

Preventing future flexibility during an ultrafilter construction. In Claim 5.1 we prove
directly that if, at any point in a construction by independent functions the cardi-
nality of the range of the remaining independent family is strictly smaller than the
index set, then essentially (i.e., after “consuming” onemore function) no subsequent
ultrafilter can be flexible. This gives a point of leverage for proving nonsaturation.

The core of the paper contains three constructions.

Preventing future saturation of any unstable theory. In the first construction,
Theorem 6.1, we show how to build a regular filter D, at the cost of a single
independent function g∗, so that no subsequent ultrafilter saturates the theory of
the random graph Trg. As the random graph is minimum among the unstable the-
ories in Keisler’s order, this shows that no subsequent ultrafilter will saturate any
unstable theory.
This is a theorem in the spirit of Claim 5.1 just discussed, i.e., a technique which
allows one to construct ultrafilters which realize certain types and omit others by
ensuring that the “omitting types” half of the construction is already ensured at some
bounded point in the construction. Now, it has long been known how to construct
an ultrafilter on � > 2ℵ0 which saturates precisely the stable theories, essentially by
organizing the transfinite construction of the ultrafilter so that �(D) is large but
lcf(ℵ0) is small. [In the language of Section 3.4, begin with some regular � > ℵ0 and
a (�,ℵ0)-good triple (I,D0,G) where G ⊆ Iℵ0, |G| = 2�. Enumerate G by an ordinal
divisible by 2� andwith cofinality �, and apply Fact 3.18. See ([18] Theorems VI.3.12
p. 357 andVI.4.8 p. 379)].However, in such constructions the coinitiality ofℵ0 in the
ultrapower mirrors the cofinality of the ultrafilter construction. The construction
here, by contrast, ensures failure of saturation in any future ultrapower long before
the construction of an ultrafilter is complete.
To prove the theorem, using the language of Section 3.4, we begin with (I,D0,G)
a (�, �)-good triple with �+ < �,M |= Trg where R denotes the edge relation. We
unpack the given independent function g∗ ∈ G so it is a sequence 〈f∗

� : � < �
+〉,

such that (I,D0,G \ {g∗} ∪ {f∗
� : � < �

+}) is good. We then build D ⊇ D0 in an
inductive construction of length �+, consuming the functionsf∗

� . At each inductive
step 	 , we ensure that f∗

2	 , f
∗
2	+1 are R-indiscernible to certain distinguished
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106 M. MALLIARIS AND S. SHELAH

functions f : I → M , and that f∗
2	 , f

∗
2	+1 are unequal to each other and to

all f∗

 , 
 < 2	 . The structure of the induction ensures that all functions from I to

M are equivalent modulo the eventual filterD to one of the distinguished functions.
Thus for any subsequent ultrafilterD∗ ⊇ D,MI/D∗ will omit the type of an element
connected to f∗


 precisely when 
 is even, and so fail to be �
++-saturated.

As a corollary, we have in ZFC that lcf(ℵ0,D) may be large without saturating the
theory of the randomgraph. This was shown assuming ameasurable cardinal in [15]
Theorem 4.2 and otherwise not known. This is another advantage of Theorem 6.1,
to disentangle the cofinality of the construction from nonsaturation of the random
graph. This question is of interest as the reverse implication was known: lcf(ℵ0,D)
is necessary for saturating some unstable theory. As the random graph is minimum
among the unstable theories in Keisler’s order, our result shows it is necessary but
not sufficient.

Anultrafilterwhich is flexible but not good. In the second construction,Theorem 7.12,
we prove assuming the existence of a measurable cardinal κ (to obtain an
ℵ1-complete ultrafilter), that on any � ≥ κ+ there is a regular ultrafilter which
is �-flexible but not κ++-good.
Specifically, we first use an inductive construction via families of independent
functions to produce a “tailor-made” filter D on |I | = � which, among other
things, is �-regular, �+-good, admits a surjective homomorphism h : P(I )→ P(κ)
such that h−1(1) = D. Letting E be an ℵ1-complete ultrafilter on κ, we define an
ultrafilter D ⊇ D by D = {A ⊆ I : h(A) ∈ E}, and prove it has the properties
desired. Two notable features of this construction are first, the utility of working
with boolean algebras, and second, the contrast with Claim 5.1 described above.
This is discussed in Remark 5.2.
This result addresses a question of Dow [2], and also improves our previous proof
on this subject in ([15] Theorem 6.4). There, it is shown by taking a product of ultra-
filters that if κ > ℵ0 is measurable and 2κ ≤ � = �κ then there is a regular ultrafilter
on I , |I | = �which is �-flexible but not (2κ)+-good. See alsoDow ([2] Remarks 3.10
and 4.7), and (Malliaris and Shelah [15], Observation 10.9 for a translation).

Realizing some symmetric cuts without saturating any unstable theory. In light of the
second author’s theorem that any theory with the strict order property is maximal
in Keisler’s order ( [18], VI 2.6), it is natural to study saturation of ultrapowers by
studying what combinations of cuts may be realized and omitted in ultrapowers of
linear order. The significance of symmetric cuts is underlined by the connection to
SOP2 given in the authors’ paper [17].
In the third construction, Theorem 8.13, assuming the existence of a weakly
compact cardinal κ, we prove that for ℵ0 < � = cf(�) < κ ≤ � there is a regular
ultrafilter D on I , |I | = � such that lcf(ℵ0,D) = � but (N, <)I /D has no (κ, κ)-
cuts. That is, we build an ultrafilter to these specifications using an independent
family F of functions with range ℵ0 (so note that the ultrafilter will not be flexible).
lcf(ℵ0,D) ≤ � implies that D will fail to saturate any unstable theory.
We now briefly describe the structure of the proof. The construction will have two
constraints. On one hand, we would like the lower cofinality of ℵ0 to be small, equal
to �. We can control this in the known way, i.e., by enumerating the steps in our
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MODEL-THEORETIC PROPERTIES OF ULTRAFILTERS 107

construction by an ordinal � with cofinality �, and ensuring that we continuously
“consume” elements of F in such a way that at the end of stage � all sets supported
by F� ⊆ F have been decided, and

⋃
�<� F� = F . On the other hand, we would like

to ensure that the ultrafilter realizes all (κ, κ)-precuts (see the convention on “cut”
versus “precut” in 3.19). Accomplishing this requires two things.
The first is to ensure that any precut in (N, <)I /D is already a consistent partial
D�-type for some � < �, i.e., it is “already a type” at some bounded stage in
the construction and thus we will have enough room to try to realize it. Roughly
speaking, we assign each formula ϕα = a1α < x < a

2
α in the type to the minimum

� < � such that Xα = {t ∈ I : M |= ∃xϕα(x; a1α[t], a2α [t])} is supported by F�;
without loss of generality the range of this function is � = cf(�), and by weak
compactness it is constant on a cofinal subset of the cut.
The second, more substantial task is to show, at a given inductive step in the
construction, that a given precut can be realized. By the previous paragraph, we
may assume that for each formula ϕα in the type, the set Xα belongs to the current
filter. Thuswehave a distribution for the type in hand andwewould like to extend the
filter to include a multiplicative refinement. In particular, we are obliged to choose a
suitable refinement of eachXα . To do this, we build what are essentially indiscernible
sequences (of countable sequences of elements) in the underlying boolean algebra,
one for each α. We do this so that row 	 in indiscernible sequence α is a partition
of the boolean algebra on which the set of solutions to {t ∈ I : M |= ∃x(a1α [t] <
a1	 [t] < x < a

2
	 [t] < a

1
α[t])} is based. (Here α < 	 and α, 	 range over some cofinal

sequence in κ.) The templates for such sequences are extracted using the strong
uniformity we have available on κ. We then show how to obtain a multiplicative
refinement by generically extending each such sequence one additional step.
To finish, we indicate how to avoid large cardinal hypotheses for some related
results.

§3. Background: flexibility, independent families of functions, boolean algebras.
3.1. Basic definitions. We define regular filters, good filters, and Keisler’s order.
For further background on ultrafilters and ultrapowers, see [1] Chapters 4 and 6.
Definition 3.1 (Regular filters). AfilterD on an index set I of cardinality � is said
to be �-regular, or simply regular, if there exists a �-regularizing family 〈Xi : i < �〉,
which means that:
• for each i < �, Xi ∈ D, and
• for any infinite � ⊂ �, we have⋂i∈� Xi = ∅.
Equivalently, for any element t ∈ I , t belongs to only finitely many of the sets Xi .
Definition 3.2 (Good ultrafilters, Keisler [7]). The filter D on I is said to be
�+-good if every f : Pℵ0 (�) → D has a multiplicative refinement, where this
means that for some f′ : Pℵ0 (�) → D, u ∈ Pℵ0 (�) =⇒ f′(u) ⊆ f(u), and u,
v ∈ Pℵ0 (�) =⇒ f′(u) ∩ f′(v) = f′(u ∪ v).
Note that we may assume the functions f are monotonic.
D is said to be good if it is |I |+-good.
Keisler proved the existence of �+-good countably incomplete ultrafilters on �
assuming 2� = �+. Kunen [10] gave a proof in ZFC, which introduced the technique
of independent families of functions.
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108 M. MALLIARIS AND S. SHELAH

The crucial model-theoretic property of regularity is the following: for a regular
ultrafilter on � and a complete countable theory T , �+-saturation of the ultrapower
M�/D does not depend on the choice of base modelM .
Theorem 3.3 (Keisler ([8]Corollary 2.1 p. 30); see also Shelah ([19] SectionVI.1)).
Suppose thatM0 ≡M1, the ambient language is countable (for simplicity), and D is
a regular ultrafilter on �. ThenM0�/D is �+-saturated iffM1�/D is �+-saturated.
Thus Keisler’s order is genuinely a statement about the relative complexity of
[complete, countable] theories, independent of the choice of base modelsM1,M2:

Definition 3.4 (Keisler [8]). Let T1, T2 be complete countable first-order
theories.

(1) T1 �� T2 when for all regular ultrafilters D on �, allM1 |= T1, allM2 |= T2,
ifM�2 /D is �+-saturated thenM�1 /D is �+-saturated.

(2) (Keisler’s order) T1 � T2 if for all infinite �, T1 �� T2.

An account of current work on Keisler’s order is given in the companion paper
[15]. As that history is not needed for reading the current paper, we quote the most
relevant theorem in Section 3.2 below and refer interested readers to ( [15] Sections
1–4).

3.2. A translation between model theory and ultrafilters. The following theorem
of known correspondences between properties of regular ultrafilters and properties
of first-order theories is quoted from the companion paper [15]. Conditions (1), (2)
are defined in Section 4, (3) in Convention 3.19[6], (4) in Section 3.3, (5) in [13]
(not used here) and (6) in Section 3.1.

Theorem 3.5 (Malliaris and Shelah [15] Section 4 Theorem F). In the following
table, for rows (1),(3),(5),(6) the regular ultrafilter D on � fails to have the property
in the left column if and only if it omits a type in every formula with the property in
the right column. For rows (2) and (4), if D fails to have the property on the left then
it omits a type in every formula with the property on the right.

Set theory: properties of filters Model theory: properties of formulas

(1) �(D) ≥ �+ (A) finite cover property
(2) lcf(ℵ0,D) ≥ �+ ** (B) order property
(3) good for Trg (C) independence property
(4) flexible, i.e., �-flexible ** (D) nonlow
(5) good for equality (E) TP2
(6) good, i.e., �+-good (F) strict order property

Proof.

(1) ↔ (A) Shelah ( [19] Section VI.5). Note that the f.c.p. was defined in
Keisler [8].

(2) ← (B) Shelah ([19] Theorem VI.4.8).
(3) ↔ (C) Straightforward by q.e., see [13], and [14] for the more general
phenomenon.

(4) ← (D) Malliaris [12], see Section 3.3.
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MODEL-THEORETIC PROPERTIES OF ULTRAFILTERS 109

(5) ↔ (E) Malliaris ( [13] Section 6), which proves the existence of a
Keisler-minimum TP2-theory, the theory T ∗

feq of a parametrized family of
independent (crosscutting) equivalence relations.

(6) ↔ (F)Keisler characterized themaximum class bymeans of goodultrafilters.
Shelah proved in ([19] Theorem VI.2.6) that any theory with the strict order
property is maximum in Keisler’s order. (In fact, SOP3 suffices [20]). A
model-theoretic characterization of the maximum class is not known. �

The known arrows between properties (1)–(6) are given in ( [15] Theorem 4.2).
In particular, the arrow (4)→ (1) is from Section 4.
3.3. Flexible filters. We now give background on flexible filters, a focus of this
paper. Flexible filters were introduced in Malliaris [12] and [13]. In the context of
investigations into saturation of regular ultrapowers, a natural question is whether
and how first-order theories are sensitive to the sizes of regularizing families:

Definition 3.6 (Flexible ultrafilters, Malliaris [12], [13]). We say that the filter
D is �-flexible if for any f ∈ IN with n ∈ N =⇒ n <D f, we can find Xα ∈ D for
α < � such that for all t ∈ I

f(t) ≥ |{α : t ∈ Xα}|
Informally, given any nonstandard integer, we can find a �-regularizing family below it.

Alternatively, one could say that in (H(ℵ0),∈)�/D, any � elements belong to a
pseudofinite set of arbitrarily small size [in the sense of the proof of Claim 5.1].
It is useful to know that flexible is equivalent to the set-theoretic “o.k.” (see [15]
Appendix and history there).
The importance of flexibility for our construction comes from the following
lemma, which gives one of the arrows in Theorem 3.5.

Lemma 3.7 (Malliaris [13] Lemma 8.7). Let T be nonlow,M |= T and let D be
a �-regular ultrafilter on I , |I | = � which is not �-flexible. Then N := M�/D is not
�+-saturated.

Corollary 3.8. Flexibility is a nontrivial hypothesis, i.e.,

(1) Not all regular ultrafilters are flexible.
(2) Some regular ultrafilters are flexible. In particular, if D is a regular ultrafilter
on � and D is �+-good then D is �-flexible.

Proof.

(1) By the fact that there is a minimum class in Keisler’s order which does not
include the nonlow theories.

(2) One can prove this directly, or note that since a �+-good ultrafilter on �
saturates any countable theory, in particular any nonlow theory, it must be
flexible by Lemma 3.7. �

We conclude by describing the known model-theoretic strength of flexibility.

Fact 3.9. If D is not flexible thenM�/D is not �+-saturated whenever Th(M ) is
not simple or simple but not low.

Proof. By Lemma 3.7 in the case where T is not low; by Malliaris and Shelah
[17] in the case where T has TP1; by Malliaris [13] in the case where T has TP2. �

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2013.28
Downloaded from https://www.cambridge.org/core. TU Wien University Library, on 29 Apr 2018 at 16:42:00, subject to the Cambridge Core terms of use, available at

Sh:997

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2013.28
https://www.cambridge.org/core


110 M. MALLIARIS AND S. SHELAH

3.4. Independent families of functions and Boolean algebras. We now give some
preliminaries, notation and definitions for the construction of ultrafilters. We will
follow the notation of ( [19] Chapter VI, Section 3), and further details may be
found there.
We will make extensive use of independent families, which provide a useful gauge
of the freedom left when building filters.

Definition 3.10. Given a filter D on �, we say that a family F of functions from �
into � is independent mod D if for every n < �, distinct f0, . . . , fn−1 from F and
choice of j� ∈ Range(f�),

{� < � : for every i < n,fi(�) = ji} �= ∅ modD
Theorem 3.11 (Engelking-Karlowicz ( [5] Theorem 3), Shelah ( [19] Theorem
A1.5 p. 656)). For every � ≥ ℵ0 there exists a family F of size 2� with each f ∈ F
from � onto � such that F is independent modulo the empty filter (alternately, by the
filter generated by {�}).
Corollary 3.12. For every � ≥ ℵ0 there exists a regular filterD on � and a family
F of size 2� which is independent modulo D.
The following definition describes the basic objects of our ultrafilter construction.

Definition 3.13 (Good triples, ([19] Chapter VI)). Let � ≥ κ ≥ ℵ0, |I | = �,
D a regular filter on I , and G a family of functions from I to κ.
(1) LetFI(G) = {h : h : [G]<ℵ0 → κ and g ∈ dom(h) =⇒ h(g) ∈ Range(g)}.1
(2) For each h ∈ FI(G), let

Ah = {t ∈ I : g ∈ dom(h) =⇒ g(t) = h(g)}
.(3) Let FIs (G) = {Ah : h ∈ FI(G)}

(4) We say that triple (I,D,G) is (�, κ)-pregood when I , D, G are as given, and for
every h ∈ FI(G) we have that Ah �= ∅ mod D.

(5) Wesay that (I,D,G) is (�, κ)-goodwhenD is maximal subject to being pregood.
Fact 3.14. Suppose (I,D,G) is a good triple. Then FIs(G) is dense in P(I )
mod D.
Definition 3.15 (for more on Boolean algebras, see ( [19] Definition 3.7
p. 358)).

(1) A partition in a Boolean algebra is a maximal set of pairwise disjoint nonzero
elements.

(2) For a Boolean algebra B, CC (B) is the first regular cardinal � ≥ ℵ0 such that
every partition of B has cardinality < �.

(3) An element b of a Boolean algebra is based on a partition P if a ∈ P implies
a ⊆ b or b ∩ a = 0.

(4) An element of a Boolean algebra B is supported by a set P of elements of B if
it is based on some partition P of B with P ⊆ P.

For completeness, we quote the following fact which will be used in the proof of
Claim 5.1. It explains how the range of the independent families available directly

1That is, h assigns finitely many of the functions of G to values in their respective domains; the
subsequentAh will give the common set on which each function in dom(h) attains its assigned value.
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MODEL-THEORETIC PROPERTIES OF ULTRAFILTERS 111

reflects the amount of freedom (specifically, the size of a maximal disjoint family of
nonsmall sets) remaining in the construction of the filter.

Fact 3.16 ( [19] Claim 3.17(5) p. 359). Suppose (I,D,G) is a good triple, where
for at least one g ∈ G, |Range(g)| ≥ ℵ0, or alternatively {g ∈ G : |Range(g) | > 1 }
is infinite. Then CC (B(D)) is the first regular � > ℵ0 such that g ∈ G =⇒
|Range(g)| < �. Moreover, if � ≥ � is regular, Ai �= ∅ mod D for i < �, then
there is S ⊆ �, |S| = � such that for n < � and distinct i(�) ∈ S, we have that⋂
�<n Ai(�) �= ∅ mod D.
Finally, the following lemma gives the necessary scaffolding and guarantees that
the end product of our construction will be an ultrafilter.

Fact 3.17 ([19] Lemma 3.18 p. 360). Suppose that D is a maximal filter modulo
which F ∪ G is independent, F and G are disjoint, the range of each f ∈ F ∪ G is of
cardinality less than cof(α), cof(α) > ℵ0, F =

⋃
�<α F�, the sequence 〈F� : � < α〉

is increasing, and letF� = F\F�. Suppose,moreover, thatD� (� < α) is an increasing
sequence of filters which satisfy:

(i) Each D� is generated by D and sets supported mod D by FIs(F� ∪ G).
(ii) F� ∪ G is independent moduloD� .
(iii) D� is maximal with respect to (i), (ii).

Then

(1) D∗ :=
⋃
�<α D� is a maximal filter modulo which G is independent.

(2) If G is empty, then D∗ is an ultrafilter, and for each � < α, (ii) is satisfied
whenever D� is nontrivial and satisfies (i).

(3) If � < α and we are given D′
� satisfying (i), (ii) we can extend it to a filter

satisfying (i), (ii), (iii).
(4) If f ∈ F� then 〈f−1(t)/D� : t ∈ Range(f)〉 is a partition in B(D�).
A useful consequence of this machinery is the following general principle. It is
rigorously developed in the proof of ( [19] TheoremVI.3.12 p. 357–366). Specifically,
the formal statement is ( [19] Claim 3.21 p. 363).

Fact 3.18 (Cofinality of the construction and lower-cofinality ofℵ0, ([19] p. 363)).
In the notation of Fact 3.17 [note restrictions on cofinality of α there], suppose that
G = ∅ and that we are given a sequence of functions f	 ∈ F	 \ F	+1 such that for
every n < ℵ0, {t : n < f	(t) < ℵ0} ∈ D	+1. Then for every ultrafilter D∗ ⊇ D,
we have that lcf(ℵ0,D∗) = cf(α) and this is exemplified by the sequence f	/D∗ for
	 < α.

3.5. Conventions.
Convention 3.19 (Conventions).

(1) When D is a filter on I and X ⊆ P(I ), by D ∪ X we will mean the filter
generated by D ∪X . By (D ∪X )+ we mean the sets which are nonzero modulo
the filter generated by D ∪X .

(2) Throughout, tuples of variables may be written without overlines, that is: when
we write ϕ = ϕ(x;y), neither x nor y are necessarily assumed to have length
1, but are finite.

(3) For transparency, all languages (=vocabularies) are assumed to be countable.
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112 M. MALLIARIS AND S. SHELAH

(4) WhenMI/D is an ultrapower we refer toM as the “base model.”
(5) By “D saturatesT”wewill alwaysmean:D is a regular ultrafilter on the infinite
index set I , T is a countable complete first-order theory and for anyM |= T ,
we have thatMI /D is �+-saturated, where � = |I |.

(6) Wewill also say that the ultrafilterD is “good” (or: “not good”) for the theory
T to mean thatD saturates (or: does not saturate) the theory T .

(7) A partial type (or quantifier-free complete 1-type) in a modelM of the theory
of partial order given by some pair of sequences (〈aα : α < κ1〉, 〈b	 : 	 < κ2〉)
with α < α′ < κ1, 	 < 	 ′ < κ2 =⇒ M |= aα < aα′ < b	′ < b	 , which may
or may not have a realization inM , is called a precut. Our main case isMI/D
forM a linear order and D a filter on I .

(8) We reserve the word cut in models of linear order for precuts which are omitted
types.

This concludes the front matter.

§4. D �-flexible on I , f ∈ IN D-nonstandard implies |∏s∈I 2f(s)/D| = 2�. In
this section we prove Claim 4.3. This result established the arrow ([15] Theorem 4.2)
(4)→ (1) [note: (1), (4) are in the notation of Section 3.2 Theorem 3.5] as well as
Conclusion 4.4. We first state a definition and a theorem.

Definition 4.1 ([19] Definition III.3.5). Let D be a regular ultrapower on �.

�(D) := min
{∣∣∣∣∣
∏
t<�

n[t]/D
∣∣∣∣∣ : n[t] < �,

∣∣∣∣∣
∏
t<�

n[t]/D
∣∣∣∣∣ ≥ ℵ0

}

be the minimum value of the product of an unbounded sequence of cardinals moduloD.
Theorem 4.2 (Shelah, [19] VI.3.12). Let �(D) be as in Definition 4.1. Then for
any infinite � and � = �ℵ0 ≤ 2� there exists a regular ultrafilterD on �with �(D) = �.
We show here that flexibility (i.e., regularity below any nonstandard integer)
makes � large.

Claim 4.3. Let D be an ultrafilter on I , and f ∈ IN such that for all n ∈ N,
n <D f. If D is �-regular below f then |

∏
s∈I 2

f(s)/D| = 2�.
Proof. In one direction, |∏s∈I 2f(s)/D| ≤ 2� as f ≤ ℵ0I mod D = 2|I | by
regularity of D, see [15], Fact 5.1.
In the other direction, let 〈Xi : i < �〉 be a regularizing family below f, so each
Xi ⊆ I . Now for any A ⊆ �, define gA ∈ IN by:

if s ∈ I let As = {i < � : s ∈ Xi}
so for each s ∈ I , |As | ≤ f(s), and furthermore let

gA(s) =
∑
{2|As∩i| : i ∈ A ∩As}

noting that the range can be thought of as a number in binary representation, thus
ifA∩As differs fromA′ ∩As we have gA(s) �= gA′(s): at least one place the “binary
representations” are different.
First notice that:

gA(s) ≤
∑
{2� : � < |As |} ≤

∑
{2� : � < f(s)} < 2f(s)
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MODEL-THEORETIC PROPERTIES OF ULTRAFILTERS 113

Second, suppose B1 �= B2 are subsets of �. Without loss of generality, B1 �⊆ B2,
and let j ∈ B1 \B2. If s ∈ Xj , gB1 (s), gB2 (s) differ as noted above, so as Xj ∈ D we
conclude:

if B1 �= B2 are subsets of � then gB1 �= gB2 mod D
These two observations complete the proof. �
Conclusion 4.4. If D is a flexible ultrafilter on I then �(D) ≥ �+, and thus D
saturates any stable theory.

Proof. It is known that D saturates all countable stable theories if and only if
�(D) ≥ �+ (see [15], Section 4, Theorem F). Now f ∈ IN is D-nonstandard if and
only if

∏
s∈I 2

f(s)/D is nonstandard, since we can exponentiate and take logarithms
in an expanded language. Thus, given any nonstandardf, apply Claim 4.3 to logf
to conclude it is large. �

§5. If (I,D,G) is (�, �)+-good for � < � then no subsequent ultrafilter is flexible.
As a warm-up to preventing saturation of the random graph in Section 6, here we
show how to ensure directly, at some bounded stage in an ultrafilter construction,
that no subsequent ultrafilter will be flexible. Recall Fact 3.16. The idea of building
in a failure of saturation via independent functions will be substantially extended
in Section 6. Note that in [16] we show that this statement can be derived, by a
different method, from a result in [18] on good filters.

Claim 5.1 (Preventing flexibility).

(1) If (I,D,G) is (�, �)-good, g ∈ G, |Range(g)| ≥ ℵ0 (without loss of generality
Range(g) ⊇ N) then every ultrafilter D∗ on I extending D ∪ {{s ∈ I : n <
g(s) < �} : n < �} is not �+-flexible, witnessed by g/D∗.

(2) More generally, if:
• � ≤ � is regular
• (I,D,G) is (�,< �)-good, meaning that g ∈ G =⇒ Range(g) is an
ordinal< �
• g ∈ G, |Range(g)| ≥ ℵ0 (without loss of generality Range(g) ⊇ N)
then every ultrafilterD∗ on I extendingD∪{{s ∈ I : n < g(s) < �} : n < �}
is not �-flexible, witnessed by g/D∗.

Proof.

(1) Let g and D be given. Let g∗ ∈ IN be given by: g∗(s) = g(s) if g(s) ∈ N,
and g∗(s) = 0 otherwise. Let E be the filter generated by

D ∪ {{s ∈ I : g∗(s) > n} : n ∈ �}
Note the definition of “(I,D,G) is good” ensures that E is a nontrivial filter,
recalling 3.19(2).
For each i < �+, let fi = I {i} be constantly i . LetD∗ ⊇ E be any ultrafilter
on I extending E . We now ask:
Does (H(�+), �)I /D∗ |= “there is a set b/D∗ with g/D∗ members s. t. for
every i < �+, fi /D∗ ∈ b”?
Assume towards a contradiction that it does, witnessed by b/D∗ for some
given b ∈ I (H(�+)). Since D∗ is regular, we may assume without loss of
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114 M. MALLIARIS AND S. SHELAH

generality that the projections to the base model are finite, i.e., that for each
s ∈ I , b[s] ∈ [�]≤g∗(s).
For each i < �+, let Bb,i = {s ∈ I : i ∈ b[s]} be the set on which the
constant function fi is in the projection of b. For each i , Bb,i �= ∅ mod D as
it belongs to an ultrafilter extending D. Thus, since (I,D,G) is a good triple,
there is Ahi for hi ∈ FI(G) such that Ahi ⊆ Bb,i .
Clearly, any two constant functions fi , fj are everywhere distinct. For each
n < �, let

un = {i < �+ : Bb,i ∈ (D ∪ g−1∗ ({n}))+}
Note that any suchBb,i will containAhn,i mod D for some hn,i ∈ FI(G) which
includes the condition that g = n, i.e., the condition that b have exactly n
elements.
Suppose first that for some n, |un| ≥ �+. By Fact 3.16, we know that since
CC (B(D)) = �+ by the assumption on G, there are i1 < · · · < in+1 in un
such that h :=

⋃{hn,i� : 1 ≤ � ≤ n + 1} ∈ FI(G). By choice of the hn,i we
have that Ah ∩ g−1(n) �= ∅ mod D, i.e., there is a nonempty set on which
n + 1 everywhere distinct elements each belong to a set of cardinality n, a
contradiction.
Thus for each n < �, we must have |un| ≤ �. Hence u :=

⋃{un : n < �}
has cardinality≤ �.On theother hand, if i ∈ �+\u then by definition for each
n < �, Bb,i ∩ g−1∗ ({n}) = ∅ mod D. Hence for g, Bb,i ∩ {t : g(t) ≥ �} = ∅
mod D. Since g ∈ G and we had assumed D maximal modulo which G
was independent, this implies that already Bb,i = ∅ mod D. Hence for any
i ∈ �+ \ u, and for any ultrafilter D∗ ⊇ E ,

(H(�+), �)I /D∗ |= “fi /D∗ /∈ b/D∗”

We have shown that in any such ultrafilter, g∗/D∗ > ℵ0 but there is no
�+-regularizing set of size ≤ g∗/D∗. This completes the proof.

(2) Same proof, since in this case we can still apply Fact 3.16. �
Remark 5.2. Compare Claim 5.1 to the main theorem of Section 7. Claim 5.1
shows that if in some point in the construction of an ultrafilter via families of inde-
pendent functions, we reach a point where the CC of the remaining Boolean algebra is
small, then after adding one more function, no subsequent ultrafilter can be flexible.
However, this is not a fact about CC (B(D)) alone. Theorem 7.12 constructs a flexi-
ble, not good ultrafilter by means of a quotient: the key step there is to begin with a
filter D on � such that there is a Boolean algebra homomorphism h : P(I ) → P(κ)
with h−1(1) = D, where κ < �. We then take the preimage of a complete ultrafilter
on κ to complete the construction. This second ultrafilter is flexible, thanks to the
completeness.

§6. Omitting types in ultrapowers of the random graph. In this section we show
how to prevent saturation directly in ultrapowers of the random graph.We writeTrg
for the theory of the random graph and consider models of Trg, unless otherwise
stated.

Step 0. Preliminary Discussion to Theorem 6.1. In this step we assume cf(κ) > �.
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MODEL-THEORETIC PROPERTIES OF ULTRAFILTERS 115

Suppose that 〈(I,Dα,Gα) : α < κ〉 is some continuous sequence of (�, �)-good
triples, where the filters are increasing with α and the families of functions are
decreasing with α. Suppose Dκ =

⋃
α<κ Dα is a filter (not an ultrafilter) built by

such an induction and Gκ =
⋂
α<κ Gα �= ∅. Then by Fact 3.17, as cf(κ) > �, the

limit triple (I,Dκ,Gκ) is also (�,≤ �)-good. Write G = Gκ for this set of functions
which remains free.
Our strategy will be to build a barrier to saturation into any subsequent construc-
tion of an ultrafilter D ⊇ Dκ by first constructing the filter Dκ, in κ steps, to have a
“blind spot.” We now explain what this means. LetM be any model of the random
graph. For any function g from I toM and any element a ∈M we may define

Ag,a = {t :M |= g(t)Ra}
Then by definition of “good triple,” for each such g and a,Ag,a belongs, inP(I )/Dκ .
to the minimal completion of the subalgebra generated by

〈f−1({α}) : f ∈ G, α ∈ Range(f)〉
Since cf(κ) > �, for each Ag,a this will already be true in P(I )/Dα for some α < κ.
Thus at each stage 	 of our induction we will define

X	 = {g : g is a function from I toM and for every a ∈M
the set Ag,a = {t :M |= g(t)Ra} belongs, in P(I )/D	 ,
to the minimal completion of the subalgebra generated by

〈f−1({α}) : f ∈ G, α ∈ Range(f)〉}

The key point of the construction is then to ensure (Theorem 6.1 Step 3 item 7) that
a distinguished sequence of elements of the ultrapower look alike to all g ∈ X	 ,
and moreover (in Theorem 6.1 Step 3 item 1) that the resulting triple at 	 is good.
Since by the end of the induction all g belong to some X	 , we will have constructed
a sequence of elements of the reduced product which is effectively indiscernible
under any completion to an ultrapower. We can then directly find an omitted type
in Theorem 6.1 Steps 4–5.
Theorem 6.1. If (A) then (B) where:
(A) We are given I,D0,G, g∗, �, � such that:

(a) D0 is a regular filter on I
(b) (I,D0,G ∪ {g∗}) is (�, �)-good
(c) �+ < �
(d) Range(g∗) = �

(B) Then there is a filter D ⊇ D0 such that:
(a) (I,D,G) is (�, �)-good
(b) if D∗ is any ultrafilter on I extending D and M |= Trg, then MI /D∗ is
not �++-saturated. In particular, it is not �+-saturated.

Informally speaking, at the cost of a single function we can prevent future saturation
of the theory of the random graph, thus of any unstable theory.
Proof. The proof will have several steps, within the general framework described
at the beginning of this section. “Thus of any unstable theory” is immediate from
the fact that Trg is minimum among the unstable theories in Keisler’s order.
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116 M. MALLIARIS AND S. SHELAH

1. Background objects. We fix M |= Trg of size � given with some enumeration,
and 〈h� : � < �+〉 an independent family of functions from � onto �. In a slight
abuse of notation, identify � = Range(g∗) with the domain ofM under the given
enumeration.

2. The blow-up of g∗.For � < �+, definef∗
� = h�◦g∗. Then eachf∗

� is a function from
I to �. Recall from (B)(b) that G = G′ \{g∗}. Then letting G0 = G∪{f∗

� : � < �
+},

we have that G0 ⊆ I � is an independent family modulo D0. [This is simply a coding
trick which allows us to use a single function g∗ in the statement of the theorem.]

3. Construction of D. By induction on α < �+ we choose a continuous sequence of
triples (I,Dα,Gα) so that:
(1) (I,Dα,Gα) is (�,≤ �)-good
(2) 	 < α =⇒ D	 ⊆ Dα
(3) α limit implies Dα =

⋃{D	 : 	 < α}
(4) Gα = G ∪ {f∗

� : � ∈ [2α,�+)}
(5) α limit implies Gα =

⋂{G	 : 	 < α} (follows)
(6) if α = 0 then Dα is D0
(7) if α = 	 + 1 and g ∈ X	 (see Step 0), then Bg,	 ∈ Dα where:
Bg,	 = {t ∈ I :g(t)RMf∗

2	(t) ≡ g(t)RMf∗
2	+1(t) and f

∗
2	(t), f

∗
2	+1(t)∈M}

(8) if α = 	 + 1, then the set

N	 = {t : f∗
2	(t) �= f∗

2	+1(t)}
belongs to Dα , and also for each constant function c : I → � the set

S	 = {t : f∗
2	(t) > c(t)} ∩ {t : f∗

2	+1(t) > c(t)}
belongs to Dα .

The induction. For α = 0, let D0,G0 be as defined above.
For α limit, use (3) and (5), completing to a good triple, if necessary.
For α = 	 + 1, consider the filter D′

	 generated by

D	 ∪ {Bg,	 : g ∈ X	} ∪N	 ∪ S	
Claim 6.3 ensures that (I,D′

	 ,G	 ) is (�,≤ �)-pregood. Choose D	 to be any filter
extending D′

	 so that the triple (I,D	 ,G	 ) is (�,≤ �)-good. This completes the
inductive step.
Finally, letD = D�+ , and by construction G�+ = G. As explained at the beginning
of the section, it follows from the cofinality of the construction that (I,D,G) is a
good triple.

4. Distinct parameters.Here we justify the fact that the elements {f∗

 /D∗ : 
 < �+}

are distinct in any ultrapower M�/D∗ where D∗ ⊇ D. It suffices to show this for
any pair f∗


 , f
∗
� .

If 
 = 2	, � = 2	 + 1 then this is built in by Step 3, item 8.
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Otherwise, 
, � were dealt with at different stages and sowill be distinct by Fact 6.2
and Step 3, item 9.

5. An omitted type. In this step we prove that if D∗ ⊇ D is an ultrafilter on I then
MI /D∗ omits the type

q(x) = {(xR(f∗

 /D∗)

)if (
 is even)
: 
 < �+}

where the exponent is either 0 [false] or 1 [true], and the notation means: ϕ0 = ¬ϕ,
ϕ1 = ϕ. By Step 4, the set of parameters is distinct, so q is a consistent partial type.
Suppose for a contradiction that ĝ ∈ IM realizes q. As observed at the beginning of
the proof, since the cofinality of the construction is large (�+ > �) we have for free
that (I,D,G) is a good triple. Moreover, as |M | = � < �+, for each element of the
reduced product (i.e., each function g : I → M ) there is some 	 = 	g < �+ such
that for each a ∈ M , Ag,a belongs already in P(I )/D	 to the minimal completion
of the subalgebra generated by 〈f−1({α}) : f ∈ G, α < �}〉. Let 	 = 	ĝ . By Step
3 item 7,

{t ∈ I : ĝRf∗
2	 ⇐⇒ ĝRf∗

2	+1} ∈ D	+1 ⊆ D
which gives the contradiction. �
We now give Fact 6.2 and Claim 6.3 which were used in the construction. Fact 6.2
will ensure elements of the distinguished sequence built in Theorem 6.1 are distinct.
In the language of order rather than equality, it is ( [19] VI.3.19(1) p. 362).

Fact 6.2. Let G be independent mod D, and 〈g−1(t)/D : t ∈ �〉 a partition
of B(D) for every g ∈ G (which holds if (I,D,G) is a good triple). Suppose that
g ′ : I → �, and �I /D |= � �= g ′/D for every � < �, and g ∈ G. Then for every
ultrafilter D∗ ⊇ D, �I /D∗ |= g/D∗ �= g ′/D∗.

Proof. Suppose to the contrary that

X = {t ∈ I : g(t) = g ′(t)} �= ∅ mod D
As {g−1(�) : � < �} is a partition of I , with each g−1(�)/D ∈ B(D), there would
have to be �∗ < � such thatX ∩g−1(�∗) �= ∅ mod D. Thus {t ∈ I : g′(t) = �∗} �= ∅
mod D, contradiction. �
Finally,Claim6.3willl suffice to show that the filter built in Step 3 does not contain
∅. It says, roughly speaking, that if we are given a finite sequence g0, . . . , gn−1 of
elements of IM such that the interaction of each g� withM is supported by FIs (G)
in the sense described, and if {f1, f2}∪G form an independent family, then wemay
extendD to ensure thatf1, f2 are distinct nonstandard elements which nevertheless
look alike to g0, . . . , gn−1.

Claim 6.3. Suppose (I,D,G ∪ {f1, f2}) is a (�, �)-pregood triple, Range(f1) =
� = Range(f2). LetM be a base model of size �, |M | = {ai : i < �}. Fix n < �
and let g0, . . . , gn−1 : I → M be functions such that for every a ∈ M and � < n the
set {t ∈ I : g�(t)RMa} is supported by FIs(G) mod D. Then for any Ah ∈ FIs (G)
and any � ∈ [�]<ℵ0 the set
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X := Ah ∩ {t ∈ I :
∧
�<n

g� (t)RMf1(t) ≡ g�(t)RMf2(t)} ∩

{t ∈ I : f1(t) �= f2(t) ∧ ({f1(t), f2(t)} ∩ {ai : i ∈ �} = ∅)}
�= ∅ mod D

Proof. In any ultrapower of the random graph, the assertion

(∀y0 . . . yn−1)(∀z0, . . . , zj)(∃w1 �= w2)(∃t0, . . . , tn−1 ∈ {0, 1})(
({z0, . . . zj} ∩ {w1, w2} = ∅) ∧

∧
�<n

(yiRw1) ≡ (yiRw2) ≡ (t� = 1)
)

will be true by Łos’ theorem. Thus, since Ah �= ∅ mod D, it must be consistent
with the nontrivial filter generated by D ∪ {Ah} to choose a, a′ ∈ M , t� ∈ {0, 1}
such that a, a′ play the role of w1, w2 when we replace the ys by gs and the zs by
the elements {ai : i ∈ �} ofM .
Now we assumed in the statement of the claim that each of the sets

(g�Ra)t� , (g�Ra′)t� , � < n

are supported by FIs(G) mod D. Moreover, as just shown, their intersection is
nonempty mod 〈D ∪ Ah〉. So we may find some nontrivial Ah′ ∈ FIs (G), with
h ⊆ h′, contained in that intersection mod D. By the assumption that {f1, f2}∪G
is independent mod D, we have that

Ah′ ∩Ah ∩ f−1
1 (a) ∩ f−1

2 (a
′) �= ∅ mod D

As this set is clearly contained in the setX from the statement of the claim, we finish
the proof. �
Remark 6.4. Much about this argument is not specific to the theory of the random
graph.
Discussion 6.5. In [15] we gave a result showing “decay of saturation” for non-
simple theories using a combinatorial principle from [9]. It would be very useful if the
construction just given could be extended to e.g., the Keisler-minimum TP2 theory,
known from Malliaris [13] as the theory Tfeq of infinitely many equivalence relations
each with infinitely many infinite classes which generically intersect. The analysis of
“fundamental formulas” in [14] may be relevant.
We conclude this section by showing:
Corollary 6.6. If there exists � s.t.�++ ≤ �, i.e., if � ≥ ℵ2, then there is a regular
ultrafilter D∗ on � such that lcf(ℵ0,D∗) ≥ �+ but D∗ does not saturate the random
graph.
Proof. First, apply Theorem 6.1 in the case � = ℵ0 to build D as stated there, so
(I,D,G) is (�,ℵ0)-good. By Fact 3.18 and the assumption that |G| = 2�, there is no
barrier to constructing D∗ ⊇ D so that lcf(ℵ0,D∗) ≥ �+. �
Remark 6.7. Corollary 6.6 gives a proof in ZFC of a result which we had previously
shown using the existence of a measurable cardinal, see the table of implications in
([15] Section 4).
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MODEL-THEORETIC PROPERTIES OF ULTRAFILTERS 119

§7. For κ measurable, � ≥ κ+ there is D on � flexible, not good. In this sec-
tion we prove that for � ≥ κ+ and κ > ℵ0 a measurable cardinal, there is a
regular ultrafilter D on � which is �-flexible but not κ++-good. This addresses
a problem from Dow 1985 [asking whether, in our language, �+-flexible implies
�+-good]. This complements our answer in the companion paper, ( [15] Theorem
6.4), which showed by taking a product of a regular, good ultrafilter on � = �κ

with a κ-complete ultrafilter on κ that there is a regular D on � which is flexible
but not (2κ)+-good for any unstable theory. There are some analogies between the
proofs, but the method developed here appears more general. We improve the gap
between the cardinals, however we can say less about the source of the omitted
type.
Our setup for this section will be as follows. We start withB, a complete κ+-c.c.
Boolean algebra, κ ≤ �. By transfinite induction we build a filter D on an index
set I , |I | = � so that there is a surjective homomorphism h : P(I ) → B with
h−1(1B) = D. We can then extend D to an ultrafilter by choosing some ultrafilter
E on B and letting fil = {A ⊆ I : h(A) ∈ E}. In the main case of interest, E is
�-complete for some �, ℵ0 < � ≤ κ (necessarily measurable). Let us now give such
objects a name.

Definition 7.1. Let K be the class of x = (I, �, κ, �,D, h,B, E) where I is a set
of cardinality ≥ �, and :
(1) D is a �-regular filter on I
(2) B is a complete κ+-c.c. Boolean algebra, κ ≤ �.
(3) h is a homomorphism from P(I ) ontoB with D = h−1(1B)
(4) E is an (at least) �-complete ultrafilter onB
(5) if �∗ < � and 〈a� : � < �∗〉 is a maximal antichain of B then we can find a
partition 〈A� : � < �∗〉 of I such that

∧
� h(A�) = a�

Recall that 〈a� : � < �∗〉 is a maximal antichain of B when each a� > 0B, and
� < � =⇒ a� ∩ a� = 0B. We will use Dx, Ix, and so on to refer to objects from the
tuple x.
Definition 7.2. For x ∈ K, we define:
(1) filx = {A ⊆ I : h(A) ∈ Ex}, the ultrafilter induced on I
(2) Let Θx =

{�∗ : there is a partition 〈Ai : i < �∗〉 of I s.t. 〈h(Ai ) : i < �∗〉 is a maximal
antichainofB}

(3) We say x is �-good if Dx is �-good ; we say it is good if Dx is �+-good
(4) We say x is flexible when Dx is �-flexible.
Remark 7.3. Note that in x, Definition 7.1(5), we distinguish one lower-case �
with a related but not identical meaning: if �x = ℵ1, then ℵ0 ∈ Θx.
In the next definition, we ask about the reverse cofinality of certain sets of fil(x)-
nonstandard elements which are already Dx-nonstandard.
Definition 7.4 (On coinitiality).
(1) For x ∈ K let

F�,Dx = {f ∈ I � : (i < � =⇒ i <fil(x) f) moreover (i < � =⇒ {t ∈ I : f(t) > i} ∈ Dx)}
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120 M. MALLIARIS AND S. SHELAH

(2) If there exists � = cf(�) and fα ∈ F�,Dx for α < � such that:
• α < 	 =⇒ f	 <Dx fα
• if f ∈ F�,Dx then

∨
α<� fα <Dx f

then say that lcf�(x) := �. Here lcf�(x) is the true cofinality of (F�,Dx , >Dx),
which is not always well defined but is equal to � if such exists. (This is not
the same as lcf�(filx) = �.) Below, “assume lcf�(x) is well defined” will mean:
suppose there is such a �.

(3) For F an ultrafilter on I , |I | = �, and ℵ0 ≤ � ≤ � the lower cofinality of �
with respect to F , lcf(�, F ) is the cofinality of the set of elements above the
diagonal embedding of (�,<) in (�,<)�/F considered with the reverse order,
i.e., the coinitiality of � in (�,<)�/F .

In the remainder of the section, we work towards a proof of Theorem 7.12. First,
in Claim 7.5 we show existence of a �+-good, �-regular filterD with the desired map
toB.

Claim 7.5. Assume κ > ℵ0 is a measurable cardinal, E a uniform κ-complete
ultrafilter on κ, � ≥ κ. Then there is x ∈ K such that:
(1) �x = Ix = �
(2) B is the Boolean algebra P(κ), κx = κ,
(3) Ex = E, �x = ℵ1
(4) Dx is a �+-good, �-regular filter on I
(5) κ ∈ Θx
Proof. There are three main steps.

Step 0: Setup.We begin with a (�, �)+-good triple (I,D0,G∗) [here the + means all
functions have range � as opposed to ≤ �]. That is: G∗ ⊆ I � is an independent
family of functions each of which has range �, |G∗| = 2�, D0 is a �-regular filter on
the index set I , and D0 is maximal such that the family G is independent modulo
D0.
B = P(κ) is a complete κ+-c.c. Boolean algebra, so condition (5) will follow
from the fact that h is a homomorphism with rangeB.

Step 1: Setting up the homomorphism.
Let G∗ = F ∪ G, F ∩ G = ∅, |F| = 2�, and G = |B|.
We first define several subalgebras ofB:
LetA2 = {A ⊆ I : A is supported byG mod D0}.Recall thatA ⊆ I is supported
by an independent family mod D0 if there is a partition {Xj : j ∈ J} of the index
set I with j ∈ J =⇒ Xj ∈ FIs (G) and such that for each j ∈ J , either Xj ⊆ A
mod D0 or Xj ∩ A = ∅ mod D0. Thus A2 is a subalgebra of P(I ) which contains
all X ∈ D0 as well as {g−1(0) : g ∈ G}.
Let 〈ga : a ∈ B〉 enumerate G.
Let A0 be the subalgebra {A ⊆ I : A ∈ D0 or I \ A ∈ D0}.
Let A1 be the subalgebra generated by A0 ∪ {g−1b (0) : b ∈ B}.
We now define several corresponding homomorphisms:
Let h0 be the homomorphism fromA0 intoB given byA ∈ D0 =⇒ h0(A) = 1B.
Let h1 be a homomorphism from A1 into B which extends h0 such that
h1(g−1a (0)) = a.
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MODEL-THEORETIC PROPERTIES OF ULTRAFILTERS 121

Let h2 be a homomorphism from A2 into B which extends h0; this is possible
sinceB is complete.

Step 2: The inductive construction. Having defined h2, we would like to extend
D0 to a filter D and h2 to h as given by the claim, and we have two main tasks
to accomplish: first, that D is �+-good, and second that h : P(I ) → B satisfies
A ∈ D =⇒ h(A) = 1B.
Let 〈Ai : i < 2�〉 enumerate P(I ). Let 〈A×

j : j < 2
�〉 enumerate all possible

multiplicative tasks, each occurring cofinally often.Recall that in order to ensure our
eventual filterD is goodweneed to ensure that anymonotonic function� : Pℵ0 (�)→
P(I ) whose range is included in D has a refinement f′ which is multiplicative, i.e.,
f′(u) ∩ f′(v) = f′(u ∪ v). To produce the list 〈A×

j : j < 2
�〉, where each A×

j is
a sequence of elements of P(I ), fix in advance some enumeration of Pℵ0 (�) and
identify each monotonic � : Pℵ0 (�)→ P(I ) with its range.
Interpolating these two lists gives a master list of tasks for the construction: at
odd successor stages we will deal with sets Ai ⊆ I , at even successor stages we deal
with possible multiplicative tasks A

×
j . We choose (Dα, hα,Aα,Fα) by induction on

α ∈ [2, 2�) such that:
(1) D2 = {A ⊆ I : h2(A) = 1}
(2) 〈Dα : α ∈ [2, 2�]〉 is increasing continuously with α, andD2� is the desired D
(3) 〈Fα : α ∈ [2, 2�]〉 is decreasing continuously with α; F2 = F , α < 	 =⇒
Fα ⊇ F	 , |Fα \ Fα+1| ≤ �, F2� = ∅

(4) (I,Dα,Fα ∪ G) is a good triple, meaning that the functions Fα ∪ G remain
independent modulo Dα and Dα is maximal for this property

(5) Aα = {A ⊆ I : there is B ∈ dom(h2) such that A = B mod Dα}
(6) hα ∈ Hom(Aα,B) and 〈hα : α ∈ [2, 2�]〉 is increasing continuously with α
(7) if α = 2	 + 1, then A	 ∈ Aα
(8) if α = 2	 + 2 and A

×
α = 〈A×

	,u : u ∈ [�]<ℵ0〉, and u ∈ [�]<ℵ0 =⇒ A×
	,u ∈

D2	+1, then it has a multiplicative refinement in Dα

For condition (7),α = 	+1: if neitherA nor I \A is emptymoduloD	 (otherwise
we are done) apply Claim 7.6 which returns a pregood triple (I,D′,G ∪ (F	 \ F ′)),
where |F ′| ≤ �. LetFα = F	 \F ′, andwithout loss of generality, extend the pregood
triple returned by Claim 7.6 to a good triple (I,Dα,G ∪ Fα).
For condition (8), α = 	 + 2: choose any g ∈ F	+1 and let Fα = F	+1 \ {g}.
Using g, we can produce a multiplicative refinement for 〈A×

α,u : u ∈ [�]<ℵ0〉 while
keeping F	+1 \ {g} independent, as in the usual construction of good filters. See for
instance ([19] Claim 3.4 p. 346).
Finally, we verify that the construction satisfies Definition 7.1(5) for �x = ℵ1:
As �∗ < � = ℵ1, without loss of generality �∗ ≤ � so without loss of generality
�∗ = �. We can choose by induction on n, sets A′

n ⊆ I \
⋃{A′

m : m < n} such that
h(A′

n) = an, and then let An be A
′
n if n > 0, and I \ {A′

1+k : k < �} if n = 0. �
We now prove a technical claim for Claim 7.5, used to ensure (7) of the induction.
For “supported,” recall Definition 3.15. Note that in Claim 7.6, what is shown is
that X is equivalent modulo D′ to a set of elements of FIs (G) which are pairwise
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disjoint (moduloD). If desired, repeat the proof for I \X in place of X to explicitly
obtain a partition.

Claim 7.6. Let (I,D,G ∪ F) be a (�, �)-good triple. Let X ⊆ I , X ∈ D+. Then
there are F ′ ⊆ F , |F ′| ≤ � and a filter D′ ⊇ D such that (I,D′,G ∪ (F \ F ′)) is a
(�, �)-good triple, and moreover X is supported by G mod D′.
Proof. Our strategy is to try to choose Ahi ∈ FIs (G ∪ F), Di ⊇ D, F i ⊆ F by
induction on i < �+, subject to the following conditions.

(1) For each i ,Ahi �= ∅ mod Di , and eitherAhi ⊆ X mod Di or elseAhi∩X = ∅
mod Di

(2) j < i implies Ahj ∩Ahi = ∅ mod Di , but
f ∈ (dom(hj) ∩ F) ∩ (dom(hi) ∩ F) =⇒ hj(f) = hi(f)

(3) For each i , F i = {f ∈ F : (∀j < i)(f /∈ dom(hj)}
(4) For each i , Di extends the filter generated by

D ∪ {{s ∈ I : f(s) = hj(f)} : j < i, f ∈ dom(hj) ∩ F}
and moreover (I,Di ,G ∪ F i) is a (�, �)-good triple.

For i = 0, let D0 = D,F0 = F , and choose Ah0 ⊆ X mod D by Fact 3.14.
For i > 0, we first describe the choice of Di . Let D∗

i be the filter generated by

D ∪ {{s ∈ I : f(s) = hj(f)} : j < i, f ∈ dom(hj) ∩ F}
The choice of F i is determined by condition (3). Notice that by condition (2), it
will always be the case that

(I,D∗
i ,G ∪ F i)

is a (�, �)-pregood triple. Without loss of generality, we may extend D∗
i toDi which

satisfies condition (4).

For the choice of Ahi , the limit and successor stages are the same, as we now
describe.
At stage i < �+, suppose we have defined Di .
Let Yi =

⋃{Ahj : j < i,Ahj ⊆ X mod Di} and let F i = {f ∈ F : (∀ j < i)
(f /∈ dom(hj)}.
When attempting to choose Ahi , one of two things may happen.

Case 1. The “remainder” is already small, meaning that

I \ Yi = ∅ mod Di
In this case, the internal approximation to X indeed works, i.e.,

X =
⋃
{Ahj : j < i,Ahj ⊆ X mod Di} mod Di

For each j < i let h′j be the restriction of hj to G. Then from the definition of Di ,
Ahj ⊆ X mod Di ⇐⇒ Ah′j ⊆ X mod Di

Moreover for j < k < i , by condition (2), this remains a partition:

Ahj ∩ Ahk = ∅ mod Dk =⇒ Ah′j ∩ Ah′k = ∅ mod Di
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Thus X is supported by FIs (G) mod Di , namely
X =

⋃
{Ah′j : j < i,Ahj ⊆ X mod Di} mod Di

and we set D′ = Di and F ′ = F \ F i to finish the proof.
Case 2. Not Case 1, in which case

I \ Yi �= ∅ mod Di
so as (I,Di ,G ∪ F i) is a good triple we may choose Ahi ⊆ I \ Yi mod D with
hi ∈ FIs(G ∪ F i), by Fact 3.14. Note that compliance with (2) is ensured by the
definition of Di . This completes the inductive step at i .
Finally, suppose for a contradiction that the induction continues for all i < �+.
Then by construction, (I,D�+ ,F�+ ∪ G) is a (�, �)-good triple, and by Fact 3.16,
CC (B(D�+)) ≤ �+. However, by the “moreover” line in Case 1, {Ahi : i < �+} is a
partition of B(D), contradiction.
Thus the induction stops (i.e., we reach Case 1) at some bounded stage i∗ < �+.
In particular, it will be the case that |F ′| ≤ �. This completes the proof. �
Although we will not use this in the present paper, note that we could upgrade
Claim 7.5 as follows, by adding condition (6) for appropriate �. (Note that in the
statement of Corollary 7.7, we can allow smaller � but then the goodness goes
down.)

Corollary 7.7. Assume κ > ℵ0 is a measurable cardinal,E a uniform κ-complete
ultrafilter on κ, � ≥ κ, � = cf(�) ∈ [�+, 2�]. Then there is x ∈ K such that:
(1) �x = |Ix| = �
(2) B is the Boolean algebra P(κ), κx = κ,
(3) Ex = E, �x = ℵ1
(4) Dx is a �+-good, �-regular filter on I
(5) κ ∈ Θx
(6) lcf(x) = �

Proof. Let 〈Ai : i < κ〉 partition � into κ sets, |Ai | = �. For each i < κ, let
Di be a �+-good, regular ultrafilter on �, with lcf(ℵ0,Di) = � and Ai ∈ Di . Such
ultrafilters always exist by ([19] VI.3.12).
Let D = ⋂i<κ Di , and let j : P(�) → B = P(κ) be given by j(A) = {i < κ :

A ∈ Di}.
Then: (a) D is a filter on �, and (b) D is �-regular, because if hi : � → [�]<ℵ0
witnesses that Di is regular than h =

⋃
i<κ(hi � Ai) witnesses that D is regular.

Similarly, (c) D is �+-good. (d) j : P(�) → B is onto, since for any X ∈ B, the
j-image of the set

⋃{Ai : i ∈ X} is X . Likewise, (e) j−1(1B) = D.
Finally, (f) lcf(ℵ0,D) = �, because letting 〈fi,� : � < �〉witness that lcf(ℵ0,Di ) =
�, we have that 〈f� : � < �〉 witnesses that lcf(ℵ0,D) = � where f� =

⋃{fi,� � Ai :
i < κ}. �
Wenow bring inE, and verify that the induced filter filx is regular and that certain
fil(x)-nonstandard elements are fil(x)-equivalent to elements which are already
Dx-nonstandard.
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Claim 7.8. Assume x ∈ K and � = cf(�) ∈ Θx. (e.g., � = ℵ0 for the x from
Claim 7.5)

(1) fil(x) is a regular ultrafilter on I
(2) If � = cf(�) < �
(or just � = cf(�) ∈ Θx : in our case, � = ℵ0 )
then if g ∈ I � and∧n n <fil(x) g there is f ∈ I � such that:
(a) f = g mod fil(x)
(b) i < f mod Dx for every i < �

Proof.

(1) fil(x) is an ultrafilter by Definition 7.1(3)–(4), and inherits regularity from
D.

(2) Let � = ℵ0, g ∈ I � be given, and suppose that n ∈ N =⇒ n <fil(x) g. For
each � < �, define A� = {t ∈ I : g(t) < �}, so 〈A� : � < �〉 is a ⊆-increasing
sequence of subsets of I whose union is I . Let a� = h(A�).
If for some � < � we have that a� ∈ E, then by definition A� ∈ fil(x), and
thus � ≥ g mod fil(x), contradicting our assumption on g. So for all � < �,
a� /∈ E. Since E is a �-complete ultrafilter on B, there is a ∈ E such that
for all � < �, 0 <B a ≤B (1B − a�). Let A ⊆ I be such that hx(A) = a, so
� < � =⇒ A ∩A� = ∅ mod fil(x).
Since Dx is �-regular, there is g1 ∈ I � such that i < � =⇒ i < g1
mod Dx (it suffices to majorize some finite set of elements at each index).
Now we can define f ∈ I � by:

f(t) =

{
g(t) if t ∈ A
g1(t) if t ∈ I \ A

Clearly f satisfies our requirements.

�
In Claim 7.9 we verify that flexibility, which we were guaranteed only for D, in
fact remains true for the induced ultrafilter filx.

Claim 7.9.

(1) Assume ℵ0 < �x (as holds in Claim 7.5). If Dx is a �-flexible filter, as in Claim
7.5, then also fil(x) is a �-flexible ultrafilter.

(2) Assume thatℵ0 < �x, and lcf(x) is well defined, see above.Then lcf(ℵ0,fil(x)) =
lcfℵ0 (x). Similarly for lcf(�,fil(x)) and lcf�(Dx).

Proof.

(1) As in Definition 3.6, let g ∈ IN be such that n ∈ N =⇒ n < g mod fil(x).
We would like to find a sequence 〈Uα : α < �〉 of members of fil(x) such that
t ∈ I =⇒ g(t) ≥ |{a < � : t ∈ Uα}.
Recalling that ℵ0 < �, let f be the function corresponding to g from
Claim 7.8(2). Let A = {t ∈ I : f(t) = g(t)} ∈ fil(x). By assumption, Dx
is a �-flexible filter, so there is a sequence 〈U ′

α : α < �〉 of members of Dx
such that t ∈ I =⇒ (f(t) ≥ |{a < � : t ∈ U ′

α}|. For each α < �, define
Uα = U ′

α ∩A, andUα ∈ fil(x) as filters are closed under intersection. Finally,
we verify 〈Uα : α < �〉 is the desired regularizing set, by cases. If t ∈ A, by
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choice of the 〈U ′
α : α < � we have that f(t) ≥ |{a < � : t ∈ U ′

α}|, and if
t /∈ A, |{α : t ∈ Uα}| = 0 ≤ g(t).

(2) Let � be given. Let F1 = {f ∈ I � : i < � =⇒ i < f mod Dx}, and let
F2 = {f ∈ I � : i < � =⇒ i < f mod fil(x)}. Then F1 ⊆ F2, and if
f1, f2 ∈ F1 and f1 ≤ f2 mod Dx then f1 ≤ f2 mod fil(x).
Let � = lcf�(Dx) and let 〈fα : α < �〉 witness it, as in Definition 7.4. We
would like to show that this same sequence witnesses the coinitiality of �
modulo fil(x), i.e., that the two conditions of Definition 7.4 are satisfied for
fil(x) in place of Dx. First, since Dx ⊆ fil(x), α < 	 < � =⇒ f	 <fil(x) fα .
Second, for any g ∈ F2, byClaim 7.8(2) there is somef ∈ F1 such that g = f
mod fil(x), and for some α < �, fα < f mod Dx. Hence fα ≤ f = g
mod fil(x). The sequence 〈fα/ fil(x) : α < �〉 cannot be eventually constant,
as then lcf�(fil(x) = 1, so we are done.

�
Definition 7.10 (Goodness for a boolean algebra). We say that the subset
X ⊆ B, usually a filter or ultrafilter, is �+-good if every monotonic function from
Pℵ0 (�)→ B has a multiplicative refinement, i.e., for every sequence 〈au : u ∈ [�]<ℵ0〉
of members of X with u ⊆ v =⇒ av ⊆ au, there is a refining sequence 〈bα : α ∈ �〉
of members of X such that for each u ∈ [�]<ℵ0 ,B |= “(⋂α∈u bα) ≤ au”.
Claim 7.11. Suppose x ∈ K and E is not �+-good considered as a subset of B
(e.g.,B = P(κ) and � = κ+ so �+ = κ++). Then fil(x) is not �+-good.
Proof. If E is not �+-good, then as in Definition 7.10 we can find a sequence
〈au : u ∈ [�]<ℵ0〉 of members of E such that there is no refining sequence 〈bα : α <
�〉 of members of E such that for each u ∈ [�]<ℵ0 , yu ≤B au where yu :=

⋂
α∈u bα .

Let Au ⊆ I be such that hx(Au) = au. Choosing Au by induction on |u|, we can
ensure monotonicity, i.e., that u ⊆ v =⇒ Av ⊆ Au . Now if fil(x) were �+-good,
we could find a sequence 〈Bα : α < �〉 of members of fil(x) such that for each
u ∈ [�]<ℵ0 , ⋂α∈u Bα ⊆ Au . But then letting bα = h(Bα) for α < � gives a refining
sequence which contradicts the choice of 〈au : u ∈ [�]<ℵ0〉. �
Theorem 7.12. Assume κ is a measurable cardinal, κ < �. There isD such that:
(1) D is a regular ultrafilter on �
(2) D is flexible, i.e., �-flexible
(3) D is not κ++-good
Proof. Let E be a uniform κ-complete ultrafilter on κ, which exists as κ is
measurable. LetB = P(κ). Let x be as in Claim 7.5. Then:
(1) fil(x) is an ultrafilter on � = Ix = �x as x ∈ K, by Claim 7.8. Since Dx is a
�+-good �-regular filter on �, we have that fil(x) is regular by Claim 7.5(3).

(2) fil(x) is �-flexible by Claim 7.9.
(3) fil(x) is not κ++-good by Claim 7.11.
This completes the proof. �

§8. For κ weakly compact D may have no (κ, κ)-cuts while lcf(ℵ0,D) is small.
In this section we prove, using a weakly compact cardinal κ, that it is possible to
realize all (κ, κ)-precuts while allowing lcf (ℵ0) to be small thus failing to saturate any
unstable theory. In some sense, we play weak compactness against the cofinality of
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the construction. Throughout this section κ is weakly compact, but we will mention
where we use this.

Definition 8.1. The cardinal κ is weakly compact if for every f : κ× κ → {0, 1}
there is U ⊆ κ, |U| = κ and t ∈ {0, 1} such that for all � < � from U , f(�, �) = t.
Fact 8.2 (see e.g., Kanamori [6] Theorem 7.8 p. 76)). If κ > ℵ0 is weakly
compact, n < ℵ0 and � < κ, then for any α : [κ]n → � there exists U ⊆ κ, |U| = κ
such that 〈α(�1, . . . �n) : �1 < . . . , < �n from U〉 is constant.
Recall that D+ = {X ⊆ I : X �= ∅ mod D}.
We will use an existence result from our paper [16].

Remark 8.3. For the purposes of this paper, the reader may simply take D in
Theorem 8.4 to be �+-good ; then Fact 8.5 holds by the Appendix to [16]. We will only
use this quoted consequence of the definition, Fact 8.5, summarized in Remark 8.6.

Theorem 8.4 (Excellent filters, Malliaris and Shelah [16]). Let � ≥ � ≥ ℵ0. Then
there exists a (�, �)-good triple (I,D,G) where |G| = 2�, G ⊆ I �, and D is a regular,
�+-excellent filter D on � (thus also �+-good).
Fact 8.5 ( [16] Claim 4.9). Let D be a regular, �+-excellent filter on �. Then for
any sequence A = 〈Au : u ∈ [�]<ℵ0〉 ⊆ D+ which is multiplicative mod D, meaning
that (

u, v ∈ [�]<ℵ0) =⇒ (Au ∩ Av = Au∪v mod D)
there is a sequence A

′
= 〈A′

u : u ∈ [�]<ℵ0〉 ⊆ D+ such that
(1) u ∈ [�]<ℵ0 =⇒ A′

u ⊆ Au
(2) u ∈ [�]<ℵ0 =⇒ A′

u = Au mod D
(3) A

′
is multiplicative, i.e., multiplicative modulo the trivial filter {�}.

Remark 8.6. That is, when D is excellent we can upgrade “multiplicative modulo
D” to “multiplicative.”
Definition 8.7 (On cuts).

(1) Let D be a filter on I , M a model, G a family of independent functions and
suppose (I,D,G) is a pregood triple. Let (a1, a2) = (〈a1� : � < κ1〉, 〈a1� : � <
κ2〉) be a pair of sequences of elements of MI . Say that (a1, a2) is a precut
mod D whenever:
(a) 〈a1� : � < κ1〉 is increasing mod D
(b) 〈a2� : � < κ2〉 is decreasing mod D
(c) and a1� < a

2
� mod D for each � < κ1, � < κ2

(2) Say that, moreover, (a1, a2) is a precut supported by G′ ⊆ G mod D when it
is a precut mod D and for some U ⊆ κ unbounded in κ, and any � < � from
U , the set

A�,� = {s ∈ I : ∃x(a1� [s] < a1� [s] < x < a2� [s] < a2� [s])}/D
is supported by G′. That is, we can find a partition 〈Xi : i < i(∗)〉 of I
whose members are elements of FIs (G′) and such that for each i < i(∗), either
Xi ⊆ A�,� mod D or Xi ∩ A�,� = ∅ mod D.

(3) AnultrafilterD∗ on I has no (κ1, κ2)-cutswhen for somemodelM of the theory
of linear orderMI /D∗ does, where this means that for any (a1, a2) which is a
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(κ1, κ2)-precut mod D∗, then N realizes the type {a1� < x < a2� : � < κ1,
� < κ2}.

Observation 8.8. Let (I,D,G) be a (�,ℵ0)-good triple and let 〈B�,� : � < � < κ〉
be a sequence of elements ofD+, i.e.,D-nonzero subsets of I . Then for each � < � < κ,
there exist:
(1) a maximal antichain 〈Ah�,�,n /D : n < �〉 of P(I )/D such that:

• each h�,�,n ∈ FI(G)
• n < m < � =⇒ Ah�,�,n ∩ Ah�,�,m = ∅ mod D (hence is really empty, by
the assumption on the independence of G)

(2) and truth values 〈t�,�,n : n < �〉 such that for each n < �
Ah�,�,n ⊆ (B�,�)t�,�,n mod D

In other words, B�,� =
⋃{Ah�,�,n : n < �, t�,�,n = 1} mod D.

Proof. Since (I,D,G) is a good triple, the elements of FIs(G) are dense in
P(I )/D. Since (I,D,G) is a (�,ℵ0)-good triple, the boolean algebra P(I )/D has
the ℵ1-c.c. Using these two facts, for any D-nonzero B�,� , we may choose the sets
and their exponents by induction on n < �. �
Observation 8.8 can be thought of as giving a pattern t, h on which the set B�,� is
based, so we now give a definition of when two patterns are the same; we will then
apply weak compactness to show we can extract a large set U of κ so that any two
� < � from U have the same associated pattern.
Definition 8.9 (Equivalent patterns). Let (I,D,G) be a (�,ℵ0)-good triple, given
with an enumeration of G, and let 〈B�,� : � < � < κ〉 be a sequence of elements of D+.
For each � < � < κ:
• let 〈Ah�,�,n /D : n < �〉, 〈t�,�,n : n < �〉 be as in Observation 8.8
• let 〈
(i, �, �) : i < i(�, �)〉 list ⋃{dom(h�,�,n) : n < �} in increasing order
We define an equivalence relation E = E(〈B�,� : � < � < κ〉) on {(�, �) : � < � < κ}
by: (�1, �1)E(�2, �2) iff :
• i(�1, �1) = i(�2, �2)
• t�1,�1,n = t�2,�2,n for each n < �
• 
(i, �1, �1) ∈ dom(h�1,�1,n) iff 
(i, �2, �2) ∈ dom(h�2,�2,n)
• if 
(i, �1, �1) ∈ dom(h�1,�1,n) then h�1,�1,n(
(i, �1, �1)) = h�2,�2,n(
(i, �2, �2))
Remark 8.10. The equivalence relation just defined has at most 2ℵ0 classes, since
i(�, �) ≤ ℵ0, the sequence t is countable with each member {0, 1}-valued, and the
sequence h is countable with each member a function whose domain and range are
each a finite set of natural numbers.
Claim 8.11. Assume κ is weakly compact. Let (I,D,G) be a (�,ℵ0)-good triple
and let 〈B�,� : � < � < κ〉 be a sequence of elements of D+. Then there is U ⊆ κ,
|U| = κ such that:
(1) all pairs from {(�, �) : � < � < κ are from U} are E-equivalent, and moreover
(2) for any i < j < i(�, �), and any �1 < �1, �2 < �2 from U , the truth or falsity of
“
(i, �1, �1) = 
(j, �2, �2)” depends only on the order type of {�1, �2, �1, �2}.

Given U , we may thus speak of i , dom(hn), and hn(
(j)) as these depend only on the
equivalence class. Note that the actual identities of the functions {
(j, �, �) : j < i}
do depend on �, �, though by (2) their pattern of incidence does not.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2013.28
Downloaded from https://www.cambridge.org/core. TU Wien University Library, on 29 Apr 2018 at 16:42:00, subject to the Cambridge Core terms of use, available at

Sh:997

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2013.28
https://www.cambridge.org/core
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Proof. For the first clause, by Remark 8.10, enumerate the 2ℵ0-many possible
E-equivalence classes and define f : [κ]2 → 2ℵ0 by (�, �) �→ i when (�, �) is in the
ith class. Note that as κ is weakly compact, therefore inaccessible, the range of this
function is less than κ. Thus by Fact 8.2, we have a homogeneous subset U0 ⊆ κ,
|U| = κ. For the second clause, define f : [U0]4 → i×i{0, 1} and let U ⊆ U0, |U| = κ
be a homogeneous subset. �
The final use of weak compactness will be in the following observation, which
will allow us to build the ultrafilter so that the cofinality of the construction is small
while still addressing all (κ, κ)-cuts.

Observation 8.12. Recall that ℵ0 < � = cf(�) < κ ≤ � and κ is weakly compact.
Let � be an ordinal with cofinality �. Suppose D∗ is an ultrafilter on I , |I | = � and
D∗ is constructed as the union of a continuous increasing chain of filters 〈D� : � < �〉,
for � an ordinal with cofinality �. If (a1, a2) is a (κ, κ)-cut for D∗, then there is some
� < � such that (a1, a2) is already a (κ, κ)-cut for D�.
Moreover, if the chain begins with D0,G where (I,D0,G) is a (�,ℵ0)-good triple,
then if we write G = ⋃{Gα : α < �} as a union of increasing sets, then we may
additionally conclude that there is � < � such that (a1, a2) is a (κ, κ)-cut supported
by G� mod D�. [More precisely, for some U ∈ [κ]κ , (a1 �U , a2 �U ) is a (κ, κ)-cut
supported by G� mod D�.]
Proof. For each � < � < κ, let A�,� = {s ∈ I : ∃x(a1� [s] < a1� [s] < x <
a2� [s] < a

2
� [s]f)} ∈ D∗ be supported by Gα(�,�) where α(�, �) < �. (See the proof of

Observation 8.8, which applies to any D0-positive set thus any element of D∗, and
note that the supporting sequence of functions obtained there is countable while
� = cf(�) > ℵ0.) LetC be a club of � of order type �, and without loss of generality
α(�, �) ∈ C . Since κ is weakly compact and � < κ, there is U ∈ [κ]κ such that α is
constant on � < � from U . �
We now turn to the construction of the ultrafilter.

Theorem 8.13. Let κ be weakly compact and let �, � be such that ℵ0 < � = cf � <
κ ≤ �. Then there is a regular ultrafilter D on I , |I | = � which has no (κ, κ)-cuts but
lcf(ℵ0,D) = �.
Proof. We begin with G ⊆ IN, |G| = 2�, and D so that (I,D0,G) a (�,ℵ0)-good
triple andD0 is a �+-excellent filter, given by Theorem 8.4. Let � be an ordinal with
cofinality � divisible by 2� (we will use 2� × �). Let 〈gα : α < �〉 list G with no
repetition. LetM be a model of the theory of linear order with universe N (we will
use (N, <)).
Let 〈(aα1 , aα2 ) : α < �〉 enumerate all pairs of κ-sequences of elements ofMI (i.e.,
all potential (κ, κ)-precuts) each occurring cofinally often.
We choose Dα by induction on 1 ≤ α ≤ � such that:
(a) Dα is a filter on I extending D0
(b) 	 < α =⇒ D	 ⊆ Dα and the chain is continuous, i.e., α limit implies Dα =⋃{D	 : 	 < α}
(c) if A ∈ Dα then A/D0 is supported by Gα := {g
 : 
 < 2�α}
(d) If A ⊆ I and A/D is supported by Gα , then A ∈ Dα or I \ A ∈ Dα
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(e) If (aα1 , a
α
2 ) is a cut mod Dα hence is supported by Gα mod D0, then for

some bα ∈ IM , for every � < κ (writing ai� for the �-th element of aαi ) we
have that the set

{s ∈ I : a1� [s] < bα[s] < a2� [s]} ∈ Dα+1
hence any ultrafilter extending Dα+1 realizes this cut.

Before we justify this induction, note that it suffices: letting D = D� =
⋃{Dα :

α < �} be the resulting ultrafilter, we have by Observation 8.12 that D realizes all
(κ, κ)-precuts (since each of them will be addressed at some bounded stage), and
we have that lcf(ℵ0,D) = � by Fact 3.18.
For α = 0, let Dα = D0.
For α limit, without loss of generality (see Section 3.4) let Dα be a maximal
extension of

⋃{D	 : 	 < α} satisfying (a), (b), (c); it will then necessarily satisfy (d).
So let α = 	+1.We consider the potential cut (a	1 , a

	
2 ), henceforth (a1, a2). If for

some �, � < κ the setA�,� = {s ∈ I : ∃x(a1� [s] < a1� [s] < x < a2� [s] < a2� [s])} /∈ D	 ,
then proceed as in the limit case.
Otherwise, this stage has several steps.

Step 1: Fixing uniform templates. Working mod D0 (which recall is an excellent
therefore good filter), each A�,� = A

	
�,� is supported by G	 mod D0, and is in D+0 .

Thus applying Claim 8.11 to 〈A	�,� : � < � < κ〉, let U	 ∈ [κ]κ be a homogeneous
sequence satisfying (1)–(2) ofClaim8.11 and let i = i(	), dom(h	n ),h

	
n (
(i)), and so

forth be the associated data, which we may informally call patterns or “templates”.
For clarity,wewrite each 
(i, �, �) [note: recall that these list the functions supporting
A�,� in increasing order] as 
(i, �, �, 	) to emphasize the stage in the construction.
Now, these “templates” are given for each of the sets A�,� , for pairs � < � from
U . Stepping back for a moment, we would ultimately like to realize the given cut.
We have in hand a distribution of the type in which ϕ(x; a1� , a

2
� ) = a

1
� < x < a

2
�

is sent to A� = {s ∈ I : ∃x(a1� [s] < x < a2� [s])}, and so we will eventually want
to look for a multiplicative distribution in which each A� is refined to a smaller set.
Roughly speaking, our strategy will be to choose a refinement for A� by analyzing
the limiting behavior of the templates for A�,� as � → κ. The hypothesis of weak
compactness will give us enough leverage to do this, by revealing strongly uniform
behavior within any such sequence. Recall that in light of Claim 8.11, what changes
with � is the actual identity of the sequence of functions 〈
(i, �, �, 	) : i < i	〉 ⊆ G	 .
Step 2: “Limit” sequences from the templates. For each � ∈ U , we thus have a
κ-sequence of countable sequences

〈〈
(i, �, �, 	) : i < i	 〉 : � ∈ U〉
Looking ahead, we will want to choose the κth row of this sequence, 〈
(i, �, κ, 	) :
i < i	〉 in a natural way. [The choice will be justified in Steps 3–4.] We first observe
that Claim 8.11(2) has strong consequences:

(i) Fixing � ∈ U , the sequence 〈
(i, �, �, 	) : � < � from U and i < i	〉 is either
constant or else any two of its elements are distinct, and
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(ii) if for some i1 �= i2, �1 �= �2 we have 
(i1, �, �1, 	) = 
(i2, �, �2, 	) then both
sequences 〈
(i1, �, �, 	) : � < � from U〉 and 〈
(i2, �, �, 	) : � < � from U〉 are
eventually equal to the same value and thus, by (i), everywhere constant.

(iii) For i1, i2, �1, �2 we have that:
there exist �1, �2 > �1, �2 such that


1(i1, �1, �1, 	) = 
1(i1, �1, �2, 	) = 
1(i2, �2, �1, 	) = 
1(i2, �2, �2, 	)

if and only if
for all � > �1, �2, 
(i1, �1, �, 	) = 
(i2, �2, �, 	).

We may therefore choose ordinals 〈
(i, �, κ, 	) : � ∈ U , i < i(	)〉, such that:
(1) if i < i(	), � ∈ U , and 
(i, �, �1, 	) = 
(i, �, �2, 	) whenever �2 > �1 > � are
from U , then 
(i, �, κ, 	) = 
(i, �, �, 	) whenever � > � is from U

(2) if i < i(	), � ∈ U , and 
(i, �, κ, 	) is not defined by clause (1), then

(i, �, κ, 	) ∈ [2�	, 2�α), i.e., in Gα \ G	 , subject to:

(3) if �1, �2 ∈ U and i1, i2 < i(	) then 
(i1, �1, κ, 	) = 
(i2, �2, κ, 	) iff

(i1, �1, �, 	) = 
(i2, �2, �, 	) for all � > �1, �2 from U	 .

For each � ∈ U , let hn,�,κ,	 be defined in the obvious way, i.e., as the template
functions considered over the countable sequence {
(i, �, κ, 	) : i < i	}. Then set

A	�,κ =
⋃
{Ahn,�,κ,	 : tn,	 = 1}

For each finite u ⊆ U let

Bu =

{
t ∈ I :M |= (∃x)

(∧
�∈u
a�1[t] < x < a

�
2[t]

)}

and let
B ′
u =

⋂
{A	�,κ : � ∈ u}

With these definitions in hand, we turn to Step 3.

Step 3: Bu ⊇ B ′
u mod D0.

In this step we verify that for each u ∈ [U ]<ℵ0 , Bu ⊇ B ′
u mod D0. Why? Simply

because of the uniformity of the templates, the choice at κ and the independence
of G. Informally, the sequence of sequences in Step 2 was ∅-indiscernible in the
Boolean algebra P(I )/D0, and the generic choice in Step 2 added a κth element
(sequence) to this sequence.
More specifically, it suffices that for u ∈ [U ]<ℵ0 ,

(∗∗)
(
B ′
u :=

⋂
�∈u
A	�,κ ⊆ Bu mod D0

)
⇐⇒

(⋂
�∈u
A	�,� ⊆ Bu mod D0 for sufficiently large �

)

Why does (∗∗) suffice for Step 3? Because the right-hand side will always hold:
fix u ∈ [U ]<ℵ0 , let � > max u and recall the definition of A	�,� from the beginning of
the inductive proof.
Details: the case |u| = 1. Here we justify why “continuing the indiscernible
sequence” retains the right relationship to Bu ; all key ideas of the proof appear
in this notationally simplest case. Suppose that u = {�} for some � ∈ U . By defini-
tion of A	�,κ, it will suffice to show that tn,	 = 1 =⇒ Ahn,�,κ,	 ⊆ Bu mod D0. Fix
some such n.
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Let us recall the picture. We have a sequence of countable sequences,

〈〈
(i, �, �, 	) : i < i	〉 : � ∈ U ∪ {κ}〉

or if the reader prefers, an i	 × κ-array, whose elements are functions from G. We
know from Step 2 that this array is strongly uniform in various ways: for instance,
the elements in each column {
(i, �, �, 	) : � ∈ U ∪ {κ}} are either pairwise equal
or pairwise distinct.
The function hn,�,κ,	 ∈ FI(G) under consideration assigns finitely many elements
of rowκ, say the elements with indices {i1, . . . , i�} ⊆ i	 [which are, themselves, func-
tions belonging to G] specific integer values {m1, . . . , m�} ⊆ N. Since the domain
of hn,�,κ,	 is G, rather than i	 , it will simplify notation to define a row function
R : U ∪ {κ} → FIs (G) which, to each row � in the array, assigns the set Ahn,�,�,	 .
We make a series of observations.

(1) By construction, for each � ∈ U , R(�) ⊆ B{�} mod D0.
Suppose that (1) fails forR(κ), that is,

X := {s ∈ I : s ∈ R(κ), s /∈ B{�}} �= ∅ mod D0
As (I,D0,G) is a good triple, FIs (G) is dense in (D0)+, and there is some
Y ∈ FIs (G), Y ⊆ X mod D0. Let hY ∈ FI(G) be such that AhY = Y .

(2) Without loss of generality, since Y ⊆ R(κ) = Ahn,�,κ,	 , we may assume that
any functions in the domain of hn,�,κ,	 are in the domain of hY (and that on
their common domain, hn,�,κ,	 and hY agree). There are two cases.
Case 1: There is some � ∈ U such that R(�) ∩ Y �= ∅ mod D0. This
contradicts (1).
Case 2: Not case 1, that is, for every � ∈ U ,R(�)∩Y = ∅ mod D0. Notice
that:

(3) As {R(�) : � ∈ U} ∪ {Y} ⊆ FIs (G), the only way this can happen is if there
is an explicit contradiction in the corresponding functions, i.e., if for each
� ∈ U there is f ∈ dom(hn,�,�,	) ∩ dom(hY ) and hn,�,�,	(f) �= hY (f).
The functions in dom(hY ) have one of three sources:
(i) elements of G	 which already belong to dom(hn,�,κ,	), and thus also to
each dom(hn,�,�,	), by the construction in Step 2;

(ii) elements of G	 which do not belong to dom(hn,�,κ,	), and thus to no
more than one dom(hn,�,�,	) by the construction in Step 2;

(iii) elements of G \ G	 .
By the choice of row κ in Step 2, for all � ∈ U , hn,�,κ,	 and hn,�,�,	 agree
on functions from G	 . Since hY is compatible with hn,�,κ,	 by construction
(2), there can be no incompatibility with hn,�,�,	 on functions of type (i),
and since dom(hn,�,�,	) ⊆ G	 by inductive hypothesis, neither will there be
an incompatibility with (iii). As noted, each conflict of type (ii) rules out
at most one � ∈ U . Since dom(hY ) is finite, it must be that the instructions
hn,�,�,	 ∪hY are compatible for all but finitely many �. Thus for all but finitely
many � ∈ U ,R(�) ∩Y �= ∅ by (3).
We have shown that if R(κ) �⊆ B{�}, then for some (in fact, nearly all)
� ∈ U , R(�) �⊆ B{�} mod D0, contradicting (1).
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Conversely, if for more than finitely many � ∈ U , R(�) �⊆ B{�} mod D0
this will be reflected in the functions of type (i), so inherited by R(κ). This
completes the proof.
The case |u| > 1. The argument for |u| > 1 involves more notation, but no
new ideas, since condition (3) of Step 2 guarantees that we have the same
level of uniformity across finitely many �-sequences.

Step 4: A multiplicative refinement. In this step we tie up loose ends, realize
the type and finish the inductive definition of Dα . We make a sequence of
assertions.
First, the sequence 〈B ′

u : u ∈ [U ]<ℵ0〉 ⊆ (D0)+ is multiplicative.
Second, for each u ∈ [U ]<ℵ0 , Bu ⊇ B ′

u mod D0, by Step 3.
Third, by definition of the sets B ′

u , recalling the fact that (I,D0,G) is a
good triple, we have that D	 ∪ {B ′

u : u ∈ [U ]<ℵ0} generates a filter.
However, this is not yet enough: a multiplicative refinement must be gen-
uinely contained inside the original sequence, rather than simply contained
mod D0. So let us define a third sequence

〈B ′′
u : u ∈ [U ]<ℵ0〉, where u ∈ [U ]<ℵ0 =⇒ B ′′

u = Bu ∩ B ′
u

We have transferred the problem: now, on one hand (1) B ′′
u ⊆ Bu (without

“mod D”), while on the other hand (2) 〈B ′′
u : u ∈ [U ]<ℵ0〉 is multiplicative

mod D0.
As we choseD0 to be �+-excellent, by Fact 8.5, there is 〈B∗

u : u ∈ [U ]<ℵ0〉 ⊆
D+ refining 〈B ′′

u : u ∈ [U ]<ℵ0〉, which is indeed multiplicative, and which
satisfies B∗

u = B
′′
u = B

′
u mod D. A fortiori this fourth sequence refines the

original distribution, 〈Bu : u ∈ [U ]<ℵ0〉.
Now we finish. Let D′

α be the filter generated by D	 ∪ {B∗
u : u ∈ [U ]<ℵ0}.

Since for each u ∈ [U ]<ℵ0 , B∗
u = B

′
u mod D0, this is a (nontrivial) filter.

Any ultrafilter extending D′
α will realize the cut (a1, a2) = (a

	
1 , a

	
2 ), since its

distribution has a multiplicative refinement. (By transitivity of linear order
and the fact thatU is cofinal in κ, there is no loss in realizing the cut restricted
to U .)
Finally, as before, let Dα be a maximal extension of D′

α satisfying (a), (b),
(c); it will then necessarily satisfy (d). This completes the inductive step, and
thus the proof.

�
8.1. Discussion. In the remainder of this section, we discuss some variants of
Theorem 8.13.

Remark 8.14. The hypothesis “κ is weakly compact” in Theorem 8.13 was used in
two key places:
(1) to extract a very uniform subsequence, Claim 8.11;
(2) to ensure that each cut was supported at some bounded stage in the construction,
Observation 8.12.

We may wish to avoid large cardinal hypotheses, which we can do using the
following polarized partition relation (of course, the result will no longer be about
symmetric cuts).
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Definition 8.15. [4] The polarized partition relation(
κ1
κ2

)
→
(
κ1
κ2

)(1,1)
2ℵ0

holds when for every coloring of {(α, 	) : α < κ1, 	 < κ2} by at most 2ℵ0-many
colors, there exist X ∈ [κ1]κ1 , Y ∈ [κ2]κ2 such that {(α, 	) : α ∈ X, 	 ∈ Y} is
monochromatic.

Fact 8.16. [4] Suppose κ1, κ2 are regular and that 2ℵ0 < 2κ1 < κ2. Then(
κ1
κ2

)
→
(
κ1
κ2

)(1,1)
2ℵ0

Conclusion 8.17. Suppose κ1, κ2 ≤ � satisfy the hypotheses of Fact 8.16 and that
� = cf(�) ≤ 2ℵ0 . Then there is a regular ultrafilter D on I , |I | = � which has no
(κ1, κ2)-cuts but lcf(ℵ0,D) = �.
Proof. Suppose we want to ensure realization of all (κ1, κ2)-cuts. We proceed
just as in the proof of Theorem 8.13, with the following two changes corresponding
to the two parts of Remark 8.14. The polarized partition relation will allow us to
extract a cofinal sub-cut in accordance with condition (1), as by Remark 8.10 there
are only continuum many equivalence classes. It will likewise allow us to carry out
the argument of Observation 8.12 whenever the given � ≤ 2ℵ0 ; note that without
the stronger assumption of weak compactness, it is no longer sufficient to assume
� < κ. �
In a paper in preparation [17], we investigate further the set of possible cofinalities
of cuts in ultrapowers of linear order.
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