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MARTIN’S AXIOM IS CONSISTENT WITH THE EXISTENCE
OF NOWHERE TRIVIAL AUTOMORPHISMS

SAHARON SHELAH AND JURIS STEPRĀNS

(Communicated by Alan Dow)

Abstract. Martin’s Axiom does not imply that all automorphisms of P(N)/

[N]<ℵ0 are somewhere trivial. An alternate method for obtaining models where
every automorphism of P(N)/[N]<ℵ0 is somewhere trivial is explained.

1. Introduction

In [5] Veličković constructed a model of Martin’s Axiom in which there is a
non-trivial automorphism of P(N)/[N]<ℵ0 . As well as answering a question posed
in [4], this put into context another result of [5] showing that the conjunction
of MA and OCA implies that all automorphisms are trivial. However, the non-
trivial automorphim constructed by Veličković is trivial on many infinite subsets
of the integers. Indeed, it was shown in [3] that this is unavoidable since every
automorphism of P(N)/[N]<ℵ0 is somewhere trivial in Veličković’s model of [5].

Hence, the question arises of whether or not Martin’s Axiom alone is sufficient
to imply that, while there may be non-trivial automorphisms, nevertheless, all
automorphisms of P(N)/[N]<ℵ0 are somewhere trivial. The main result of this
paper is that this is not the case.

The last section presents a simple, alternate method for obtaining models where
all automorphisms are somewhere trivial. It has the advantage that it can produce
models where d = ℵ1 whereas the oracle chain condition method adds Cohen reals
and so does not achieve this.

2. Martin’s Axiom and a nowhere trivial automorphism

If α and β are ordinals, then the notation [α, β) will be used to denote the set
β \ α. The relations ≡∗, ⊆∗ and ⊇∗ will have the usual meaning as relations on
subsets of the integers modulo a finite set. The convention on forcing partial orders
will be that larger conditions force more information.
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2098 S. SHELAH AND J. STEPRĀNS

Definition 2.1. If W is a set of ordinals, then the indexed family

S = {(Aξ, Fξ,Bξ)}ξ∈W
will be said to be a tower of permutations if:

(1) Aξ ⊆ N and Fξ is a permutation of N for each ξ,
(2) Fξ � m is a permutation of m for each m in Aξ,
(3) Bξ is a finite subalgebra of P(N) for each ξ,
(4) if ξ ∈ ζ, then Bξ ⊆ Bζ and Aξ ⊇∗ Aζ ,
(5) if ξ ∈ ζ, then Fζ(B) ≡∗ Fξ(B) for each B ∈ Bξ.

Define Q(S) to be the set consisting of all quadruples p = (ap, fp, αp,Bp) such
that:

(1) ap ⊆ N is a finite subset,
(2) fp � m is a permutation of m for each m ∈ ap and the domain of fp is

max(ap),
(3) αp ∈W ,
(4) max(ap) ∈ Aαp ,

and the relation ≤ on Q(S) is defined by p ≤ q if and only if

ap ⊆ aq, (max(ap) + 1) ∩ aq = ap, fp ⊆ f q, Bp ⊆ Bq, αp ⊆ αq,(2.1)

(Aαq \max(aq)) ∪ (aq \ ap) ⊆ Aαp ,(2.2)

and, for each B belonging to Bp ∩Bαp , the following two conditions hold:

(∀{n,m} ∈ [aq \max(ap)]2)f q(B ∩ [m,n)) = Fαp(B ∩ [m,n)),(2.3)

(∀{n,m} ∈ [Aαq \max(aq)]2)Fαq (B ∩ [m,n)) = Fαp(B ∩ [m,n)).(2.4)

If G is generic for Q(S), then define AS[G] =
⋃
p∈G a

p and FS[G] =
⋃
p∈G f

p.

Lemma 2.1. For any tower of permutations S the structure (Q(S),≤) is a partial
order.

Proof. That (Q(S),≤) is reflexive and antisymmetric is obvious. To prove transi-
tivity suppose that p ≤ q and q ≤ r. Condition (2.1) for p ≤ r is easily seen to be
satisfied. To see that condition (2.2) for p ≤ r is satisfied note that

Aαr \max(ar) ⊆ Aαq \max(ar) ⊆ Aαq \max(aq) ⊆ Aαp
and that

ar \ ap ⊆ (ar \ aq) ∪ (aq \ ap) ⊆ Aαq \max(aq) ∪Aαp ⊆ Aαp
which shows that (Aαr \max(ar)) ∪ (ar \ ap) ⊆ Aαp , as required.

To show that conditions (2.3) and (2.4) hold, let B ∈ Bp ∩Bαp . Given any pair
{n,m} ∈ [ar \max(ap)]2, it may, without loss of generality, be assumed that n and
m are successive elements of ar \max(ap). Hence, either {n,m} ∈ [(ar \max(aq)]2

or {n,m} ∈ [(aq \ max(ap)]2. In the second case, from the fact that p ≤ q it
immediately follows that f q(B ∩ [n,m)) = Fαp(B ∩ [n,m)). Since q ≤ r it follows
that f q ⊆ f r and so f r(B ∩ [n,m)) = Fαp(B ∩ [n,m)). On the other hand, in the
first case f r(B ∩ [n,m)) = Fαq (B ∩ [n,m)) since q ≤ r and Bαp ⊆ Bαq . Moreover,
using condition (2.4) and p ≤ q it is possible to conclude that Fαq(B ∩ [n,m)) =
Fαp(B ∩ [n,m)). Hence, in either case f r(B ∩ [n,m)) = Fαp(B ∩ [n,m)) which
establishes that condition (2.3) holds for p ≤ r.
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NOWHERE TRIVIAL AUTOMORPHISMS 2099

To see that condition (2.4) holds for p ≤ r let {n,m} ∈ [Aαr \ max(ar)]2. It
follows from p ≤ q and q ≤ r that Fαq (B ∩ [n,m)) = Fαr (B ∩ [n,m)) and, since
{n,m} ⊆ Aαr \max(ar) ⊆ Aαq \max(aq), that Fαq (B ∩ [n,m)) = Fαp(B ∩ [n,m)).
Hence, Fαr (B ∩ [n,m)) = Fαp(B ∩ [n,m)), establishing condition (2.4).

Lemma 2.2. Given a tower of permutations S = {(Aξ, Fξ,Bξ)}ξ∈W , an integer
n, B ∈

⋃
ξ∈W Bξ and ζ ∈W the following sets are dense in Q(S):

{p ∈ Q(S) : max(ap) > n},(2.5)

{p ∈ Q(S) : αp ≥ ζ},(2.6)

{p ∈ Q(S) : B ∈ Bp}.(2.7)

Proof. To prove that the set (2.5) is dense let p ∈ Q(S) and n be given. Let
k ∈ Aαp be such that k > n. Using condition (4) of Definition 2.1 it follows that
max(ap) ∈ Aαp and, hence, Fαp � [max(ap), k) is a permutation of [max(ap), k).
Letting q = (ap∪{k}, fp∪Fαp � [max(ap), k), αp,Bp) it follows that q ≥ p. Observe
for later reference that it has actually been shown that

(∀p ∈ Q(S))(∀n ∈ N)(∃q ≥ p)max(aq) > n and αq = αp and Bp = Bq.(2.8)

To prove that the set (2.6) is dense let p ∈ Q(S) and ζ ∈ W be given. Since
it may as well be assumed that ζ > αp, it is possible to find n so large that
Aζ \ n ⊆ Aαp and for all {i, j} ∈ [Aζ \ n]2 and B ∈ Bp

Fζ(B ∩ [i, j)) = Fαp(B ∩ [i, j)).

Using the set (2.5) of Lemma 2.2 choose q such that p ≤ q and n < max(aq).
From (2.8) it can be assumed that Bq = Bp and that αq = αp. Now, let r =
(aq, f q, ζ,Bp). That conditions (2.2) and (2.4) for the relation q ≤ r are satisfied
follows from the choice of n while condition (2.1) is obvious. Condition (2.3) has
no content in the case of q ≤ r since aq = ar. Now use transitivity and the fact
that p ≤ q. Observe for later reference that it has actually been shown that

(∀p ∈ Q(S))(∀ζ > αp)(∃q ≥ p)αq = ζ.(2.9)

There is no problem in proving that the set (2.7) is dense.

Lemma 2.3. If S = {(Aξ, Fξ,Bξ)}ξ∈W is a tower of permutations and p ∈ Q(S),
then

p Q(S) “AS[G] \max(ap) ⊆ Aαp”,(2.10)

(2.11) p Q(S) “(∀B ∈ B
p ∩Bαp)(∀{n,m} ∈ [Aαp \max(ap)]2)

FS[G](B ∩ [n,m)) = Fαp(B ∩ [n,m))”.

Proof. This is standard using condition (2.2) for (2.10) and condition (2.3) for
(2.11).

Let κ be a regular uncountable cardinal and let C ⊆ κ be any set contain-
ing 0 and closed under limits of increasing ω1-sequences such that κ \ C is also
unbounded. Now define Pη, as well as a Pη-name for a tower of permutations
Sη = {(Aζ , Fζ ,Bζ)}ζ∈η∩C , by induction on η. Let A0 ∈ [N]ℵ0 and F0 be arbi-
trary subject to the fact that F0 is a permutation of N such that F0 � [n,m) is
a permutation for each {n,m} ⊆ A0. Let B0 = P(N) in the sense of the ground
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2100 S. SHELAH AND J. STEPRĀNS

model. Then let S1 = {(A0, F0,B0)} and let P1 = Q0 be Cohen forcing. If η is a
limit, then Pη is simply the finite support limit of {Pζ}ζ∈η and Sη =

⋃
ξ∈C∩η Sξ.

If η /∈ C, then Pη+1 = Pη ∗ Qη where Qη is a ccc partial order chosen according
to some bookkeeping scheme which will guarantee that Martin’s Axiom holds at
stage κ. In this case Sη+1 = Sη. If η ∈ C \ {0}, then Pη+1 = Pη ∗ Q(Sη) and Aη
is defined to be ASη [G], Fη is defined to be FSη [G] where G is the canonical name
for the generic set on Q(Sη). In this case Sη+1 = Sη ∪{(Aη , Fη,P(N)∩V Pη )}. As
usual, if p ∈ Pη, then p � α Pα “p(α) ∈ Qα”.

Definition 2.2. Let Pwα ⊆ Pα consist of all those p ∈ Pα such that there are k ∈ N,
Γ ∈ [C ∩ α]<ℵ0 and {(aγ , fγ)}γ∈Γ such that:
• Γ = domain(p) ∩ C,
• 0 ∈ Γ,
• if γ ∈ Γ, then p � γ Pγ “p(γ) = (ǎγ , f̌γ , α̌γ ,Bγ)” for some Bγ ,
• αγ ∈ Γ ∩ γ for each γ ∈ Γ,
• if γ ∈ Γ, then max(aγ) = k,
• if γ and γ′ are in Γ and γ′ < γ, then p � γ Pγ “Bγ′ = Bγ ∩Bγ′”.

The pair (k, {(aγ , fγ)}γ∈Γ) will be said to witness that p ∈ Pwα . Let P∗α ⊆ Pα consist
of all those p ∈ Pwα such that, in addition to the other requirements, αγ = max(Γ∩γ)
for each γ ∈ Γ.

Lemma 2.4. If p ∈ Pwα and this is witnessed by (k, {(aγ , fγ)}γ∈Γ), then:
• if γ ∈ Γ, then p � γ + 1 Pγ+1 “Aαγ ⊇ (Aγ \ k)”,
• if γ ∈ Γ, then p � γ + 1 Pγ+1 “(∀B ∈ Bγ ∩Bαγ )(∀{n,m} ∈ [Aγ \ k]2)
Fγ(B ∩ [n,m)) = Fαγ (B ∩ [n,m))”.

Proof. This is an immediate consequence of Lemma 2.3.

Definition 2.3. If p ∈ Pwα is witnessed by (k, {(aγ , fγ)}γ∈Γ), then define p+ ∈ P∗α
by

p+(ξ) =

{
p(ξ) if ξ /∈ Γ,
(aξ, fξ,max(Γ ∩ ξ),Bξ) if ξ ∈ Γ.

Lemma 2.5. If p ∈ Pwα , then p+ ≥ p.

Proof. Proceed by induction on β ∈ α to show that p+ � β ≥ p � β. Note that the
cases β = 0 or β a limit pose no problem. Given that p+ � β ≥ p � β let Γ ∩ β be
enumerated, in order, by {γ1, γ2, . . . , γn}. If follows directly from Lemma 2.4 and
the definition of p+ that:
• p+ � β Pβ “Aγ1 \ ǩ ⊇ (Aγ2 \ ǩ) . . . ⊇ (Aγn \ ǩ)”,
• p+ � β Pβ “(∀B ∈ Bγj ∩ Bγi)(∀{m,m′} ∈ Aγj \ ǩ)Fγj (B ∩ [m,m′)) =
Fγi(B ∩ [m,m′))” if i ≤ j.

In particular, noting that there is some i such that αβ = γi,

p+ � β Pβ “Aαβ \ ǩ ⊇ Aγn”

and

p+ � β Pβ “(∀B ∈ Bαβ ∩Bγn)(∀{m,m′} ∈ Aαβ \ k)

Fαβ (B ∩ [m,m′)) = Fγn(B ∩ [m,m′))”.

Hence, p+ � β + 1 ≥ p � β + 1.
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NOWHERE TRIVIAL AUTOMORPHISMS 2101

Lemma 2.6. For each α ≤ κ the subset Pwα is dense in Pα.

Proof. Proceed by induction on α noting that the cases α ≤ 1 and α a limit are
trivial. Therefore, suppose that Lemma 2.6 has been established for β and that
p ∈ Pβ+1. Without loss of generality it may be assumed that β ∈ C. Choose
p′ ≥ p � β and (a, f, ζ) such that ζ ∈ β and p′ Pβ “p(β) = (ǎ, f̌ , ζ̌,B)” and,
moreover, p′ Pβ “B = {Bi}i∈m” and, for each i ∈ m the condition p′ decides
the value of the least ordinal ζ(i) ∈ β such that Bi ∈ Bζ(i). Furthermore, it may,
without loss of generality, be assumed that {ζ} ∪ {ζ(i)}i∈m ⊆ domain(p′) and that
p′ � ζ(i) Pζ(i) “Bi ∈ Bp′(ζ(i))” for i ∈ m. Then use the induction hypothesis to
find p′′ ∈ Pwβ extending p′ and such that (k, {(aγ , fγ)}γ∈Γ) witnesses that p′′ ∈ Pwβ .
Without loss of generality, k ≥ max(a). Now, the fact that {max(a), k} ⊆ Aζ
implies that Fζ � [max(a), k) is a permutation of [max(a), k). Hence it is possible
to define f ′ = f ∪ Fζ � [max(a), k) and a′ = a ∪ {k}. Then define q so that

q(ξ) =

{
p′′(ξ) if ξ ∈ β,
(a′, f ′, ζ,B ∪

⋃
γ∈Γ Bp′(γ)) if ξ = β,

and note that q ∈ Pwβ+1 and q ≥ p.

Corollary 2.1. For each α ≤ κ the subset P∗α is dense in Pα.

Proof. This is immediate from Lemma 2.6 and Lemma 2.5.

Lemma 2.7. Given that p ∈ Pwα and that this is witnessed by (k, {(aγ , fγ)}γ∈Γ)
and µ ∈ (C ∩α)\domain(p) then the following condition p〈µ〉 extends p and is also
in Pwα :

p〈µ〉(ξ)
{
p(ξ) if ξ 6= µ,

({k}, {(j, j)}j∈k, 0,
⋃
γ∈Γ∩µBp(γ)) if ξ = µ.

Proof. Notice that since µ /∈ domain(p) the restrictions on extension do not apply
and it is easy to check that the condition ({k}, {(j, j)}j∈k,max(Γ∩µ),

⋃
γ∈Γ∩µBp(γ))

belongs to Qµ. Since p ∈ Pwα it follows that k ∈ A0 and, hence, that p〈µ〉 ∈ Pwα .
That p〈µ〉 ≥ p is immediate from the definition.

Lemma 2.8. Suppose that p and q are conditions in Pα such that:
• p ∈ P∗α is witnessed by (k, {(aγp , fγp )}γ∈Γp),
• q ∈ P∗α is witnessed by (k, {(aγq , fγq )}γ∈Γq),
• max(domain(p)) = max(domain(q)) = γ̄ ∈ Γp ∩ Γq,
• (aγ̄q , f

γ̄
q ) = (aγ̄p , f

γ̄
p ),

• max(domain(q)) ∩ γ̄ < min(domain(p) \ {0}),
• p(0) and q(0) are compatible.

Under these conditions p and q are compatible.

Proof. Let σ be the maximum member of Γq \ {γ̄}. Define q t p by

(q t p)(ξ)=



q(ξ) if ξ ∈ domain(q)\(Γq ∪ µ),
p(ξ) if ξ ∈ domain(p)\(Γp ∪ µ),
(aq(ξ), f q(ξ), αq(ξ), (Bp(ξ) ∩B0) ∪Bq(ξ)) if ξ ∈ Γq,
(ap(ξ), fp(ξ), αp(ξ),Bp(ξ) ∪Bq(σ)) if ξ ∈ Γp,
(ap(γ̄), fp(γ̄), αq(γ̄),Bp(γ̄) ∪Bq(γ̄)) if ξ = γ̄,
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2102 S. SHELAH AND J. STEPRĀNS

and define p t q by

(p t q)(ξ)=



q(ξ) if ξ ∈ domain(q)\(Γq ∪ µ),
p(ξ) if ξ ∈ domain(p)\(Γp ∪ µ),
(aq(ξ), f q(ξ), αq(ξ), (Bp(ξ) ∩B0) ∪Bq(ξ)) if ξ ∈ Γq,
(ap(ξ), fp(ξ), αp(ξ),Bp(ξ) ∪Bq(σ)) if ξ ∈ Γp,
(ap(γ̄), fp(γ̄), αp(γ̄),Bp(γ̄) ∪Bq(γ̄)) if ξ = γ̄.

(The only difference is to be found in the last lines of the two definitions.) It is
easy to check that p ≤ p t q and q ≤ q t p and that both p t q and q t p belong to
Pwα . Moreover (p t q)+ = (q t p)+. Hence q and p are compatible.

Lemma 2.9. If the cofinality of ζ ∩ C is not ω1 and S = {(Aξ, Fξ,Bξ)}ξ∈ζ∩C is
a tower of permutations, then Q(S) has property K.

Proof. This is standard. If the cofinality of ζ ∩ C is less than ω1, then choose a
countable, cofinal subset C′ of ζ ∩ C. Using observation (2.9) of Lemma 2.2 it
follows that the set of all p ∈ Q(S) such that αp ∈ C′ is dense. It follows that
Q(S) has a σ-centred dense subset.

On the other hand, if the cofinality of ζ ∩ C is greater than ω1 and {pξ}ξ∈ω1 ⊆
Q(S) it is possible to choose θ ∈ C ∩ ζ such that αpξ < θ for each ξ. Using
observation (2.9) of Lemma 2.2 it may be assumed, by extending each condition,
that αpξ = θ for each ξ. Now there are a and f and an uncountable set of ξ such
that apξ = a and fpξ = f . Any two of these are easily seen to be compatible.

The fact that the tower of permutations needs to be generic, or at least some
other condition must be satisfied, in order for Lemma 2.9 to hold has been observed
in Theorem 2 of [2].

Lemma 2.10. Pα has the countable chain condition for each α.

Proof. Proceed by induction on α. If α = 1 the result is immediate and if α is a
limit the result follows from the induction hypothesis and the finite support of the
iteration. Therefore consider the case α = β + 1 and assume that the countable
chain condition has already been established for Pβ.

Next, observe that if C ∩ β is not cofinal in β, then the induction hypothesis is
easily applied since, in this case, C has a maximal element below β and so Qβ has
the countable chain condition by Lemma 2.9. If C ∩ β has cofinality different from
ω1, then once again Lemma 2.9 implies that Qβ has the countable chain condition;
therefore, in either case, so does Pβ+1. Hence it remains to consider the case that
C ∩ β is cofinal in β and has cofinality ω1. From the hypothesis on C and the fact
that β must be the limit of C∩β it follows that β ∈ C. By appealing to Lemma 2.6
and extending the conditions in question, it is possible to guarantee that each pξ
is in P∗α and that this is witnessed by (kξ, {(aγξ , f

γ
ξ )}γ∈Γξ). As well, by thinning

out, it may be assumed that there is k such that kξ = k for each ξ, and there is a
pair (a, f) such that (aβξ , f

β
ξ ) = (a, f) for each ξ and that {domain(pξ)}ξ∈ω1 form

a ∆-system with root ∆. Using the fact that β is a limit, choose some µ ∈ β ∩ C
such that there is some uncountable Λ ⊆ ω1 such that if {η, ζ} ∈ [Λ]2 and η ∈ ζ,
then max(domain(pη ∩ β)) < min(domain(pζ ∩ [µ, β))). It may as well be assumed
that µ /∈ domain(pη) for each η ∈ Λ. Then use Lemma 2.7 to extend each pη to
some pη〈µ〉+.
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Now, using the induction hypothesis, find {η, ζ} ∈ [Λ]2 such that η ∈ ζ and
pη〈µ〉+ � µ+ 1 is compatible with pζ〈µ〉+ � µ+ 1. Choose r ∈ Pµ+1 extending both
pη〈µ〉+ � µ+ 1 and pζ〈µ〉+ � µ+ 1.

Let G ⊆ Pµ+1 be generic over V and containing r. Observe that Pα/Pµ+1 as
interpreted in V [G] is a partial order like Pα in V except that the first factor of
Pα/Pµ+1 is Q({(Aµ, Fµ,P(N) ∩ V [G])}). Since r Pµ+1 “k ∈ Aµ” it follows that
k ∈ Aµ in V [G]. It follows that pη〈µ〉+ � [µ, α) and pζ〈µ〉+ � [µ, α) belong to
(Pα/Pµ+1)∗. Now use Lemma 2.8 in V [G] to conclude that pη〈µ〉+ � [µ, α) and
pζ〈µ〉+ � [µ, α) are compatible. Hence, so are pη and pζ .

Lemma 2.11. Let S = {(Aξ, Fξ,Bξ)}ξ∈W be a tower of permutations and suppose
that A ∈ [N]ℵ0 and ψ is a one-to-one function from A to N. Then Q(S) forces that
there are infinitely many a ∈ A such that FS[G](a) 6= ψ(a).

Proof. Let p ∈ Q(S) and suppose that p Q(S) “(∀a ∈ Ǎ \ ǩ)ψ(a) = FS[G](a)” for
some integer k. From Lemma 2.2 it can be assumed that k ≤ max(ap). Now choose
m ∈ Aαp so large that there exist distinct integers i and j in [max(ap),m)∩A such
that i ∈ B if and only if j ∈ B for all B ∈ Bp. It is possible to choose a bijection
g : {i, j} → {Fαp(i), Fαp(j)} such that g 6= ψ � {i, j}. However, letting

f = Fαp � ([max(ap),m) \ {i, j}) ∪ g
it follows that f(B ∩ [max(ap),m)) = Fαp(B ∩ [max(ap),m)) for each B ∈ Bp.
Hence p ≤ q = (ap ∪ {m}, fp ∪ f, αp,Bp) and q Q(S) “ψ̌(̌i) 6= FS[G](̌i)”.

Lemma 2.9 and Lemma 2.11, in the case when C ∩ ζ has a maximal element, to-
gether imply that there is a trivial automorphism Φ of P(N)/[N]<ℵ0 and a σ-centred
forcing P such that Φ can be extended to a trivial automorphism of P(N)/[N]<ℵ0

in two different ways in the generic extension by P. Hence, these lemmas can be
thought of as strengthening the folklore result that certain automorphisms — such
as the identity — can be extended to generic trivial automorphisms by the natural
σ-centred forcing; in other words, the forcing which approximates the generic per-
mutation by finite permutations and promises to respect the identity on certain,
finitely many, infinite sets.

Lemma 2.12. Let S = {(Aξ, Fξ,Bξ)}ξ∈W be a tower of permutations such that
W has a maximal element θ. If A belongs to [N]ℵ0 , but not necessarily to Bθ, and
G is Q(S) generic over V , then there are infinitely many integers j ∈ A such that
FS[G](j) = Fθ(j).

Proof. This is a standard use of genericity.

Theorem 2.1. Given any regular, uncountable cardinal κ, it is consistent relative
to the consistency of set theory that Martin’s Axiom holds, 2ℵ0 = κ and there is a
nowhere trivial automorphism of P(N) modulo the finite sets.

Proof. Let C ⊆ κ be a closed unbounded set such that κ \ C is unbounded. Con-
struct a finite support iteration {Pξ}ξ∈κ so that Martin’s Axiom is forced to hold
by the iteration on κ \C and such that a tower of permutations {(Aξ, Fξ,Bξ)}ξ∈κ
is generically constructed along C such that Bξ = P(N) ∩ V [Pξ ∩ G] where G is
Pκ generic over V . Then let Ψ be the automorphism of P(N)/[N]<ℵ0 defined by
Ψ([A]) = [B] if and only if there is some ξ ∈ κ such that Fξ(A) ≡∗ B and A ∈ Bξ.
To see that Ψ is nowhere trivial suppose that Ψ is induced by ψ on A. Let ξ ∈ C be
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an ordinal large enough that A and ψ both belong to V [G∩Pξ ]. Using Lemma 2.11
it is possible to find in V [G ∩ Pξ+1] an infinite set Z such that ψ(Z) ∩ Fξ(Z) = ∅.
However, there is no guarantee that Z belongs to Bξ. Let ρ be the first member
of C greater than ξ. Then Z does belong to Bρ. From Lemma 2.12 it follows that
Fρ(j) = Fξ(j) for infinitely many j belonging to Z. Therefore Fρ(Z) \ ψ(Z) is
infinite contradicting that ψ induces Ψ on A and [Fρ(Z)] = Ψ([Z]).

It should be noted that Theorem 2.1 would be of interest even if Martin’s Axiom
did not hold in the model constructed since it would still provide a method for con-
structing models of set theory with nowhere trivial automorphisms of P(N)/[N]<ℵ0

and the continuum arbitrarily large.

3. Ruining automorphisms with Silver reals

Definition 3.1. Suppose that Q and P are partial orders such that Q is completely
embedded in P and that Q is Suslin (see [1]). Then P will be said to be sufficiently
Suslin over Q if for every P-name g for a function from ω to 2 there is a dense set
of p ∈ P such that{

(q, f) ∈ Q× 2ω | (∃p′ ∈ P)p′ ≥ q and p′ ≥ p and p′ P “g = f̌”
}

is analytic.

Lemma 3.1. Any countable support iteration of a combination of Silver reals and
Sacks reals is sufficiently Suslin over its first coordinate.

Proof. Let the iteration be obtained from the sequence {Pξ}ξ∈η where each succes-
sor stage is constructed by using one of the mentioned partial orders and let the
Pη-name g be given. Let M ≺ (H(|Pη|+),∈) be a countable elementary submodel
containing Pη and g. Let M∩ η = Γ, let {γi}i∈ω enumerate Γ and let Γj = {γi}i∈j.
Standard fusion arguments will allow the construction of a family {pτ}τ :Γn→2<n

such that:
(1) If τ(γ) ⊆ τ ′(γ) for each γ, then pτ ≤ pτ ′ .
(2) If τ : Γn → 2<n, then pτ decides the value of g(n).
(3) If p(γ) is defined to be

∧
n∈ω

 ∨
τ :Γn→2<n and pτ �γ∈G

pτ

 ,

then p ∈ P.
It follows that for each q ∈ P0 there is some p′ ≥ p such that p′(0) ≥ q and
p′ P “g = f̌” if and only if, letting S(f, n) = {τ | τ : Γn → 2<n and pτ P “g(n) =
f̌(ň)” and pτ (0) ≥ q}, the set of conditions {

∨
τ∈S(f,n) pτ}n∈ω has a proper lower

bound. For Silver and Sacks forcings checking for a lower bound is easily seen to
be Σ1

1 in the parameter defining the fusion sequence; in fact, it is Borel.

Lemma 3.2. If P is as in Lemma 3.1 and Ψ is an automorphism of P(N)/[N]<ℵ0

which is not trivial on any member of [N]ℵ0 , then it is not possible to extend Ψ to
an automorphism of P(N)/[N]<ℵ0 in any generic extension by S ∗ P.

Proof. Assuming the lemma is false, it is possible to find a condition (s, p) ∈ S ∗ P
and an S ∗ P-name for a set of integers Z such that

(s, p) S∗P “Ψ∗ is a lifting of an extension of Ψ and Ψ∗(XG) = Z”
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where XG is a name for the generic subset of N added by S. Let g = χZ be the
characteristic function of Z. Using the fact that S ∗ P is sufficiently Suslin, find
(s′, p′) ∈ S ∗ P such that (s′, p′) ≥ (s, p) and{

(s̄, f) ∈ S× 2ω | (∃q ∈ S ∗ P)q(0) ⊇ s̄ and q ≥ (s′, p′) and q S∗P “g = f̌”
}

is analytic. Let A be an infinite set of integers disjoint from the domain of s′

such that domain(s′) ∪A has infinite complement in the integers. It follows that if
R is defined to be

{
(t, f) ∈ 2A × 2ω | (∃q ≥ (t ∪ s′, p′))q S∗P “g = f̌”

}
, then R is

analytic.
There are two possibilities. First, suppose that the domain of R is all of 2A.

In this case it is possible to find a continuous function S defined on a comeagre
subset of P(A) such that R(t, S(t−1{1})) holds for all t in the domain of R. Now
let ψ : domain(S)→ P(Ψ∗(A)) be defined by

ψ(W ) = {n ∈ Ψ∗(A) | S(W )(n) = 1}

and observe that ψ is continuous. Furthermore, ψ(W ) ≡∗ Ψ∗(W ). To see this, let
q ∈ S ∗ P be any condition witnessing that R(χW � A,S(W )) holds. Observe that
not only does q force XG ∩ A = W but also q S∗P “Z ∩ Ψ∗(A) = ψ(W )”. Hence,
q S∗P “ψ(W ) = Ψ∗(XG) ∩ Ψ∗(A) ≡∗ Ψ∗(XG ∩ A) ≡∗ Ψ∗(W )”. Therefore, since
ψ(W ) and Ψ∗(W ) are sets in the ground model, it follows from the absoluteness of
≡∗ that ψ(W ) ≡∗ Ψ∗(W ). But now it follows that Ψ is trivial on A by Lemma 1
of [4].

In the other case there is some t : A → 2 such that there is no f such that
R(t, f) holds. This implies that for every q ≥ (s′ ∪ t, p′) there are infinitely many
integers in Ψ∗(A) whose membership in Z is not decided by q. Genericity implies
that (s′ ∪ t, p′) S∗P “Z ∩ Ψ∗(A) 6≡∗ Φ∗(t−1{1})” which is a contradiction to the
assumption that (s, p) S∗P “Ψ∗(XG) = Z”.

Theorem 3.1. Let V be a model of 2ℵ0 = ℵ1. If Pω2 is the countable support
iteration of partial orders as in Lemma 3.1 such that Pα+1 = Pα ∗S for a stationary
set of α ∈ ω2, then V [G] is a model where every automorphism of P(N)/[N]<ℵ0

is somewhere trivial for every G ⊆ Pω2 which is generic over V . (Hence, it is
consistent that every automorphism of P(N)/[N]<ℵ0 is somewhere trivial and d =
ℵ1.)

Proof. Any automorphism can be reflected on a closed unbounded subset of ω2

consisting of ordinals of uncountable cofinality. If α is any ordinal such that Pα+1 =
Pα ∗ S, then Lemma 3.2 can be applied to show that the automorphism can not be
extended any further.

Finally, it should be remarked that the hypothesis of Lemma 3.1 can be extended
to include various other partial orders. However, in light of the lack of immediate
applications and the technical difficulties required to establish this, the proof will
be provided elsewhere.
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