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702 I. FARAH AND S. SHELAH Isr. J. Math.

ABSTRACT

We prove that the statement ‘For all Borel ideals I and J on ω, every

isomorphism between Boolean algebras P(ω)/I and P(ω)/J has a con-

tinuous representation’ is relatively consistent with ZFC. In this model

every isomorphism between P(ω)/I and any other quotient P(ω)/J over

a Borel ideal is trivial for a number of Borel ideals I on ω.

We can also assure that the dominating number, d, is equal to ℵ1 and

that 2ℵ1 > 2ℵ0 . Therefore, the Calkin algebra has outer automorphisms

while all automorphisms of P(ω)/Fin are trivial.

Proofs rely on delicate analysis of names for reals in a countable support

iteration of Suslin proper forcings.

1. Introduction

We start with a fairly general setting. Assume X/I and Y/J are quotient

structures (such as groups, Boolean algebras, C*-algebras,. . . ) with πI and

πJ denoting the respective quotient maps. Also assume Φ is an isomorphism

between X/I and Y/J . A representation of Φ is a map F : X → Y such that

the diagram

X
Φ∗ ��

πI

��

Y

πJ

��
X/I

Φ
�� Y/J

commutes. Since representation is not required to have any algebraic properties,

its existence follows from the Axiom of Choice and is therefore inconsequential

to the relation of X/I, X/J and Φ.

We shall say that Φ is trivial if it has a representation that is itself a homo-

morphism between X and Y . Requiring a representation to be an isomorphism

itself would be too strong, since in many situations of interest there exists an

isomorphism which has a representation that is a homomorphism but does not

have one which is an isomorphism.

In a number of cases of interest X and Y are structures of cardinality of

the continuum, and quotients X/I and Y/J are countably saturated in the

model-theoretic sense (see, e.g., [4]). In this situation Continuum Hypothesis,

CH, makes it possible to use a diagonalization to construct nontrivial auto-

morphisms of X/I and, if the quotients are elementarily equivalent, an isomor-

phism between X/I and Y/J . For example, CH implies that Boolean algebra
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P(ω)/Fin has nontrivial automorphisms ([31]) and Calkin algebra has outer

automorphisms ([29] or [12, §1]). This is by no means automatic and, for exam-

ple, the quotient group S∞/G (where G is the subgroup consisting of finitely

supported permutations) has the group of outer automorphisms isomorphic to

Z and all of its automorphisms are trivial ([1]). Also, some quotient Boolean

algebras of the form P(ω)/I for Borel ideals I are not countably saturated and

it is unclear whether nontrivial automorphisms exist (see [9]). A construction

of an isomorphism between quotients over two different density ideals that are

not countably saturated in the classical sense in [20] should be revisited us-

ing the logic of metric structures developed in [3]. As observed in [20], these

two quotients have the natural structure of complete metric spaces, and when

considered as models of the logic of metric structures two algebras are count-

ably saturated. This fact can be extracted from the proof in [20] or from its

generalization given in [9].

We shall consider the opposite situation, but only after noting that by

Woodin’s Σ2
1 absoluteness theorem ([40], [26]) Continuum Hypothesis provides

the optimal context for finding nontrivial isomorphisms whenever X and Y have

Polish space structure with Borel-measurable operations and I and J are Borel

ideals (see [7, §2.1]). The line of research to which the present paper belongs

was started by the second author’s proof that the assertion ‘all automorphisms

of P(ω)/Fin are trivial’ is relatively consistent with ZFC ([32]). A weak form

of this conclusion was extended to some other Boolean algebras of the form

P(ω)/I in [18] and [17]. This line of research took a new turn when it was real-

ized that forcing axioms imply all isomorphisms between quotients over Boolean

algebras P(ω)/I, for certain Borel ideals I, are trivial ([35], [39], [19], [7], [10]).
The first author conjectured in [11] that the Proper Forcing Axiom, PFA, im-

plies all isomorphisms between any two quotient algebras of the form P(ω)/I,
for a Borel ideal I, are trivial. This conjecture naturally splits in following two

rigidity conjectures:

(RC1) PFA implies every isomorphism has a continuous representation, and

(RC2) Every isomorphism with a continuous representation is trivial.

Noting that in our situation Shoenfield’s Absoluteness Theorem implies that

(RC2) cannot be changed by forcing and that no progress on it has been made

in the last ten years, we shall concentrate on (RC1).
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704 I. FARAH AND S. SHELAH Isr. J. Math.

In the present paper we construct a forcing extension in which all isomor-

phisms between Borel quotients have continuous representations. This does not

confirm (RC1) but it does give some positive evidence towards it.

The assumption of the existence of a measurable cardinal in the following

result is used only to assure sufficient forcing-absoluteness1 and it is very likely

unnecessary.2

Theorem 1: Assume there exists a measurable cardinal. Then there is a forcing

extension in which all of the following are true.

(1) Every automorphism of a quotient Boolean algebra P(ω)/I over a Borel

ideal I has a continuous representation.

(2) Every isomorphism between quotient Boolean algebras P(ω)/I and

P(ω)/J over Borel ideals has a continuous representation.

(3) Every homomorphism between quotient Boolean algebras P(ω)/I over

Borel ideals has a locally continuous representation.

(4) The dominating number, d, is equal to ℵ1.

(5) All of the above, and in addition we can have either 2ℵ0 = 2ℵ1 or 2ℵ0 <

2ℵ1 .

The proof of Theorem 1 will occupy most of the present paper (see §1.1 and

§5 for an outline). By the above the consistency of the conclusion of the full

rigidity conjecture, ‘it is relatively consistent with ZFC that all isomorphisms

between quotients over Borel ideals are trivial’, reduces to (RC2) above.

Corollary 2: It is relatively consistent with ZFC + ‘there exists a measur-

able cardinal’ that all automorphisms of P(ω)/Fin are trivial while the Calkin

algebra has outer automorphisms. In addition, the corona of every separable,

stable C*-algebra has outer automorphisms.

Proof. By the above, the triviality of all automorphisms of P(ω)/Fin, together

with d = ℵ1 and Luzin’s weak Continuum Hypothesis, is relatively consistent

with ZFC + ‘there exists a measurable cardinal’. By [7, §1], the two latter as-

sumptions imply the existence of an outer automorphism of the Calkin algebra.

1 More precisely, we need to know that in all forcing extensions by a small proper forcing

all Σ1
2 sets have the property of Baire, Π1

2-unformization and that all Π1
2 sets have the

Property of Baire. By Martin–Solovay ([28]) it suffices to assume that H(c+)# exists.
2 Confirmed by Ghasemi [16] (see footnote on p. 24)
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An analogous result for coronas of some other C*-algebras, including separable

stable algebras, is proved in [5].

If α is an indecomposable countable ordinal, the ordinal ideal Iα is the

ideal on α consisting of all subsets of α of strictly smaller order type. If α is

multiplicatively indecomposable, then the Weiss ideal Wα is the ideal of all

subsets of α that don’t include a closed copy of α in the ordinal topology. See [7]

for more on these ideals and the definition of nonpatholigical analytic p-ideals.

Corollary 3: It is relatively consistent with ZFC + ‘there exists a measur-

able cardinal’ that every isomorphism between P(ω)/I and P(ω)/J is trivial

whenever I is Borel and J is in any of the following classes of ideals is trivial:

(1) Nonpathological analytic p-ideals.

(2) Ordinal ideals.

(3) Weiss ideals.

In particular, the quotient over an ideal of this sort and any other Borel ideal

can be isomorphic if and only if the ideals are isomorphic.

Proof. If an isomorphism Φ: P(ω)/I → P(ω)/J has a continuous representa-

tion and J is in one of the above classes, then Φ is trivial. This was proved in

[7], [23] and [22].

In the presence of sufficient large cardinals and forcing absoluteness, the forc-

ing notion used in the proof Theorem 1 gives a stronger consistency result.

Universally Baire sets of reals were defined in [15] and well-studied since. A

reader not familiar with the theory of universally Baire sets may safely skip all

references to them.

Theorem 4: Assume there are class many Woodin cardinals. Then all conclu-

sions of Theorem 1 hold simultaneously for arbitrary universally Baire ideals in

place of Borel ideals.

The proof of Theorem 4 will be sketched in §5.

1.1. The plan. We now roughly outline the proof of Theorem 1. Starting from

a model of CH force with a countable support iteration of creature forcings

Qx (§3) and standard poset for adding a Cohen real, R. The iteration has

length ℵ2 and each of these forcings occurs on a stationary set of ordinals of

uncountable cofinality specified in the ground model. Forcing Qx adds a real
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which destroys homomorphisms between Borel quotients that are not locally

topologically trivial (§2).
Now consider an isomorphism Φ: P(N)/I → P(N)/J between quotients over

Borel ideals I and J . By the standard reflection arguments (§4.3) and using

the above property of Qx we show that Φ is locally topologically trivial. Finally,

a locally topologically trivial automorphism that survives adding random reals

has a continuous representation (Lemma 4.13).

In order to make all this work, we need to assure that the forcing iteration

is sufficiently definable. In particular, we have the continuous reading of names

(§4.1). A simplified version of the forcing notion with additional applications

appears in [16].

The forcing notion used to prove Theorem 4 is identical to the one used in

Theorem 1. With an additional absoluteness assumption the main result of

this paper can be extended to a class of ideals larger than Borel. We shall

need the fact that, assuming the existence of class many Woodin cardinals, all

projective sets of reals are universally Baire and, more generally, that every set

projective in a universally Baire set is universally Baire. Proofs of these results

use Woodin’s stationary tower forcing and they can be found in [26].

1.2. Notation and conventions. Following [34] we denote the theory ob-

tained from ZFC by removing the power set axiom and adding ‘�ω exists’ by

ZFC*.

We frequently simplify and abuse the notation and write Φ � a instead of the

correct Φ � P(a)/(a ∩ I) when Φ: P(ω)/I → P(ω)/J and a ⊆ ω.

If I is an ideal on N, then =I denotes the equality modulo I on P(N).

As customary in set theory, interpretation of the symbol R (‘the reals’) de-

pends on the context. It may denote P(ω), ωω, or any other recursively pre-

sented Polish space. Set-theoretic terminology and notation are standard, as in

[25], [33] or [21].

2. Local triviality

We start by gathering a couple of soft results about representations of homo-

morphisms. A homomorphism Φ: P(ω)/I → P(ω)/J is Δ1
2 if the set

{(a, b) : Φ([a]I) = [b]J }
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includes a Δ1
2 set X such that for every a there exists b for which (a, b) ∈ X .

We similarly define when Φ is Borel, Π1
2, or in any other pointclass.

For a homomorphism Φ: P(ω)/I → P(ω)/J consider the ideals

Triv0Φ = {a ⊆ ω : Φ � a is trivial},

Triv1Φ = {a ⊆ ω : Φ � a has a continuous representation},
and

Triv2Φ = {a ⊆ ω : Φ � a is Δ1
2}.

We say that Φ is locally trivial if Triv0Φ is nonmeager, that it is locally

topologically trivial if Triv1Φ is nonmeager and that it is locally Δ1
2 if Triv2Φ

is nonmeager.

By [7, Theorem 3.3.5] a fairly weak consequence of PFA implies every homo-

morphism between quotients over Borel p-ideals is locally continuous (and a bit

more). See [7] for additional definitions.

By a well-known result of Jalali–Naini and Talagrand (for a proof see [2] or [7,

Theorem 3.10.1]), for each meager ideal I that includes Fin there is a partition

Ī = (In : n ∈ ω) of ω into finite intervals such that for every infinite c ⊆ ω the

set Īc =
⊔

n∈C In is positive. In other words, the ideal I is meager if and only

if for some partition Ī of ω into finite intervals I is included in the hereditary

Fσ set

H(Ī) = {a ⊆ ω : (∀∞n)In �⊆ a}.
We say that Ī witnesses I is meager. If I is a proper ideal that has the property

of Baire and includes Fin, then it is necessarily meager.

The following is a well-known consequence of the above.

Lemma 2.1: Assume I is a Borel ideal and K is a nonmeager ideal. Then for

every c ∈ I+ there is d ∈ K such that c ∩ d ∈ I+.

Proof. Since the ideal I ∩ P(c) is a proper Borel ideal on c, it is meager and

we can find a partition of c into intervals c =
⊔

n In such that
⊔

n∈y In /∈ I for

every infinite y ⊆ ω. Let ω =
⊔

n Jn be a partition such that Jn ∩ c = In for all

n. Since K is nonmeager, there is an infinite y such that d =
⋃

n∈y Jn belongs

to K. Then d ∩ c =
⊔

n∈y In is not in I and therefore d is as required.

The assumption of the following lemma follows from the assumption that

there exists a measurable cardinal by [28].
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Lemma 2.2: Assume that all Σ1
2 sets of reals have the property of Baire. If a

homomorphism Φ: P(ω)/I → P(ω)/J is Δ1
2, then it has a continuous repre-

sentation.

Proof. By the Novikov–Kondo–Addison uniformization theorem, Φ has a Σ1
2

representation. Since this map is Baire-measurable, by a well-known fact (e.g.,

[7, Lemma 1.3.2]) Φ has a continuous representation.

Given a partition I = (In : n ∈ ω) of ω into finite intervals, we say that a

forcing notion P captures I if there is a P-name ṙ for a subset of ω such that

for every p ∈ P there is an infinite c ⊆ ω with the following property:

(1) For every d ⊆ ⋃
n∈c In there is qd ≤ p such that qd forces

ṙ ∩⋃
n∈c Ǐn = ď.

By [a]I we denote the equivalence class of set a modulo the ideal I. When the

ideal is clear from the context we may write [a] instead of [a]I .

3. Creatures

Two Suslin proper forcing notions are used in the proof of Theorem 1. One is

the Lebesgue measure algebra, R. The other shall be described in the present

section. It is a creature forcing (for background see [30]).

Fix a partition I = (In : n ∈ ω) of ω into consecutive finite intervals. Also

fix another fast partition J = (Jn : n ∈ ω) into consecutive finite intervals. For

s ⊆ ω write

Is =
⋃

j∈s Ij and I<n =
⋃

j<n Ij .

Let x denote the pair (I, J), called ‘relevant parameter.’ Define (CRx,Σx) as

follows (in terms of [30], this will be a ‘creating pair’).

Let c ∈ CRx if

c = (nc, uc, ηc,Fc,mc, kc)

(we omit the subscript c whenever it is clear from the context) provided the

following conditions hold:

(1) u ⊆ Jn,

(2) η : Iu → {0, 1},
(3) F ⊆ {0, 1}IJn and each μ ∈ F extends η,

(4) k ≤ |Jn| − |u|,
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(5) if v ⊆ Jn \ u, |v| ≤ k, and ν : Iv → {0, 1} then some μ ∈ F extends

η ∪ ν,

(6) m < 3−|I<n| log2 k.

For c and d in CRx let d ∈ Σx(c) if the following conditions hold:

(7) nd = nc,

(8) ηc ⊆ ηd,

(9) kc ≥ kd,

(10) Fc ⊇ Fd,

(11) mc ≤ md.

For c ∈ CRx we define the following:

(12) nor0(c) = 
3−|I<n| log2 k�,
(13) nor(c) = nor0(c) −m,

(14) pos(c) = F .

Therefore c is a finite ‘forcing notion’ that ‘adds’ a function from IJn into {0, 1}.
Its ‘working part’ (or the already decided part of the ‘generic’ function) is ηc

and Fc is the set of ‘possibilities’ for the generic function (thus the redundant

notation (14) included here for the purpose of compatibility with [30]). The

‘norm’ nor(c) provides a lower bound on the amount of freedom allowed by c in

determining the generic function.

For a relevant parameter x we now define the creature forcing Q = Qx. Let

H(n) = 2k, where k = IJn . This is the number of ‘generics’ for c ∈ Σx with

nc = n. Also let

φH(j) = |∏i<j H(i)|.
Fix a function f : ω × ω → ω which satisfies the following conditions for all k

and l in ω:

(15) f(k, l) ≤ f(k, l + 1),

(16) f(k, l) < f(k + 1, l),

(17) φH(l)(f(k, l) + φH(l) + 2) < f(k + 1, l).

We say such f is H-fast (cf. [30, Definition 1.1.12]).

We now let Qx be Qf(CRx,Σx), as in [30, Definition 1.1.10 (f)]. This means

that a typical condition in Q is a triple

p = (fp, i(p), c̄(p))

such that (we drop subscript p when convenient):
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(18) f : I<i(p) → {0, 1} for some i(p) ∈ ω,

(19) c̄(p) = 〈c(p, j) : j ≥ i(p)〉,
(20) each c(p, j) is in CRx and satisfies nc(p,j) = j,

(21) with mj = min(Imin(Jj)) (cf. [30, Definition 1.1.10(f)]) we have

(∀k)(∀∞j)(nor(c(p, j)) > f(k,mj).

We let q ≤ p (where q is a condition stronger than p) if the following conditions

are satisfied:

(22) fp ⊆ fq,

(23) c(q, j) ∈ Σx(c(p, j)) for j ≥ i(q),

(24) fq � Ij ∈ pos(c(p, j)) for j ∈ [i(p), i(q)).

The idea is that Qx adds a function ḟ from ω into {0, 1}. A condition p =

(fp, i(p), c̄(p)) decides that ḟ extends fp as well as fc(p,j) for all j ≥ i(p). Also,

pos(c(p, j)) is the set of possibilities for the restriction of ḟ to IJj . The ‘norms

on possibilities’ condition (21) affects the ‘rate’ at which decisions are being

made.

Experts may want to take note that with our creating pair (CRx,Σx) there is

no difference between Qf and Q
∗
f (cf. [30, Definition 1.2.6]) since the intervals

Jn form a partition of ω. This should be noted since the results from [30] quoted

below apply to Q
∗
f and not Qf in general.

3.1. Properties of Qx. We shall need several results from [30] where the class

of forcings to which Qx belongs was introduced and studied.

Lemma 3.1: The forcing notion Qx is nonempty and nonatomic.

Given h :ω → ω (typically increasing), we say that the creating pair (CRx,Σx)

is h-big ([30, Definition 2.2.1]) if for each c ∈ CRx such that nor(c) > 1 and

χ : pos(c) → h(n(c)) there is d ∈ Σx(c) such that nor(d) ≥ nor(c) − 1 and

χ � pos(d) is constant. We need only h-bigness in the case when h(n) = 2 for

all n.

Lemma 3.2: If h(n) = 3|I<n| then the pair (CRx,Σx) is h-big.

Proof. Fix c = (n, u, η,F ,m, k) ∈ CRx such that nor(c) = 
2−|I<n| log2 k�−m >

0 and a partition F =
⋃

j<r F , with r = 3|I<n|. We need to find d ∈ Σx(c) such

that nor(d) ≥ nor(c) − 1 and Fd ⊆ Fj for some j.
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Since nor(c) = 
r log2 k� − m > 0, we have that log2 k ≥ r and therefore

k′ = �rk� > 0.

We shall find d of the form (n, v, ζ,Fj ,m, k′) for appropriate v, ζ and j < r.

Note that nor(d) = 
r log2 k′� − m = nor(c) − 1. We shall try to find uj and

ηj : uj → {0, 1} for j < r as follows. If d0 = (n, u, η,F0,m, k′) ∈ Σx(c), we

let d = d0 and stop. Otherwise, there are v0 ⊆ Jn \ u and ζ0 : v0 → {0, 1}
such that η ∪ ζ0 has no extension in F0. Let u1 = u ∪ v0 and η1 = η ∪ ζ0. If

d1 = (n, u1, η1,F1,m, k′) ∈ Σx(c), we let d = d1 and stop. Otherwise, there are

v1 ⊆ Jn \ u1 and ζ1 : v1 → {0, 1} such that η1 ∪ ζ1 has no extension in F1. Let

u2 = u1 ∪ v1 and η2 = η ∪ ζ1. Proceeding in this way, for j < r we construct

vj , uj, ζj and ηj such that ηj has no extension in Fj or we find dj witnessing

r-bigness of c. If uj and ηj are constructed for j < r − 1, then v =
⋃

j<r vj has

cardinality rk′ = k and ν =
⋃

j<r ζj has no extension in F . But this contradicts

the assumption (4) on c. Therefore one of dj is as required.

A creating pair (CRx,Σx) has the halving property ([30, Definition 2.2.7])

if for each c ∈ CRx such that nor(c) > 0 there is d ∈ Σx(c) (usually denoted

half(c)) such that:

(1) nor(d) ≥ 1
2 nor(c).

(2) If in addition nor(c) ≥ 2, then for each d1 ∈ Σx(d) such that nor(d1) > 0

there is c1 ∈ Σx(c) such that nor(c1) ≥ 1
2 nor(c) and pos(c1) ⊆ pos(d1).

Lemma 3.3: The pair (CRx,Σx) has the halving property.

Proof. c = (n, u, η,F ,m, k) ∈ CRx such that nor(c) = 2−|I<n| −m > 0. Write

r = 3−|I<n|. Since m < rk by (6) we have thatmd = 1
2 (rk+m) satisfiesm′ < rk

and therefore d = (n, u, η,F ,md, k) is in Σx(c).

Now let us assume nor(c) ≥ 2 since otherwise there is nothing left to do.

Assume d1 = (n, u1, η1,F1, k1,m1) ∈ Σx(d) is such that nor(e) > 0. Note that

nor(d1) = r log2(k1)−m1, m1 ≥ md and k1 ≤ kd = k.

Let c1 = (n, u1, η1,F1, k1,m). Then

nor(c1) = 
r log2 k1� −m = nor(d1)−m+m1 ≥ 1

2
nor(c1)

as required.

Recall that a forcing notion P is ωω-bounding if for every name ḟ for an

element of ωω and every p ∈ P there are q ≤ p and g ∈ ωω such that q � ḟ(n) ≤
ǧ(n) for all n.
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Proposition 3.4: Forcing notion Qx is proper, ωω-bounding, and both the

ordering and the incomparability relation on Qx are Borel.

Proof. In addition to bigness and halving properties ofQx proved in two lemmas

above, we note that this forcing is finitary (i.e., each CRx is finite) and simple

(i.e., Σx(S) is not defined for S ⊆ CRx that contains more than one element).

By [30, Corollary 2.2.12 and Corollary 3.1.2], or rather by [30, Theorem 2.2.11],

it is proper and ωω-bounding.

It is clear that ≤Qx is Borel. We check the remaining fact, that the relation

⊥Qx is Borel. Function g : (Qx)
2 → ωω defined by

g(p, q)(n) = max{nor(d) : d ∈ Σx(c(p, n)) ∩ Σx(c(q, n))}

(with max ∅ = 0) is continuous. Since p and q are compatible if and only if

g(p, q) satisfies the largeness requirement (21), the incompatibility relation is

Borel.

4. Forcing iteration

In this long section we analyze properties of forcings used in our proof.

4.1. Fusions and continuous reading of names in the iteration. A

crucial property of the forcing iteration used in our proof is that it has the

continuous reading of names (by R we will usually mean P(ω)).

Definition 4.1: Consider a countable support forcing iteration (Pξ, Q̇η : ξ ≤
κ, η < κ) such that each Q̇η is a ground-model Suslin forcing notion which adds

a generic real ġξ. Such an iteration has continuous reading of names if for

every Pκ-name ẋ for a new real the set of conditions p such that there exists

countable S ⊆ κ, compact F ⊆ R
S , and continuous h : F → R such that

p � “〈ġξ : ξ ∈ S〉 ∈ F and ẋ = h(〈ġξ : ξ ∈ S〉)”

is dense.

For iterations of proper forcing notions of the form PI where I is a Σ1
1 on

Π1
1 σ-ideal of Borel sets (see [43]), continuous reading of names follows from

posets being ωω-bounding. This is a beautiful result of Zapletal ([43, Theorem

3.10.19 and Theorem 6.3.16]). While many proper forcings adding a real are
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equivalent to ones of the form PI (see [42]. and [43]), this unfortunately does

not necessarily apply to creature forcings as used in our proof (see [24, §3]).
Nevertheless, continuous reading of names in our iteration is a special case

of the results in [34]. For convenience of the reader we shall include a proof of

this fact in Proposition 4.2 below.

We shall define a sequence of finer orderings on Qx (see [30, Definition 1.2.11

(5)]). For p ∈ Qx and j ∈ N let

χ(p, j) = {r ∈ Qx : r ≤ p, fr = fq, and c(r, i) = c(p, i) for all i ≤ j}.

For p and q in Qx and n ≥ 1 write:

(1) p ≤0 q if p ≤ q and fp = fq,

(2) p ≤n q if

(a) p ≤0 q, and with mi = min(Imin Ji) and

k = min{i : nor(c(q, i)) > f(n,mi)}

we have

(b) q ∈ χ(p, k), and

(c) nor(c(p, i)) ≥ f(n,mi) for all i such that c(p, i) �= c(q, i).

We say that p ∈ Qx essentially decides a name for an ordinal ṁ if there

exists j such that every q ∈ χ(p, j) decides ṁ.

By [30, Theorem 2.2(11)], if ṁ is a name for an ordinal and p ∈ Qx, then for

every n ∈ ω there exists q ≤n p which essentially decides ṁ (of course this is

behind the proof of Proposition 3.4, modulo standard fusion arguments).

Let us now consider R, the standard poset for adding a random real. Condi-

tions are compact subsets of P(ω) of positive Haar measure μ and the ordering

is reverse inclusion. For n ∈ ω define a finer ordering on R by q ≤n p if q ≤ p

and μ(q) ≥ (1 − 2−n−1)μ(p). We say that q ∈ R essentially decides ṁ if there

exists j such that q ∩ [s] decides ṁ for every s ∈ 2j such that q ∩ [s] ∈ R. The

inner regularity of μ implies that for every name ṁ for an ordinal, every p ∈ R
and every n, there exists q ≤n p which essentially decides ṁ.

In the following proposition we assume (Pξ, Q̇η : ξ ≤ κ, η < κ) is a countable

support iteration such that each Q̇η is either some Qx orR, and that in addition

the maximal condition of Pη decides whether Q̇η is R or Qx, and in the latter

case it also decides x, for all η.

Sh:987



714 I. FARAH AND S. SHELAH Isr. J. Math.

Proposition 4.2: An iteration (Pξ, Q̇η : ξ ≤ κ, η < κ) as in the above para-

graph has the continuous reading of names.

Proof. Since Pκ is a countable support iteration of proper, ωω-bounding forcing

notions, by [33] the iteration is proper and ωω-bounding.

Let ġ be a name for an element of ωω. By the above and by working below a

condition, we may assume that there exists h ∈ ωω such that �P ġ ≤ ȟ. Choose

a countable elementary submodel M of H(2κ)+ containing everything relevant

and let Fj , for j ∈ ω, be an increasing sequence of finite subsets of M ∩ κ with

union equal to M ∩κ. By using order ≤n in Qx and in R introduced above, we

can construct a fusion sequence pn such that for every n and every η ∈ Fn we

have

(1) pn ∈ M ,

(2) pn+1 � η � pn+1(η) ≤n pn,

(3) pn decides the first n digits of ġ (we can do this since ġ ≤ h implies

there are only finitely many possibilities),

(4) pn � η decides c(pn(η), j) for j ≤ n if Q̇η = Qx for some x or decides

{s ∈ 2n : pn(η) ∩ [s] �= ∅} if Q̇η = R.

Then for every η ∈ M ∩ κ and n large enough the condition pn+1 � η for

n ∈ N forces that pn+1(η) ≤n pn(η). Therefore, we can define a fusion p of

sequence pn. Since pn ∈ M for all n we have that the support of p is included

in S = M ∩ κ. Let F be the closed subset of P(N)S whose complement is the

union of all basic open U ⊆ P(N)S such that p � ẋ /∈ U . By (3) there is a

continuous function h : F → ωω such that p � h(〈ġξ : ξ ∈ S〉) = ẋ.

4.2. Subiterations and complexity estimates. Assume (Pξ, Q̇η : ξ ≤
κ, η < κ) is an iteration as in Proposition 4.2. Then for every subset S ⊆ κ we

have a well-defined subiteration

PS = (Pξ, Q̇η : ξ ∈ S, η ∈ S).

We shall write �S instead of �PS and � instead of �Pκ . In some specific

situations we have that p � φ is equivalent to p �S φ, where S is the support

of p.

The following result is a key to our proof. In the context of [43] much more

can be said, but Zapletal’s theory does not apply to the context of creature

forcings (cf. paragraph after Definition 4.1).
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Lemma 4.3: Assume Pκ is a countable support iteration of ground model ωω-

bounding Suslin forcings. Assume B is a Π1
1 set, p ∈ Pκ, ẋ is a name for an

element of P(N), p � ẋ ∈ B and ẋ is a Psupp(p)-name. Then p �supp(p) ẋ ∈ B.

Proof. Let S = supp(p). Assume the contrary and find q ≤ p such that q �S

ẋ /∈ B. Let T be a tree whose projection is the complement of B and let ẏ be

a name such that q forces (in PS) that (ẏ, ẋ) is a branch through T . Since PS

is an iteration of ωω-bounding forcings it is ωω-bounding ([33]); we can assume

(by extending q if necessary) that q �S ẏ ≤ ȟ for h ∈ ωω.

Now choose a countable M ≺ Hθ for a large enough θ so that M contains

Pκ, q, ẋ, T , h and everything relevant. Let G ⊆ Pκ ∩M be an M -generic filter

containing q. Let x = intG(ẋ). The tree Tx = {s : (s, x � n) ∈ T for some n}
is finitely branching (being included in {s : s(i) ≤ h(i) for all i < |s|}) and

infinite. It therefore has an infinite branch by König’s Lemma. This implies

that x /∈ B, contradicting the fact that p � ẋ ∈ B.

Recall that a forcing notion is Suslin proper if its underlying set is an

analytic set of reals and both ≤ and ⊥ are analytic relations. The following

lemma is well-known.

Lemma 4.4: Assume P is Suslin proper, ẋ is a P-name for a real, and A ⊆ R
2

is Borel. Then for a dense set of conditions p ∈ P the set

{a : p � (ǎ, ẋ) ∈ A}

is Δ1
2.

Proof. Since P is proper, the set of all p ∈ P such that all antichains in ẋ are

countable below p is dense. For a ⊆ ω we now have that p � (ǎ, ẋ) ∈ A if

there exists a countable well-founded model M of ZFC* containing everything

relevant such that for every M -generic G ⊆ M ∩ P with p ∈ G we have that

F (a, intG(ẋ)) ∈ A. This is a Σ1
2 statement with A as a parameter.

Alternatively, p � (ǎ, ẋ) ∈ A if for every countable well-founded model M of

ZFC* and every M -generic G ⊆ M ∩P with p ∈ G we have that F (a, intG(ẋ)) ∈
A. This is a Π1

2 statement with A as a parameter.

Lemma 4.5: Assume (Pξ, Q̇η : ξ ≤ κ, η < κ) is as in Proposition 4.2. Assume

ẋ is a P-name for a real, A ⊆ R is Borel and g : R2 → R is a Borel function. If
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p ∈ P is such that the name ẋ is continuously read below p, then the set

{a : p � g(ǎ, ẋ) ∈ A}

is Δ1
2.

Proof. By Proposition 4.2, with S = supp(p) we have a compact F ⊆ P(N)S

and a continuous h : F → P(ω) such that p � h(〈ġξ : ξ ∈ S〉) = ẋ.

Lemma 4.3 implies that p � g(ǎ, ẋ) ∈ A if and only if p �S g(ǎ, ẋ) ∈ A. Since

S is countable, by Lemma 4.4 the latter set is Δ1
2.

4.3. Reflection. Throughout this section we assume (Pξ, Q̇η : ξ ≤ κ, η < κ)

is a forcing iteration of proper forcings of cardinality < κ in some model M of a

large enough fragment of ZFC. We also assume Gκ ⊆ Pκ is an M -generic filter

and let G � ξ denote G∩Pξ. If Ȧ is a Pκ-name for a set of reals we can consider

it as a collection of nice names for reals. Furthermore, since Pκ is proper, then

we can identify Ȧ with a collection of pairs (p, ẋ) where p ∈ Pκ and ẋ is a name

that involves only countable antichains below p. The intention is that p forces

ẋ is in A. With this convention we let Ȧ � ξ denote the subcollection of Ȧ

consisting only of those pairs (p, ẋ) such that p ∈ Pξ and ẋ is a Pξ name,

The following ‘key triviality’ will be used repeatedly in the proof of the main

theorem. It ought to be well-known but it does not seem to appear explicitly

in the literature.

Proposition 4.6: Assume κ > c is a regular cardinal and

(Pξ, Q̇η : ξ ≤ κ, η < κ)

is a countable support iteration of proper forcings of cardinality < κ. Assume

Ȧ is a Pκ-name for a set of reals. Then the set of ordinals ξ < κ such that

(H(ℵ1), intG�ξ(Ȧ � ξ))V [G�ξ] ≺ (H(ℵ1), intG(Ȧ))V [G]

includes a club relative to {ξ < κ : cf(ξ) ≥ ω1}.
Proof. Since each Pξ is proper ([33]), no reals are added at stages of uncountable

cofinality. Therefore, if cf(η) is uncountable then H(ℵ1)
V [G�η] is the direct limit

of H(ℵ1)
V [G�ξ] for ξ < η. The assertion is now reduced to a basic fact from

model theory: club many substructures of (H(ℵ1), intG(Ȧ))
V [G] of cardinality

< κ are elementary submodels.
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Definition 4.7: Using notation as in the beginning of §4.3 we say that a formula

φ(x, Y ) (with parameters x ∈ R and Y ⊆ R) reflects (with respect to Pκ) if

for every name ȧ for a real and every name Ḃ for a set of reals the following are

equivalent:

(1) V [G] |= φ(ȧ, Ḃ), and

(2) there is a club C ⊆ κ such that for all ξ ∈ C with cf(ξ) ≥ ω1 we have

V [G � ξ] |= φ(ȧ, Ḃ � ξ).

Corollary 4.8: Let (Pξ, Q̇η : ξ ≤ κ, η < κ) be a countable support iteration

of proper forcings of cardinality < κ. Assume İ and J̇ are Pκ-names for Borel

ideals on ω and Φ̇ is a Pκ-name for an isomorphism between their quotients.

(1) For every name ȧ for a real the statement ȧ ∈ Triv1
Φ̇
reflects.

(2) For 0 ≤ j ≤ 2 the statement “Trivj
Φ̇
is meager” reflects.

(3) For every Pκ-name İ for a partition of ω into finite sets the statement

İ ⊆ H(İ) reflects.

Proof. Since the pertinent statements are projective with the interpretation of Φ̇

as a parameter, each of the assertions is a consequence of Proposition 4.6.

4.4. Random reals. We identify P(ω) with 2ω and with (Z/2Z)ω and equip

it with the corresponding Haar measure. The following lemma will be instru-

mental in the proof of one of our key lemmas, Lemma 4.13.

Lemma 4.9: Assume J is a Borel ideal and f and g are continuous functions

such that each one of them is a representation of a homomorphism from P(ω)

into P(ω)/J . If the set

Δf,g,J = {c ⊆ ω : f(c) �=J g(c)}

is null, then it is empty.

Proof. By the inner regularity of Haar measure we can find a compact set K

disjoint from Δf,g,J of measure > 1/2. Fix any c ⊆ ω. The sets K and

KΔc = {bΔc : b ∈ K} both have measure > 1/2 and therefore we can find

b ∈ K such that bΔc ∈ K. But then

f(c) =J f(cΔb)Δf(b) =J g(cΔb)Δg(b) =J g(c),

completing the proof.
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In the following R denotes the forcing for adding a random real and ẋ is the

canonical R-name for the random real.

Corollary 4.10: Assume J is a Borel ideal and f and g are continuous

functions such that each is a representation of a homomorphism from P(ω) into

P(ω)/J . Furthermore, assume R forces f(ẋ) =J g(ẋ). Then f(c) =J g(c) for

all c ⊆ ω.

Proof. It will suffice to show that the assumptions of Lemma 4.9 are satisfied.

This is a standard fact but we include the details. Since the set Δf,g,J is

Borel, if it is not null then there exists a compact set K ⊆ Δf,g,J of positive

measure. If M is a countable transitive model of a large enough fragment of

ZFC containing codes for K, f, g, and J and x ∈ K is a random real over M ,

then M [x] |= f(x) =J g(x) by the assumption on f and g. However, this

is a Δ1
1 statement and is therefore true in V . But x ∈ Δf,g,J and therefore

f(x) �=J g(x), a contradiction.

4.5. Trivializing automorphisms locally and globally. Ever since the

second author’s proof that all automorphisms of P(N)/Fin are trivial in an

oracle-cc forcing extensions ([32]), every proof that automorphisms of a similar

quotient structure proceeds in (at least) two stages. In the first stage one proves

that the automorphism is ‘locally trivial’ and in the second stage local trivialities

are pieced together into a single continuous representation (see, e.g., [7, §3]).
The present proof is no exception.

Throughout this subsection we assume

(Pξ, Q̇η : ξ ≤ c+, η < c+)

is as in Proposition 4.2. Therefore, it is a countable support iteration such that

each Q̇η is either some Qx or R, and that in addition the maximal condition of

Pη decides whether Q̇η is R or Qx, and in the latter case it also decides x, for

all η. We shall write p �ξ φ instead of p �Pξ
φ.

Lemma 4.11: With (Pξ, Q̇η : ξ ≤ κ, η < κ) as above, assume that for every

partition I of ω into finite intervals the set

{ξ < c+ �ξ “Qξ captures I and cf(ξ) is uncountable”}
is stationary. Then every homomorphism between quotients over Borel ideals

is locally Δ1
2 (see §2).
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Proof. Fix a name Φ̇ for a homomorphism between quotients over Borel ideals

I and J . By moving to an intermediate forcing extension containing relevant

Borel codes, we may assume the ideals I and J are in the ground model. Let

G ⊆ Pc+ be a generic filter.

Assume Triv2
intG(Φ̇)

is meager in V [G] with a witnessing partition intG(İ) (cf.

the discussion before Corollary 4.8). By Corollary 4.8 the set of ξ < c+ of

uncountable cofinality such that intG�ξ(İ) witnesses Triv2intG�ξ(Φ̇�ξ) is meager in

V [G � ξ] includes a relative club.

Since the iteration of proper ωω-bounding forcings is proper and ωω-bounding

([33]) the forcing is ωω-bounding, we may assume intG(İ) is a ground-model

partition, Ī = (In : n ∈ ω). By our assumption, there is a stationary set S of

ordinals of uncountable cofinality such that for all η ∈ S we have

(1) �η“Q̇ξ adds a real ẋ that captures Ī”.

Fix η ∈ S for a moment. By going to the intermediate extension we may assume

η = 0. Let ẏ be a name for a subset of ω such that

[ẏ]J = Φ([ẋ]I).

By the continuous reading of names (Proposition 4.2) we can find condition p

with support S containing 0, compact F ⊆ P(N)S and continuous h : F → P(ω)

such that p � h(〈ġξ : ξ ∈ S〉) = ẏ. Note that ẋ is equal to ġ0, hence it is

“continuously read.”

Since Q0 captures I we can find an infinite d such that, with a = Id for every

b ⊆ a, condition pb ≤ p forces ẋ ∩ a = b. Also, supp(pb) = supp(p) and (by the

definition of Qx) the map b �→ pb is continuous.

By the choice of ẏ, with c = Φ∗(a) by Lemma 4.3 we have that

pb �S ẏ ∩ c =J Φ∗(b).

By Lemma 4.4 the set

{(b, e) : b ⊆ a, e ⊆ c, e =J Φ∗(b)}
is Δ1

2.

Therefore, a and Q̇ξ satisfy the assumptions of Lemma 4.5 and in V [G � ξ]

the restriction of intG�ξ(Φ̇ � ξ) to P(a)/I is Δ1
2, contradicting our assumption.

Since assuming Triv2
intG(Φ̇)

was meager lead to a contradiction, this concludes

the proof.
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Definition 4.12: Assume P is a forcing notion and Φ̇ is a P-name for an isomor-

phism between quotients over Borel ideals I and J which extends ground-model

isomorphism Φ between these quotients. We say that Φ̇ is P-absolutely locally

topologically trivial if the following apply (in order to avoid futile discussion

we assume P is ωω-bounding):

(1) Φ is locally topologically trivial,

(2) P forces that the continuous witnesses of local topological triviality of

Φ witness local topological triviality of Φ̇.

In order to justify this definition we note that this is not a consequence of

the assumption that Φ is locally topologically trivial and Φ̇ is forced to be lo-

cally topologically trivial. By a result of Steprāns, there is a σ-linked forcing

notion such that a trivial automorphism of P(ω)/Fin extends to a trivial au-

tomorphism, but the triviality is not implemented by the same function ([38]).

Steprāns used this to show that there is a forcing iteration Pκ that forces Mar-

tin’s Axiom and the existence of a nontrivial automorphism Φ of P(ω)/Fin that

is trivial in V [G � ξ] for cofinally many ξ.

The following key lemma shows that in our forcing extension local topological

triviality is always witnessed by a Π1
2 set.

Lemma 4.13: Assume (Pξ, Q̇η : ξ ≤ κ, η < κ) is as in the beginning §4.5
such that Q0 is R. Also assume Φ̇ is a Pκ-name for a Pκ-absolutely locally

topologically trivial isomorphism between quotients over Borel ideals I and J .

Then the set

{(c, d) : Φ∗(c) =J d}
is Π1

2.

Proof. We have Φ: P(ω)/I → P(ω)/J . Let ẋ be the canonical Q0-name for

the random real and let ẏ be a Pκ-name for the image of ẋ by the extension of

Φ. By the continuous reading of names (Proposition 4.2) we can find condition

p with countable support S containing 0, compact F ⊆ P(N)S and continuous

h : F → ωω such that p � h(〈ġξ : ξ ∈ S〉) = ẏ. Again ẋ is equal to ġ0, hence it

is “continuously read.”

Consider the set Z of all (a, b, f, g) such that:

(1) a and b are subsets of ω.

(2) f : P(a) → P(b) and g : P(b) → P(a) are continuous maps.

(3) f is a representation of a homomorphism from P(a)/I into P(b)/J .
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(4) g is a representation of a homomorphism from P(b)/J into P(a)/I.
(5) f(c) ∈ J if and only if c ∈ I.
(6) f(g(c)) =J c for all c ⊆ b. and g(f(c)) =I c for all c ⊆ a.

(7) p forces that f(ẋ ∩ ǎ) =J ẏ ∩ b̌.

(8) p forces that g(ẏ ∩ b̌) =I ẋ ∩ ǎ.

Conditions (1) and (2) state that Z is a subset of the compact metric space

P(ω)2 × C(P(ω),P(ω))2, where C(X,Y ) denotes the compact metric space of

continuous functions between compact metric spaces X and Y . Since (3) states

that

(∀x ⊆ a)(∀y ⊆ a)f(x ∪ y) =J f(x) ∩ f(y)

(∀x ⊆ a)f(a) \ f(x) =J f(a \ x)
this is a Π1

1 condition, and similarly for (4). Similarly (5) and (6) are Π1
1.

Lemma 4.5 implies that the remaining condition, (7), is Δ1
2 (recall that J was

assumed to be Borel). Therefore the set Z is Δ1
2. The set

K = {a : (a, b, f, g) ∈ Z for some (b, f, g)}
is easily seen to be an ideal that includes Triv1Φ. Since Φ is locally topologically

trivial it is nonmeager.

We shall now prove a few facts about the elements of Z.

An (a, b, f, g) ∈ Z can be re-interpreted in the forcing extension, and in

particular we identify function f with the corresponding continuous function.

Properties (1)–(6) areΠ1
1 and therefore still hold in the extension. In particular,

f is forced to be a representation of an isomorphism.

For a ∈ K let fa and ga denote functions such that (a, b, fa, ga) ∈ Z for some

b. For a ∈ Triv1Φ let ha : P(a) → P(ω) be a continuous representation of Φ � a.
Let Φ∗ denote a representation of the extension of Φ in the forcing extension.

(9) If a ∈ K then fa(c) =
J Φ∗(c) ∩ b for all c ⊆ a.

This is a consequence of Corollary 4.10, since (7) states that p forces

fa(ẋ ∩ ǎ) =J Φ∗(ẋ) ∩ b̌.

If Φ−1
∗ denotes a representation of Φ−1 then, by the same argument and (8) we

have

ga(d) =
I Φ−1

∗ (d) ∩ a

for all d ⊆ b.

(10) If a ∈ K, then fa(c) =
J Φ∗(c) for all c ⊆ a.
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Let d = Φ∗(a)\ b and c = Φ−1
∗ (d). Then c\a belongs to I. Also, with c′ = c∩a

we have fa(c
′) =J Φ∗(c) ∩ b = d ∩ b = ∅. However, (6) and (4) together with

this imply

c =I c′ =I ga(fa(c
′)) =I ga(∅) =I ∅.

Unraveling the definitions, we have that Φ−1
∗ sends Φ∗(a)\ b to ∅ modulo I and

therefore that Φ∗(a) =J b = fa(a). By applying (9) and Corollary 4.10, (10)

follows.

(11) If a ∈ Triv1Φ, then a ∈ K and ha(c) =
J Φ∗(c) =J fa(c) for all c ⊆ a.

That a ∈ K is immediate from the definitions of Z and K, and ha(c) =
J Φ∗(c) is

immediate from a ∈ Triv1Φ and the definition of ha. The last equality, Φ∗(c) =J

fa(c) for all c ⊆ a, was proved in (10).

Putting together (10) and (11) we obtain that K = Triv1Φ and that fa wit-

nesses a ∈ Triv1Φ for every a ∈ K.

(12) We have

{(c, d) : Φ∗(c) =J d} = {(c, d) : (∀(a, b, f, g) ∈ Z)f(c ∩ a) =J b ∩ d}.

Take (c, d) such that Φ∗(c) =J d. Then for every (a, b, f, g) ∈ Z we have

Φ∗(c ∩ a) =J f(c ∩ a) by (11) and (10), and therefore (c, d) belongs to the

right-hand-side set.

Now take (c, d) such that Φ∗(c)Δd is not in J .

Assume for a moment that e = Φ∗(c) \ d /∈ J . Since Φ is an isomorphism,

we can find a such that Φ∗(a) =J e. We have that a is I positive. Since K
is nonmeager, by Lemma 2.1 we can find a′ ⊆ a such that a′ ∈ K \ I. Then

fa′(c ∩ a′) is J -positive, included (modulo J ) in e, and disjoint (modulo J )

from d. Therefore (a′, fa′) witness that (c, d) does not belong to the right-hand

side of (12).

We must therefore have e = d \ Φ∗(c) /∈ J (there is no harm in denoting

this set by e, since the existence of the set denoted by e earlier lead us to a

contradiction). Applying the above argument we can find a′ ∈ K such that c∩a′
is I-positive, but its image under fa′ is included (modulo J ) in d and disjoint

(modulo J ) from Φ∗(c), which is again a contradiction.

By (12) we have the required Π1
2 definition of Φ.
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5. Proofs

Proof of Theorem 1. By §3, for every partition I of ω into finite intervals there is

a forcing notion of the form Qx that adds a real which captures I. Each of these

forcings is proper, real, has continuous reading of names and is ωω-bounding.

Starting from a model of CH partition {ξ < ℵ2 : cf(ξ) = ℵ1} into ℵ1 stationary

sets, consider a countable support iteration (Pξ, Q̇η : ξ ≤ ω2, η < ω2) of forcings

of the form Qx and random reals such that for every İ the set {ξ : cf(ξ) = ω1

and Q̇ξ is Qx} is stationary and also {ξ : cf(ξ) = ω1 and Q̇ξ is the poset for

adding a random real} is stationary.

Since this forcing is a countable support iteration of proper ωω-bounding

forcings it is proper and ωω-bounding (by [33, §VI.2.8(D)]) and therefore d = ℵ1

in the extension.

Now fix names İ and J̇ for Borel ideals and a name Φ̇ for an automorphism

between Borel quotients P(ω)/İ and P(ω)/J̇ . By Lemma 4.11, Φ̇ is forced to

be locally Δ1
2, and by Corollary 4.8, there is a stationary set S of ξ such that

cf(ξ) = ω1 such that Φ̇ � ξ is a Pξ name for a a locally Δ1
2-isomorphism, and

Q̇ξ is the standard poset for adding a random real.

By our assumption that allΣ1
2 sets have the property of Baire and Lemma 2.2,

Φ̇ is forced to be locally topologically trivial. By Lemma 4.13, if ξ ∈ S then Φ̇

is Π1
2 in V [G � ξ]. Therefore Φ̇ is Π1

2 in V [G].

Since our assumption that there exists a measurable cardinal implies that we

have Π1
2-uniformization of this graph, f : P(ω) → P(ω) and all Π1

2 sets have the

Property of Baire, Φ has a Baire-measurable representation. By a well-known

fact (e.g., [7, Lemma 1.3.2]) Φ has a continuous representation.

In order to add 2ℵ0 < 2ℵ1 to the conclusions, start from a model of CH

and add κ ≥ ℵ3 of the so-called Cohen subsets of ℵ1 to increase 2ℵ1 to κ

while preserving CH. More precisely, we force with the poset of all countable

partial functions p : ℵ3 × ℵ1 → {0, 1} ordered by the extension. Follow this by

the iteration Pℵ2 of Qx and R defined above. The above argument was not

sensitive to the value of 2ℵ1 , therefore all isomorphisms still have continuous

representations. Finally, the iteration does not collapse 2ℵ1 because a simple

Δ-system argument shows that it has ℵ2-cc.

Proof of Theorem 4. Not much more remains to be said about this proof. As-

sume there exist class many Woodin cardinals, consider the very same forcing

iteration as in the proof of Theorem 1 and fix names for universally Baire ideals
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İ and J̇ as well as for an isomorphism Φ̇ between their quotients. Proofs of

lemmas from §2 show that the graph of Φ̇ is forced to be projective in İ and J̇
and therefore universally Baire itself (see [26]). It can therefore be uniformized

on a dense Gδ set by a continuous function, and therefore Φ̇ is forced to have a

continuous representation.

6. Concluding remarks

As pointed out earlier, some of the ideas used here were present in the last

section of [36]. However, in the latter only automorphisms of P(ω)/Fin were

considered and, more importantly, the model constructed there does have non-

trivial automorphisms of P(ω)/Fin. This follows from the very last paragraph

of [37].

Question 6.1: Are large cardinals necessary for the conclusion of Theorem 1?3

The answer is likely to be negative (as suggested by the anonymous referee)

but it would be nice to have a proof.

We note that [7, Question 3.14.2] repeated in the original version of the

present note was solved by Alan Dow ([6]). Questions of whether isomorphisms

with continuous representations are necessarily trivial are as interesting as ever,

but since we have no new information on these questions we shall move on.

Problem 6.2 reiterates one of the conjectures from [11], and a positive answer

to (1) below may require an extension of results about freezing gaps in Borel

quotients from [10].

Problem 6.2: (1) Prove that PFA implies that all isomorphisms between

quotients over Borel ideals have continuous representations.

(2) Prove that all isomorphisms between quotients over Borel ideals have

continuous representations in standard Pmax extension ([41], [27]).

We end with two fairly ambitious questions. A positive answer to the follow-

ing would be naturally conditioned on a large cardinal assumption (see [13]).

Question 6.3: Is there a metatheorem analogous to Woodin’s Σ2
1 absoluteness

theorem ([26], [40]) and the Π2-maximality of Pmax extension ([41], [27]), that

3 Added in proof: This question was answered in the negative by Ghasemi [16].
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provides a positive answer to Problem 6.2 (1) or (2) automatically from Theo-

rem 1?

Let us temporarily abandon Boolean algebras and briefly return to the general

situation described in the introduction. Attempts to generalize these rigidity

results to other categories were made, with limited success, in [8]. For example,

quotient group
∏

ω Z/2Z/
⊕

ω Z/2Z clearly has nontrivial automorphisms in

ZFC. One should also mention the case of semilattices, when isomorphisms

are locally trivial but not necessarily trivial ([8]). On the other hand, PFA

implies that all automorphisms of the Calkin algebra are trivial ([12]). Note

that ‘trivial’ as defined here is equivalent to ‘inner’ for automorphisms of the

Calkin algebra, but this is not true for arbitrary corona algebras since in some

cases the relevant multiplier algebra has outer automorphisms, unlike B(H) (see

[5], [14]).

Problem 6.4: In what categories can one prove consistency of the assertion that

all isomorphisms between quotient structures based on standard Borel spaces

are trivial?

6.1. Groupwise Silver forcing. A simpler forcing notion that can be used

in our proof in place of Qx defined above ([16]). The ‘relevant parameter’ is

Ī = (In : n ∈ ω), a partition of ω into finite intervals. Forcing SĪ consists of

partial functions f from a subset of ω into {0, 1} such that the domain of f is

disjoint from infinitely many of the In. Every condition f can be identified with

the compact subset pf of P(ω) consisting of all functions extending f . Special

cases of SĪ are Silver forcing (the case when In = {n} for all n) and ‘infinitely

equal,’ or EE, forcing (the case when |In| = n for all n, see [2, §7.4.C]).
This is a Suslin forcing, and a fusion argument shows that it is proper, ωω-

bounding and has continuous reading of names. Also, the proof that this forcing

is ωω-bounding and proper are analogous to proofs of the corresponding facts for

EE, [2, Lemma 7.4.14] and [2, Lemma 7.4.12], respectively). Since this forcing is

of the form PI , Zapletal’s results ([43]) make its analysis a bit more convenient.

Proofs of these facts and applications of SĪ to the rigidity of quotients appear

in [16].
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Dow, Michael Hrušak, Menachem Magidor, Arnie Miller, Juris Steprāns and
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