The monadic theory of ($\omega_{2},<$) may be complicated

Shmuel Lifsches and Saharon Shelah ${ }^{\star}$
Institute of Mathematics, The Hebrew University, Jerusalem, Israel

Received June 12, 1991/in revised form September 3, 1991

Summary. Assume ZFC is consistent then for every $B \subseteq \omega$ there is a generic extension of the ground world where B is recursive in the monadic theory of ω_{2}.

Introduction

The monadic language corresponding to first-order language L is obtained from L by adding variables for sets of elements, atomic formulas $x \in Y$, and the quantifier ($\exists Y$). The monadic theory of a model M for L is the theory of M in the described monadic language when the set of variables are interpreted as arbitrary subsets of M^{1}. Speaking about the monadic theory of an ordinal α, we mean the monadic theory of $\langle\alpha,\langle \rangle$. Gurevich, Magidor, and Shelah proved in [GMS] the following theorem:

Theorem. Assume there is a weakly compact cardinal. Then there is an algorithm $n \rightarrow \psi_{n}$ such that ψ_{n} is a sentence in the monadic language of order and for every $B \cong \omega$ there is a generic extension of the ground world with $\left\{n: \omega_{2} \models \psi_{n}\right\}=B$.

Thus, there are continuum many possible monadic theories of ω_{2} (is different universes) and for every $B \subseteq \omega$ there is a monadic theory of ω_{2} (in some world) which is at least as complex as B.

Here we shall eliminate the assumption of the existence of a weakly compact cardinal and will prove the following theorem:
Theorem 1. There is a set of sentences $\left\{\theta_{n}: n<\omega\right\}$ in the monadic language of order such that:
if $V \models$ G.C.H, then, for each $B \cong \omega$, there exists a forcing notion $P=P_{B}$, which is ω_{1}-closed, satisfies the \aleph_{3}-chain condition, preserves cardinals, cofinalities and the G.C.H and $|P|=\aleph_{3}$ such that $\Vdash_{P}\left\{n:\left(\omega_{2},<\right) \vDash \theta_{n}\right\}=B$.

[^0]
1 The sentences and the forcing notion

Notation. a) $S_{i}^{2}:(i=0,1)$ will be the sets $\left\{\alpha<\omega_{2}: c f(\alpha)=\omega_{i}\right\}$.
b) $S_{n}(n \leqq \omega)$ are pairwise disjoint stationary subsets of S_{1}^{2} such that $\bigcup_{n \leqq \omega} S_{n}=S_{1}^{2}$.

1. Definition. (i) $\Phi_{n}(Y):=" Y \cong S_{1}^{2}, Y$ is stationary and for each function $h: Y \rightarrow\{0, \ldots, n\}$ there is a function $g: S_{0}^{2} \rightarrow\{0, \ldots, n\}$ such that: if $\delta \in Y$, then there is a club subset of $\delta \cap S_{0}^{2}$ in which g is constant and different from $h(\delta)$ " in this case we will say that g is a witness for h.
(ii) $\psi_{n}:=$ " $\Phi_{n}(Y)$ and $\neg \Phi_{n-1}(Y)$ and for each stationary $Z \subseteq Y, \neg \Phi_{n-1}(Z)$ ".
(iii) $\theta_{n}:=(\exists Y)\left[\psi_{n}(Y)\right]$.

It is easy to see that Φ_{n}, φ_{n}, and θ_{n} are in the monadic language of order.
2. Definition. $\bar{Q}=\left\langle P_{i}, Q_{i}: i<\mathcal{N}_{3}\right\rangle$ is an iteration with support $<\mathcal{N}_{2}$ each Q_{i} is of the form Q_{g} where $g: S_{n} \rightarrow\{0, \ldots, n\}, g \in V^{P_{i}}, n=n(i)<\omega$, $Q_{g}:=\left\{f \mid\right.$ there is an ordinal $\alpha<\aleph_{2}$ such that

1. $\operatorname{Dom} f=\alpha$,
2. $f: \alpha \rightarrow\{0, \ldots, n\}$,
3. if $\delta \leqq \alpha, \delta \in S_{n}$, and $n \in A$ then there is a club subset E of δ on which f is constant and different from $g(\delta)\}$.
Q_{g} will be ordered by inclusion.
Moreover, if $i<\aleph_{3}, g \in V^{P_{i}}$, then there is a $j, i \leqq j<\aleph_{3}$ such that $Q_{j}=Q_{g}$.

2 Preserving cardinals and cofinality

3. Claim. P is ω_{1}-closed.

Proof. Easy.
4. Definition. (I) Let $S \subseteq \aleph_{2}$. We will say that a model N is suitable for S if for a large enough $\chi, N<(H(\chi), \varepsilon,<*)$, $(<*$ denotes a well ordering $), N \supset[N]^{\omega},\|N\|=\aleph_{1}$, and $N \cap \omega_{2} \in S$.
(II) Let $P \in N$ be a forcing notion. $\left\langle p_{\zeta}: \zeta<\omega_{1}\right\rangle$ is a generic sequence for (N, P) if $p_{\zeta} \in P \cap N, P \models p_{\zeta} \leqq p_{\zeta+1}$ and for every dense open subset D of P which belongs to $N, D \cap\left\langle p_{\zeta}: \zeta<\omega_{1}\right\rangle \neq \emptyset$.
(III) We will say that P is S-complete if for every N, suitable for S such that $P \in N$, every generic sequence $\left\langle p_{\zeta}: \zeta<\omega_{1}\right\rangle$ for (N, P) has an upper bound is P.
4a. Observation. $\left(2^{\aleph_{0}}=\aleph_{1}\right)$ for every $S \subseteq S_{1}^{2}$, stationary, given a large enough χ and $X \in H(\chi)$ there exists a model N, suitable for S with $X \in N$.
5. Claim. P is S_{ω}-complete (and in fact, S_{n}-complete for every $n \notin A$).

Proof. Let N be suitable for $S_{\omega} \bar{p}=\left\langle p_{\zeta}: \zeta<\omega_{1}\right\rangle \subseteq P$ generic for (N, P), we will find an upper bound for the sequence. Define inductively on $j \in N \cap \aleph_{3}$ conditions q_{j} in P_{j} such that for every $\zeta<\omega_{1}, q_{j} \geqq p_{\xi} \zeta_{j}$:
for $j+1$: Let \underline{z} be a P_{j} name for $\bigcup_{\zeta} p_{\zeta}(j)$. Since \bar{p} is generic, $\Vdash_{p_{j}} \operatorname{Dom} r=\delta=N \cap \aleph_{2}$, therefore, since $\delta \in S_{\omega}, \Vdash_{P_{j}} r \in Q_{j}$ so r is a condition.

Now let $g_{j+1}=q_{j} \vee \underset{r}{ }$ where $\left[q_{j} \vee \underset{\sim}{r}\right](\beta)=q_{j}(\beta)$ for $\beta<j$ and $\left[g_{j} \vee \boldsymbol{r}\right](j)=r$. So g_{j+1} is a condition and it satisfies the requirements.
For j limit: take $\bigcup_{i<j} g_{i}$. Now $q_{\aleph_{1}}$ is the required upper bound.

6. Corollary. P does not add ω_{1}-sequences.

Proof. Let $\underset{\sim}{c}$ be a P-name for an ω_{1}-sequence in $V, p \in P$ forcing it. It suffices to find a condition $q \geqq p$ such that $q \|-$ " $c \in V$ ".

Let N be suitable for $S_{\omega}, P, p, c \in N$. N has \aleph_{1} dense open sets $\left\{D_{i}: i<\omega_{1}, i=j+1\right\}$. We will construct inductively a sequence $\left\langle p_{i}: i<\omega_{1}\right\rangle$ generic for (N, P):
$p_{0}=p$
p_{i+1} : take $r \geqq p_{i}$ such that $r \|-" c \upharpoonright_{i+1} \in V$ " (an ω_{1}-complete forcing notion does not add new ω-sequences) and then $s \geqq r$ such that $s \in D_{i+1}$. Let $p_{i+1}=s$.
p_{δ} (δ a limit ordinal): use ω_{1}-completeness.
Clearly $\left\langle p_{i}: i<\omega_{1}\right\rangle$ is generic for (N, P) and by Claim 5 , there exists an upper bound q for the sequence. So $q \geqq p$ and $q \|$ " $c \in V$ ".
7. Definition. A condition $p \in P$ will be called real and rectangular if there is a $\delta<\aleph_{2}$ s.t. for every $\beta \in \operatorname{Dom} p, p(\beta)$ is a function (not a name!) and $\operatorname{Dom} p(\beta)=\delta$.
8. Corollary. For every $i<\aleph_{3}$ the set $\left\{p \in P_{i}\right.$: is real and rectangular $\}$ is dense.

Proof. Let $p \in P_{\alpha}$ be a condition, we have to find $q \geqq p, q$ real and rectangular. Let N be suitable for $S_{\omega}, p, P_{\alpha} \in N, \delta=N \cap \omega_{2}$ (so $\delta \in S_{\omega}$), let $\left\{\alpha_{i}: i<\omega_{1}\right\}$ be the support of p. By Corollary 6 , there's a real function extending every name $p\left(\alpha_{i}\right)$, therefore it's possible to build a sequence $\bar{q}=\left\langle q_{i}: i<\omega_{1}\right\rangle$ generic for (N, P_{α}) such that for every $i>j, q_{i}\left(\alpha_{j}\right)$ is a real function, and $q_{0}=p$. Let q be an upper bound for \bar{q}. Then, $q \upharpoonright \delta$ is real and rectangular extending p, where $q \uparrow \delta(i):=q(i) \uparrow \delta$.

9. Conclusion. P satisfies the \aleph_{3}-chain condition.

Proof. Take a set of conditions $\left\{p_{i}: i<\mathbb{N}_{3}\right\}$, we will find two compatible members. W.l.o.g., all the conditions are real and rectangular, moreover, we can assume they are all of height δ and (by the A-system theorem and G.C.H.) that $i \neq j \Rightarrow \operatorname{Dom} p_{i}$ $\cap \operatorname{Dom} p_{j}$ is constant. But, assuming G.C.H., there are only \aleph_{2} real and rectangular conditions with the same height and support. Therefore, there are two conditions p_{i} and p_{j} such that

$$
\left.p_{i}\right|_{\operatorname{Dom} p_{i} \cap \operatorname{Dom} p_{j}}=\left.p_{j}\right|_{\operatorname{Dom} p_{i} \cap \operatorname{Dom} p_{j}}
$$

So they are compatible.
10. Conclusion. P preserves cardinals, the G.C.H. and cofinalities.

Proof. Combine Claim 3, Corollary 6 and Conclusion 9.

3 Preserving Stationarity

We shall prove that forcing with P does not destroy the stationarity of the sets S_{n}, using a construction similar to the construction in [SK] Lemma 2.8, and in [Sh3] but really simpler as in [Sh2] as S_{ω} is stationary.
11. Proposition. $\|-_{P}{ }^{\text {" }} S_{n}$ is a stationary subset of $\omega_{2}{ }^{\prime}$.

Proof. Case (I) $n \notin A$:
Let C a name for a club subset, $p \in P_{\alpha}$ forcing it. Let N be suitable for $S_{n} \delta=N \cap \omega_{1}$, (so $\left.\delta \in S_{n}\right) C, p, P_{\alpha} \in N$. We will find a condition $q \geqq p$ forcing $\delta \in C$. Let $\left\langle D_{i}: i<\omega_{1}, i=j+1\right\rangle$ a sequence of the dense open subsets of P in N and $\left\langle\delta_{i}: i<\omega_{1}, \delta_{i} \in N\right\rangle$ an unbounded sequence in δ. We will construct a sequence of conditions $\bar{q}=\left\langle q_{i}: i<\omega_{1}, q_{i} \in N \cap P_{\alpha}\right\rangle$ inductively:

$$
\begin{aligned}
& i=0: q_{0}=p \\
& i=j+1: q_{i} \geqq q_{j}, q_{i} \in D_{j}, q_{i} \|-(\exists x)\left(x \in \mathrm{C} \& x>\delta_{j}\right) \\
& i \text { limit: take union. }
\end{aligned}
$$

So \bar{q} is generic for $\left(N, P_{\alpha}\right)$ and therefore, by S_{n}-completeness it has an upper bound q. But q forces the existence of a subsequence of C, unbounded in δ so $q \Vdash-\delta \in \underset{\sim}{C} \cap S_{n}$. Case (II) $n \in A$:

Let $p \in P_{\alpha}$ forcing " C is a club subset of ω_{2} ". We will find a condition $q, q \geqq p$, $q \Vdash " C \cap S_{n} \neq \emptyset^{\prime}$.

Let $\bar{N}=\left\langle N_{\zeta}: \zeta<\omega_{1}\right\rangle$ an increasing continuous sequence of models, $N=\bigcup_{\zeta<\omega_{1}} N_{\zeta}$ such that:
(a)
(c)

$$
\begin{gather*}
N_{\zeta}<\left(H(\chi), \in, C, p, P_{\alpha}, \leqq_{P_{\alpha}} \|-<_{\chi}^{*}\right), \quad\left\|N_{\zeta}\right\|=\aleph_{1}, \\
\left.\bar{N}\right|_{[\zeta+1]} \in N_{\zeta+1}, \quad{ }^{\omega}\left[N_{\zeta+1}\right] \subseteq N_{\zeta+1}, \tag{b}
\end{gather*}
$$

$$
\delta:=N \cap \omega_{2} \in S_{n}
$$

(d)

$$
\begin{equation*}
\delta_{\zeta+1}:=N_{\zeta+1} \cap \omega_{2} \in S_{\omega} \tag{d}
\end{equation*}
$$

Now let $A:=\alpha \cap N=\left\langle\alpha_{\zeta}: \zeta<\omega_{1}\right\rangle$ (and we can assume $\alpha_{\zeta+1} \in N_{\zeta+1}$) and $A_{\zeta}=\left\langle\alpha_{\eta}: \eta<\zeta\right\rangle$.
T_{ζ} will be the set of functions t such that:
(a)

$$
\operatorname{Dom} t=A_{\zeta},
$$

(b) for every $\alpha_{\xi} \in A(\xi<\zeta), \quad \operatorname{Dom}\left[t\left(\alpha_{\xi}\right)\right]=\left\{\delta_{\eta}: \xi \leqq \eta<\zeta\right\}$,
(c) $t\left(\alpha_{\xi}\right)$ is a constant function and equals a natural number $\leqq n\left(\alpha_{\xi}\right)$.

Note that $\zeta<\aleph_{1} \Rightarrow\left|A_{\zeta}\right| \leqq \aleph_{0}$ and $\left|T_{\zeta}\right| \leqq \aleph_{1}$ and $T_{\zeta+1} \cong N_{\zeta+1}$ and $T_{\zeta+1} \in N_{\zeta+1}$ and every $t \in T_{\zeta}$ is compatible with p.

Now define inductively $\bar{q}^{\zeta}=\left\langle q_{i}^{\zeta}: t \in T_{\zeta}\right\rangle$ with
(a)
$q_{t}^{\zeta} \in P_{\alpha}$ real and rectangular and inducting t $\left(\operatorname{Dom} t \cong \operatorname{Dom} q_{t}^{\zeta}\right.$ and $t(\alpha) \cong q_{t}^{\zeta}(\alpha)$ for $\left.\alpha \in \operatorname{Dom} t\right)$,
(b)

$$
\bar{q}^{\zeta+1} \in N_{\zeta+1}
$$

(c) $\quad q_{t}^{\zeta+1} \|^{-}$"there is an ordinal γ s.t. $\gamma \in \mathbb{C}, \delta_{\zeta+1}>\gamma \geqq \delta_{\zeta}$ ",

$$
\begin{equation*}
\alpha_{\eta} \cong \operatorname{Dom} q_{t}^{\zeta+1} \tag{d}
\end{equation*}
$$

(e)

$$
s \Gamma_{\beta}=t \Gamma_{\beta} \Rightarrow q_{\hat{t}}^{\zeta} \Gamma_{\beta}=q_{s}^{\zeta} \Gamma_{\beta} \quad \text { for every } \beta \in A_{\zeta}
$$

$\zeta=0$: take $q_{o}^{0}=p$.
ζ limit: take limit.
$\zeta=\eta+1$: Suppose we have defined \bar{q}^{η} and remember that $\left|T_{\zeta+1}\right| \leqq \aleph_{1}$. Let $\left\langle t_{i}: i<\omega_{1}\right\rangle$ an enumeration of T_{ζ}, each member is taken \aleph_{1} times. Choose by induction on $i, q_{i} \in N_{\zeta}$ such that
(1) $q_{i} \geqq q_{s_{i}}$ where s_{i} is the only member in T_{η} satisfying $s_{i} \leqq t_{i}$,
(2) for every $\beta \in A_{\zeta} \cup\{\alpha\}$ and every $j<i$, if $\left.t_{j}\right|_{\beta}=\left.t_{i}\right|_{\beta}$ then $\left.q_{j}\right|_{\beta}=\left.q_{i}\right|_{\beta}$;
(3) for every t, the sequence $\left\langle q_{i} \mid t_{i}=t\right\rangle$ is generic for (N_{ζ}, P_{α}).

Now, for every t, the sequence $\left\langle q_{i} \mid t_{i}=t\right\rangle$ has an upper bound, and w.l.o.g. it is real and rectangular. So there is one in $H(\chi)$, choose the first one by $<_{x}^{*}$. It is easy to verify that the chosen upper bound satisfies a, c, d, and e. So there is a sequence in $H(\chi)$ with the properties of \bar{q}^{ξ} (take the first upper bounds for every $\left.t \in T_{\zeta}\right)$ and since $N_{\zeta}<H(\chi)$ there is one in N_{ζ}, the "first" one is the required \bar{q}^{ζ}.

Having finished we will get a tree $T=T_{\omega_{1}}$ of functions and a tree T ' of conditions "inducing" T, both of height ω_{1}.

We can correspond to each branch $b \subsetneq T^{\prime}$ a sequence $\eta \in{ }^{A} \omega$ such that for every $q=q_{t}^{\zeta} \in b$ and $\beta \in \operatorname{Dom}(q), \eta(\beta)=k$ iff $t(\beta) \equiv k$. In fact, the correspondence is $1-1$ if we restrict ourselves to sequences η with $\eta(\beta) \leqq n(\beta)$. Now define a P-name η of a sequence in ${ }^{A} \omega$ such that $\eta(\beta)=k \Rightarrow g(\delta) \neq k$ where $k \leqq n(\beta)$ and $Q_{\beta}=Q_{q}$. So $\eta(\beta)$ is a possible constant value for a member of Q_{β} on a club subset of δ. By the previous remark, η can be viewed as a name of a branch in T^{\prime}. It is easy to see that η can be extended by a condition q and that $p \leqq q \|-\delta \in \underset{\sim}{C} \cap S_{n}$.
12. Corollary. For every $n \in A, \Vdash_{P} \Phi_{n}\left(S_{n}\right)$. Therefore for every $Y \subseteq S_{n}$ stationary, $\|-{ }_{P} \Phi_{n}(Y)$.
Proof. By 11. S_{n} is stationary, also, we have dealt with every possible function since because of the \aleph_{3}-chain condition, every P-name of a function is a $P_{i}\left(i<\aleph_{3}\right)$ name of one which has been taken care of.

$4 B$ is recursive in M th $\left(\omega_{2},<\right)$

13. Proposition. Suppose $V^{P} \mid=\Phi_{n}(Y)$, then $V^{P} \mid-Y \subseteq \bigcup_{\substack{i \in B \\ i \leqq n}} S_{i}\left(\bmod D_{\omega_{2}}\right)$.

Proof. By the \aleph_{3}-chain condition there is a P_{α}-name Y such that $Y=\operatorname{Rel}\left(Y, G p_{\alpha}\right)$. There is a $k \leqq \omega$ such that $Z:=Y \cap S_{k}$ is stationary.

Since $\|_{-}^{P / p_{\alpha}} \Phi_{n}(\underset{Y}{Y})$, also $\|\left.\right|_{P / p_{\alpha}} \Phi_{n}(\underset{Z}{Z})(\underset{\sim}{Z}$ a name for $Z)$. We will show that the only possible case is $k \leqq n$ and $k \in B$.

Case (I): Assume $k \in B$ but $k>n$.
W.l.o.g. $n(\alpha)=n$ [otherwise take $\alpha^{\prime}>\alpha$ with $n\left(\alpha^{\prime}\right)=n$] the realization of the generic filter $G_{\alpha} \subseteq P_{\alpha}$ gives a function $f_{\alpha}: \omega_{2} \rightarrow\{0, \ldots, n\}$. We will show that this function contradicts $\Phi_{n}(Z)$.

Otherwise there is a $p \in P$ and a P-name h such that p forces: " h is a witness for f_{α} and $Z \bar{\sim}$ ". Let N be suitable for $Z,\|N\|=\aleph_{1}, N \cap \omega_{2}=\delta \in Z$ (so $\delta \in S_{k}$), ${ }^{\omega}[N] \subseteq N$, $h, Z, \alpha, G_{P_{\alpha}} \in N$. We will build a tree of conditions above p similarly to the construction in Proposition 11. Denote

$$
A=N \cap \operatorname{supp}(p) \backslash \alpha=\left\{\alpha_{\zeta}: \zeta<\omega_{1}\right\}
$$

(and we can assume w.l.o.g. that $\alpha_{0}=\alpha+1$ and that the sequence is increasing), then each branch of the tree can be viewed as a sequence \bar{p}_{η}, generic for (N, P) with $\eta \in{ }^{A} k$. Denote the union of the sequence by p_{η} so p_{η} is a function. For each i such that $n(i)=k p_{\eta}(i)$ is a function with domain δ, constant on a club subset of δ and equal

In the places where $n(i) \neq k$ the value of $p_{\eta}(i)$ is not interesting and we will consider only the sequences η with $\eta(i)=0$. Our aim now is to show that there is a branch that can be extended by n different conditions.

Now we will choose an increasing and continuous sequence of models $\bar{M}=\left\langle M_{\zeta}: \zeta<\omega_{1}\right\rangle$ with:
(a)

$$
N<M_{0}<\left\langle H(\chi), \in,<_{\chi}^{*}\right\rangle, \quad\left\|M_{\zeta}\right\|=\aleph_{1},
$$

(b)
(c)

$$
\left\langle\bar{p}_{\eta}: \eta \in{ }^{A} k\right\rangle \in M_{0},
$$

$$
M_{\zeta+1} \cap \omega_{2} \in S_{\omega}
$$

(d)

$$
\left.\bar{M}\right|_{\zeta+1} \in M_{\zeta+1}
$$

(e)

$$
{ }^{\omega}\left[M_{\zeta+1}\right] \subseteq M_{\zeta+1},
$$

Using $<_{x}^{*}$ we will choose inductively a sequence of sets of conditions $\left\langle q_{\alpha_{l}}^{l}: l \leqq n\right\rangle$ and names of sequences η_{ζ} such that
(a)

$$
q_{\alpha_{\zeta}}^{l} \in P / P_{\alpha}, \quad q_{\alpha_{\zeta}}^{l} \in M_{\zeta+1}, \quad \eta_{\zeta} \in A_{5} k, \quad \eta_{\zeta} \triangleleft \eta_{\zeta+1},
$$

(b)
$q_{\alpha_{5}}^{l}$ extends $p_{\eta_{1} \boldsymbol{A}_{5}}$ for every η with $\eta \triangleleft \eta$,
(c)
(d)
q_{ζ}^{l} is real and rectangular and in every
open and dense subset of P_{ζ} in M_{ζ}

Problems arise only when $n(\zeta)=k$ so suppose we have chosen $\left\langle q_{\xi}^{l}: \zeta \leqq \zeta\right\rangle$ and η_{ξ} and we want to choose $\eta_{\zeta+1}$. But each q_{ζ}^{l} rules out one possibility of extending η_{ζ} (i.e. it rules out one possible value for a function on a club subset of δ) so, $n+1$ possibilities are ruled out, but $k>n$ so at least one value is left to be chosen. In the end we will get a sequence $\eta \in^{A} k$ and conditions $\left\{q_{\aleph_{3}}^{l}\right\}_{l \leqq n}$ each one of them above p_{η} and thus they all force the same value to $h \uparrow \delta$. (Every sequence $\left\langle q_{\zeta}^{l}: \zeta<\omega_{1}\right\rangle$ can be extended by a condition $q_{\aleph_{3}}^{l}$).

Now, there is $0 \leqq m \leqq n$ such that $h^{-1}(\{m\})$ is a stationary subset of δ and $q_{\aleph_{3}}^{m}$ contradicts it since $q_{\aleph_{3}}^{m} \Vdash-f_{\alpha}(\delta)=m$. So we have found $q_{\aleph_{3}}^{m} \geqq p$ forcing " h is not a witness for $f_{\alpha}^{\prime \prime}$ a contradiction.

Case (II) $k \notin B$.
Follow the same construction. When choosing η_{ζ} no possibilities are ruled out so it should be slightly easier.
14. Conclusion. $V^{P}=\psi_{n}(Y)$ for a stationary Y iff $Y \subseteq S_{n}\left(\bmod D_{\omega_{2}}\right)$ and $n \in B$.
15. Conclusion. $\left\{n: V^{P} \models \phi_{n}\right\}=B$.

And this finishes the proof of Theorem 1.

References

[GMS] Gurevich, Y., Magidor, M., Shelah, S.: The monadic theory of ω_{2}. J. Symb. Logic 48, 387-398 (1983)
[Gu] Gurevich, Y.: Monadic second-order theories. In: Barwise, J., Feferman, S. (eds): Modeltheoretical logics. Berlin Heidelberg New York: Springer 1985
[Sh1] Shelah, S.: The monadic theory of order. Ann. Math. 102, 379-419 (1974)
[Sh2] Shelah, S.: Whitehead groups may not be free even assuming C.H.(1). Isr. J. Math. 28, 193-203 (1977)
[Sh3] Shelah, S.: Diamonds, uniformization. J. Symb. Logic 49, 1022-1033 (1984)
[Sk] Steinhorn, C.I., King, J.H.: The uniformization property for \aleph_{2}. Isr. J. Math. 36, 248-256 (1980)
[Sho] Shoenfield, J.R.: Untamified forcing. In: Scott, D.S. (ed) Axiomatic set theory, Part I. Proc. Symp. Pure Math. 13. Providence. R.I., 1971, pp. 357-381

[^0]: * The second author would like to thank the United States - Israel Binational Science Foundation for partially supporting this research. Publ. 411
 ${ }^{1}$ More details and Historical background can be found in [Gu]

