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Summary. Assume ZFC is consistent then for every BCw there is a generic
extension of the ground world where B is recursive in the monadic theory of w,.

Introduction

The monadic language corresponding to first-order language L is obtained from L
by adding variables for sets of elements, atomic formulas x € ¥, and the quantifier
(3Y). The monadic theory of a model M for L is the theory of M in the described
monadic language when the set of variables are interpreted as arbitrary subsets of
M. Speaking about the monadic theory of an ordinal &, we mean the monadic
theory of {a, < . Gurevich, Magidor, and Shelah proved in [GMS] the following
theorem:

Theorem. Assume there is a weakly compact cardinal. Then there is an algorithm
n—, such that v, is a sentence in the monadic language of order and for every BC
there is a generic extension of the ground world with {n:w,E=v,} =B.

Thus, there are continuum many possible monadic theories of @, (is different
universes) and for every BCw there is a monadic theory of w, (in some world)
which is at least as complex as B.

Here we shall eliminate the assumption of the existence of a weakly compact
cardinal and will prove the following theorem:

Theorem 1. There is a set of sentences {0,:n<cw} in the monadic language of order
such that:

if ViEG.C.H, then, for each BSw, there exists a forcing notion P= Py, which is
,-closed, satisfies the ¥;-chain condition, preserves cardinals, cofinalities and the
G.C.H and |P|=; such that |—p{n:(w,, <)E=0,}=B.

* The second author would like to thank the United States — Israel Binational Science
Foundation for partially supporting this research. Publ. 411

1 More details and Historical background can be found in [Gu]
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1 The sentences and the forcing notion

Notation. a) S7:(i=0, 1) will be the sets {x<w,:cf(0)=c;}.
b) S,(n<w)are pairwise disjoint stationary subsets of §7 such that | S,=5%.
1. Definition. (i) ®,(Y):=“YCS? Y is stationary and for each function
h:Y—{0,...,n} thereisa function g: $3—{0, ...,n} such that:if 6 ¥, then thereis a
club subset of 6nS3 in which g is constant and different from h(5)”
in this case we will say that g is a witness for A.
(i) p,:=“?,Y) and —1®,_,(Y) and for each stationary ZLY, = ®,_,(Z)".
(ii)) 6,:=@Y) [yY)].
It is easy to see that &, y,, and 6, are in the monadic language of order.

2. Definition. 0= (P, Q;:i<N;) is an iteration with support <X, each Q; is
of the form Q, where g:5,—{0,...,n}, ge V", n=n(i)<w,
Q,:={f| there is an ordinal x<¥, such that

1. Dom f=a,

2. fra—{0,...,n},

3. ifd<a, geS,, and nc A then there is

a club subset E of § on which f is constant and

different from g(5)} .

Q, will be ordered by inclusion.
Moreover, if i <3, ge V", then there is a j, i<j <X, such that Q;=0,.

2 Preserving cardinals and cofinality

3. Claim. P is w,-closed.
Proof. Easy.

4. Definition. (I) Let SCN,. We will say that a model N is suitable for S if for a large
enough y, N <(H(y), &, <*),(<* denotes a well ordering), ND[N]?, | N||=¥,, and
Nnw,eS.

(IT) Let Pe N be a forcing notion. {p,:{ <w, ) is a generic sequence for (N, P) if
p.e PnN, Pl=p,<p, ., and for every dense open subset D of P which belongs to
N,D{p:{<w,»+0.

(IIT) We will say that P is S-complete if for every N, suitable for S such that
PeN, every generic sequence {p,:{<w,» for (N, P) has an upper bound is P.

4a. Observation. (2%°=¥,) for every SC S, stationary, given a large enough y and

X € H(y) there exists a model N, suitable for § with X e N.

5. Claim. P is S,-complete (and in fact, S,-complete for every n¢ A).

Proof. Let N be suitable for S, p={p;:{ <w,)>EP generic for (N, P), we will find an
upper bound for the sequence. Define inductively on je Nn¥, conditions ¢;in P;
such that for every { <, g;Zp,|}:

forj+1: Letr be a P;name for | ) p(j). Since p is generic, [=p, Domr=35=NnN,,
4

therefore, since 6€S,,, |—p reQ; so r is a condition.
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Now let g;,,=¢q;vr where [q;vr](B)=qp) for f<j and [g;vr](j)=r So
g;+1 is a condition and it satisfies the requirements.
For j limit: take {) g;. Now gy, is the required upper bound. []

i<y

6. Corollary. P does not add w,-sequences.

Proof. Let ¢ be a P-name for an ,-sequence in ¥, p € P forcing it. It suffices to find a
condition g=p such that g/ “¢ce V™.

Let N be suitable for S,, P,p,ceN. N has N; dense open sets
{D;:i<wy,i=j+ 1}. We will construct inductively a sequence {p;: i<, generic
for (N, P):

Do=D

Di+q: take r=p; such that r|—“¢cl,. € V” (an w,-complete forcing notion does
not add new w-sequences) and then s=r such that seD;,,. Let p;, {=s.

Ps (0 a limit ordinal): use w,-completeness.

Clearly {p;:i<w,) is generic for (N, P) and by Claim 5, there exists an upper
bound g for the sequence. So gz p and q|—“ce V. [J

7. Definition. A condition p € P will be called real and rectangular if thereisa d <N,
s.t. for every feDomp, p(f) is a function (not a name!) and Domp(f)=34.

8. Corollary. For every i<¥; the set {pe P;: is real and rectangular} is dense.

Proof. Let p € P, be a condition, we have to find g = p, g real and rectangular. Let N
be suitable for S,,p,P,eN, d=Nnw, (so d€S,), let {o;:i<w,} be the support
of p. By Corollary 6, there’s a real function extending every name p(x,), there-
fore it’s possible to build a sequence §={g;:i <, generic for (N, P,) such that
for every i>j, q{x;) is a real function, and q,=p. Let q be an upper bound for 4.
Then, q[é is real and rectangular extending p, where q[d(i):=q(i)[5. [

9. Conclusion. P satisfies the N;-chain condition.

Proof. Take a set of conditions {p;:i<N;}, we will find two compatible members.
W.lo.g., all the conditions are real and rectangular, moreover, we can assume they
are all of height 6 and (by the 4-system theorem and G.C.H.) that i$j=- Domp;,
nDom p;is constant. But, assuming G.C.H., there are only X, real and rectangular
conditions with the same height and support. Therefore, there are two conditions
p; and p; such that

pi rDompimDompj =pj rDomginDompj .

So they are compatible. []
10. Conclusion. P preserves cardinals, the G.C.H. and cofinalities.

Proof. Combine Claim 3, Corollary 6 and Conclusion 9. []

3 Preserving Stationarity

We shall prove that forcing with P does not destroy the stationarity of the sets S,,,
using a construction similar to the construction in [SK] Lemma 2.8, and in [Sh3]
but really simpler as in [Sh2] as S, is stationary.
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11. Proposition. |—,“S, is a stationary subset of w,”.

Proof. Case (I) n¢ A:

Let C a name for a club subset, pe P, forcing it. Let N be suitable for
S,0=Nnawy(sode8,) C, p, P,e N. We will find a condition g=p forcing deC.
Let (D;:i<w,, i=j+1) a sequence of the dense open subsets of P in N and
{§;:i<w, 6;€ N) an unbounded sequence in 6. We will construct a sequence of
conditions §={g;:i<w,, ;€ NnP,) inductively:

i=0:q,=p,
i=j+1:q;2q;, ¢;€D;, ¢;-3x)(xe C&x>46)),
ilimit : take union.

So g is generic for (N, P,) and therefore, by S,-completeness it has an upper bound
gq. But g forces the existence of a subsequence of C, unboundedin d so g|- e CnS,,.

Case (IT) ne A4:

Let pe P, forcing “C is a club subset of w,”. We will find a condition ¢,g=p,
g-<CnS, 40"

Let N=(N,:{ <) anincreasing continuous sequence of models, N= {) N,

such that: e
(a) Ne<(H().& CopPa Spu -0 <), INI=R,
(b) Nige1y€Ngr1>  °IN 1SNy,
(c) 0:=Nnw,€eSs,,
d) Ors1:=Nyp1nwy€8,.

Now let A:=anN={u:{<w;) (and we can assume o, ;€N,,;) and
T, will be the set of functions ¢ such that:

(a) Domt=4,,
(b) for every aze A ((<(), Dom[t(ay)]=1{0,:¢{<n<{},
(c) (o) is a constant function and equals a natural number <n(a,).

Note that (<N, =|4,/<N, and |T|<N, and T;, | EN,;, and T, ;€ N, and
every te T, is compatible with p.
Now define inductively §={q;:te T,> with

(@) g€ P, real and rectangular and inducting ¢
(Domt S Domg: and #(e) S gi() for we Dom{),

(b) §§+1€N§+1,

(c) g:*'|-“there is an ordinal y s.t. yeg, 8,4 >y24,7,

@ #,SDomgi ™Y,

(e) sh=th=dq =4l for every feA,,

{=0: take gq3=p.
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{ limit: take limit.

{=n+1: Suppose we have defined §" and remember that |T;,,|<N,. Let
(t;:i<w;) an enumeration of T, each member is taken N, times. Choose by
induction on i, g;€ N, such that

(1) g;= g5, where s; is the only member in T, satisfying s, <

(2) for every ﬁeAgu{oc; and every j<i, if ¢; Eg—t s then q}[ qi[s;

(3) for every t, the sequence {g;|t;=1t) is generic for (N, P,).

Now, for every t, the sequence {g;|t;=t)> has an upper bound, and w.l.0.g. it is
real and rectangular. So there is one in H(y), choose the first one by <. Itis easy to
verify that the chosen upper bound satisfies a, ¢, d, and e. So there is a sequence in

H(y) with the propertles of ¢ (take the first upper bounds for every te T;) and since
N < H(y) there is one in N, the “first” one is the required ¢*.

Having finished we will get a tree T= T,,, of functions and a tree T’ of conditions
“inducing” T, both of height w,.

We can correspond to each branch hC T” a sequence 7 € “w such that for every
q=4q:eband Be Dom(q), §(B) =k iff #(f)=k. In fact, the correspondence is 1 —1 if
we restrict ourselves to sequences n with #(8)<n(f). Now define a P-name g
of a sequence in 4w such that 5(B)=k = g(0)=+k where k<n(p) and Q,=Q,. So

1(p) is a possible constant value for a member of Q; on a club subset of "0. By
the previous remark,  can be viewed as a name of a branch in 7. It is easy to see
that # can be extended by a condition g and that p<ql-deCnS,. O

12. Corollary. For every ne A, |~p@,S,). Therefore for every YCS, stationary,
=p @(Y).
Proof. By 11. §,, is stationary, also, we have dealt with every possible function since

because of the NXj;-chain condition, every P-name of a function is a P; (i<¥Nj)
name of one which has been taken care of. [J

4 B is recursive in Mth (o,, <)

13. Proposition. Suppose V= ®,(Y), then V|- YC | ) S{modD,,).

ieB
i<n

Proof. By the N;-chain condition there is a P,-name Y such that Y=Rel(Y, Gp,).
There is a k<o such that Z:=YnS, is stationary.

Since |—p/p, Pl Y), als0 ||—p),, P.(Z) (£ a name for Z). We will show that the
only possible case is k<n and ke B.

Case (I): Assume ke B but k>n.

W.lo.g. n(e)=n [otherwise take o >o with n(a'y=n] the realization of the
generic filter G,C P, gives a function f,:w,—{0,...,n}. We will show that this
function contradicts @,(Z).

Otherwise thereis a pe P and a P-name 4 such that p forces: “h is a witness for f,
and Z”. Let N be suitable for Z, |[N||=X,, Nnw,=6€Z (so 6€S,), “[NICN,
h,Z,%,Gp,eN. We will build a tree of conditions above p similarly to the
construction in Proposition 11. Denote

~ A=Nnsupp(p)\a={o,: (<},
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(and we can assume w.l.o.g. that oy = a + 1 and that the sequence is increasing), then
each branch of the tree can be viewed as a sequence p,, generic for (N, P) with # € “k.
Denote the union of the sequence by p, so p, is a function. For each i such that
n(i)=k p,(i) is a function with domain , constant on a club subset of é and equal
there to #(i). Moreover if #[;=v}|; then p,[;=p, |

In the places where n(i)+k the value of p,(i) is not interesting and we will
consider only the sequences # with #(i)=0. Our aim now is to show that there is a
branch that can be extended by n different conditions.

Now we will choose an increasing and continuous sequence of models
M={M,;:{<w,) with:

(@) N<M<<{H(p)e <>, M=%,
(b) (Pyine’k)eM,,

() M, nwy€eS,,

() Ml €My,

(e “IMy4dEM; .y,

Using < we will choose inductively a sequence of sets of conditions <q :I<n)
and names of sequences #, such that

(a) qa;EP/PaU qa;eM1;+17 ﬂCeAlk: 17§<11§+17

(b) q;, extends p,, ,. for every 5 with 1<,

(c) q; is real and rectangular and in every
open and dense subset of P, in M,,

(d) [+ 1(@1)=1.

Problems arise only when n({)=k so suppose we have chosen {g}:£<() and 1
and we want to choose 1, , ;. But each g; rules out one possibility of extending s
(. it rules out one possible value for a function on a club subset of 8) so, n+1
possibilities are ruled out, but k>nso at least one value is left to be chosen. In the
end we will get a sequence  €* k and conditions {g,},<, each one of them above Py
and thus they all force the same value to k6. (Every sequence <{q}:{ <w,) can be
extended by a condition gj,).

Now, there is 0<m=n such that h~'({m}) is a stationary subset of § and 4,
contradicts it since gy, |- £,(6)=m. So we have found 4, = p forcing “k is not a
witness for f,” a contradiction.

Case (II) k¢ B.

Follow the same construction. When choosing 1); no possibilities are ruled out
so it should be slightly easier. []

14. Conclusion. V"= (Y) for a stationary Y iff YCS,(modD,,,) and neB.

15. Conclusion. {n: V*}=¢,} =B.
And this finishes the proof of Theorem 1.
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