Arch. Math. Logic (1992) 31: 207–213

The monadic theory of $(\omega_2, <)$ may be complicated

Shmuel Lifsches and Saharon Shelah*

Institute of Mathematics, The Hebrew University, Jerusalem, Israel

Received June 12, 1991/in revised form September 3, 1991

Summary. Assume ZFC is consistent then for every $B \subseteq \omega$ there is a generic extension of the ground world where B is recursive in the monadic theory of ω_2 .

Introduction

The monadic language corresponding to first-order language L is obtained from L by adding variables for sets of elements, atomic formulas $x \in Y$, and the quantifier $(\exists Y)$. The monadic theory of a model M for L is the theory of M in the described monadic language when the set of variables are interpreted as arbitrary subsets of M^1 . Speaking about the monadic theory of an ordinal α , we mean the monadic theory of $\langle \alpha, \langle \rangle$. Gurevich, Magidor, and Shelah proved in [GMS] the following theorem:

Theorem. Assume there is a weakly compact cardinal. Then there is an algorithm $n \rightarrow \psi_n$ such that ψ_n is a sentence in the monadic language of order and for every $B \subseteq \omega$ there is a generic extension of the ground world with $\{n: \omega_2 \models \psi_n\} = B$.

Thus, there are continuum many possible monadic theories of ω_2 (is different universes) and for every $B \subseteq \omega$ there is a monadic theory of ω_2 (in some world) which is at least as complex as B.

Here we shall eliminate the assumption of the existence of a weakly compact cardinal and will prove the following theorem:

Theorem 1. There is a set of sentences $\{\theta_n : n < \omega\}$ in the monadic language of order such that:

if $V \models G.C.H$, then, for each $B \subseteq \omega$, there exists a forcing notion $P = P_B$, which is ω_1 -closed, satisfies the \aleph_3 -chain condition, preserves cardinals, cofinalities and the G.C.H and $|P| = \aleph_3$ such that $|\!|_P \{n: (\omega_2, <) \models \theta_n\} = B$.

^{*} The second author would like to thank the United States – Israel Binational Science Foundation for partially supporting this research. Publ. 411

¹ More details and Historical background can be found in [Gu] *Offprint requests to:* S. Lifsches

1 The sentences and the forcing notion

Notation. a) $S_i^2: (i=0,1)$ will be the sets $\{\alpha < \omega_2: cf(\alpha) = \omega_i\}$. b) $S_n(n \le \omega)$ are pairwise disjoint stationary subsets of S_1^2 such that $\bigcup_{n \le \omega} S_n = S_1^2$.

1. Definition. (i) $\Phi_n(Y) := "Y \subseteq S_1^2$, Y is stationary and for each function $h: Y \to \{0, ..., n\}$ there is a function $g: S_0^2 \to \{0, ..., n\}$ such that: if $\delta \in Y$, then there is a club subset of $\delta \cap S_0^2$ in which g is constant and different from $h(\delta)$ " in this case we will say that g is a witness for h.

(ii) $\psi_n := {}^{\circ} \Phi_n(Y)$ and $\neg \overline{\Phi}_{n-1}(Y)$ and for each stationary $Z \subseteq Y$, $\neg \Phi_{n-1}(Z)$ ". (iii) $\theta_n := (\exists Y) [\psi_n(Y)]$.

It is easy to see that Φ_n , ψ_n , and θ_n are in the monadic language of order.

2. Definition. $\overline{Q} = \langle P_i, Q_i : i < \aleph_3 \rangle$ is an iteration with support $\langle \aleph_2$ each Q_i is of the form Q_g where $g : S_n \rightarrow \{0, ..., n\}, g \in V^{P_i}, n = n(i) < \omega$,

 $Q_g := \{f \mid \text{there is an ordinal } \alpha < \aleph_2 \text{ such that} \\ 1. \text{ Dom } f = \alpha, \\ 2. f : \alpha \rightarrow \{0, ..., n\}, \\ 3. if \delta \leq \alpha, \delta \in S_n, \text{ and } n \in A \text{ then there is} \\ a \text{ club subset } E \text{ of } \delta \text{ on which } f \text{ is constant and} \\ \text{different from } g(\delta) \}.$

 Q_a will be ordered by inclusion.

Moreover, if $i < \aleph_3$, $g \in V^{P_i}$, then there is a $j, i \leq j < \aleph_3$ such that $Q_j = Q_g$.

2 Preserving cardinals and cofinality

3. Claim. P is ω_1 -closed.

Proof. Easy.

4. Definition. (I) Let $S \subseteq \aleph_2$. We will say that a model N is *suitable* for S if for a large enough χ , $N \prec (H(\chi), \varepsilon, <*)$, (<* denotes a well ordering), $N \supset [N]^{\omega}$, $||N|| = \aleph_1$, and $N \cap \omega_2 \in S$.

(II) Let $P \in N$ be a forcing notion. $\langle p_{\zeta} : \zeta < \omega_1 \rangle$ is a generic sequence for (N, P) if $p_{\zeta} \in P \cap N$, $P \models p_{\zeta} \leq p_{\zeta+1}$ and for every dense open subset D of P which belongs to $N, D \cap \langle p_{\zeta} : \zeta < \omega_1 \rangle \neq \emptyset$.

(III) We will say that P is S-complete if for every N, suitable for S such that $P \in N$, every generic sequence $\langle p_{\zeta} : \zeta < \omega_1 \rangle$ for (N, P) has an upper bound is P.

4a. Observation. $(2^{\aleph_0} = \aleph_1)$ for every $S \subseteq S_1^2$, stationary, given a large enough χ and $X \in H(\chi)$ there exists a model N, suitable for S with $X \in N$.

5. Claim. P is S_{ω} -complete (and in fact, S_n -complete for every $n \notin A$).

Proof. Let N be suitable for $S_{\omega} \bar{p} = \langle p_{\zeta} : \zeta < \omega_1 \rangle \subseteq P$ generic for (N, P), we will find an upper bound for the sequence. Define inductively on $j \in N \cap \aleph_3$ conditions q_j in P_j such that for every $\zeta < \omega_1, q_j \ge p_{\zeta}$:

for j+1: Let \underline{r} be a P_j name for $\bigcup_{\zeta} p_{\zeta}(j)$. Since \bar{p} is generic, $\models_{P_j} \text{Dom} \underline{r} = \delta = N \cap \aleph_2$, therefore, since $\delta \in S_{\omega}$, $\models_{P_j} \underline{r} \in Q_j$ so \underline{r} is a condition.

208

The monadic theory of $(\omega_2, <)$ may be complicated

Now let $g_{j+1} = q_j \lor r$ where $[q_j \lor r](\beta) = q_j(\beta)$ for $\beta < j$ and $[g_j \lor r](j) = r$. So g_{j+1} is a condition and it satisfies the requirements.

For j limit: take $\bigcup_{i < j} g_i$. Now q_{\aleph_1} is the required upper bound. \square

6. Corollary. P does not add ω_1 -sequences.

Proof. Let c be a *P*-name for an ω_1 -sequence in $V, p \in P$ forcing it. It suffices to find a condition $q \ge p$ such that $q \models c \in V$.

Let N be suitable for S_{ω} , $P, p, c \in N$. N has \aleph_1 dense open sets $\{D_i: i < \omega_1, i = j + 1\}$. We will construct inductively a sequence $\langle p_i: i < \omega_1 \rangle$ generic for (N, P):

 $p_0 = p$

 p_{i+1} : take $r \ge p_i$ such that $r \parallel - c_{\mathcal{L}_{i+1}} \in V$ (an ω_1 -complete forcing notion does not add new ω -sequences) and then $s \ge r$ such that $s \in D_{i+1}$. Let $p_{i+1} = s$. p_{δ} (δ a limit ordinal): use ω_1 -completeness.

Clearly $\langle p_i: i < \omega_1 \rangle$ is generic for (N, P) and by Claim 5, there exists an upper bound q for the sequence. So $q \ge p$ and $q \models c \in V$.

7. **Definition.** A condition $p \in P$ will be called *real and rectangular* if there is a $\delta < \aleph_2$ s.t. for every $\beta \in \text{Dom} p$, $p(\beta)$ is a function (not a name!) and $\text{Dom} p(\beta) = \delta$.

8. Corollary. For every $i < \aleph_3$ the set $\{p \in P_i: \text{ is real and rectangular}\}$ is dense.

Proof. Let $p \in P_{\alpha}$ be a condition, we have to find $q \ge p, q$ real and rectangular. Let N be suitable for $S_{\omega}, p, P_{\alpha} \in N$, $\delta = N \cap \omega_2$ (so $\delta \in S_{\omega}$), let $\{\alpha_i : i < \omega_1\}$ be the support of p. By Corollary 6, there's a real function extending every name $p(\alpha_i)$, therefore it's possible to build a sequence $\bar{q} = \langle q_i : i < \omega_1 \rangle$ generic for (N, P_{α}) such that for every $i > j, q_i(\alpha_j)$ is a real function, and $q_0 = p$. Let q be an upper bound for \bar{q} . Then, $q \upharpoonright \delta$ is real and rectangular extending p, where $q \upharpoonright \delta(i) := q(i) \upharpoonright \delta$. \Box

9. Conclusion. P satisfies the \aleph_3 -chain condition.

Proof. Take a set of conditions $\{p_i: i < \aleph_3\}$, we will find two compatible members. W.l.o.g., all the conditions are real and rectangular, moreover, we can assume they are all of height δ and (by the Δ -system theorem and G.C.H.) that $i \neq j \Rightarrow \text{Dom} p_i$ $\cap \text{Dom} p_j$ is constant. But, assuming G.C.H., there are only \aleph_2 real and rectangular conditions with the same height and support. Therefore, there are two conditions p_i and p_j such that

 $p_i \upharpoonright_{\text{Dom} p_i \cap \text{Dom} p_j} = p_j \upharpoonright_{\text{Dom} p_i \cap \text{Dom} p_j}$

So they are compatible. \Box

10. Conclusion. P preserves cardinals, the G.C.H. and cofinalities.

Proof. Combine Claim 3, Corollary 6 and Conclusion 9.

3 Preserving Stationarity

We shall prove that forcing with P does not destroy the stationarity of the sets S_n , using a construction similar to the construction in [SK] Lemma 2.8, and in [Sh3] but really simpler as in [Sh2] as S_{ω} is stationary.

11. Proposition. $\Vdash_{P} S_n$ is a stationary subset of ω_2 .

Proof. Case (I) $n \notin A$:

210

Let C a name for a club subset, $p \in P_{\alpha}$ forcing it. Let N be suitable for $S_n, \delta = N \cap \omega_1$, (so $\delta \in S_n$) C, $p, P_{\alpha} \in N$. We will find a condition $q \ge p$ forcing $\delta \in C$. Let $\langle D_i: i < \omega_1, i = j + 1 \rangle$ a sequence of the dense open subsets of P in N and $\langle \delta_i: i < \omega_1, \delta_i \in N \rangle$ an unbounded sequence in δ . We will construct a sequence of conditions $\bar{q} = \langle q_i: i < \omega_1, q_i \in N \cap P_{\alpha} \rangle$ inductively:

$$i = 0: q_0 = p,$$

$$i = j + 1: q_i \ge q_j, \ q_i \in D_j, \ q_i \models (\exists x) (x \in C \& x > \delta_j),$$

i limits to be varied.

i limit: take union.

So \bar{q} is generic for (N, P_{α}) and therefore, by S_n -completeness it has an upper bound q. But q forces the existence of a subsequence of C, unbounded in δ so $q \models \delta \in C \cap S_n$.

Case (II) $n \in A$:

Let $p \in P_{\alpha}$ forcing "*C* is a club subset of ω_2 ". We will find a condition $q, q \ge p$, $q \models "C \cap S_n \neq \emptyset$ ".

 $\begin{array}{l} q \Vdash \ & \subseteq \cap \ & \otimes_n + \psi \\ \text{Let } \overline{N} = \langle N_{\zeta} : \zeta < \omega_1 \rangle \text{ an increasing continuous sequence of models, } N = \bigcup_{\zeta < \omega_1} N_{\zeta} \\ \text{such that:} \end{array}$

(a)
$$N_{\zeta} \prec (H(\chi), \in, \mathbb{C}, p, P_{\alpha}, \leq_{P_{\alpha}}, \parallel -, <^{*}_{\chi}), \quad \parallel N_{\zeta} \parallel = \aleph_{1},$$

(b)
$$\overline{N}_{[\zeta+1]} \in N_{\zeta+1}, \quad {}^{\omega}[N_{\zeta+1}] \subseteq N_{\zeta+1},$$

(c)
$$\delta := N \cap \omega_2 \in S_n,$$

(d)
$$\delta_{\zeta+1} := N_{\zeta+1} \cap \omega_2 \in S_{\omega}.$$

Now let $A := \alpha \cap N = \langle \alpha_{\zeta} : \zeta < \omega_1 \rangle$ (and we can assume $\alpha_{\zeta+1} \in N_{\zeta+1}$) and $A_{\zeta} = \langle \alpha_{\eta} : \eta < \zeta \rangle$.

 T_{ζ} will be the set of functions t such that:

(a) $\operatorname{Dom} t = A_{\zeta},$

(b) for every
$$\alpha_{\xi} \in A$$
 $(\xi < \zeta)$, $\text{Dom}[t(\alpha_{\xi})] = \{\delta_{\eta} : \xi \leq \eta < \zeta\}$,

(c)
$$t(\alpha_{\xi})$$
 is a constant function and equals a natural number $\leq n(\alpha_{\xi})$.

Note that $\zeta < \aleph_1 \Rightarrow |A_{\zeta}| \leq \aleph_0$ and $|T_{\zeta}| \leq \aleph_1$ and $T_{\zeta+1} \leq N_{\zeta+1}$ and $T_{\zeta+1} \in N_{\zeta+1}$ and every $t \in T_{\zeta}$ is compatible with p.

Now define inductively $\bar{q}^{\zeta} = \langle q_t^{\zeta} : t \in T_{\zeta} \rangle$ with

(a) $q_t^{\zeta} \in P_{\alpha}$ real and rectangular and inducting t

 $(\text{Dom} t \subseteq \text{Dom} q_t^{\zeta} \text{ and } t(\alpha) \subseteq q_t^{\zeta}(\alpha) \text{ for } \alpha \in \text{Dom} t),$

- $(b) \qquad \qquad \bar{q}^{\zeta+1} \in N_{\zeta+1},$
- (c) $q_t^{\zeta+1} \models$ "there is an ordinal γ s.t. $\gamma \in \mathcal{L}, \ \delta_{\zeta+1} > \gamma \ge \delta_{\zeta}$ ",

(d)
$$\alpha_n \subseteq \text{Dom} q_t^{\zeta+1}$$

(e)
$$s_{\beta} = t_{\beta} \Rightarrow q_{i}^{\zeta}_{\beta} = q_{s}^{\zeta}_{\beta}$$
 for every $\beta \in A_{\zeta}$,

 $\zeta = 0$: take $q_0^0 = p$.

The monadic theory of $(\omega_2, <)$ may be complicated

 ζ limit: take limit.

 $\zeta = \eta + 1$: Suppose we have defined \bar{q}^{η} and remember that $|T_{\zeta+1}| \leq \aleph_1$. Let $\langle t_i : i < \omega_1 \rangle$ an enumeration of T_{ζ} , each member is taken \aleph_1 times. Choose by induction on *i*, $q_i \in N_{\zeta}$ such that

(1) $q_i \ge q_{S_i}^{t}$ where s_i is the only member in T_n satisfying $s_i \le t_i$,

(2) for every $\beta \in A_{\xi} \cup \{\alpha\}$ and every j < i, if $t_j \models_{\beta} = t_i \models_{\beta}$ then $q_j \models_{\beta} = q_i \models_{\beta}$;

(3) for every t, the sequence $\langle q_i | t_i = t \rangle$ is generic for (N_{ζ}, P_{α}) .

Now, for every t, the sequence $\langle q_i | t_i = t \rangle$ has an upper bound, and w.l.o.g. it is real and rectangular. So there is one in $H(\chi)$, choose the first one by $\langle \chi^*$. It is easy to verify that the chosen upper bound satisfies a, c, d, and e. So there is a sequence in $H(\chi)$ with the properties of \bar{q}^{ζ} (take the first upper bounds for every $t \in T_{\zeta}$) and since $N_{\zeta} \prec H(\chi)$ there is one in N_{ζ} , the "first" one is the required \bar{q}^{ζ} .

Having finished we will get a tree $T = T_{\omega_1}$ of functions and a tree T' of conditions "inducing" T, both of height ω_1 .

We can correspond to each branch $b \subseteq T'$ a sequence $\eta \in {}^{A}\omega$ such that for every $q = q_t^{\zeta} \in b$ and $\beta \in \text{Dom}(q), \eta(\beta) = k$ iff $t(\beta) \equiv k$. In fact, the correspondence is 1-1 if we restrict ourselves to sequences η with $\eta(\beta) \leq n(\beta)$. Now define a *P*-name η of a sequence in ${}^{A}\omega$ such that $\eta(\beta) = k \Rightarrow g(\delta) \neq k$ where $k \leq n(\beta)$ and $Q_{\beta} = Q_{g}$. So $\eta(\beta)$ is a possible constant value for a member of Q_{β} on a club subset of δ . By the previous remark, η can be viewed as a name of a branch in *T'*. It is easy to see that η can be extended by a condition q and that $p \leq q \parallel -\delta \in C \cap S_n$. \Box

12. Corollary. For every $n \in A$, $\parallel -_{P} \Phi_{n}(S_{n})$. Therefore for every $Y \subseteq S_{n}$ stationary, $\parallel -_{P} \Phi_{n}(Y)$.

Proof. By 11. S_n is stationary, also, we have dealt with every possible function since because of the \aleph_3 -chain condition, every *P*-name of a function is a P_i $(i < \aleph_3)$ name of one which has been taken care of. \Box

4 B is recursive in Mth ($\omega_2, <$)

13. Proposition. Suppose $V^P \models \Phi_n(Y)$, then $V^P \models Y \subseteq \bigcup_{\substack{i \in B \\ i \leq n}} S_i(\text{mod } D_{\omega_2})$.

Proof. By the \aleph_3 -chain condition there is a P_{α} -name Y such that $Y = \operatorname{Rel}(Y, Gp_{\alpha})$. There is a $k \leq \omega$ such that $Z := Y \cap S_k$ is stationary.

Since $\|-_{P/p_{\alpha}} \Phi_n(\underline{Y})$, also $\|-_{P/p_{\alpha}} \Phi_n(\underline{Z})$ (\underline{Z} a name for Z). We will show that the only possible case is $k \leq n$ and $k \in B$.

Case (I): Assume $k \in B$ but k > n.

W.l.o.g. $n(\alpha) = n$ [otherwise take $\alpha' > \alpha$ with $n(\alpha') = n$] the realization of the generic filter $G_{\alpha} \subseteq P_{\alpha}$ gives a function $f_{\alpha} : \omega_2 \to \{0, ..., n\}$. We will show that this function contradicts $\Phi_n(Z)$.

Otherwise there is a $p \in P$ and a *P*-name *h* such that *p* forces: "*h* is a witness for f_{α} and *Z*". Let *N* be suitable for *Z*, $||N|| = \aleph_1$, $N \cap \omega_2 = \delta \in Z$ (so $\delta \in S_k$), $\omega[N] \subseteq N$, $h, Z, \alpha, G_{P_{\alpha}} \in N$. We will build a tree of conditions above *p* similarly to the construction in Proposition 11. Denote

$$A = N \cap \operatorname{supp}(p) \setminus \alpha = \{\alpha_{\zeta} : \zeta < \omega_1\},\$$

(and we can assume w.l.o.g. that $\alpha_0 = \alpha + 1$ and that the sequence is increasing), then each branch of the tree can be viewed as a sequence \bar{p}_{η} , generic for (N, P) with $\eta \in {}^{A}k$. Denote the union of the sequence by p_{η} so p_{η} is a function. For each *i* such that $n(i) = k p_{\eta}(i)$ is a function with domain δ , constant on a club subset of δ and equal there to $\eta(i)$. Moreover if $\eta \mid_{i} = v \mid_{i}$ then $p_{\eta} \mid_{i} = p_{v} \mid_{i}$.

In the places where $n(i) \neq k$ the value of $p_{\eta}(i)$ is not interesting and we will consider only the sequences η with $\eta(i) = 0$. Our aim now is to show that there is a branch that can be extended by n different conditions.

Now we will choose an increasing and continuous sequence of models $\overline{M} = \langle M_{\chi} : \zeta < \omega_1 \rangle$ with:

- (a) $N \prec M_0 \prec \langle H(\chi), \epsilon, <_{\chi}^* \rangle, \quad ||M_{\zeta}|| = \aleph_1,$
- (b) $\langle \bar{p}_{\eta} : \eta \in {}^{A}k \rangle \in M_{0},$
- (c) $M_{\zeta+1} \cap \omega_2 \in S_{\omega},$
- (d) $\bar{M}_{\zeta+1} \in M_{\zeta+1}$,
- (e) ${}^{\omega}[M_{\ell+1}] \subseteq M_{\ell+1}$

Using $<_x^*$ we will choose inductively a sequence of sets of conditions $\langle q_{\alpha_l}^l: l \leq n \rangle$ and names of sequences η_{ζ} such that

- (a) $q_{\alpha_{\zeta}}^{l} \in P/P_{\alpha}, \quad q_{\alpha_{\zeta}}^{l} \in M_{\zeta+1}, \quad \eta_{\zeta} \in A_{\zeta}k, \quad \eta_{\zeta} \triangleleft \eta_{\zeta+1},$
- (b) $q_{\alpha_{\zeta}}^{l}$ extends $p_{\eta_{l}A_{\zeta}}$ for every η with $\eta \triangleleft \eta$,

(c)
$$q_{\zeta}^{l}$$
 is real and rectangular and in every

open and dense subset of
$$P_{\zeta}$$
 in M_{ζ} ,

(d)
$$[q_{\alpha+1}^{l}(\alpha)](\delta) = l.$$

Problems arise only when $n(\zeta) = k$ so suppose we have chosen $\langle q_{\xi}^l : \zeta \leq \zeta \rangle$ and η_{ζ} and we want to choose $\eta_{\zeta+1}$. But each q_{ξ}^l rules out one possibility of extending η_{ζ} (i.e. it rules out one possible value for a function on a club subset of δ) so, n+1possibilities are ruled out, but k > n so at least one value is left to be chosen. In the end we will get a sequence $\eta \in {}^{A}k$ and conditions $\{q_{\aleph_3}^l\}_{l \leq n}$ each one of them above p_{η} and thus they all force the same value to $h \upharpoonright \delta$. (Every sequence $\langle q_{\zeta}^l : \zeta < \omega_1 \rangle$ can be extended by a condition $q_{\aleph_3}^l$).

Now, there is $0 \le m \le n$ such that $h^{-1}(\{m\})$ is a stationary subset of δ and $q_{\aleph_3}^m$ contradicts it since $q_{\aleph_3}^m \models f_{\alpha}(\delta) = m$. So we have found $q_{\aleph_3}^m \ge p$ forcing "h is not a witness for f_{α} " a contradiction.

Case (II) $k \notin B$.

Follow the same construction. When choosing η_{ζ} no possibilities are ruled out so it should be slightly easier. \Box

14. Conclusion. $V^P \models \psi_n(Y)$ for a stationary Y iff $Y \subseteq S_n(\text{mod} D_{\alpha_n})$ and $n \in B$.

15. Conclusion. $\{n: V^P \models \phi_n\} = B.$

And this finishes the proof of Theorem 1.

The monadic theory of $(\omega_2, <)$ may be complicated

References

- [GMS] Gurevich, Y., Magidor, M., Shelah, S.: The monadic theory of ω_2 . J. Symb. Logic 48, 387–398 (1983)
- [Gu] Gurevich, Y.: Monadic second-order theories. In: Barwise, J., Feferman, S. (eds): Modeltheoretical logics. Berlin Heidelberg New York: Springer 1985
- [Sh1] Shelah, S.: The monadic theory of order. Ann. Math. 102, 379-419 (1974)
- [Sh2] Shelah, S.: Whitehead groups may not be free even assuming C.H.(1). Isr. J. Math. 28, 193-203 (1977)
- [Sh3] Shelah, S.: Diamonds, uniformization. J. Symb. Logic 49, 1022-1033 (1984)
- [Sk] Steinhorn, C.I., King, J.H.: The uniformization property for ℵ₂. Isr. J. Math. **36**, 248–256 (1980)
- [Sho] Shoenfield, J.R.: Untamified forcing. In: Scott, D.S. (ed) Axiomatic set theory, Part I. Proc. Symp. Pure Math. 13. Providence. R.I., 1971, pp. 357–381