
Ž .Journal of Algebra 238, 292�313 2001
doi:10.1006�jabr.2000.8619, available online at http:��www.idealibrary.com on

On the Lattice of Cotorsion Theories1

Rudiger Gobel¨ ¨

Fachbereich 6, Mathematik und Informatik, Uni�ersitat Essen, 45117 Essen, Germany¨
E-mail: R.Goebel@Uni-Essen.De

Saharon Shelah

Department of Mathematics, Hebrew Uni�ersity, Jerusalem, Israel
E-mail: Shelah@math.huji.ac.il

and

Simone L. Wallutis2

Fachbereich 6, Mathematik und Informatik, Uni�ersitat Essen, 45117 Essen, Germany¨
E-mail: Simone.Wallutis@Uni-Essen.De

Communicated by Kent R. Fuller

Received March 20, 2000

We discuss the lattice of cotorsion theories for abelian groups. First we show
that the sublattice of the well-studied rational cotorsion theories can be identified
with the well-known lattice of types. Using a recently developed method for making
Ext vanish, we also prove that any power set together with the ordinary set

Ž .inclusion and thus any poset can be embedded into the lattice of all cotorsion
theories. � 2001 Academic Press

INTRODUCTION

Throughout this paper we work in the category Mod-� of abelian
groups, although most of the notions and results can be extended to
module categories over arbitrary rings; in particular, everything remains
true for modules over principle ideal domains which are not fields.
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ON THE LATTICE OF COTORSION THEORIES 293

Cotorsion theories for abelian groups were introduced by Salce in 1979
� � Ž .17 . Following his notation we call a pair FF, CC a cotorsion theory if FF and
CC are classes of abelian groups which are maximal with respect to the

Ž . � �property that Ext F, C � 0 for all F � FF, C � CC. Salce 17 showed that
every cotorsion theory is cogenerated by a class of groups that are torsion

Ž .or torsion-free, where FF, CC is said to be cogenerated by the class AA if
� � Ž . 4 � Ž �. �CC � AA � X � Ext A, X � 0 for all A � AA and FF � AA � Y �

Ž . �4Ext Y, X � 0 for all X � AA . Very recently Bican, El Bashir, and
� �Enochs 1 showed that the flat cotorsion theory is actually cogenerated by

a set�a result which was unknown for the last two decades and which
plays a crucial role in proving the flat cover conjecture. Note that being
cogenerated by a set is the same as being cogenerated by a single group,
although this group is likely to be mixed as a direct sum of all groups from
the cogenerating set. However, it is not known whether every cotorsion
theory is singly cogenerated or not.3

Other results on cotorsion theories have been proven, for example,
concerning the existence of enough projectives and enough injectives. The

� �basic work was done by Salce in his original paper 17 , where, among
other results, he proved that a cotorsion theory has enough injectives if
and only if it has enough projectives. In a quite recent paper, the first and
the second authors developed a method to construct splitters, that is,

Ž .groups G satisfying Ext G, G � 0, which could be applied to prove the
Ž .existence of enough projectives respectively, enough injectives in so-called

Ž � �.rational cotorsion theories see 14 . This method was improved indepen-
� � � �dently by Eklof and Trlifaj 6 and the last author 16 , and will also be

used here.
However, in this paper we shall discuss the lattice structure of the class

of all cotorsion theories. We order the pairs correspondingly to the second
component CC, the so-called cotorsion class; the first component FF is said

Ž . Ž .to be the torsion-free class. We say that FF, CC 	 FF�, CC � if CC 
 CC � or,
equivalently, FF � FF�. The minimal element with respect to this order is
Ž .Mod-�, DD where DD is the class of all divisible groups; it is, for example,
cogenerated by the set of all cyclic groups of prime order or, equivalently,

Ž .by the single group � Z � �‘‘all primes’’ . The maximal element ispp� �

Ž .the cotorsion theory LL , Mod-� , where LL is the class of all free groups; it
is cogenerated by �. Another important and well-studied cotorsion theory

Ž .is the classical one FF , CC , where FF denotes the class of all torsion-free0 0 0
groups and CC denotes the class of all cotorsion groups; it is cogenerated0
by the rationals �. Canonically we define the infimum and supremum of a

3 Ž .In a forthcoming paper on Whitehead precovers Eklof and Shelah show that, under UP,
the cotorsion theory generated by � is not cogenerated by a set.
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�Ž . 4family FF , CC � i � I of cotorsion theories byi i

FF , CC � �
CC , CCŽ .� � �i i i iž /ž /

i�I i�I i�I

and
�

FF , CC � FF , FF .Ž .� � �i i i iž /ž /
i�I i�I i�I

As we have said before, every cotorsion theory is cogenerated by a class of
groups which are torsion or torsion-free and hence it is the infimum of a
cotorsion theory cogenerated by torsion groups and a cotorsion theory
cogenerated by torsion-free groups. Now, a cotorsion theory which is
cogenerated by torsion groups is always less than or equal to the classical
one. However, the sublattice of all cotorsion theories between the minimal

�and the classical one has already been characterized by Salce 17, Proposi-
�tion 2.8 and therefore we can restrict our attention to the cotorsion

theories cogenerated by torsion-free groups, i.e. to the cotorsion theories
above the classical one.

Naturally, we first consider easy cases of torsion-free groups, namely the
rank-1 groups, which are also called rational groups because they can be
identified with the subgroups of the rationals. Corresponding to the latter,
we call a cotorsion theory cogenerated by a rank-1 group a rational
cotorsion theory. Rational cotorsion theories have been discussed in detail

� �by Salce 17 . Using his characterization we shall prove in Section 1 that
the sublattice of all rational cotorsion theories can be identified with the
well-known lattice of types. We construct examples to establish that the
Ž .obvious lattice anti-homomorphism is an anti-isomorphism. Note that for
the lattice of types it is known that there exist anti-chains of size 2� 0 , which

Ž � �.equals the cardinality of the lattice see 10 , and also ascending and
descending chains of uncountable length. In fact, there are descending and

Ž � �.ascending chains of cofinality at least � see 4 .1
Turning our attention to the more general case of all cotorsion theories,

as we shall do in Section 3, we cannot find any obvious ‘‘candidate’’ with
which the lattice could be compared. Note that there is a proper class of
cotorsion theories. However, knowing about the properties of the lattice of
types or, equivalently, of the lattice of rational cotorsion theories as
mentioned above, it seems natural to ask if there exist ascending, descend-
ing, and anti-chains of cotorsion theories of arbitrary size. The existence of
descending chains of arbitrary length follows immediately from results

Ž � �.proven by the first author and Trlifaj see 15 . However, we can prove
that there is an affirmative answer to the above question in general.
Actually, to our own surprise, we can show even more:
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Ž .MAIN THEOREM 3.1. Any power set PP, 
 can be embedded into the
lattice of all cotorsion theories.

Therefore, any partial order can be embedded into the lattice of all
cotorsion theories. In fact, any poset can be embedded into the lattice of
all singly cogenerated cotorsion theories.

To prove the Main Theorem we shall construct groups G and H X forX
Ž Y .any subset X of an arbitrary but fixed set I such that Ext G , H � 0 ifX

and only if X 
 Y. This way we obtain an order-reversing and injective
Ž Ž . .morphism from PP I , 
 into the lattice of all cotorsion theories by

mapping the set X onto the cotorsion theory cogenerated by G . OfX
Ž .course, this implies the required embedding since PP, 
 is anti-isomor-

phic to itself.
Ž .It is known how to construct a group H such that Ext G, H � 0 for a

given group G or even for a collection of groups. As mentioned before this
� � � � � �method was introduced in 14 and further developed in 6 and 16 . We

� �shall use this method as presented in 6 in Section 3 to construct the
X Ž .groups H X 
 I . For this construction it is not important what the

groups G look like. However, the G ’s need to satisfy certain propertiesX X
to guarantee that Ext is nonzero in some cases. We find this is amazing
because one would expect that it is obvious how to get nonvanishing Ext’s
after all the hard work which had been done over decades in order to
establish a method for making Ext vanish. However, we have also some

Ž Y .work to do to obtain nonzero Ext’s. The key to prove Ext G , H � 0 forX
X � Y is the existence of a stationary set S such that H Y is locally S-free
and G is not, where a group A is said to be locally S-free for a stationaryX

� 4set S of a cardinal � if, for any chain K � � � � of subgroups K of A� �

� � Ž . � 4with K � � � � � , the set � � S � K �K not � -free is not� �1 � 1
Ž .stationary in � see Definition 3.4 . Therefore, we have to construct the

groups G in such a way that they are locally S-free with respect to someX
stationary set S and not locally S�-free with respect to others. In fact, we
shall construct a group G depending on a stationary set S and then we
define the groups G depending on different stationary sets. The con-X
struction of G is interesting on its own and thus we consider it in a
separate section; in Section 2 we will prove:

� � � 0THEOREM 2.8. Let � be a regular cardinal with � � � for all � � � .
Then there exists an � -free group G of cardinality � such that, for any1

� �subgroup U of G with U � � , either G � U or G�U is not cotorsion-free.

The corresponding result for strong limit singular cardinals was proved
� �by the first and second authors 11 at a stage when the Black Box was not

yet fully developed. They suggested that the above result was true, but it
had not been proven up to now.
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To see the connection with a given stationary set S let us finally note
that the group G which will be constructed to prove Theorem 2.8 has a
�-filtration G � � G such that G�G is � -free if and only if � � S.� � � � � 1
Using this fact we can show that G depending on S is locally S�-free for
any stationary set S� disjoint from S but not locally S-free. Whereas the
construction of G will be provided in Section 2, we shall prove the latter in
Section 3. However, we begin with some ‘‘warmups,’’ namely with the
rational cotorsion theories.

1. THE LATTICE OF ALL RATIONAL
COTORSION THEORIES

In this section we describe the lattice of all cotorsion theories which are
� �cogenerated by a rank-1 group. For a rank-1 group T let T � X �

Ž . 4 � Ž �. � Ž . �4Ext T , X � 0 and T � Y � Ext Y, X � 0 for all X � T . The
Ž� Ž �. �. �pair T , T is the cotorsion theory cogenerated by T , where T is

� Ž �.the class of all T-cotorsion groups and T is the corresponding
torsion-free class. Since rank-1 groups are also called rational groups, as
rank-1 groups can be identified with the subgroups of the rationals �, we

Ž� Ž �. �.refer to the cotorsion theory T , T as a rational cotorsion theory.
� �Rational cotorsion theories were discussed by Salce 17 in detail. We shall

use his results to establish an order-reversing isomorphism between the
lattice of rational cotorsion theories and the lattice of types. As cotorsion
theories in general, we also order the rational cotorsion theories according

Ž .to the inclusion of the cotorsion classes see Section 0 .
Ž . � 4We think of a type � as a sequence t , where t � � � 	 and �p p� � p

is the set of all primes in �, keeping in mind that this sequence represents
an equivalence class. Recall that two such sequences are equivalent if they
differ only in finitely many finite entries.

It is well known that rank-1 groups are uniquely determined by their
Ž .types up to isomorphism and that there exists a rank-1 group of type �

� �for each possible type � . For more details, we refer to 10 .
Now let TT be the set of all types and let CC be the set of all rationalrat

Ž . Ž .cotorsion theories. We define 
: TT, 	 � CC , 	 by � 
 �rat
Ž� Ž �. �.T , T � CC , where T is a rank-1 group of type � . The aim of thisrat
section is to prove that the mapping 
 is an order-reversing isomorphism.
First we show that 
 is order-reversing.

Ž . Ž . � �LEMMA 1.1. Let T , R be rank-1 groups with t T 	 t R . Then T � R .

Ž . Ž . Ž �Proof. Since t T 	 t R , there is a monomorphism � : T � R see 10,
�. � Ž .Proposition 85.4 . Let G be an element of R , i.e., Ext R, G � 0. Now,

the short exact sequence
�0 � T � R � R�T� � 0
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induces the exact sequence

Ext R�T� , G � Ext R , G � Ext T , G � 0Ž . Ž . Ž .

� � �Ž .and hence Ext T , G � 0. Therefore, G � T and thus R 
 T .

It follows immediately from the above lemma that the mapping 
 is
well defined:

COROLLARY 1.2. Let T , T � be rank-1 groups of the same type � . Then the
� Ž .�corresponding cotorsion classes T and T � coincide.

Note, that more generally we have G 
 H implies G�� H � and
G � H implies G�� H � for any groups G, H.

Ž .To show that 
 is an isomorphism, we consider types � � t T and
Ž . �� � t R with � strictly less than �, and we show that R is properly

contained in T � , i.e., we construct groups G � T � �R� . Throughout the
Ž . Ž . Ž . Ž .remainder of this section, let � � t � t T and � � r � t Rp p� � p p� �

with t 	 r for all primes p. For � to be strictly less than �, one of thep p
following two conditions has to be satisfied:

Ž .1 There exists a prime q such that t � 	 and r � 	.q q

Ž .2 There is an infinite set P of primes such that t � r � 	 for allp p
p � P.

Before we can construct the required groups, we need some properties of
T-cotorsion groups. Fortunately, T-cotorsion groups already have been

� �characterized by Salce 17, Theorem 3.5 :

Ž .PROPOSITION 1.3. Let � � t T be as abo�e. Then

G � T � � G�G � G� � G�G is �- cotorsion,Ž .Ł� p �
p��

tp � tp � Ž .	where G � � p G, G � G�p G for t � 	, and G � Ext Z , G� p� � p p p p
for t � 	.p

Applying Proposition 1.3 to rank-1 groups gives the following:

Ž . Ž .COROLLARY 1.4. Let X be a rational group with t X � x and letp p� �

Ž . �� � t T be as abo�e. Then X is an element of T if and only if x � 	 forp
almost all p with t � 0 and whene�er t � 	.p p

Ž . n
nProof. First recall that, for an abelian group G, Ext Z , G � G�p Gp

Ž .	for any n � � and Ext Z , G � � J , where m is the rank of a p-basicp pm
subgroup of G and J is the additive group of the ring of p-adic integers.p

� Ž .tNow assume that X � T . Then X�X � Ł Ext Z , X byp� � p� � � t � 04 pp

Proposition 1.3. However, X, and hence X�X , is countable and thus�
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Ž .tExt Z , X � 0 for almost all p with t � 0 and whenever t � 	 sincepp p p
� � � 0 � � Ž .	� M � 2 if M � 2 for all n and J 
 Ext Z , X unlessn�  n n p p

Ž . tp	Ext Z , X � 0. Therefore, p X � X for almost all p with 0 � t � 	p p
and the rank of a p-basic subgroup of X is zero for all p with t � 	. Inp
either case it follows that X is p-divisible and hence x � 	 for almost allp
p with t � 0 and whenever t � 	.p p

From the above it is clear that the primes with t � 0 play a special role.p
Ž .In particular, it makes sense to divide the second case 2 into two

subcases:

Ž .2a There is an infinite set P of primes such that t � 0 andp
0 � r � 	 for all p � P.p

Ž .2b There is an infinite set P of primes such that 0 � t � r � 	p p
for all p � P.

Ž .However, we first consider case 1 .

Ž . Ž . Ž .PROPOSITION 1.5. Suppose t T � � � � � t R such that 1 is satis-
fied. Then there exists a rank-1 group X which is an element of T � but not
of R� .

Ž .Proof. Suppose 1 , i.e., there is a prime q such that t � 	 and r � 	.q q
� Ž . 4Let X � � � m�n � � � n, q � 1 be the localization of the integersŽq.

Ž . Ž .� at the prime q, i.e., t X � x with x � 	 for all p � q andp p� � p
� �x � 0. Then X � T �R by Corollary 1.4.q

Ž .Case 2a is as easily tackled as the above:

Ž . Ž . Ž .PROPOSITION 1.6. Suppose t T � � � � � t R such that 2 a is satis-
fied. Then there exists a rank-1 group X which is an element of T � but not
of R� .

Ž .Proof. Suppose 2a , i.e., there is an infinite set P of primes p with
Ž . Ž .t � 0 and 0 � r � 	. We define X 
 � by t X � x with x � 1p p p p� � p

²� 4 � nfor p � P and x � 	 otherwise, i.e., X � 1�p � p � P � 1�p � n �p
� �4:, p � � � P . Then G is an element of T �R by Corollary 1.4.

Ž .It remains to consider the case 2b . This is slightly more difficult
because we cannot expect to find a rank-1 group belonging to T � but not
to R� by Corollary 1.4. In fact, we cannot even find a group of any finite
rank belonging to T � and not to R� as we shall see shortly. Beforehand
we need:

Ž .LEMMA 1.7. Let T and X be rank-1 groups with Ext T , X � 0. Then
Ž . � 0Ext T , X has cardinality 2 .
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Ž . Ž . Ž . Ž .Proof. Let t T � � � t and t X � x as before. Thep p� � p p� �

short exact sequence

0 � � � T � T�� � 0

induces the exact sequence

Hom �, X � Ext T��, X � Ext T , X � Ext �, X � 0.Ž . Ž . Ž . Ž .

Ž . Ž .t tNow, T�� � � Z and hence Ext T��, X � � Ext Z , X �p pp t � 0 pt � 0 pp Ž .E. By assumption Ext T , X � 0 and thus, by Corollary 1.4, there is either
some prime q with x � 	 and t � 	 or there are infinitely many primesq q

Ž . Ž .	q with x � 	 and 0 � t � 	 n �  . In the first case, Ext Z , Xn q q qn n

contains a copy of the q-adic integers J and in the latter we haveq
Ž . tq ntExt Z , X � X�q X � 0 for all n � . Therefore, in either case itq nq nn

follows that E has at least cardinality 2� 0 and, of course, the cardinality
cannot be bigger.

Ž . Ž .Finally, the mapping Ext T��, X � Ext T , X in the above sequence
is an epimorphism with at most countable kernel and thus the result
follows.

Now we can proceed with:

Ž . Ž . Ž .PROPOSITION 1.8. Let t T � � � � � t R satisfying condition 2b , but
Ž . Ž .neither 1 nor 2 a , and let FF denote the set of all finite rank torsion-free

groups. Then T � � FF � R� � FF.

Proof. Without loss of generality we may assume that t � 0 iff r � 0,p p
�t � 	 iff r � 	, and that the remaining set is P � p � � � 0 � t � rp p p p

4 � �� 	 , which is infinite by assumption. Obviously T � FF � R � FF. So
let G � T � � FF be of rank n. We show G � R� by induction on n.

For n � 1 this follows immediately from Corollary 1.4. So, let n � 1 and
consider the short exact sequence

0 � X � G � G�X � 0,

where X is a pure subgroup of G of rank 1 and so G�X is torsion-free of
rank n � 1. The above sequence induces the exact sequences

Hom T , G�X � Ext T , X � Ext T , G � Ext T , G�X � 0Ž . Ž . Ž . Ž .

and

Hom R , G�X � Ext R , X � Ext R , G � Ext R , G�X � 0.Ž . Ž . Ž . Ž .

Ž . Ž .Now Ext T , G � 0 by assumption and so also Ext T , G�X � 0. Hence,
Ž . Ž .by induction hypothesis, Ext R, G�X � 0 since rk G�X � n � 1.
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Hencefore, the first of the two above sequences reduces to

Hom T , G�X � Ext T , X � 0Ž . Ž .

� Ž . � Ž .and so Ext T , X 	 � . However, this is only possible if Ext T , X � 0 by0
Ž . Ž .Lemma 1.7. Therefore we also have Ext R, X � 0 since rk X � 1 and

Ž .thus it follows from the second of the above sequences that Ext R, G � 0,
�i.e., G � R .

Ž .The above proposition shows that to get a counterexample for case 2b ,
the required group G needs to be of infinite rank. We thank Luigi Salce
for suggesting this.

Ž .Before we tackle the remaining case 2b , we recall some well-known
facts:

Ž .Remark 1.9. a Algebraically compact groups, in particular complete
groups, are cotorsion.
Ž .b Let H be a reduced cotorsion group and let U 
 H be a subgroup.

Then U is cotorsion if and only if H�U is reduced.
Ž . n nc The completion of � Z in the �-adic topology is � Zp pp p� P pp� P

for any set P of primes.

Ž . Ž . Ž .Part c is an easy exercise and is left to the reader; a and b can be
� �found in 9, pp. 232�233 .

Now we are ready for:

Ž . Ž . Ž .PROPOSITION 1.10. Suppose t T � � � � � t R such that 2b is satis-
fied. Then there exists a group G which is an element of T � but not of R� .

Ž .Proof. Suppose 2b , i.e., there exists an infinite set P of primes such
that 0 � t � r � 	. Let H � � � 
�Ł � � H�, where �p p Ž p. p� P Ž p. Ž p.p� P
is the localization of the integers at the prime p. Note that H� and thus
also its pure subgroup H is q-divisible for any prime q � P. We define G

�Ž .as a subset of H� by G � g � H� � �m, k � � s.t. mg � � andp p� P p
� � tp 4mg 	 kp for all p � P .p

First we show that G is a pure subgroup of H� containing H. Let
Ž . Ž .g , h � G, i.e., there are m, n, k, l � � such that mg , nh �p p� P p p� P p p

� � tp � � tp Ž .�, mg 	 kp , and nh 	 lp for all p � P. Then mn g  h �p p p p
Ž . Ž . � Ž . � � � � � tpn mg  m nh � � and mn g  h 	 n mg  m nh 	 nkp p p p p p p

tp Ž . tp Ž . Ž .mlp � nk  ml p for all p � P. Thus g  h � G, i.e., Gp p� P p p� P
is a subgroup. As an immediate consequence of the definition, we have
that G is pure in H�.

Ž .Now let h be an element of H, i.e., h � 0 for almost all p andp p� P p
h � z �n � � . Let N be the product of all n and let K be the sump p p Ž p. p

� � � � Ž .of all h over all p with h � 0. Then Nh � � and N h 	 NK � �p p p p
for all p � P. Thus H 
 G.
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Next let � : H� � H � � � � �ptp� be the canonical epimor-t t p� P Ž p. Ž p.
Ž . Ž tp .phism given by h � � h  p � . Obviously, H� �p p� P t p Ž p. p� P t

� � �ptp� � � Z t and thus H � � � Z t is the comple-p pŽ p. Ž p. p t p� P pp� P p� P
Ž . �tion of H� by Remark 1.9 c . Therefore, H is cotorsion by Remarkt t

Ž .1.9 a .
� Ž .Since an element of H can be represented by g with g � � andt p p� P p

0 	 g � ptp, we also have immediately that G� � H �. However, G� �p t t t
G�� ptpG since G is a pure subgroup of H and so ker � �p� � t

Ž tp . Ž tp . Ž tp .G� � p � � G � � p H� � G � � p H� � G �p� P Ž p. p� P p� P
� ptpG � � ptpG � G . Thus we have shown that G�G � G�p� P p� � � � t
� H � is cotorsion. Therefore G is an element of T � by Proposition 1.3.t

Finally we show that G is not an element of R� . Following the same
arguments as above, we have that H � � Ł � �prp� is the comple-r p� P Ž p. Ž p.
tion of H� � � Z r , that G� � G�G and that H � is cotorsionpr p r � rp� P
where G � � prpG and � : H� � H � is the corresponding epimor-� p� � r r
phism. Now H� 
 G� and so H ��G� is divisible as an epimorphicr r r r
image of the divisible group H ��H� . Therefore it is enough to show thatr r

� � Ž .G� � H to prove G � R by Remark 1.9 b .r r
Ž . tp1 �2 tp1 �2We choose integers n p � P such that p � 1 	 n 	 p .p p

Ž rp . Ž .Suppose n  p � � G� . Then there is g � G such thatp Ž p. p� P r p p� P
n � g mod prp� for all p � P. Note that g � n for almost all pp p Ž p. p p
since ptp1 �2 � 1 	 n 	 kptp for all p � P is impossible for a fixedp

� � tpk � �. However, there are m, k � � such that mg � � and mg 	 kpp p
rp rp Ž .for all p � P. So mn � mg mod p � and thus p divides m n � gp p p p

Ž . tp1 � Ž . � � �in � . Since t � r , we have that p divides m n � g 	 mn p p p p p
� � tp1 �2 tp tpŽ 1�2 .mg 	 mp  mkp � mp p  k for all p � P. However, forp

1 1�2 t 1�2 t 1p pŽ .almost all p � P, m, k � p and thus p mp  mk � p , con-2
Ž . Ž . �tradicting m n � g � 0. Therefore n � H � G� and this com-p p p p� P r r

pletes the proof.

As a consequence of the above results we can finally state:

Ž .THEOREM 1.11. The lattice of types TT, 	 is anti-isomorphic to the lattice

Ž . Ž .of rational cotorsion theories CC , 	 �ia the mapping � � t T �rat

Ž� Ž �. �.T , T .

With Theorem 1.11 we have fully described the lattice of all rational
cotorsion theories.

Before we turn our attention to the general lattice of all cotorsion
theories, we need some ‘‘preparation,’’ namely the construction of groups

Ž� Ž �. �.G such that the cotorsion theories cogenerated by G, G , G , are
suitable for proving the Main Theorem. Since the properties of these
groups are interesting in their own right, we consider them in a separate
section.

Sh:721



GOBEL, SHELAH, AND WALLUTIS¨302

2. AN � -FREE GROUP WITHOUT ‘‘SMALL’’1
COTORSION-FREE QUOTIENTS

In this section, we construct an � -free group G which has no proper1
subgroups U of the same cardinality such that the quotient G�U is
cotorsion-free. In particular, if an epimorphic image G�K of G is cotor-

� � � � � �sion-free, then the kernel K is ‘‘small,’’ namely K � G , and so G�K �
� �G , i.e., the quotient is ‘‘big.’’ Recall that an abelian group G is said to be

Ž� -free if all its countable subgroups are free or, equivalently by Pontrya-1
.gin’s criterion , if any finite rank subgroup is free. Note that � -freeness1

implies cotorsion-freeness where a group is cotorsion-free if it is torsion-
free and does not contain a copy of the rationals � or the p-adic integers
J for some prime p.p

In 1985 the first and second authors constructed a cotorsion-free group
G with the above property where the cardinality of G was a strong limit

Ž � �.singular cardinal of cofinality bigger than � see 11 . They already0
mentioned that using an, at this stage newly developed, set-theoretic
method, which is nowadays known as Black Box, it is possible to replace
the strong limit cardinal by any cardinal � with � � 0 � � . This is what we
will basically do here, but to keep things simpler we only consider regular
cardinals � . Actually, we shall construct the group G depending on a
stationary set S of � since that is what we need later in Section 3.
However, the reader who is mainly interested in the construction of G
rather than in the application in Section 3 can ignore the statements
regarding the stationary set. In particular, it would be enough to use the
‘‘ordinary’’ Black Box rather than the stationary one to obtain the required
result. We need to use the stationary Black Box, but we shall use an easy
version of it.

� � � 0Throughout this section let � be an infinite cardinal such that � � �
Ž  � 0 .for all ordinals � � � e.g., take � � � for some � with � � � .

Moreover, we fix a stationary set S of � consisting of ordinals of cofinality
. First we define the parameters which are needed to formulate the Black
Box.

ˆLet B be a free abelian group of rank � , say B � � e �, and let B�� � �

denote the p-adic completion of B for some fixed prime p. An element
ˆb � B can uniquely be written in the form b � Ý e b , where b � J .� � � � � � p

ˆ � � � 4Thus we may define the support of b � B by b � � � � � b � 0 
 � ;�

� �obviously b is at most countable. This definition can be extended to
ˆ � � � �subsets M of B: M � � b . Moreover, we define the norm of ab� M

	 	subset X of � by X � sup X � sup x; this induces a norm for thex � X
ˆ 	 	 	� �	 	 	 	� �	 	 	elements b and subsets M of B: b � b , M � M � sup b .b� M

� �Although the Black Box known, for example, from 2 , has been formu-
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lated using an ‘‘ordinary’’ tree T � � � and branches of this tree, we need
a different setting.

ˆŽ .DEFINITION 2.1. A sequence f � f of elements of B is said to ben n� 

the basis of a Signac tree if

ˆŽ .i f is a pure element of B for each n � ,n

Ž . � � � �ii f � f � � for any n � m in ,n m

Ž . 	 	 	 	iii f � f for all n � .n n1

� 4Moreover, we call a subset f � n � X 
  of f a branch o�er f and then
Ž .set SS f of all branches is said to be the Signac tree o�er f.

Note that considering an ‘‘ordinary’’ tree T � � � the ‘‘basis of T ’’ can
Ž .be thought of as the set of all elements of T of length domain 1 or,

equivalently, as the elements of � . Also note that the trees painted by the
‘‘pointilist’’ Signac are ‘‘dotted,’’ which explains the name.

Next we define a relation on the set of all bases of Signac trees:

Ž . Ž .DEFINITION 2.2. Let f � f and g � g be bases of Signacn n�  n n� 

	 	 	� � � �	trees. We say that f and g are close to each other if f � f � g �
	 	 Ž .g . Notation: f 
 g.

Note that the above defined relation is obviously an equivalence rela-
tion. Since the Black Box is mainly a suitable enumeration of ‘‘traps,’’ we
need to say what we mean by it. Of course, the definition is adapted to our
situation.

Ž .DEFINITION 2.3. A quadruple � � f , P, K , b is said to be a trap if

Ž .i P is a canonical module, i.e., P � � e � for some count-�� � X
able X 
 � ,

ˆŽ .ii f is the basis of a Signac-tree of elements of P,
ˆŽ .iii K is a countable pure subgroup of P,

Ž .iv b is a pure element of P, and
Ž . 	 	 	 	 	 	 	 	v b � P � K � f .

	 	 	 	Moreover, we define the norm of � by � � P and we call a trap
Ž . 	 	� � f , P, K , b as above an S-trap if � � S.

We are now ready to present a suitable version of the Black Box. For a
� �proof, we refer to 2, 8, 12 . Note that the Black Box is very robust under

changes of its setting; the only real concern is the cardinality of the set of
all objects in question. The choice of � and Definition 2.3 guarantee that
all needed cardinalities are bounded by � .
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THE BLACK BOX LEMMA 2.4. There are an ordinal �* � � and a
� � � � �Ž Ž ..sequence � � f , P , K , b of S-traps such that� � � *

Ž . 	 � 	 	 � 	i � 	 � for � � � ,
� � �Ž . 	 � � � � 	 	 	ii f � f � f for � � � , and

ˆŽ .iii for any pure submodule U of B, any basis of a Signac tree g of
	 	 	 	elements of U, and any pure element b of B with b � g � S there is an

� � �* such that

�
� � � � �K 
 U � P , g � K n �  , g 
 f , and b � b ,Ž .n

Ž .where g � g.n n� 

Next we construct the desired group G. We shall obtain G lying
ˆbetween the free module B and its completion B by adding elements

determined by suitable infinite branches of Signac trees to B.
� � � � �Ž Ž ..Construction 2.5. Let � � f , P , K , b be a sequence of� � � *

S-traps as in the Black Box Lemma 2.4. We construct G � � G�
� � � *

inductively. Let G0 � B and let G� � � G � whenever � is a limit� � �

ordinal.
�Now let G be given. If there is a basis of a Signac tree g of elements of

� � �K which is close to f , then let g � g ; if this is not possible, we put
� �g � f . In the first case we call � a strong ordinal and in the latter we call

it weak ordinal. In either case we define

G�1 � G�  y �� �,Ý �ž /
��Jp

ˆ �where the index � denotes the purification within B and the elements y�

are defined as follows: For each p-adic number � � J we choose anp
� � �� 4 Ž . Ž .infinite branch � � g � n � X X 
  infinite over g � g� n � � n n� 

Ž . �such that  � X � X is infinite whenever � � �. Then let a �� � �
� n � � � ˆ Ž .Ý g p and y � b �  a � B � � J .n� X n � � p�

We can describe the above purification more explicitly:
For � � Ý a p n � J let � � Ý a p n� k, let a� �n �  n p k n � k n k �

� n�k � � � Ž .Ý g p , and let y � b �  a k �  . Then we clearlyn� X , n� k n k � k k ��

have

G � G  y ��.Ý�1 � k �
��J , k�p

�Finally, let G � � G .� � � *
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ˆFirst note that G is obviously a pure subgroup of B of cardinality
� �� � �* . We proceed with proving other properties of G. Next we show

that G is � -free. In fact, we show more than that since the following1
proposition shall be used in Section 3. First we need:

� 	 	LEMMA 2.6. Let G be as in Construction 2.5. Then G � g � G � g�

4 Ž .� � � � � defines a �-filtration of G. Moreo�er, G �G contains a�1 �

nonzero p-di�isible subgroup for � � S and it is free otherwise.

Ž .Note that we use the lower index � for the filtration � � � while we
Ž .used the upper index � for the construction � � �* .

Proof of Lemma 2.6. The first part of the result is obvious since� �
� 0	 	 � � � �g � � implies g � � e � and � e � � � � � for all � � �� �� � � � � �

by assumption. So it remains to prove the second part. We consider the
² 	 	 :quotient group G �G � g  G � g � G, g � � .�1 � �

	 	If � � S, then the elements of the form g � x  e z with x � � ,�

² :z � � are the only elements of norm � . Hence G �G � e  G � ��1 � � �

in this case.
� �	 	 	 	For � � S there is at least one � � �* such that � � � � g �

� �	 	 	 	f � y for k � , � � J since all elements of S appear as norms in� � p
Ž � . Ž Ž .. 	 � 	the sequence of S-traps � see Lemma 2.4 iii . However, g �� � � * n

� � � � k	 	 	 	g � � for all n �  and b � � and so y � y p �� k �

Ý g� pn  b�Ý a pn � G for each k �  where Ý a pn
n� X , n� k n n� k n � n�  n�

� � . Therefore y� is divisible by pk modulo G for each k and thus� �

G �G contains a p-divisible subgroup for each � � S.�1 �

PROPOSITION 2.7. Let G � � G be the �-filtration of G as in� � � �

Lemma 2.6. Then G�G is � -free if and only if � � S.� 1

Proof. By Lemma 2.6 we have that G�G � G �G contains a� �1 �

p-divisible subgroup whenever � � S and thus it is not � -free in this case.1
So, let � � � � S. We show inductively that G�G � � G �G is� � � � � �

� -free. Obviously, if � is a limit ordinal and if G �G is � -free for each1 � � 1
� � � � � , then G �G � � G �G is also � -free by Pontryagin’s� � � �� � � � � 1
criterion.

Ž . Ž .Moreover, G �G is free and also G �G � G �G � G �G�1 � �1 � � � �1 �

is free for � � S by Lemma 2.6 and hence G �G is � -free provided�1 � 1
G �G is � -free.� � 1

�Finally assume that � � S and that G �G is � -free. Let X � � �� � 1 �

	 � 	 4 Ž . ² ��* � � � � . Then G �G � G �G  y  G � k � , � � J ,�1 � � � k � � p
: ² :� � X  e  G . We have to show that any finite set of elements of� � �

G �G is contained in a free pure subgroup of G �G . Clearly,�1 � �1 ��
� �� � � �y � G for all � � X , � � J , k � , i.e., y 
 G and so we cank � � � p k � �
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ignore e  G since it is independent from all the other elements as� �

	 	 � �� � e � � � G .� �

Now, any finite subset of G �G is contained in a finite set U � U ��1 � 1
� �U with U 
 G �G and U is of the form U � y  G � k 	 l, � �2 1 � � 2 2 k � �

4M, � � X , where l �  and M 
 J , X 
 X are finite sets. Since � �p �

	 � 	 Ž . 	 	lim g is a limit ordinal � � X with � � � and U � � we cann�  n � 1
	 	 	 � 	find l� � l such that � , U � g for all � � X. For each � � M let1 l�

� ² � �l � l� be minimal with l � X and let U � U , b  G , g  G � �� � � 1 1 � n �

:� X, n 	 l� � 
 G �G . Then U is contained in the pure subgroup� �
� Ž � . �U� � U � Ý l y  G � of G �G , where U is a pure1 � � M , � � X � � � �1 � 1

finite rank subgroup of G �G and so U� is free by assumption.� � 1
� Ž � .It remains to show that U � Ý l y  G � is free. Since2 � � M , � � X � � �

�� � Ž .g 
 g condition ii in the Black Box Lemma 2.4 implies U �2
Ž Ž � . .� Ý l y  G � because starting with a maximal � � X we� � M � � � m� � X

� �m� � � �can find n �  such that g � � g for all n � n and we0 n � �� � X 0m

can proceed like this with the maximal element of the remaining set
� 4 Ž .X � � and so on. Moreover, by our choice of the branches � � � J inm � p

� � 4 Ž .Construction 2.5, we have that l y  G � � � M � � X is linearly� � �

independent since, for a fixed � � M, we can recursively find integers
� 4 Žl 	 n � n � ��� � n and sets M � M � M � ��� � M � � k �� 1 2 k 1 2 k

. such that n � X exactly if � � M , i.e., the supports are sufficientlyi � i
different. Henceforth U� 
 G �G is free and so U� � U� � U� is2 �1 � 1 2
free, which completes the proof.

The most interesting property of the group G is that it has no ‘‘small’’
cotorsion-free quotients. So G as in Construction 2.5 is a suitable candi-
date for proving the final result of this section:

� � � 0THEOREM 2.8. Let � be a regular cardinal with � � � for all � � � .
Then there exists an � -free group G of cardinality � such that, for any1

� �subgroup U of G with U � � , either G � U or G�U is not cotorsion-free.

To prove this theorem we need a special case of the generalized
� � � ��-Lemma of Erdos and Rado 7 ; for the proof see also 3 .¨

�-LEMMA 2.9. Let � be as in Theorem 2.8 and let � be a family of
cardinality � consisting of countable subsets of � . Then there is a subfamily ��
of �, also of cardinality � , and an at most countable subset F of � such that
X � Y � F for all X � Y � ��.

ˆProof of Theorem 2.8. Let B 
�G 
�B be as in Construction 2.5.
Then G is of cardinality � . Moreover, G � G�G is � -free by Proposition0 1
2.7. Now let U be a subgroup of G of cardinality � such that G�U is
cotorsion-free. Moreover, let � : G � G�U be the canonical epimor-
phism. If B � � e � 
 U, then G�U is p-divisible as an epimorphic�� � �
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ˆimage of G�B 
�B�B. However, G�U is reduced because it is
cotorsion-free and thus G � U follows in this case.

Now assume that � is nonzero, i.e., U � G. Then B � U, in particular
there is a pure element b � B with b� � 0 since U 
 �G. We shall make
use of this element b later. First we apply the �-Lemma 2.9 to the set

�� � 4� � u � u � U . Then there is a subset �� of � of cardinality � and an
at most countable set F 
 � such that X � Y � F for all X � Y � ��.

� �For each X � �� choose one and only one element u of U with X � u
� � � � � �and let U be the set of all such u’s. Then U � � and u � � � F for1 1 �

all u � � � U . Each u � U has a unique component u � F � � e �1 1 �� � F�
� �0 0ˆ � � � � � �� B. However, � e � � F � 2 � � � U and thus there is a� 1� � F �

subset U of U also of cardinality � and an element f of � e � such2 1 �� � F
that u � F � f for all u � U . Next let U and U be disjoint subsets of U2 3 4 2

�with U � U � U , both of cardinality � , and let U � x � y � x � U , y2 3 4 5 3
4 � � � � � �� U . Then U � � and u � � � � for all u � � � U . Replace each4 5 5

element u � U by its ‘‘purification,’’ i.e., by up�n u, where n is the5 u
� � � �n u �maximal power of p dividing u; clearly u � up . Call the new set U .6

� 	 	 	 	4Now let U* � u � U � u � b , where b is the pure element from6
above with b� � 0. Then U* consists of pure elements of U � ker � and

� � � � � �satisfies u � � � � for all u � � � U*. Moreover, U* � � since the
ˆ 	 	set of all elements of B with norm less than or equal to b � � is of

� � � 0cardinality � .
Ž .We consider the set SS of all sequences g � g of elements of U*n n� 

	 	 	 	 � � �	 	with g � g for all n � . Then SS � � and the set C � g �n n1
	 	 4sup g � g � SS is unbounded and closed under limits of countablen�  n

Žsubsets; a set C satisfying these properties is called an -cub closed
.unbounded set . Since our fixed stationary set S consists of ordinals of

cofinality , the intersection with any -cub is nonempty: C � S � �.
Ž . 	 	Therefore, there is an element g � g of SS with g � S. Obvi-n n� 

	 	 	 	ously, g is a basis of a Signac tree since g � U* and g � g for alln n n1
Ž .n �  see Definition 2.1 .

By the Black Box Lemma 2.4 there is an ordinal � � �* such that
� � � � �Ž .K 
 U � P , g � K n �  , g 
 f , and b � b . Therefore, � is an

strong ordinal.
� � Ž . � �We now consider the elements y � b�  a � � J . Since g � K� � p n

Ž . � � n Ž . �
 U � ker � n �  and a � Ý g p � � J , we have a � � 0,ˆ� n� X n p �� �ˆ ˆ Ž .where the continuous homomorphism � : G � B � G�U is the uniqueˆ
� Ž � .extension of �. The continuity of � also implies y � � b�  a � �ˆ � �

Ž . Ž .b� � � b�� � b�� � G�U for all � � J and so b� J 
 G�U, i.e.,ˆ ˆ p p

G�U contains a copy of the p-adic integers J , contradicting the cotor-p

sion-freeness of G�U. This implies G � U and so the proof is finished.
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Note that in addition to the above properties of G, we could prescribe
the endomorphism ring of G using standard methods via the Black Box.
However, the group G as constructed in this section is exactly what we
need to prove the Main Theorem in Section 3. In fact, we shall need a
family of such groups G depending on different stationary sets S; thus we

Ž .introduce the notation G � G S to refer to the group G as obtained in
Construction 2.5 and satisfying the conclusion of Theorem 2.8.

3. EMBEDDINGS OF POSETS INTO THE LATTICE OF
COTORSION THEORIES

Ž .Throughout this section let I be an arbitrary set and let PP � PP I be
� �the power set of I. Moreover, let � � I be a regular cardinal such that,

� � � 0for all ordinals � � � , � � � . Note that such a cardinal always exists,
Ž � � � 0.e.g., take � � I . The aim of this section is to prove the Main

Theorem of the paper:

Ž .MAIN THEOREM 3.1. There is an embedding from PP, 
 into the lattice
Ž .of all cotorsion theories CC, 	 .

Note that any poset can be embedded into the power set lattice of some
set I. We shall prove the main theorem in several steps. First we define an

Ž . Ž .order-reversing mapping 
: PP, 
 � CC, 	 which will turn out to be
Ž . Ž . Ž .injective. Since the mapping PP, 
 � PP, 
 X � I � X is an order-

reversing isomorphism, this induces the required embedding.
� Ž . 4Now, the set � � � � cf � �  is stationary and can be partitioned

� � � Ž . 4into I disjoint stationary subsets, say � � � � cf � �  � � S . Leti� I i
Ž .G � G S be an � -free group of cardinality � as in Construction 2.5 andi i 1

Ž .depending on the stationary set S i � I . Moreover, for each X 
 I, leti
Ž� Ž �. �.G � � G . We define X
 � G , G � CC. Obviously, 
 is wellX i X Xi� X

defined and, for Y 
 X 
 I, we have G 
 G and thus G�� G� , i.e., 
Y X Y X
Ž .is order reversing. Note that G � 0 and so �
 � LL , Mod-� is the�

maximal cotorsion theory; recall that LL denotes the class of all free
abelian groups.

X Ž .To establish that 
 is injective, we construct groups H � � X 
 I
Ž X .such that Ext G , H � 0 if and only if Y 
 X, i.e., if Y � X, thenY

H Y � G� � G� . The construction is based on a method for making ExtY X
� �vanish which was introduced by the first and second authors 14 ; here we

� �use the generalized method as developed by Eklof and Trlifaj 6 .

Construction 3.2. Let X be a fixed nonempty subset of I and let � be a
cardinal with �� � �. Moreover, let H be a set of cardinality � with a

� � � � � � ��-filtration H � � H such that H � � and H � � � � � H� � � � 0 � �1
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�� H for all � � �. We inductively define a group structure on H and call�

the obtained group H X.
� � � �We fix free resolutions 0 � K � F � G � 0 of G with K � F � �i i i i i i

Ž .i � X and we ‘‘enumerate’’ all set mappings from all K ’s into H byi
K i � 4� H � � � � � � in such a way that each mapping appears �i� X �

times. Now let H X � �Ž� . be a free group of rank � . If � is a limit ordinal0
and if the group structure H X on H is defined for all � � � such that� �

H X is a subgroup of H X , then let H X � � H X have the induced� �1 � � � � �

group structure.
Now let the group structure H X be given. If Im � 
 H X and if � is a� � � �

homomorphism, then let � � � and put � � 0 otherwise. In either case˜ ˜� � �

we define H X to be the pushout�1

�� X�

F Hi �1��
X�

HK �i �̃�

where dom � � K for some i � X. Hence � is an extension of � and˜� i � �

H X �H X � F �K � G . Finally let the structure on H X � � H X be�1 � i i i � � � �

the induced one.

Note that the cardinality of H X is obviously � for each nonempty set
X 
 I. First we show that H X � G� for any set Y 
 X.Y

PROPOSITION 3.3. Let � � X 
 I and let H X be as in Construction 3.2.
X � Ž X .Then H � G , i.e., Ext G , H � 0 for any Y 
 X.Y Y

Ž .Proof. Since G � � G Y 
 X it is sufficient to show thatY ii� Y
Ž X .Ext G , H � 0 for each i � X. We consider the free resolutioni

0 � K � F � G � 0 of G as in Construction 3.2. Let � : K � H X �i i i i i
X � � � � Ž .� H be a homomorphism. Since K � 	 K � � � cf � there is� � � � i i

an ordinal � � � such that Im � 
 H X. Moreover, by the enumeration of�

� K i H in Construction 3.2 there is � 	 � � � such that � � � � �̃i� X � �

and thus there is an extension � : F � H X of �.� i
Therefore we have seen that every homomorphism from K into H X

i
X Ž X .extends to a homomorphism from F into H and hence Ext G , H � 0i i

XŽ .whenever i � X. This implies Ext G , H � 0 for all Y 
 X.Y

Ž X .It remains to show that Ext G , H � 0 whenever i � X. Although iti
Ž .seems to be the more likely case that Ext A, B � 0 for arbitrary groups

A and B, there is some work to do to prove this. The key to the proof is
the following:

DEFINITION 3.4. Let � be as above and let S be a stationary set in � .
We call a group A locally S-free if, for any smooth ascending chain
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� 4 � �K � � � � of subgroups K of A with K � � for all � � � , the set� � �

� 4� � S � K �K not � -free is not stationary in � .�1 � 1

Ž . Ž .First we investigate the groups G � G S i � I with respect to thei i
just defined property.

Ž .PROPOSITION 3.5. Let i � j be elements of I and let G � G S be asi i
abo�e. Then G is locally S -free but not locally S -free.i j i

Proof. By Lemma 2.6 and Proposition 2.7 there is a �-filtration G �i
� Gi of G such that� � � � i

G �Gi is � -free iff � � S . �Ž .i � 1 i

Moreover, we know that Gi �Gi contains a divisible subgroup for any�1 �

� � S . Hence it follows immediately that G is not locally S -free sincei i i
� i i 4� � S � G �G not � -free � S is stationary in � . Thus, it remains toi �1 � 1 i
show that G is locally S -free for any j � i.i j

� 4Let K � � � � be a smooth ascending chain of subgroups of G all of� i
� �cardinality less than � and let K � � K . If K � � , then there is an� � � �

�� � � such that K � K � K for all � � � . Thus the set � � S �0 � � 0 j0
4K �K not � -free is bounded by � and hence it is not stationary.�1 � 1 0

� � � 4 � iOtherwise K � � and K � � � � is a �-filtration of K. Also K � G �� �

4� � � is a �-filtration of K and thus there exists a closed unbounded set
Ž . icub C in � such that K � K � G for all � � C. Let � � C � S . Then� � j

i i Ž .K � K � G since � � C and G �G is � -free by � since � � S which� � i � 1 j
Ž i .is disjoint from S . Therefore K �K 
 K�K � K� K � G �i �1 � � �

Ž i . i i �K  G �G 
 G �G is � -free. Hence C is disjoint from � � S �� � i � 1 j
4K �K not � -free and thus this set is not stationary. So we have shown�1 � 1

that G is locally S -free.i j

As an immediate consequence of the above proposition we have:

COROLLARY 3.6. Let A be a cotorsion-free locally S -free group for somei
Ž .i � I. Then Hom G , A � 0.i

Proof. Suppose, for contradiction, that there exists a nonzero homo-
morphism � : G � � Gi � A and let K � Gi �. Since G �ker � �i � � � � � � i
Im � 
 A is cotorsion-free by assumption, it follows from Theorem 2.8

� �that the kernel of � has to be ‘‘small,’’ i.e., ker � � � . Therefore, there is
� � � such that ker � 
 Gi for all � � � because � is regular. This0 � 0

Ž i . Ž i . i iimplies K �K � G �ker � � G �ker � � G �G for all � � ��1 � �1 � �1 � 0
� 4 � 4and thus, by Lemma 2.6, � � S � K �K not � -free � � � S � � � �i �1 � 1 i 0

is stationary, contradicting the local S -freeness of A.i

We now proceed with investigating the relevant properties of the groups
X Ž . Ž .H � � X 
 I as in Construction 3.2. Since G � G S is � -free for alli i 1

i � I by Theorem 2.8 we immediately have:
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LEMMA 3.7. Let � � X 
 I and let H X � � H X be as in Construc-� � � �
X X X Ž .tion 3.2. Then H and H �H � � � are � -free.� 1

Next we consider the local S -freeness of H X.i

PROPOSITION 3.8. Let � � X 
 I, let i � I � X, and let H X be as in
Construction 3.2. Then H X and H X�H X are locally S -free.0 i

Proof. We shall show inductively that H X and H X�H X are locally� � 0
S -free for all � � �. Of course, H X � �Ž� . and H X�H X � 0 are locallyi 0 0 0
S -free. In the following we restrict our attention to the H X ’s becausei �

Ž X X .there is no difference in the arguments when considering the H �H ’s.� 0
First assume that H X is locally S -free and consider a smooth ascending� i

� 4 X � �chain K � � � � of subgroups of H with K � � . Let K � � K� �1 � � � � �

� 4 �and let M � � � S � K �K not � -free . Moreover, let M � � � S �i �1 � 1 1 i
Ž X . Ž X . 4 � ŽK � H � K � H not � -free and M � � � S � K �1 � � � 1 2 i �1

X . Ž X . 4H � K  H not � -free . By induction hypothesis, M is not station-� � � 1 1
�Ž X . Xary. Also M is not stationary by Proposition 3.5 since K  H �H � �2 � � �

4 X X� � is a chain in H �H � G for some j � X. Thus there are cubs�1 � j
Ž .C and C such that M � C � � l � 1, 2 . Let C � C � C . Then C is1 2 l l 1 2

also a cub. We prove that M � C � � and therefore M is not stationary.
Ž X . Ž X .Let � � C � S . Then � � M � M and thus K � H � K � Hi 1 2 �1 � � �

Ž X . Ž X .and K  H � K  H are � -free. There is an epimorphism�1 � � � 1
Ž X . Ž X . ŽŽ X .K �K � K  H � K  H with kernel K � H �1 � �1 � � � �1 �

. Ž X . Ž X .K �K � K � H � K � H and hence K �K is � -free as an� � �1 � � � �1 � 1
extension of an � -free group by an � -free group. Therefore � � M and1 1
so M � C � �.

Now let � be a limit ordinal and suppose that H X is locally S -free for� i
X � �all � � � . Consider K � � K 
 H with K � � for all � � � .� � � � � �

� 4 XMoreover, let M � � � S � K �K not � -free . If K 
 H for somei �1 � 1 �

� � � , then M is not stationary by assumption. So assume otherwise, i.e.,
K � H X for all � � � . Then the cofinality of � is less than or equal to � .�

Ž .First we consider the case of cf � � � � � . Let � � sup � with� � � �
� X Ž . X �� � � and put H � H � � � . Then H � � H . By assumption� � � � � � � ��

Ž . �there are cubs C � � � such that C � M � �, where M � � � S �� � � � i
Ž � . Ž � . 4K � H � K � H not � -free . Now let C � � C . Then C is�1 � � � 1 � � � �

� �also a cub by 5, II.4.3 . We show that M � C � �. Let � � C � S . Theni
Ž � . Ž � . ŽŽ � . .K � H � K � H � K � H  K �K is � -free for each�1 � � � �1 � � � 1

Ž Ž � .. ŽŽ � .� � � and so K �K � � K � H �K � � K � H�1 � � � � �1 � � � � � �1 �

. K �K is also � -free. Hence � � M and so M � C � � as required.� � 1
Ž . � �It remains to consider the case cf � � � . Since K � � for each�

� � � we may choose � � � such that K 
 H X and � � sup �� � � � � �� ��

whenever � is a limit. Then � � sup � since K � H X for any � � � .� � � � �
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� X � Ž � . ŽNow let H � H and let M � � � S � K � H � K �� � � i �1 � ��� . 4 Ž .H not � -free � � � . By assumption there are cubs C with M � C� 1 � � �

� 4 �� �. We define C to be the diagonal intersection C � � C � � � � � ��

4 � �� � � � � � C . By 5, II.4.10 , C is also a cub. As before we show� � � �

that M � C � � to establish that M is not stationary.
Consider an ordinal � � C � S . Then � is a limit ordinal and � � Ci �

Ž � . Ž � . ŽŽ � . .for all � � � . So K � H � K � H � K � H  K �K is�1 � � � �1 � � �

Ž . Ž � .� -free � � � . It follows immediately that K � H �K �1 �1 � �

ŽŽŽ � . . .� K � H  K �K is also � -free. Moreover, for all � � �� � � �1 � � � 1
ŽŽ � . . ŽŽ � . . Žwe have K � H �K � K � H �K � K �� 1 � 1 � � 1 � � � 1

� . Ž � . ŽŽ � . � . � X �H � K � H � K � H  H �H 
 H �H is � -free.�1 �1 � �1 �1 � � � 1
Therefore it follows by transfinite induction that K �K ��1 �

ŽŽ � . .� K � H �K is � -free. Thus � cannot be an element of M� 	� � � �1 � � 1
which completes the proof.

Using the above result we can finally prove the last missing bit to
establish the correctness of the Main Theorem.

PROPOSITION 3.9. Let � � X 
 I, let i � I � X, and let H X be as in
Ž X . X �Construction 3.2. Then Ext G , H � 0, i.e., H � G .i i

Proof. Let 0 � K � F � G � 0 be a free resolution of G withi i i i
� � � � Ž X .K � F � � . To show Ext G , H � 0, it is enough to find a homomor-i i i
phism � : K � H X which does not extend to a homomorphism � :˜i
F � H X. Let � : K � H X 
 H X be an isomorphism between the twoi i 0
free groups K and H X of rank � . Suppose, for contradiction, that there isi 0

X� : F � H with � � K � �. Then � induces a homomorphism � :˜ ˜ ˜i i
F �K � G � H X�H X. However, H X�H X is � -free by Lemma 3.7; ini i i 0 0 1
particular it is cotorsion-free. Also H X�H X is locally S -free by Proposi-0 i

X XŽ .tion 3.8. Hence Hom G , H �H � 0 by Corollary 3.6. Therefore � � 0i 0
and so F � � H . However, this implies F � K � ker � since, for each˜ ˜i 0 i i

� 4f � F , there is k � K with f� � k� � k� and ker � � K � ker � � 0 .˜ ˜ ˜i i i
Then G � F �K � ker � is free, contradicting that G is not free. There-˜i i i i

Ž X .fore there is no such extension � of � and thus Ext G , H � 0 as˜ i
required.

Ž .In the above results enunciations 3.2�3.9 we have shown that the
Ž . Ž .mapping 
: PP, 
 � CC, 	 as defined at the beginning of this section

is an order-reversing injection. Therefore we have proven the Main Theo-
rem. Finally note that it follows immediately from the Main Theorem that
there are ascending, descending, and antichains of arbitrary size in the
lattice of all cotorsion theories and this answers the original question
which led to this paper.
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