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In the 1950's, Los conjectured that if Twas countable first order theory in a 
language &e, then if it was categorical in some uncountable power it was 
categorical in all uncountable powers. In [7], Morley proved this. Buoyed by 
this success, more general forms of the Los conjecture were considered. 

In [ 10], Shelah showed that if T was any first order theory categorical in 
some power greater than I T I then T was categorical in all powers greater than 
I TI. Keisler took up the investigation of the £%,o, case (see [5]) and gave a 
sufficient condition for the Morely analysis to work in this situation. Un- 
fortunately, this condition was not necessary. (See the counter-example due to 
Marcus, [6].) 

In [ 11 ] and [ 12], Shelah began the systematic investigation of the .~oe,ol,o case. 
In [12], he identifies a class of £¢o,,o, sentences which he calls excellent and 
shows that if an La,o,o, sentence is excellent then that Los conjecture holds. (In 
[2], Hart shows that many other theorems which are analogs of those for first 
order theories also hold for excellent classes.) Furthermore, he shows that if 
GCH (or in fact much less) and ~ is an ~o,,o, sentence which is Rn-categorical 
for all n E to then q~ is excellent. 
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220 s. SHELAH AND B. HART Isr. J. Math. 

The question which naturally arises is, under suitable set theoretic assump- 
tions, is categoricity in R~ for n < k sufficient to prove full categoricity for a 

sentence in ~o,,o,. 
The answer to this question must  wait while we introduce another variant of  

the Los conjecture. 

Suppose .~ is a relational language and P ~ is a unary predicate. I f M i s  an 
if-s tructure then P(M) is the ~-s t ructure  formed as the substructure of  M 
with domain (a : M ~ P(a)}. Now suppose Tis  a complete first order theory in 

with infinite models. Following Hodges, we define 

DEFINITION 0.1. T is relatively A-categorical if whenever M, N ~ T, 
P(M) = P(N), I P(M)[ = 2 then there is an isomorphism i :M-~ N which is 
the identity on P(M). 

T is relatively categorical if it is relatively 2-categorical for every 4. 

The notion of relative categoricity has been investigated by Gaifman ([1 ]), 
nodges  ([3] and [4]), Pillay ([8]) and Pillay and Shelah ([9]). In ([13]), Shelah 

gave a classification under some set theory. 
Again the question arises whether the relative 2-categoricity of  T for some 

A > I TI implies that T is relatively categorical. 
In this paper, we provide an example, for every k > 1, of a theory Tk and an 

-~,o,,o sentence ~k SO that Tk is not relatively ~k-categorical and qk is not ~k" 
categorical. 

Then examples are due to Shelah. Harrington asked about the possibility of  
such examples in Chicago in December 1985 as he was not happy with the 
complexity of  the classification. The examples provided -~,o,,o sentences 
which were categorical but not excellent and so a proof  of  this fact was written 
up in [2]. 

The notation used is standard. [A ] k will stand for all the k- element subsets of 
the set A. ~ - ( n )  is the set of all subsets of  n except n itself. II is used to 
represent the direct sum of groups and 17 is used to represent the direct product  
of  groups. Z2 will represent the two element group. 2 <~° will be used to 
represent the subgroup of eventually zero sequences in the abelian group IIo, Z2 
(written as 2°'). 

1. The example 

We first describe the example informally. Fix a natural number  k greater 
than one. There will be an infinite set Iwi th  K -- [I]k. There are constants c, for 

Sh:323



Vol. 70, 1990 CATEGORICITY 221 

n E to and a predicate R containing all of them. R will be thought of as levels 

and we will refer to constants in R as standard levels. We fix Z~, the abelian 

group, G, the direct sum of K-many copies of Z2 and H, the direct sum of 
R-many copies of Z2. In addition, all relevant projections onto Z2 are available 

to us. M1 of this constitutes the P-part of the model. 

Outside of this we have two types of objects. First, for every level r ER and 

every u E K, we have a distinct copy of G. Via some connection between our 

fixed copy of G and this one we will be able to determine the sum of any three 

dements of G but we will have "lost" the zero. Second, for every u ~ K there 

will be a distinct copy of H in which we again have "lost" the zero. 

We will be interested in the possibility of choosing elements from these 

copies of G and H to act as the zero in their respective groups. We won't put 

any more restraints on G's from non-standard levels so any element will do. 

However, for each n ~ to, on the level corresponding to cn, and for every u ~K, 

there will be a predicate connecting the copy of H corresponding to u and k of 

the copies of G on the nth level. It will be these predicates which make or break 

the categoricity by putting restraints on choices for the zeroes of the copies of G 

and H. 

CONVENTION 1. k will be a fixed natural number greater than one. 

Now, more formally, we define the language for the example. 

DEFINmON 1.1. &~e will be the language that consists of 

(1) unary predicates I, K,  R ,  P, G a, H a, 
(2) binary predicates E, H b, 
(3) ternary predicates n, p, + and G b, 

(4) a 4-ary predicate h, 

(5) a 5-ary predicate g, 
(6) a k + 1-ary predicate Qt for every l < (.o, and 
(7) constants ca for every a ~ Z2 U to. 

We now describe the standard model on I. 

D~.FINITON 1.2. I f / i s  an infinite set then the standard model on I denoted 

by Mr is the .~e-structure with universe 

I C3 [ I ] k C_) to CJ z2 C3 L~ Z20II  Z20to x [ I ] k X I_[ Z2 C3 [ I ] k x I I Z 2 
Ill* to [ilk to 

where the symbols of .~  are interpreted as follows: 
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(1) I is interpreted as I, K as  [ / ]k ,  R as co, G a as lit.q,, Z2 and H a as llo, Z2. 
(2) the constants ca are interpreted as a. That is, for example, R(ca) holds 

for every a ~ to. 
(3) P(x) holds iffx is a constant or one ofI(x) ,  K(x), Ga(x) or Ha(x) holds. 

(4) Gb(l, u, x) holds iffR(/),  K(u) and x = (l, u, y) for some y E IImk Z2. 
(5) Hb(u, x) holds iffK(u) and x = (u, y) for some y ~ II,o Z2. 
(6) E(x ,  y) holds iffI(x),  K(y) and x E y .  
(7) + (x, y, z) holds iffx, y and z are all in one of Z2, Lit1P Z2 or II,o Z2 and 

x + y = z .  
(8) z~(u, x, a) holds iffK(u),  Ga(x) and x(u) = a, an element of Z2. 
(9) p(l, x, a) holds iffR(/),  Ha(x) and x(l) = a, an element of Z2. 

(10) g(l, u, x, y, z) holds iffR(/), K(u), Ga(x), y -- (l, u, a), z = (l, u, b) (so 
Gb(l, u, y) and Gb(l, u, z)) and b = a + x. 

(11) h(u, x, y, z) holds iff K(u), Ha(x), y = (u, a), z = (u, b) (so Hb(u, y) 

and Hb(u, z)) and b = a + x.  
(12) Ql(xo . . . . .  Xk) holds iffxi = (cl, ui, yi) with Gb(cl, U~, Xi) for i < k and 

Xk = (Uk, Z) with Hb(uk, Xk) where Uo . . . .  , Uk are all the k-element 
subsets of some (k + 1)- element subset of I and 

2 y (uk) = z(cj). 
i < k  

REMARKS. (1) In the previous definition, all of  the direct sums used in the 
definition of the universe represent abelian groups. Hence on the right hand 
side of items (7), (10), (11) and (12), the addition ment ioned is addition in the 

appropriate group. 
(2) In item (12), each y,- is in IImk Z2 and u k is in [I] k SO Yi(Uk) is in Z2. z is in 

Iio, Z2 and ct ~ to so z(ct) is in Z2. Hence, the displayed equality is comparing 

elements of  Z2. 

Let's consider some of the sentences in a ° that the standard model satisfies. 

For a fixed infinite set I,  M~ satisfies: 
(1) I is an infinite set, K is the collection of k-element subsets o f / a n d  E is 

the membership relation between elements of  I and elements of K. 
(2) I,  K, R,  G a, H" are disjoint and their union together with the constants 

Ca for a ~ Z2 form P. 
(3) R(ca) for every a ~ to .  
(4) Gb(l, u, x) implies R(l) and K(u) and Hb(u, x) implies K(u). 
(5) I f x  is not in P t h e n  either for some I and u, Gb(l, u, x) or for some u, 
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Hb(u, x) and for every l E R  and u, vEK,  P, Hb(u,  -- ) and Gb(l, V, -- ) 

are pairwise disjoint. 
(6) If it(u, a, z) then K(u), Ga(a) and z is one of  the constants indexed by 

z2. 
(7) If  p(/, b, z) then R(l), Ha(b) and z is one of the constants indexed by 

z2. 
(8) If  g(/, u, a, v, w) then R(/), K(u), Ga(a), Gb(l, u, v) and Gb(l, u,  w). 

(9) If h(u, b, x, y) then K(u), Ha(b), Hb(u, x) and Hb(u, y). 
(10) The constants Ca for a ~ Z2 together with + have the group structure of 

z2. 
(11) + restricted to G a gives a subgroup of lI K Z2 which contains lIx Z2 

where the projections are given by n. 

(12) + restricted to H a gives a subgroup of l'I~ Z2 which contains II~ Z2 

where the projections are given by p. 

(13) For every l in R and u in K, Gb(l, u, -- ) is non-empty and for every l in 

R, u in Kand  x so that Gb(l, u, x), g(l, u, -- ,  x,  -- ) is a bijection from 

G a onto Gb(l, u, - ). Moreover, g(l, x, y, z) implies g(l, u, x,  z, y) and 

if g(l, u, a, x, y) and g(l, u, b, y, z) then g(u, l, a + b, x,  z) where 

a + b is the unique c so that + (a, b, c). 

(14) For every u in K, Hb(u, -- ) is non-empty and for every u in Kand  x so 

that Hb(u, x), h ( u , - ,  x , -  ) is a bijection from H a onto  H b ( u , -  ). 
Moreover, h(u, x,  y, z) implies h(u, x,  z, y) and if h(u, a, x, y) and 

h(u, b, y, z) then h(u, a + b, x, z) where a + b is the unique c so that 

+ ( a ,  b, c). 
(15) If  Qt(xo, . . . ,  Xk) then for i < k, for some u~ in K, Gb(cl, u~, xi) and for 

some Uk in K, Hb(uk, Xk). Additionally, u0, . . . .  Uk are all the k-element 

subsets of  some (k + 1)- element subset of  I. If  a is a permutation of  k 

then Ql(x~(o), . . . , X~tk- l), Xk). 
(16) If Qt(x0 . . . .  , Xk), Gb(cu U, XO), Hb(v, Xk), Gb(Cu U, X6) and Hb(v, x~) 

then Qt(x6 . . . . .  Xk) iffthe v-projection of  the unique element a so that 

g(cu u, a, Xo, x6) via 7t is 0 and Qt(xo . . . . .  x~) iffthe cr  projection of the 

unique element a so that h (v, a, Xk, X~) v i a  p is 0. 

(17)  S u p p o s e  1 ~ o~, u is in K and i0,.  • • ,  in_ l are distinct elements of I not in 

u.  For eachj  < n ,  let vi for 1 _-< i < kbe  a list of  the k-element subsets 
of  u t3 {ij} besides u. If  Gb(Q, j J v,, x,  ) for each j < n and i < k and 

Hb(v~, yj) for every j  < n then 

3 x  A Qt(x,x{ . . . . .  XJk_,,yi). 
j<n 
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(17) actually follows from the previous axioms but it is in the form that we 
will use it in Section 2. We make the following definition for the rest of the 

paper. 

CONVENTmN 2. Let T be the theory in ~ made up of the sentences 
enumerated (1)-(17) above. 

The standard model satisfies some additional sentences in A"o,,o,. For any 
infinite set I, M1 satisfies: 

(1) R contains only the constants indexed by to. 
(2) G a is canonically isomorphic to IIK Z2. 
(3) H a is canonically isomorphic to II~, Z2. 

CONVENTION 3. Let ~O be the -~o,,o, sentence which is the conjunction of T 

and the three sentences listed above. 

REMARKS. (1) T is not complete, however we will show that it is relatively 
Rn-categorical for all n < k. 

(2) ~o is the Scott sentence of any M1 where I is countable. This will follow 
from Section 2. Note that ~o has arbitrarily large models. 

2. Categoridty less than •k 

In this section, we show that T is relatively Rn-categorical for all n < k. 

DE,NInON 2.1. Suppose M ~ T, W _ to X K(M) U K(M) and f :  W--  M. 
T h e n f  is called a solution for W if: 

(1) (l, u)E Wthen M ~ Gb(ct, u, f(l,  u)), 
(2) i f u ~  Wthen M ~ Hb(u,f(u)), and 
(3) if Uo . . . . .  Uk~K(M) are all the k-element subsets of some fixed 

(k + 1)-element subset ofI(M), (l, ui)~ Wfor all i < k and Uk E Wthen 

M ~ Qt(f(l, Uo),. . . ,  f(Uk)). 

I f J _  I(M) t h e n f  is called a J-solution if it is a solution for to × [j]k U 
[j]k. f is called a solution if it is an I(M)-solution 

REMARK. Note that the standard model for any I has a solution. Hence T 
(and ~) has arbitrarily large models with solutions. 

L~.MMA 2.2. I f  M, N ~ T, both M and N have solutions and P(M) = P(N) 
then M ~ N over P(M). 

PROOF. Suppose fM is a solution for M and fN is a solution for N. We are 
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really interested in those Gb(u, M) and Gb(l, u, N) where l is one of the 

constants in R. However, we must accommodate all l in R. Let 

R* = R(M)  \ {ct: l@to}. 

Extend f u  and fN to include R* × K(M) ( = R* × K(N)) in their domains so 

that 
M ~ Gb(l, u, fu(l ,  u)) and N ~ Gb(l, U, fN(l, U)) 

for all (l, u ) E R *  × K(M). Let j be a partial function from M to N so that j 

restricted to P(M) is the identity, for every u, j ( fu(u))  = fN(U) and for every l 

and u, j ( fu ( l ,  u)) = fN(l, u). We want to extend j to a function from M to N. 

I f x ~ M s o  that M ~ Gb(cl, u, x)  then there is a unique a so that 

M ~ g(ct, u, a, fu(l ,  u), x). 

There is a unique y ~ N so that 

N ~ g(ct, u, a, f~v(l, u), y). 

Extend j so that j (x)  = y. 
We do a similar thing when x ~ M ,  M ~ Gb(l, u, x) and l ~R* .  
I f x E M s o  that M ~ Hb(u, x) then there is a unique a so that 

M ~ h(u, a, fu(u),  x). 

There is a unique y E N so that 

N ~ g(u, a, fn(u), y). 

Extend j so that j (x)  = y. 
Using the fact that M and N satisfy T, it is not hard to show tha t j  defines a 

function from M onto N. We want to show that it is an isomorphism. We'll 

check the hardest predicate, Qt. 
Suppose M ~ Ql(xo, . . . , Xk) where 

M ~ Gb(ct, ui, Xi) for i < k and M ~ Hb(uk, Xk). 

Choose ai for i < k so that M ~ g(ct, ui, fM(l, ui), xi) for i < k and 

M ~ h(Uk, ak, fM(Uk), Xk). 
We know 

M ~ Qt(f~t(l, Uo) . . . .  , fM(ui)) 

since f u  is a solution. Suppose 
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M ~ n(ui, at, zi) for i < k and M ~ p(ct, ak, Zi). 

Then by using axioms (15) and (16) of T, we conclude that 

~ Z~=Zk 
i < k  

where the sum takes place in Z2 and we identify the constants indexed by Z2 

with the elements they represent. 

Since P(M) = P(N), this happens in N as well and, since N V T, we unravel 

the fact that f~ is a solution so N ~ Ql(f~(l, Uo), . . . ,  fN(Uk)) to conclude that 

N ~ QJ(yo . . . .  , Yk) where y~ = j (x i )  for i <_- k. 
A completely symmetric argument shows that if N ~ Qt(j(xo), . . .  ,j(Xk)) 

then M ~ Qt(xo . . . .  , Xk) SO j is an isomorphism. [] 

LEMMA 2.3. Suppose M ~ T. 
(1) I f  M is countable then M has a solution. 
(2) I f  A c_ B C_ I(M), B is countable and f is an A-solution then f can be 

extended to a B-solution. 

PROOF. The first follows from the second so we will prove the second. 

Choose f '  so that fc_ f '  and d o m ( f ' ) - - d o m ( f )  t3 [B] k where, if u q~[A] k, 
then M ~ Hb(u, f '(u)) and otherwise f ' (u)  is arbitrary. 

f '  is a solution on its domain. To see this, note that if io . . . . .  ik ~ B and i0 $ A 
then, since k > 1, at least two k-element subsets of  {io . . . . .  ik } are not in [A] k. 
Hence, f '  is a solution on its domain vacuously. 

Now enumerate 09 X([B]k\[A] k) as {(li, Ui):iEto}. We will define an 

increasing chain of functions f~ so that 

(1) f0 ---- f ' ,  
(2) dom(fn) = dom(f ' )  t_J {(l~, ui) : i < n}, and 

(3) f~ is a solution on its domain. 

If we accomplish this then 1,3f~ will provide a B-solution extending f .  

Suppose we have defined f~. We need to choose an a so that M ~ Gb(cl,, un, a) 
and which will be compatible with the demands of being a solution. 

Say that a (k + 1)- element subset v of  B puts a constraint on un if un - v and 

k - 1 of  the k-element subsets of  v, say Wl, . . . .  Wk-~, are such that (In, wi )~  
dom(f~) for i < k. Note that since un gA,  at least one of  these wi's must also 

not be a subset of  A. 
Now since only finitely many elements are enumerated before (In, un ), there 

are only finitely many (k + 1)-element subsets of B which put a constraint on 
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u,. This is exactly the situation that axiom (17) of Twas designed for, so we can 

find an a so that f ,  + ~ = f ,  U { ( (l,, u, ), a ) } is a solution on its domain. [] 

COROLLARY 2.4. g is a complete ~o,,o, sentence. 

PROOF. TO see this, it suffices to see that i f M a n d  Nare  countable models 

of ~0 then M ~-- N. But since M and N are models of 9, P(M) and P(N) are 

uniquely determined by ~o so we may assume that P(M) = P(N). By Lemma 

2.3, M and N have solutions and hence, by Lemma 2.2, M ~ N. [] 

DEFINITION 2.5. Suppose M ~ T, A~ C_I(M) and ao,...  ,am-x are dis- 

tinct elements of I (M)\A~.  (As, f : s ~ ' - ( m ) )  is a compatible R , -  

# - (m) - sys t em of solutions if 

(1) Usea,-(m)As - - A  O U {a0 , . . . ,  am-~}, [A~[ < R, and As = A o  U 
{at : t E s }  for every s E ~ - ( m ) ,  

(2) f~ is an A r  solution for every s E ~ - ( m ) ,  

(3) for every s, t E ~ ' - ( m )  i f s  ___ t then f~ __C f .  

Using the notation from the definition, suppose (As, f~:s ~ ~ - ( m ) )  is a 

compatible R0 - ~ - (m) - sys t em with m < k. If  

u ~  U As \ U [Asl k 
sEaP-(m) sEa~-(m) 

then {a0,...,am_x}___ u. Since m < k ,  there is b ~ u \ ( a o , . . . , a m _ x }  c_ u. If  

c ~ U,e~,-(m) As \ u then 

( u \ { b } ) u { c } q !  U [As] k. 
s~aW-(m) 

Hence, if  u C v where v is any (k + 1)- element subset of  U ~-(m) A, then there is 

a k-element subset u'_.c v, u # u'  so that u'qtUa,-tm)As as well. Using this 
observation and a proof similar to the proof of I .emma 2.3, we obtain 

LEMMA 2.6. I f  (As, f :  sE  ~ - ( m ) )  is a compatible R0 - ~-(m)-system 
with m < k  then there is Use~,-(,,jAs-solution f so that f c_ f  for every 
s E ~- (m) .  

We use this as the base step in the following lemma. 

LEMMA 2.7. I f  (A,, f~ : s E ~ - ( m ) )  is a compatible R, - ~-(m)-system 
with m + n < k  then there is Us~a,-tm)As-solution f so that fc__ f for every 
s ~ ~- (m) .  
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PROOF. We prove this by induction on n. If  n = 0 then this is just Lemma 

2.6. Suppose n > 0 and As = A o  U {bt: t~s} .  Enumerate A~, (ap:fl < R,)  
and let A ~ = { a p : f l < a } .  Now define A T = A ~ U { b t : t ~ s }  for every 
s E ~ - ( m )  and let f~' be the restriction off~ to an A~'-solution. We wish to 
define g, for every a < R, so that 

(1) g~ is a UsE~,-t,,> A?- solution extending f~ for every s E ~ ' -  (m), 
(2) gaC_gpfor a<f l  <R, .  
Clearly, if we accomplish this then U~<~, g~ is the sought-after solution. But 

by taking unions at limit ordinals and using the induction hypothesis at 
successors we can easily satisfy these two conditions, so we are done. [] 

LEMMA 2.8. I f M  ~ T and A cc_ B C_ I(M) with I B [ < R k -  1 andf i s  an A- 
solution then f can be extended to a B-solution. 

PROOF. Without loss of generality, B = A U {b}. We prove this lemma by 
induction on the cardinality ofA. IfA is countable then this is just Lemma 2.3. 
If  IAi = /¢ ,  with n > 0  then enumerate A as ( a p : f l < R , )  and let A~= 
{ap : fl < a}. Let f ,  be the restriction o f f  to an A~-solution. By induction, we 

define A~ U {b }- solutions g, extendingf~. I f  we have defined g~, we use Lemma 
2.7 in the case m = 2 to extend g~ U f~+~ to an Aa+l U {b}-solution. At limits 
we take unions and U,~<~. g~ is a B-solution extending f .  [] 

THEOREM 2.9. I f M  ~ T and [M I < ~k then M has a solution. 

PROOF. By induction on the cardinality o fM.  I f M i s  countable then this is 
Lemma 2.3. If  IMI = R, with n > 0  then we can choose N, N < M with 
I NI < R,. By induction, Nhas  a solution and, by using Lemma 2.8 repeatedly, 
we can extend it to a solution for M. [] 

COROLLARY 2.10. (1) T is relatively R,-categorical for all n < k. 
(2) fp is Rn-Categorical for all n < k. 

PROOF. (1) Suppose M and N are models of  T ,P(M)=P(N)  and 

IP(M) I -- ~,  for some n < k. It follows that I MI -- I NI -- R,. By Theorem 
2.9, M and N have solutions and so, by Lemma 2.2, M ~-- N. 

(2) Suppose M a n d  Nare  models o f~  and ]MI = I NL = R, for some n < k. 
P(M) is uniquely determined by I(M) and P(N) is determined by I(N). 
I M J = I I(M) l, so we may assume that P(M) = P(N) and it follows then that 
M ~ N b y  Theorem 2.9 and Lemma 2.2. [] 
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3. The failure of full categoricity 

In this section, we show that ¢ is not fully categorical. 

Suppose M ~ ~ and I - - I (M) .  Without loss of  generality, we may assume 

that K ( M )  = [I] k, R ( M )  = o9, G~(M) = IJr Z~ and H a = Lt,o Z2. Further, we 

may assume that the constants ct = l for l E o9 and ca = a for a ~ Z2. 7t, p and 

+ can also be assumed to be as in the standard model/141. 

LEMMA 3.1. I f  M, N k ~, M C_ N and N has a solution then M has a 

solution. 

PROOF. Suppose that f i s  a solution for N. Fix some g:  o9 X K(M)---, M so 

that 
M ~ G b(l, u, g(l ,  u)) for every l ~ 09 and u E K(M) .  

For u E K(M) ,  let ct.~ be such that 

N ~ g(l,  u, ct.~, g(l ,  u), f ( l ,  u)). 

Choose dl.~ so that for every v ~ K ( M )  and y EZ2  

M ~ n(v, dl,~, Y) i f f M  ~ ~z(v, q,u, Y). 

Define f '  : to × K ( M )  U K ( M ) - * M  so that f ' (u )  = f (u )  for every u ~ K ( M )  
and if l e o 9  and u E K ( M )  then f ' ( l ,  u) = z where M ~ g(  l , u, dr.,,, g(  l , u ), z ). 

To check that f '  is a solution for M,  suppose v is a (k + 1)-element subset of  

I ( M )  and u0 . . . . .  uk are all the k-element subsets of  v. Fix l E o9. 

N ~ Qt( f ( l ,  Uo) . . . .  , f(uk)). 

From above, we have 

N ~ g(l,  ui, c1,.,, du,,, f ( l ,  ui), f ' ( l ,  u~)) for i < k 

and, by the choice of  dr,., 

(q,u, + d~,u,)(uk) = 0 for all i < k, 

hence M ~ Ql(f( l ,  Uo), . . . , f(Uk)). 1"3 

LEMMA 3.2. I f  M ~ ¢ and  x > [ M [ then there is N ~ ~ so that IN[ = r a n d  
M C _ N .  

PROOF. Let I (N)  be the disjoint union of  I (M)  and x. From our discussion 

at the beginning of  the section, this defines the P-part o fN.  P(M)  will be subset 

of  P(N)  except for Ga(M). The small technical point here is that we have 
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identified Ga(N) with HK~N)Z2. We will identify x ~ Ga(M) with x 'EGa(N)  
where x'(u) = x(u)  for all u ~ K ( M )  and x'(u) = 0 for all u ~ K ( N ) \ K ( M ) .  In 

this way, we embed P(M) into P(N). 

Let's consider the other predicates. I fu  EK(M)  then let Hb(U, N) = Hb(u, M). 

If u E K ( N ) \ K ( M ) ,  let Hb(u, N) = 2 <o,. It is clear how to define h for N in a 

fashion appropriate for ~. 

Let J=]IK(N)\K(M)Z 2. If u ~ K ( M )  and 1~o9 then let Gb( l ,u ,N)  = 
Gb(l, u, M)  × J and identify x E Gb(l, u, M)  with (x, 0) where 0 is the identity 

in J.  I fu  ~ K(N) \ K(M), let Gb(l, u, N) = IIKtN) Z2. We leave it to the reader to 

define a reasonable g. 

It remains to define Qt on N for each l E to. Fix an arbitrary function 

f :  K(M)---, M so that 

M ~ Hb(u, f(u)) for all u EK(M) .  

f is needed only in case (3) below. Suppose v is a (k + 1)-element subset of  

I(N) and Uo,. • . ,  Uk are all the k-element subsets ofv. Note that either v _ I (M)  

or at most one of the ui's is a subset of  I(M). Further suppose x~ ~ G b (l, ui, N) 

for i < k and xk EHb(Uk, N). There are a number of cases: 

(1)  uiEK(M ) for all i. Then x~ = (x;, a~) for some x ~ G b ( l ,  ui, M)  and 

a ; E J  for i < k. Since Uk~K(M),  let 

Qt(xo, . . . , Xk) hold in N iff M ~ Qt(x6 . . . . .  Xk-l,  Xk). 

(2) For only o n e j  < k ,  u jEK(M) ,  xj = (x], aj) for some a jEJ .  Let 

Qt(xo . . . . .  , Xk) hold in N iff Y. Xi(Uk) = Xk(l) 
i<k 

where Xj(Uk) means aj(Uk). 

(3) Only Uk ~ K ( M ) .  Choose c so that M ~ h(Uk, c, Xk, f (Uk)) .  Let 

Qt(xo, . . . .  Xk) hold in N iff M ~ ~ Xi(Uk) = C(I). 
i<k 

(4) If none of the u~'s are in K(M) then 

Qt(xo,.. . , Xk) hold in N iff ~ Xi(Uk) = Xk(l). 
i<k 

It is not hard to see that N defined in this way is a model of  ~ and with the 

appropriate identifications, M ___ N. [] 
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COROLLARY 3.3. I f  ~o is not 2-categorical then it is not x-categorical for any 
x > 2 .  

PROOF. Any two models of ¢ of cardinality 2 have isomorphic P-parts. 
Hence if ¢ is not 2-categorical there must be M ¢ 9, I M I = 2 so that M does 
not have a solution. 

By Lemma 3.2, we can find N ~ (a and M ___ N so that I NI = x. If (0 is 
x-categorical then N has a solution since there is a model of ~0 of cardinality x 
with a solution. But then by Lemma 3.1, M has a solution which is a contradic- 
tion. Hence ~o is not x-categorical. [] 

DEFINITION 3.4. Suppose M ~ ~o and io , . . . ,  ik are distinct elements of 
I(M). Let A = to × ([{i0, . . . ,  ik}] k \ { i z , . . . ,  ik}) and f be a function with 
domain containing A so that 

M ~ Gb(l, u, f(l, u)) 

Let 

for all (l, u)EA.  

x]=f( l ,{ io , . . . , i j_l ,  lj+l,' ' ' , ik) ) f o r j ~ 0  and 1<o9 

and choose y EHb({ i l , . . . ,  ik), M). Define a function g as follows: 

g ( l ) = { ~  otherwise.ifM~Q~(x~'''"xk-l'Y)' 

The invariant for io,. • •, ik via f is g + 2 <0", a coset of 2 <`0 in the abelian 
group 20". 

LEMIvIA 3.5. The definition of  invariant given above is independent of  the 
choice of  y. 

PROOF. Use the notation of the definition. Choose any y '  so that 

M ~ Hb((i~ . . . .  , ik}, Y'). 

Let C ~ H a (M) be such that 

M ~ h({il . . . . .  ik}, C, y, y'). 

Let 

g ' ( l ) = { ~  otherwise.ifM¢Qt(x°'""x/k-l'Y')' 

Now g'(l) = g ( l )  + c(l) for all l eo9  and c E 2  <0", so g '  + 2 <o' = g  + 2 <°'. [] 
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If m E to and f ,  g are functions with the same domain, define the relation 

~,~ by 

f ' m g  i f f l { x :  f ( x ) ÷ g ( x ) } ]  <Km. 

DEFINITION 3.6. Suppose M ~ ~, I CC_ I(M) and i~, . . . , ik are distinct ele- 

ments of I ( M ) \  I. Let f be a function with domain that contains 

so that 

to X([I  tO { i~ , . . . , i k} lk \{ i~ , . . . , i k} )  

M ~ Gb(l, u , f ( l ,  U)) for all (l, u ) E A .  

The 0-invariant for I, i~ . . . . .  ik v i a f i s  the function g with domain I so that 

g(a) = the invariant for a, i~ . . . . .  ik viaf .  
Suppose 0 < m < k ,  I c_ I (M) and il . . . .  , ik-m are distinct elements of  

I (M) \ I and f i s  a function whose domain contains 

A = oa X ([1 tO { i , , . . . ,  ik_m)]k\{u: { i , , . . . ,  ik-,,,) C_ u)) 

so that 

M ~ Gb(l, i , f ( l ,  u)) for all (l, u ) ~ A .  

Let Io c_ . . .  c_ Ira- ~ C_ I where I Ii I = Ri. Choose a function f '  so that the 

domain o f f '  contains 

n : to × ( [ I  m -1  U { i l , . . .  , i k_  m } ]k), 

f '( l ,  u )~  Gb(l, u, M) a n d f '  and fag ree  on their common domain. 

The m-invariant for I, i~ , . . . ,  ik-m via I0, • • . ,  Ira_ ~ a n d f i s  the ~-m-class of  
the function h with domain I \Im_ l where h ( a ) =  the (m - 1)-invariant for 

Im-I and a, i~ . . . .  , ik-m via I0,. .  •, Ira-2 a n d f '  U f .  

LEMMA 3.7. The definition of  m-invariant above is independent of  the 

choice off ' .  

PROOF. Note that by Lemma 3.5, the definition of  0-invariant is well- 

defined. Use the notation of the definition for m-invariant for m > 0. Choose 

any other applicable f" .  Let 

C = U (v: 3 u ~ K(M), 1 < to, c ~ Ga(M) so that (l, u) E B, 

c(v) ~ 0 a n d M  ~ g(l, u, c, f '( l ,  u), f"(l ,  u))}. 

I CI < Rm-~ since IBI = Rm-I and i f a  ~I \ ( Im_~ U C) then the value o fh (a )  

Sh:323



Vol. 70, 1990 CATEGORICITY 233 

is not affected by the choice o f f "  instead o f f ' .  Hence the ~m-class of  h is 

well-defined. [] 

Suppose that I is an infinite set and g:  [I] k ~  20"/2 <0". We will define the 

canonical structure M s on I via g. 
The P-part of  Mg is the same as Ml. Moreover, so are the predicates G b and 

g. However, Hb(u, Mg) = {u} × g(u) for all u E[I] k. We modify h so that 

h(u, x ,  (u, y), (u, z)) holds in Mg i f fx  + y = z 

where the addition takes place in 2 °'. (Note 2 <0" __ 20".) 

The definition of  Qt is identical to the one for Mi. It is not hard to show that 

Mg satisfies ~0. 

THEOREM 3.8. Let 2 be the least cardinal such that 2~ -, < U.  ~o is not 
categorical in 2. In fact, there are 2 a many non-isomorphic models o f  ~o of  
cardinality 2. 

REMARK. Note that R k_ 1 < • ~-~ 2 ~. 

PROOF. Let B 0 = (fa : a ~20"/2 <0"} wherefa : R0--" 20"/2 <0" so thatfa(i) = a 

for all i ~ R0. Define Bm inductively for 0 < m < k - 1. Suppose we have 

defined Bm-v Let C = ( h : h : R m \ R m - t - - ' B m - t ) .  Let Bm be a maximal 

collection of  ~,cequivalent elements in C. It is not hard to show that 

IB,,I = 2  ~". 
n ~  k [ o • * ~  Fix A c_ t~k'---i Ot size A. we wish to define a struture M A in such a way as to be 

able to recover A. Let IA -- Rk-2 U Rk-i X Rk-i U A. Choose gA : [IA] k--" 
20"/2 <o' SO that i f i , , ,ER, , , \Rm- t  for 0 < m  < k -  1, o~,fl<Rk-1 and a E A ,  
then 

g({a, (ol, fl), ik-2, • • •, it}) = a(a)(ik-2) ' ' '  (it) 

and otherwise g(u) is arbitrary. Let M A be the canonical structure on IA via gA. 
We try to recover A by looking at (k - 2)-invariants. We need to fix certain 

functions for the rest of  the argument. Let 

f :  to × K ( M  A) ~ M A 

be defined so thatf(l ,  u) = (l, u, 0) where 0 is the identity element in LIxtuA) Z2. 

Remember that (l, u, 0) is a member of  Gb(l, u, MA). L e t f  be the restriction of  

f to t o × [ R k _ 2 U R k _ l X R k _ d  k and let h be the restriction of  f to 

to X [Rk_ 2 UA] k. 

CLAIM 3.9. Suppose m < k - 1 and ij E Rj \ Rj_ t for m < j  < k - 1. The 
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m-invariant for Rm, im,... , i  k_2, (a, fl), a via R0 . . . .  , R m _  1 and f is the 
~'m-class of  a(a)(ik-2)' '  "(ira+l). ( I f  m = 0  then a(a)(ik_2).. "(iO is the O- 
invariant.) 

PROOF. Notice tha t fconta ins  all possible domains required for calculating 
invariants, fessentially chooses the zero in all the Gb(l, u, MA)'s. 

We prove this claim by induction on m. Suppose the notation is as is in the 
claim. Choose 

y ~a(a)( ik_2). . .  (il) = Hb(u, M a) 

where u ( it . . . . .  ik- 2, (a, fl), a ). 
Since fchooses  the zero in all Gb(l, u, M A)'s, the value y(l) determines the 

truth value of the appropriate instance of Qt. This is independent  of the choice 

of  i0E R0 so the 0-invariant is a(a)(ik_2)...  (iO. 
The induction step is similar. [] 

A consequence of the claim is that i f a  CA and a, fl < [~k-t then the (k - 2)- 
invariant for Rk-2, (a, fl), a via Ro . . . . .  Rk-3 (if k > 3 )  and f t . Jh  is the 
~'k-2-class of a (a). The domain of  h is too large however to allow us to say we 
have captured a. 

So suppose we use some h '  instead of h which agrees w i t h f o n  their common 
domain.  Then for any a CA,  the value of at most Rk-2 many of the 
(k - 2)-invariants calculated above would be affected. Hence to recover a(a), 
for every fl < R k - l ,  calculate the ( k -  2)-invariant for Ik_2, (ot, fl), a via 
•0 , . . . , •k_3  and f u h '  for any h'. All but  at most Rk_ 2 of the 
(k - 2)-invariants will agree and this (k - 2)-invariant will be the '~k-E-Class 

of a (~). 
So by fixing Rk-2 t3 Rk-i × Rk-1 and f w e  are able to recover A. We have 

fixed Rk-1 elements then and there are 24 many possible A's, so 2 ~ many of  the 
MA's are non-isomorphic since 2~ -, < 24. [] 

COROLLARY 3.10. (1) t,o is not 2~-,-categorical. 
(2) T is not relatively categorical. 

PROOF. The first is obvious from Theorem 3.8, the remark after it and 
Corollary 3.3. To see the second, notice that all the models built in the proof  of  
Theorem 3.8 have isomorphic P-parts and are models of  T. Hence T is not 
relatively categorical. [] 
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