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 PROCEEDINGS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 105, Number 1, January 1989

 KAPLANSKY'S PROBLEM ON VALUATION RINGS

 LASZLO FUCHS AND SAHARON SHELAH

 (Communicated by Louis J. Ratliff, Jr.)

 Dedicated to Irving Kaplansky on his seventieth birthday

 ABSTRACT. The following theorem is proved in ZFC: there exist valuation rings
 which are not surjective homomorphic images of valuation domains. The proof
 relies on the existence of nonstandard divisible uniserial modules in ZFC.

 Let R be a valuation ring (in another terminology: a chained ring), i.e. a
 commutative ring with 1 in which the ideals form a chain under inclusion. A

 valuation domain is a domain that is a valuation ring at the same time.

 Kaplansky raised the question as to whether or not every valuation ring R
 can be obtained as a (surjective) homomorphic image of a valuation domain
 S. Under additional conditions on R, the answer is affirmative; see Ohm and
 Vicknair [3] and the literature cited there. On the other hand, Fuchs and Salce
 [2, p. 151] have given an explicit example for a valuation ring which can not be
 obtained in the indicated way. Their proof was based on the existence of non-
 standard divisible uniserial modules by using Jensen's Diamond Principle which
 holds in the constructible universe but not in ZFC alone (Zermelo-Fraenkel set

 theory with the Axiom of Choice). Franzen and Gobel [1] pointed out that the

 slightly weaker hypothesis 2t4' < 2 ' suffices. (The existence of nonstandard
 uniserials was first established by Shelah [5] by using forcing argument; later he

 replaced it by an absoluteness result of stationary logic.)

 Our aim here is to prove in ZFC the existence of nonstandard divisible unis-

 erial modules and the existence of valuation rings which are not obtainable as
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 26 LASZLO FUCHS AND SAHARON SHELAH

 homomorphic images of valuation domains. We also improve on the algebraic

 part of the argument.

 1. PRELIMINARIES ON VALUATION RINGS

 In a valuation ring R, the nilradical N coincides with the set of nilpotent

 elements of R. This N is the minimal prime of R.

 A relevant information about the powers of primes is the content of the next

 lemma. Here uniserial means that the submodules form a chain.

 Lemma 1. Let P be a prime ideal of the valuation ring R such that p2 p.
 If Q* denotes the field of quotients of R* = R/P, then

 (1) for each n > 2, pn-i/pn is a divisible uniserial R*-module;

 (2) if P: $O, then pn-l/pf R Q*
 Proof. Evidently, pn l/pn is an R*-module. To verify that it is uniserial,

 pick x, y pnfl\pn. Then y = rx for some r E R (or vice versa). y 0 pn
 guarantees that r PF, hence y + pn E R*(x + pn).

 Observe that for a prime ideal P of a valuation ring R, rP = P holds

 for all r E R\P (see e.g. [2, p. 15]). Hence rPn = pn for every n > 1 and

 r E R\P, and the R*-divisibility of pnl/ppn follows.
 Turning to the proof of (2), suppose rx = y E pn for some r E R\P and

 X E pn l\pn. In view of rPn = pn, we can write y = rz (z E pn) where
 z = tx for some t E R. This t cannot be a unit, so 1 - t is a unit, and

 r(1 - t)x = 0 implies rx = 0. We infer that r annihilates Rx, and hence its

 submodule pn = rPn . Consequently, pn = 0, and all pn-l/Pn with pI :$ 0
 are torsion free as R*-modules. The proof can be completed by observing that

 a torsion-free divisible uniserial R*-module is necessarily isomorphic to Q*.

 Applying the preceding lemma to P = N, we conclude that in the descending

 chain N > N2 > > N n- > Nn = 0, all factors are isomorphic to Q* with
 n-1 n-i

 the possible exception of the last one: N - . Information on N is given
 by

 Lemma 2. If the valuation ring R is a homomorphic image of a valuation do-

 main, and if its nilradical N satisfies Nn $ 0 = Nn, then Nn is an epic
 image of Q*

 Proof. Let q: S --p R be a surjective homomorphism, S a valuation domain.

 0q N = P is a prime ideal of S such that qP' = N' for every i. Clearly,

 0 induces an R*-epimorphism pni l/pn Nn I/Nnn Since S is a domain,
 pn :$ 0, SO by Lemma 1, the first module is isomorphic to Q*.

 Let R* be a valuation domain and U* a divisible uniserial R*-module.
 Following [2], we call U* standard if it is an epic image of Q* ; otherwise U*
 is nonstandard. Form the R*-module

 (1) R =R U
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 KAPLANSKY'S PROBLEM ON VALUATION RINGS 27

 and define multiplication in R via

 (r,u).(s,v) = (rs,su+rv) (r,sER* ;u,v e Ut).

 We then obtain a valuation ring R with nilradical N = U* where N = 0.

 The "if' part of the next lemma is based on an observation by J. Ohm.

 Lemma 3. The valuation ring (1) is a homomorphic image of a valuation domain
 if and only if U* is a standard uniserial divisible R*-module.

 Proof. Necessity is obvious from Lemma 2. Conversely, let U* Q* /K* for an
 ideal K* of R*. Consider the formal power series ring S in Q* [[t]] consisting

 of all formal power series of the form

 ao +a t+ +amt +. -

 with a E R*, am E Q* (m > 1). It is readily seen that either R 2SSt or

 R S/K*St according as K* =0 or $A 0.

 2. DIVISIBLE UNISERIAL MODULES

 To solve Kaplansky's problem, we proceed to verify the existence of valu-

 ation domains R which admit nonstandard divisible uniserial modules. We

 accomplish this goal by relying on results in Shelah [4]. We emphasize that we

 are working in ZFC.

 Consider the class K consisting of (multisorted) models N = (LN, Q' , UN
 N rN N

 T ,f ,g ) where

 (i) LN is a linearly ordered set without largest element,

 (ii) QN is the field of quotients of a valuation domain RN with the field
 operations and a predicate for RN

 fN LN - RN\0
 satisfying

 (a) s < t in LN implies that fN (s) divides fN(t) in RN;
 (,B) for every a E R N\0 there is an s E LN such that a divides f N(s).

 [Note that these conditions assure that {fN(s)R NIS E L } is a chain of
 ideals with 0 intersection.]

 (iii) UN is a divisible uniserial torsion R -module with a function

 gN LN , UN

 satisfying

 (y) s < t in LN implies gN (s)RN < gN (t)RN in UN;
 N

 (6) for each s E L ,we have

 Ann g (s) = {r ER Nrg (s) = O} = f (s)R

 [Observe that the union of the submodules gN (s)R N(s E LN ) is divisible,
 hence equals UN , and the elements of UN have principal ideal annihilators.]
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 28 LASZLO FUCHS AND SAHARON SHELAH

 (iv) TN is a tree (i.e. a partially ordered set such that {yIy < x} is linearly
 NN

 ordered for every x) with levels Tt indexed by the elements t of L , more
 explicitly, this means that xl < x2(xi E Tt1 ) implies t1 < t2 in L , and
 t1 < t2 in LN, X ETN imply there is a unique xl E T with xl < x2, and

 N N N N

 the relation {(t, x)It E L X E TtN} is one of the relations ofT . TtN is
 defined to be the set of all isomorphisms

 N -N N N N

 t f (t) R IRN gN (t)RN
 between the indicated submodules of QN /RN and U N, where the partial order

 is defined by setting 0, < kt exactly if s < t and Os is a restriction of Ot
 The following lemma is a straightforward consequence of the definition.

 Lemma 4. K is the class of models of a first order theory F. W1

 For N E K, a subset BN of the tree TN is called a full branch of TN if it

 is a linearly ordered subset of TN which contains exactly one element at each
 level TtN i.e. IBN nTtNI = 1 for each t E LN.

 Lemma 5. For N E K, the uniserial R -module UN is isomorphic to Q/R
 (and hence standard) if and only if TN contains a full branch.

 Proof. If ,v: Q/R -UN is an isomorphism, then the restrictions yt of V to
 f N(t) R N/RN form a full branch of TN . On the other hand, if BN is a full
 N N N

 branch of T , then V = U{,Vt t E B } defines an isomorphism Q/R --+ U

 Our final preparatory lemma is concerned with certain models of ZFC.

 Lemma 6. Every model V of ZFC has a generic extension in which, for some

 N E K, UN is a nonstandard uniserial R -module.

 Proof. As is shown in Fuchs-Salce [2, p. 149], ZFC +0, implies that a model
 N E K with UN nonstandard uniserial does exist. If K iS a regular uncountable

 cardinal, then forcing V with Levy (N, 2 )No will be satisfied-as is well
 known. Hence the claim is immediate.

 Another proof for Lemma 6 can be given by using the method applied in

 Shelah [5].

 We have come to the main existence lemma.

 Lemma 7. For every regular cardinal A, there is a model N E K such that both

 RN and UN have cardinalities A+ and UN is a nonstandard divisible uniserial
 R -module.

 Proof. For any first-order formula 0(x, j) in function symbols and predicates

 from the vocabulary T of K only, there is a first-order formula ,v,(y) such
 that for N E K and a finite sequence a from N of the length of jT

 N

 ()N j:= VIokd] if and only if {b E NIN j:= q(b, a)} is a full branch of T
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 KAPLANSKY'S PROBLEM ON VALUATION RINGS 29

 Let J+ = Pu (3{() V' (Y) q$(x yj) is a first-order formula in the vocabulary T} .
 Now r+ is a first-order theory. After the forcing, it has a model (see Lemma
 6) and hence is consistent, i.e. by Gobel's completeness theorem, there is no

 finite proof of contradiction from F+ . But any such proof is a finite sequence
 of formulas, hence it is from the universe before the forcing. It follows that

 F+ is consistent in V (this is a well-known absoluteness theorem). Now by
 Theorem 12 in [4, p. 81], r+ has a model N of cardinality A+ in which

 TN has no full branches except for those definable in N by some first-order
 formula with parameters from V. But by the definition of F+, there are no

 such formulas. Now the proof of Theorem 12 of [4] gives that every subset of
 N definable by a first-order formula with parameters is of size A+?; alternatively

 1 2

 use F* = F+ u { V VI} where Vi' says that Fj is a one-to-one function from

 N to RN and U , respectively. By Lemma 5, UN is nonstandard. [1
 Another proof can be given by using the following argument. Denote by F

 the first-order theory in which K is a class of models; such a F exists in view of

 Lemma 4. Lemma 6 guarantees that in some generic extension of V, F has a

 model N for which the tree TN fails to have a full branch. This means that if
 Y is the first-order logic expanded by a quantifier on full branches of trees (see
 Application D in [4, p. 74]; of course L(QBr) satisfies the completeness theorem

 by Theorem 12 of [3, p. 81]), then there is a V E Y saying that TN has no
 full branch. Consequently, F u { VI} has a model in some generic extension.
 Therefore, it is consistent in V. We refer to [4] to conclude that F u { VI} has
 in V a model N of cardinality A+ (in which all nonfinite definable sets have

 cardinality A+). Again by Lemma 5, UN is nonstandard.

 3. THE EXISTENCE THEOREM

 We can now put the pieces together to prove our main result, answering

 Kaplansky's problem.

 Theorem (ZFC). There exist valuation rings (the squares of whose nilradicals
 vanish) which are not homomorphic images of valuation domains.

 Proof. By Lemma 7, there exist valuation domains R* which admit non-

 standard divisible uniserial R*-modules U* . An appeal to Lemma 3 completes
 the proof.
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