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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 60, Number 4, December 1995 

CONSTRUCTING STRONGLY EQUIVALENT NONISOMORPHIC 
MODELS FOR UNSUPERSTABLE THEORIES. PART B 

TAPANI HYTT1NEN AND SAHARON SHELAH 

Abstract. We study how equivalent nonisomorphic models of unsuperstable theories can be. We measure 

the equivalence by Ehrenfeucht-Fra'isse games. This paper continues [HS]. 

§1. Introduction. In [HT] we started the studies of so-called strong nonstructure 
theorems. By a strong nonstructure theorem we mean a theorem which says that if a 
theory belongs to some class of theories then it has very equivalent nonisomorphic 
models. Usually the equivalence is measured by the length of the Ehrenfeucht-
Fra'isse games (see Definition 2.2) in which 3 has a winning strategy. These 
theorems are called nonstructure theorems because intuitively the models must 
be complicated if they are very equivalent but still nonisomorphic. Also structure 
theorems usually imply that a certain degree of equivalence gives isomorphism 
(see, for example, [Shi] (Chapter XIII)). 

In [HT] we studied mainly unstable theories. We also looked at unsuperstable 
theories, but we were not able to say much if the equivalence is measured by the 
length of the Ehrenfeucht-Fra'isse games in which 3 has a winning strategy. In 
this paper we make a new attempt to study the unsuperstable case. 

The main result of this paper is the following: if X — /u+, cf(//) = /i, K = cf (K) < 
fi, X<K — X, fiK = ju and T is an unsuperstable theory, \T\ < X and K{T) > K, 
then there are models sf, 3B |= T of cardinality X such that 

rf E J X S J 1 and s^^3§. 

In [HS] we proved this theorem in a special case. 
From Theorem 4.4 in [HS] we get the following theorem easily: Let Tc be the 

canonical example of unsuperstable theories i.e. Tc. — Th((wcj,Ej)i<w), where 

nEit iff for all j<i,n(j) = Z(j)-
1.1. THEOREM ([HS]). Let X = ju+, and let lo andl\ be models ofTc of cardinality 

X. Assume X e I[X]. Then 
I0=MX^+2l1 ^ 70 = / l -

So the main result of §3 is essentially the best possible. 
In the Introduction of [HT] there is more background for strong nonstructure 

theorems. 

Received November 2, 1993; revised February 17, 1995. 

The second au thor was partially supported by the United States-Israel Binational Science Foun­

dation. This paper is number 529 in the cumulative list of his publications. 

©1995, Association for Symbolic Logic 

0022-4812/95/6004-0015/502.30 

1260 

Sh:529



STRONGLY EQUIVALENT NONISOMORPHIC MODELS 1261 

§2. Basic definitions. In this section we define the basic concepts we shall use 
and construct two linear orders needed in §3. 

2.1. DEFINITION. Let A be a cardinal and a an ordinal. Let t be a tree (i.e. for 
all x £ t, the set {y £ t\ y < x} is well-ordered by the ordering of t). If x, y £ t 
and {z £ t \ z < x} ~ {z £ t \ z < y}, then we write x ~ y, and the equivalence 
class of x for ~ we denote by [x]. By a X, a-tree t we mean a tree which satisfies: 

(i) \[x]\ < X for every x £ t; 
(ii) there are no branches of length > a in t; 
(iii) t has a unique root; 
(iv) if x, y £ t, x and y have no immediate predecessors and x ~ y, then x = y. 
Note that in a X, a-tree each ascending sequence of a limit length has at most 

one supremum. 
2.2. DEFINITION. Let / be a tree and K a cardinal. The Ehrenfeucht-Fraisse game 

of length t between models stf and SB, Gf(srf,SB), is the following. At each move 
a: 

(i) player V chooses and either aH £ s4, p < na, or bd £ SB, 
fi < Ka—we will denote this sequence by Xa; 

(ii) if V chose from saf then 3 chooses bL £ SB, fi < Ka, else 3 chooses a'a £ srf', 
/? < Ka—we will denote this sequence by Ya. 

V must move so that (^)^<Q form a strictly increasing sequence in t. 3 must 
move so that {{ay ,by)\y < a, ft < K},} is a partial isomorphism from sf to SB. 
The player who first has to break the rules loses. 

We write sf =? S3 if 3 has a winning strategy for G?{stf,3§). 
2.3. DEFINITION. Let / and t' be trees. 
(i) If x £ t, then pred(x) denotes the sequence (xQ)Q<ys of the predecessors of 

x, excluding x itself, ordered by <. Alternatively, we consider pred(x) as a set. 
The notation succ(x) denotes the set of immediate successors of x. If x,y £ t 
and there is z such that x,y £ succ(z), then we say that x and y are brothers. 

(ii) By t<a we mean the set 

{x £ t\ the order type of pred(x) is < a}. 

Similarly we define t-a. 
(iii) The sum / © t' is defined as the disjoint union of t and t', except that the 

roots are identified. 
2.4. DEFINITION. Let /?,, i < a, p and 9 be linear orders. 
(i) We define the ordering p x 9 as follows: the domain of p x 9 is {(x,y)\ x £ 

p, y £ 9}, and the ordering in p x 9 is defined by last differences, i.e., each point 
in 9 is replaced by a copy of p. 

(ii) We define the ordering p + 9 as follows: The domain of p + 9 is ({0} x 
p) U ({1} x 9) and the ordering in p + 6 is defined by the first difference, i.e., 
(i, x) < (j, y) iff / < j or / = j and x < y. 

(iii) We define the ordering X)/<Q P> a s f°l l°w s : The domain of ^j<a p,- is 
{(i, x)\ i £ a, x £ p^ and the ordering in ^2i<a pt is defined by the first difference, 
i.e., (/, x) < (j, y) iff / < j or / = j and x < y. 

2.5. DEFINITION. We define generalized Ehrenfeucht-Mostowski models (E-M-
models for short). Let K be a class of models which we call index models. In 
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1262 TAPANI HYTTINEN AND SAHARON SHELAH 

this definition the notation tpat(x, A, si) means the atomic type of ~x over A in 
the model sf. 

Let $ be a function. We say that <J> is proper for K if there is a vocabulary x\ 
and for each I e K a model Mi and tuples as, s G I, of elements of Mi, such 
that: 

(i) each element in Mi is an interpretation of some fife), where pi is a Ti-term; 
(ii)_tpat(flT,,Mi) = <D(tpat(s,0,/)). 

Here s = (so, ...,s„) denotes a tuple of elements of I and aj denotes a so ̂ * • • • ^ as„. 
Note that if Mi, as, s el, and M,, ~a's, s el, satisfy the above conditions, then 

there is a canonical isomorphism Mi = M, which takes fi(a~j) in Mi to fi^a'j) in 
MJ. Therefore we may assume below that Mi and as, s e I, are unique for each 
I. We denote this unique Mi by EM1 (/,<!>) and call it an Ehrenfeucht-Mostowski 
model. The tuples as, s e I, are the generating elements of EM1 {I,<S>), and the 
indexed set (as)S£i is the skeleton of EM1 (/,*)• 

Note that if 
tpa t (J i ,0 , / )=tpa t (s2 ,M), 

then 
tp j a j , , 0, EM1 (/, O)) = tpat(aj2,0, EM1 (J, <D)). 

2.6. DEFINITION. Let 8 be a linear order and K an infinite regular cardinal. Let 
K£{0) be the class of models of the form 

I = {M,<,<&,H,Pa)a<K, 

where M C 6-K and: 
(i) M is closed under initial segments; 
(ii) < denotes the initial segment relation; 
(iii) H{n, v) is the maximal common initial segment of r\ and v; 
(iv) Pa = {n e M | lengthen) = a}; 
(v) i |«v iff either n < v or there is n < K such that n(n) < v(n) and ^ f n = v f n. 

Let K£ = U{^tr(^) I 6 a linear order }. 
If I e ^5(^) an<i >/>v € 7, we define ^ <4 v iff n and v are brothers and r\ < v. 

But we do not add <s to the vocabulary of I. 
Thus the models in K£ are lexically ordered trees of height K + 1 from which 

we have removed the relation <s and where we have added relations indicating 
the levels and a function giving the maximal common predecessor. 

The following theorem gives us means to construct for T E-M-models such that 
the models of .££ act as index models. Furthermore the properties of the models 
of ATtr are reflected to these E-M-models. 

2.7. THEOREM ([Shi]). Suppose T C TI, T is a complete x-theory, T\ is a complete 
x\-theory with Skolem functions and T C T\. Suppose further that T is unsuper-
stable, K(T) > K and </>„(*, 7„), n < K, witness this. {The definition of witnessing 
is not needed in this paper. See [Shi].) 

Then there is a function O, which is proper for K£, such that for every I e Kg, 
EM1 (/,<!>) is a x\-model ofT\,for all n e I, ~an is finite and for n,£ € P!„, v e P'K, 

(i) ifl\=ri< v, then EM1 (I,®) \= <pn(av,an); 
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(ii) ifrj and £, are brothers and n < v then £ = n iff EM1 (I, O) |= <j>n (a%, av). D 
Above <pn('x,~yn) is a first-order r-formula. We denote the reduct 

EM^/.G) \r 

by EM (/,<&). In order to simplify the notation, instead of ~an, we just write n. It 
will be clear from the context whether n means ~an or n. 

Next we construct two linear orders needed in the next section. The first of these 
constructions is a modification of a linear order construction in [Hu] (Chapter 9). 

2.8. DEFINITION. Let y be an ordinal closed under ordinal addition and let 
6y = ( <coy, <), where < is defined by x < y iff 

(i) y is an initial segment of x 
or 

(ii) there is n < min{length(x),length(^)} such that x \ n = y \ n and 
x{n) <y{n). 

2.9. LEMMA. Assume y is an ordinal closed under ordinal addition. Let x € 9y, 
length(x) = n < co and a < y. Let A® be the set of all elements y of6y which 
satisfy: 

(i) x is an initial segment of y (not necessarily proper); 
(ii) iflength(y) > n then y{n) > a. 

Then(A°,<\Aa
x)?*9y. 

PROOF. Follows immediately from the definition of 8y. O 
If a < p are ordinals then by {a, 0] we mean the unique ordinal order isomor­

phic to 
{S\ a < 8 < P) U {8\ 5 = a and limit} 

together with the natural ordering. Notice that if (a/),«$ is strictly increasing 
continuous sequence of ordinals, ao = 0, /? = sup,<(5 a, and for all successor 
i < S, at is successor, then ]C,-«i(^ x (Q/)%i]) = 6 x fi, for all linear orderings 
6. 

2.10. LEMMA. Lety be an ordinal closed under ordinal addition arid not a cardinal. 
(i) Let a < y be an ordinal. Then 8y = 6y x (a + I). 
(ii) Let a < / ? < \y\+. Then 9y a 6y x (aJ]. 
PROOF, (i) For all i < a we let x, — (i). Then by the definition of 6y, 

\ '<a / 

where by () we mean the empty sequence. By Lemma 2.9 

V i<a / 

(ii) We prove this by induction on p. For /? = 1 the claim follows from (i). 
Assume we have proved the claim for /? < /?'; we prove it for /?'. If /?' = 8 + 1, 
then by induction assumption 6y = Gy x (a,8], and so 

ey x (a,8 + i]^ey + ey^ey 

by (i). 
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1264 TAPANI HYTT1NEN AND SAHARON SHELAH 

If [I' is limit, then we choose a strictly increasing continuous sequence of ordi­
nals (A)/<cf(/?') s o that /?o = a, sup,<cf(|y,) /?,- = /?' and, for all successor i < cf (/?'), 
/?,- is successor. Then 

;<cf(/?') 

By the induction assumption 

J2 (9y x (A, A+i]) + 0y = 9y x (cf(/n + 1). 
/<cf(/f') 

Because y is not a cardinal, cf(/?') < 7, and so by (i) 

9y x(cf(j8') + l) = ^ - • 

2.11. COROLLARY. £ef y fee an ordinal closed under ordinal addition and not a 
cardinal. If a < \y\+ is a successor ordinal then, 9y = 9y x a. 

PROOF. Follows immediately from Lemma 2.10 (ii). • 
2.12. LEMMA. Assume fi is a regular cardinal and X = /u+. Then there are a 

linear order 9 of power X, a one-to-one and onto function h : 9 —> X x 9, and order 
isomorphisms ga : 9 —> 9 for a < X such that the following hold: 

(i) If ga(x) = y then x ^ y and either (a) h{x) = {a,y) or (b) h{y) = (a,x), 
but not both. 

(ii) If ga(x) = ga'(x) for some x G 9, then a = a'. 
(iii) Ifh{x) = {a,y), then ga{x) = y or ga(y) = x. 
PROOF. Let the universe of 9 be ju x X. The ordering will be defined by induc­

tion. Let / : X —> X x X be one-to-one and onto, and if a < a', / ( a ) = (/?,y) 
and f(a') = (/? ' , / ) , then y < y'. This / is used only to guarantee that in the 
induction we pay attention to every fi < X cofinally often. 

By induction on a < X we do the following: Let / ( a ) = (/?, y). We define 
9a = {/u x {a + l ) , < a ) , ha : 9a -> X x 9a and order isomorphisms (in the 
ordering <a) gj : 9a -> 9a so that 

(i) if a < a', then ha C ha' and <aC<a', 
(ii) if a < a', f(a) = (p,y) and f(a') = (/?,/), then gj C g°', 
(iii) ifgfjix) = y, then x ^ y and either (a) /za(x) = (p,y) or (b) ^ ( j ) = (/?,*), 

but not both. 
The induction is easy since at each stage we have ju "new" elements to use: Let 

B C JU x abe the set of those element from /xxa which are not in the domain of 
any g?' such that a1 < a and / ( a ' ) = (/?, / ) for some y'. (Notice that B is also 
the set of those element from /1 x a which are not in the range of any g? such 
that a' <a and f(a') = (/}, / ) for some 7'.) Clearly if B + 0, then | 5 | = //. 

Let Aj, i € Z, be a partition o f / i x {a} into sets of power /u. We first define 
gp so that the following are true: 

(a) gp is one-to-one, 
(b) if' B ^ 0, then g? \ Ao is onto 5 ; otherwise gfi \ AQ is onto A_\, 
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(c) if B ^ 0, then g% \ B is onto A-\, 
(d) for all i ^ 0, g° \ At is onto At-\. 

By an easy induction on |/| < co we can define <a so that <a'c<a for all 
a' < a and g9 is an order isomorphism. We define the function ha \ (ju x {a}) 
as follows: 

(a) if 5 = 0, thenha(x) = (p,g%(x)); 
(b) if B ^ 0 and i > 0 and x e At, then /;a(x) = {fi,gf(x)); 
(c) if 2? / 0 and / < 0 and x £ ^,-, then /;a(x) = (/?, j ) where y £ Ai+\ or B 

is the unique element such that gg{y) = x. 
It is easy to see that (iii) above is satisfied. 
We define 6 = (/u x X, <), where < = \Ja<k <

a, h = \Ja<- ha and for all fl < X 
we let gfi = Ui^al a < ^> f(a) — (A y) f° r some y}. Clearly these satisfy (i). (ii) 
follows from the fact that if g? (x) — y then either x £ jux {a} and y £ n x (a + 1) 
or y e /u x {a} and x £ ju x (a + l). (iii) follows immediately from the definition 
of/j. • 

§3. On nonstructure of unsuperstable theories. In this section we will prove the 
main theorem of this paper, i.e., Conclusion 3.19. The idea of the proof continues 
III, Claim 7.8 in [Sh2]. Throughout this section we assume that T is an unsu­
perstable theory, \T\ < X and K(T) > K. The cardinal assumptions are: X = /LC+, 
C((JU) = jx, K = cf(/e) < ju, X<K = X, /uK = ju. 

If i < K, we say that;' is of type n, n = 0,1,2, if there are a limit ordinal a < K 
and k < co such that i = a + 3k + n. 

We define linear orderings 8n, n < 3, as follows. Let do = X and 6\, h' and ga, 
a < X, be as 6, h and gQ in Lemma 2.12. Let #2 = Oftxm X X, where 0MXa> is as in 
Definition 2.8. 

For n < 2, let /„"" be the set of sequences r\ of length < K such that 

(i) ^ 0; 
(ii) //(0) = «; 
(iii) if 0 < / < length^) is of type m < 3, then rj{i) £ 0m. 
Let 

/ : (X - {0}) - {(n,Z) £ J0~ x / ," | fe«g/A(»/) = /e«g?M£) is of type 1} 

be one-to-one and onto. Then we define h : d\ —• ./0~ U / f and order isomorphisms 
&,,,* : succ(^) -> succ(£), for (r\,t) £ rng( / ) , as follows: 

(i) Sni^l ^ (*)) = £ '""•* (&*(•*))> where a is the unique ordinal such that 
/ (o) = (7.0; 

(ii) Assume /z'(x) = (a,y), a / 0 , and / ( a ) = (rj,£). Then /*(x) = £ ^ (y) 
if ga(x) = y; otherwise h(x) = n ^ (j>). If A'(x) = (0,.y), then h(x) = (0) (here 
the idea is to define h(x) so that length(/;(x)) is not of type 2). 

3.1. LEMMA. Assumerj £ J0~ and^ £ / j ~ are such thatm = length^) = length(£) 
is of type 2. Let m = n + 1. If gn,i(n') — £' ^e« ez'f/jer (a) h(t]'(n)) = SJ or (b) 
h{£,'{n)) = tj', but not both. 

PROOF. We show first that either (a) or (b) holds. So we assume that (a) is not 
true and prove that (b) holds. Let rj'{n) = x, £'(n) — y and / ( a ) = (n,£)- Now 
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1266 TAPANI HYTTINEN AND SAHARON SHELAH 

ga(x) = y, x ^ y, and either h'(x) = (a,y) or h'{y) = {a,x). Because (a) is not 
true we have h'(x) ^ (a, y), and so h'{y) = (a,x) . We have two cases: 

(i) Case y > x: Because ga is order-preserving, ga{y) > y > x. So ga{y) ^ x 
and, by the definition of h, h{y) =rj ^ (x) = rj'. 

(ii) Case y < x: As the case y > x. 
Next we show that it is impossible that both (a) and (b) hold. For a contra­

diction assume that this is not the case. Then (a) implies that there is P such that 
h'{x) = (/?,y) and gp(x) = y. On the other hand, (b) implies that there is y such 
that h'{y) = {y,x) and gy{y) ^ x. By Lemma 2.12 (iii), gy{x) = y. By Lemma 
2.12 (ii), p = y. So h'(y) = (P,x) and h'(x) = {p,y), which contradicts Lemma 
2.12 (i). D 

For n < 2, let 7 + be the set of sequences rj of length < K such that 
(i) n ± 0; 
(ii) j/(0) = «; 
(iii) if 0 < i < length^) is of type m < 3, then rj{i) £ 9m. 
Let e : 8\ —* X be one-one and onto. We define functions s and d as follows: 

if i < length^) is of type 0, then d{tj, i) = ri(i) and s(r/, i) = rj{i); if i < length^) 
is of type 1, then d(t],i) — rj(i) and s(tj,i) = e(rj(i)); and if i < length^) is of 
type 2 and rj(i) = {d, s), then d{r\, i) = d and s{rj, i) = s. 

For « < 2 and y < X, we define 

Jnb) = {>7 e 7+| for all i < length^), 5(1;, i) < y}, 

mdJ-(y)=J+(y)nJ-. 
Let us fix d € B\ so that h(d) = (0). 
3.2. DEFINITION. For all rj e /0~ and £ S / f such that n ~ length(?/) = length(£) 

is of type 1, let a(rj,£) be the set of ordinals a < X such that, for all tj' 6 succ(^), 
s(rj',n) < a iff sCg^O/'),") < a and e(d) < a. Notice that a(rj,^) is a closed 
and unbounded subset of A. By a{p), fi < X, we mean 

Min f]{a(r,,i)\ V e J^iP), Z G /f(y?), length^) = length(£) is of type 1}. 

3.3. DEFINITION. For all r\ e /0
+ and £ G /,+, we write î?~<J and <Ji?~>7 iff 

(i) lij) = £U) for all 0 < j < min{length(//),length((J)} of type 0; 
(ii) for all j < min{length(^),length(^)} of type 1, 

i r(; + i)=^rwry(»7r0" + l)). 

Let length^) = length(£) = j + 1, j of type 1, and r/R~£. We write rj —> £ if 
h{rj{j)) = £. We write | —• 77 if h{£,{j)) — rj. 

3.4 REMARK. If £, —> 77 and £ —> 7', then rj = r\', and if r)R~£,, then ^ —> £, or 
^ —> 77, but not both. 

3.5. DEFINITION. Let ^ € / + - /0~ and <f e / + - J f . We write rjR£, and ^i??/ 
iff 

(i) i7*-& 
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(ii) for every j < K of type 2, rj and £ satisfy the following: if r\ \ j —* £ \ j , 
then s(^ , ; ) < s(£,j), and if £ f j -> 77 f y, then *(£,./) < 5(77,;); 

(iii) the set W™* is bounded in K, where PT"* is defined in the following way: 

Let 77 G /0+ - / ( f (see Definition 2.3 (ii)) and £ e J+ - J<s. Then 

where 

Ki = V < S\ J i s o f lyPe 2 and ^ r y -»»/ r y a n d 

cf (s(rj,j)) = ju and s(£,j) = s(t],j)} 

and 

^ = 0 ' < ^ I y is of type 2 and tj \ j ^ £ \ j and 

d(s(£,j)) = ju and s(tj,j) = s(£,j)}. 

Our next goal is to prove that if Jo and J\ are such that 
(i) J~ C /„ C J+, n = 0,1, and 
(ii) if rj e J0

+, £ e Jf and tjR£, then 77 e Jo iff £ 6 7i, 
then (Jo, <, <s) = J M (J\, <, <s), where < is the initial segment relation and <, 
is the union of natural orderings of succ(^) for all elements rj of the model. From 
now on in this section we assume that Jo and J\ satisfy (i) and (ii) above. 

The relation R is designed not only to guarantee the equivalence but also to 
make it possible to prove that the final models are not isomorphic. Here (iii) in 
the definition of R plays a vital role. The pressing-down elements rj such that 
d(s(rj, 0 ) = M> i °f t v P e 2, in (iii) prevent us from adding too many elements to 
J„-J~,n< 2. 

For n < 2, we write J„(y) = J^(y) n /„. 
3.6. DEFINITION. Let a < K. Ga is the family of all partial functions / satisfying 

the following six conditions: 
(a) / is a partial isomorphism from Jo to J\. 
(b) dom(/ ) and rng( / ) are closed under initial segments and for some /3 < X 

they are included in Jo(P) and J\(fl), respectively. 
( c ) I f / 0 / ) = <Mhen»7ir£. 
(d) If tj G J0

+, £ E / j + , f(rj) = S, and j < length (77) of type 2, then 77 and £ 
satisfy the following: if 77 \ j -> £, \ j , then s(rj,j)<s(£,;'), and if £ \ j -> 77 \ j , 
then s(£,j) < s(tj,j). 

(e) Assume rj e J0
+ - J0

<d and {77 \ y\ y < 5} C dom(/ ) , and let 

Z = \Jf(i\y). 
y<S 

Then W^ has order type < a. 
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(f) If r\ G dom(/) and length^) is of type 2, then 

{i < k\ for all d £02, i/ ̂  ((«/, i)) e dom(/ )} 

= {/ < X\ for some d e 82, n -^ ((</, /)) G dom(/ )} 

= {1 < A| for all J G 02, /(1/) - ((rf,0) G n ig( / )} 

= {1 < k\ for some rf G 92, f{n) — ((rf, i)) G m g ( / ) } 

is an ordinal. 
We define Fa C GQ by replacing (f) above by 
(f) if rj G dom(/) and length (77) is of type 2 then 

{1 < A| for all d G 02, >7 • - ((<*, 0) € dom(/ )} 

— {i < k\ for some d £ 62, n <~- {{d, /)) G dom(/ )} 

- {1 < A| for all J G 02, / f o ) ~ ((</, 0 ) € rng( / )} 

= {/ < k\ for some J G 02, f{n) ^ {(d, /)) G rng( / )} 

is an ordinal and of cofinality < ju. 
The idea in this definition is roughly the following: I f / e Ga and f{n) = £,, then 

rjR£, and the order type of WK is < a. If f £ Fa, then not only f £ Ga but / is 
such that for all small A c To U /1 we can find g D / such that 4̂ c dom(g) U rng(g) 
andg G Fa. 

3.7. DEFINITION. For f,g £ Ga we write / < g if / C g and if 7 < 8 < K, 

n£J+- J0
<s, rj\y£ dom(f), n \ (y + 1) G"dom(/), r] \ j £ dom(g) for all 7 < 8 

and «? = [jj<sg(r, \ j), then ^ - W^. 
Notice that / < g is a transitive relation. 
3.8 REMARK. Let / G Ga. We define J 2 / by 

dom(/) = dom(/) U {77 G To I 1 \ 7 € dom(/ ) for all y < length^) 

and length^) is limit} 

and if n £ dom(/) - dom(/ ) , then 

?(*!)= U fhtv)-
y<length((?) 

If / G Fa, then / G Fa, and if / £ Ga, then / e GQ. 
3.9. LEMMA. Assume a < K, 8 < ju, ft £ Fa for all i < 8, and ft < / / for all 

i < j < 8. 
( i )U/<* / /GG Q . 
(ii) If 8 < JU, then \Ji<s ft £ Fa, and fj < \Jj<s /,• for all j < 8. 
PROOF, (i) We have to check that / = [jj<s ft satisfies (a)-(f) in Definition 

3.6. Excluding perhaps (e), all of these are trivial. 
Without loss of generality we may assume 8 is a limit ordinal. So assume 

n £ J+ - T0
</? and {rj \ y\ y < /?} C dom(/ ) , and let Z, = ( J ^ / f a \ ?)• 

We need to show that wK < a. 
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If there is i < 8 such that rj f y G dom(/ ,) for all y < ft, then the claim follows 
immediately from the assumption / , e Fa. Otherwise for all y < ft we let iy < 8 
be the least ordinal such that n f y G dom (/,-,,). Let y* < ft be the least ordinal 
such that ly.+i > i r . Because / , r 6 Fa for all y < ft, we get that W^y^y has 

order type < a. If y* < / < ft, then / , r . < / , y / , and so wfiy.i(h. = W]'tr,iW. 

Because W^ = ( J ^ ^ r 7 , we get * £ < a. 
(ii) As (i), just check the definitions. • 
3.10. LEMMA. If 8 < K, / , • G G, /or a// i < 8, and / , • C / y /or a// i < j < 8, 

then \Ji<sfi G G<5. 
PROOF. Follows immediately from the definitions. • 
3.11. LEMMA. If f £ Fa and A C J0\jJ\, \A\ < X, then there is g € Fa such 

that f < g and A C dom(g) U rng(g). 
PROOF. We may assume that A is closed under initial segments. Let A' = 

A n (/0~ U7j~). We enumerate A' — {ai\ 0 < i < /u} so that if at is an initial segment 
of ay, then i < /. Let y < A be such that A U dom(/ ) U rng( / ) C J0(y) u / i(y). 
By induction on i < /*, we define functions g,-. 

If i = 0, we define g, = f U {((0), (!))}• 
If i < ,u is limit, we define gt = \Jj<. gj. 
If i = / + 1, then there are two different cases. For simplicity we assume a, G To-
(i) n = length(a,) is of type 0 or 1: Then we choose gt to be such that 
(a) gj < gr, 
(b) g, G Fa; 
(c) if £ € dom(gj) - dom(gy), then £, G succ(a,); 
(d) if £ G succ(a,) and s(£,n) < y, then £ € dom(gi); 
(e) if £ G succ(fy(a,-)) and .?(£,«)< y, then £ G rng(g,). 

Trivially, such a g, exists. 
(ii) « = length(ay) is of type 2: Then we choose gt to be such that (a)-(c) 

above and (d')-(f') below are satisfied. 
Let ft = sup{i + 1 < X\ for all d G 62> a, — ((d, i)) G dom(gy)}. 
(d') if £ G succ(a,), then J(£ ,W) < y + 2 iff £ G dom(g,); 
(e') if £ G succ(gy(«,)), then j(«f, n) < y + 2 iff £, e rng(#); 
(f) gi \ {v £ succ(a,)| ft < s(rj,n) < y + 1} is an order isomorphism to {n G 

succ(gy(a,-))| ft<s{n,n) <ft+\}a.ndgi \ {n € succ(a,-)| 7 + 1 <s\rj,n) < y + 2 } 
is an order isomorphism to {rj G succ(gy(a,))| ft + 1 < s(n,n) < y + 2}. 

By Corollary 2.11 it is easy to satisfy (d')-(f'). Because gj G Fa, it follows that 
cf(/?) < /i and we do not have problems with (a) and (b). So there is g, satisfying 
(a)-(c) and (d')-(P). 

Finally we define g = \Ji<M gi • It is easy to see that g is as desired (notice that 
/ < g follows from the construction, not from Lemma 3.9). • 

3.12. LEMMA. If f G Ga and A C J0 U J\, \A\ < X, then there is g G Fa+\ such 
that f C g and A C dom(g) U rng(g). 

PROOF. Essentially as the proof of Lemma 3.11. • 
3.13. THEOREM. If JQ and JI are such that 
(i) J- CJ„C J+, n = 0,1 and 
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(ii) ifnRS,, n e /0
+ and £, £ J+, then n € Jo iff £ £ J\, 

then {J0, <, <,) =lXK (/i, <, <,) . 
PROOF. Because 0 e FQ, the theorem follows from the previous lemmas. • 
3.14. COROLLARY. If JO and J\ are as above and O is proper for T, then 

EM(./o,<&)4x«EM(/i,<I>). 
PROOF. Follows immediately from the definition of E-M-models and Theorem 

3.13. • 
In the rest of this section we show that there are trees Jo and J\ which satisfy 

the assumptions of Corollary 3.14 and 

E M ( 7 0 , O ) ^ E M ( / i , O ) . 

3.15. LEMMA (Claim 7.8B in [Sh2]). There are closed increasing cofinal sequences 
(&i)i<K in a, a < X and cf(a) = K, such that if i is successor then cf(a,) = fi and 
for all cub A C X the set 

{a < X\ cf(a) = K and {a,\ i < K} C A P a } 

is stationary. 
We define Jo - /0~ and J\ - / f by using Lemma 3.15. For all a < X we define 

70
a and If. Let 70° = J0~ and jf = / f . If 0 < a < X, then cf(a) = K, and there 

are sequence (/?,•),•<* and an n e J0
+ - J0~ such that 

(i) (A')/<K is properly increasing and cofinal in a; 
(ii) for all i < K, cf(/?,+i) = ju, /?,+i > «(/?,•), and /?, e {a,| i < «}; 
(iii) for all 0 < i < K of type 0 or 2, s{n, i) — /?,-; 
(iv) for all i < K of type 1, n(i) = d; 

then we choose some such n, let it be na, and define 70
a and 7" to be the least 

sets such that 
(i) {*.} U U/,<a If C / ° and U/ i < a /," Q /?> and 
(ii) 70

Q U i f is closed under R. 

Otherwise we let 70<* - {Jp<a 1$ and Jf = U/j<a / f • Finally we define 70 = U < ; *o 

andJ i=U„<; . / i a -
3.16. LEMMA. 7 W all a < X and n € (/o U / i ) - (/0 U J( ), the following are 

equivalent: 
(i) 4 e (/<? u /,«) - ( U ^ if u U ^ / f ) . 
(ii) s\xp{s{n,i)\ i < K} = a. 
PROOF. By the construction it is enough to show that (i) implies (ii). So assume 

(i). Because of levels of type 0, it is enough to show that s (n, i) < /?,+i for all i < K. 
We prove this by induction on i < K. If i is of type 0, the claim is clear. If i is of 
type 1, this follows from fti+\ > a (/?,•) and e(d) < a(/?,-) together with the induction 
assumption. For i of type 2, i = j' + 1, it is enough to show that s(na,i) > s{n, i). 
This follows easily from the fact that na(j) = d and length^(J)) ^ i. • 

3.17. DEFINITION. Let g : EM{JQ, $ ) —• EM(/i , O) be an isomorphism. We say 
that a < X is g-saturated iff for all n e Jo and £o,..., £„ e J\ the following holds: 
if 

(i) length^) = 1 + 1 and for all i < I, s{n, i) < a; 
(ii) for all k < n and i < l e n g t h ^ ) , s(£k> 0 < a> 
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(iii) g(rj) — t(do,...,Sm) for some term t and So,...,Sm G J\, 
then there are rj' G JQ and 8Q,...,8'„ G / I such that 

(a) *(»/') = '(^,...,0; 
(b) length^') = / + 1 and tj' \ I = n \ I; 
(c) s{rj',l) < Q ; 
(d) the basic type of (£o, ...,£„,8o, ...,8m) in [J\,<,<^,H,Pj) is the same as the 

basic type of (&, ...,£,„,8'Q,...,8'm). 
Notice that for all isomorphisms g : EM(7o,$) —> EM( / i , 0 ) the set of g-

saturated ordinals is unbounded in X and closed under increasing sequences of 
length a < k if cf (a) > K. 

3.18. LEMMA. Let $ be proper for T. Then 

EMG/o,<J>)^EM(./i,<D). 

PROOF. We write $ty for the submodel of EM(Jo,0) generated (in the extended 
language) by Jo(y). Similarly, we write 3Sy for the submodel of EM(7i,0) gener­
ated by J\{y). Let g be a one-to-one function from EM^o,®) onto E M ( / | , $ ) . 
We say that g is closed in y if sfy U ^ y is closed under g and g _ 1 . 

For a contradiction we assume that g is an isomorphism from EM(J0,3>) to 
EM(7i,0). By Lemma 3.15 we choose a < X to be such that 

(i) cf(a) = K, and, for all i < K, g is closed in a, and cf(a,+i) = p. and a,-+i 
is ^-saturated; 

(ii) there are a sequence (/?,),<K and an r/ = na G Jo — -̂ o" satisfying (i)-(iv) in 
the definition of (Jo - J0~) U (7i - / f ) . 

Let g(n) = /(£0,•••,£„), <?o,-,£» € / i . Now for all & < «, either 4 G /iQ?,) 
for some / < K, or there is j < K such that s(£k,j) > a or length(^) = K, 
s\xp{s(£k,j)\ j < K} = a and, for all j < K, s(£k,j) < <*• By Lemma 3.16, in the 
last case £,k has been put to J\ at stage a. 

We choose z < K so that 
(a) i is of type 2 and > 2; 
(b) for all Jfc < / < n, & f / ^ <?/ t«'; 
(c) for all /c < n, if l e n g t h ^ ) = «, sup{j(^,y') | j < K} — a and for all j < K, 

s(£k,j) < en, then there are po,..., pr G Jo U / i such that 
(i) /?„ = v and pr = &; 
(ii) if p < r, then ppRpp+x; 
(iii) if /><r , then W£pt/)p+1 C i; 
(iv) for all p < q < r, pp \ i ^ pq \ i; 
(d) for all k < n, if £,k G ./I (/?,•) for some j < K, then & G / i (/?,); 
(e) for all A: < n, if s(£k,j) > a for some 7 < K, then & |" j k G /i(/3,) and 

^ < i, where j k = min{; < i\ s (&,./) > a}. 
Let / < / ' < « + 1 be such that 4 G -A(A) iff/c < /, length(&) = «, sup{>(4, ; ) | 
7 < K} = a and, for all j < K, s(£k,j) < a iff / < k < V and £k \ i £ Ji(a) iff 
/ ' < k < n. (Of course we may assume that we have ordered £0, •••, £m so that / 
and /' exist.) If / < k < V, then there are po, ...,pr eJiUJo satisfying (c)(i)-(c)(iv) 
above. By the choice of n(i — 1) we have pp \ i <— pp+\ \ i for all p < r, and so 
£,k \ (i + 1) G J\{Pt). For all k < n we define £'k as follows: 

(a) if k<l, then ££ = &; 
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09) i f / < * < / ' , then <j£ = & r(»" + i); 
(y) if /' < k < n, then ?k = Sk\ j k . 
Let g{rj I" (i + 1)) = u(5o,...,Sm), u a term and do,...,dm <E J\{pi+{). Because 

Pi is g-saturated there is n' e Jo(pi) and S'0, ...,S'm e ^i(A) s u c n that 

( a ) * ( » / ' ) = «(<%> • • • > * « ) ; 

(b) length^') = i + 1 and ^' f r = n \ i; 
(c) the basic type of (d ,̂...,< ,̂<5o, •••,<5m) in (Ji, <, <,7f,P;) is the same as the 

basic type of {Z'0,...,Z'„,S'0,...,d'm). 
Because 5(4,« +1) > Pi+\ for all / < k < I' and s{!;k, jk) > pi+\ for all V <k<n, 

it is easy to see that the basic type of (£0, • ••,£„,So,...,Sm) in (J\,<,<g.,H,Pj) is 
the same as the basic type of (£0, ...,<!;„,(5Q, ••.,<%)• 

Let <p„, n < K,be as in Theorem 2.7. Then 

E M V I , * ) M / + I ( « ( * O > - - - > 0 > ' ( £ O , ...&,)). 

So v V 7 T (' + l),l' \ i = *1 \ i> and 

EMVo.OOMmfa'. 'z)-
This is impossible by Theorem 2.7 (ii). • 

Conclusion 3.19. Let X = fi+, cf(/i) = fj., K = cf(«) < ,u, A<K = /I, and /** = JU. 
Assume T is an unsuperstable theory, \T\ < X, and K(T) > K. Then there are 
models sf, 3! \= T of cardinality X such that 

.sf =£XK 9S and ^ ^ ^ . 
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