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Abstract. An in®nite linearly ordered set �S;U� is called doubly homogeneous if its auto-
morphism group A�S� acts 2-transitively on it. We show that any group G arises as outer
automorphism group G GOut�A�S�� of the automorphism group A�S�, for some doubly
homogeneous chain �S;U�.
2000 Mathematics Subject Classi®cation: 20F28, 06F15, 20B22.

1 Introduction

An in®nite linearly ordered set (``chain'') �S;U� is called doubly homogeneous, if
its automorphism group, i.e. the group of all order-preserving permutations, A�S� �
Aut�S;U� acts 2-transitively on it. Chains �S;U� of this type and their automor-
phism groups A�S� have been intensively studied. They have been used e.g. for the
construction of in®nite simple torsion-free groups (Higman [8]) or, in the theory of
lattice-ordered groups (l-groups), for embedding arbitrary l-groups into simple
divisible l-groups (Holland [9]). The normal subgroup lattices of the groups A�S�
have been determined in [1, 3]. Obviously, all linearly ordered ®elds are examples for
such chains. For a variety of further results, see Glass [6]. Here, we will be concerned
with outer automorphism groups Out�A�S���Aut�A�S��=Inn�A�S�� of the auto-
morphism groups A�S� for doubly homogeneous chains �S;U�.

In the literature, many authors have dealt with the problem of determining which
groups G can arise as G GOut�H� for H in a given class of groups. Already Schreier
and Ulam [14] showed that each automorphism of the in®nite symmetric group is
inner, i.e. Out�Sym�N�� � f1g. It is known that each outer automorphism of A�Q�
or of A�R� arises via conjugation by an anti-automorphism of �R;U�, hence
Out�A�Q��GOut�A�R��GZ2, and it is known how to construct doubly homoge-
neous chains �S;U� for which Out�A�S�� is trivial (Holland [10], Weinberg [16],

* Research supported by the German-Israeli-Foundation for Scienti®c Research and Devel-
opment. Publication 743.

Brought to you by | Universität Osnabrück
Authenticated

Download Date | 5/27/15 12:52 AM

Sh:743



Droste [2]). Solving a problem which had been open for quite some time, Holland
[10] constructed a doubly homogeneous chain �S;U� for which A�S� has an outer
automorphism not arising from an anti-automorphism of the Dedekind-completion
�S;U� of �S;U�. In his example, Out�A�S��GV4, Klein's four-group. Assuming
the generalized continuum hypothesis (GCH), McCleary [13] constructed further ex-
amples of this type. However, to date V4, Z2 and the trivial group are the only groups
realized as Out�A�S��, where �S;U� is a doubly homogeneous chain. In fact, a real-
ization of any group G even just as the outer automorphism group G GOut�H� of
some group H was established more recently in Matumoto [11].

With the pointwise ordering of functions, A�S� becomes an l-group, and Holland
[9] showed that any l-group H can be l-embedded (i.e. embedded as an l-group) into
A�S�, for some doubly homogeneous chain �S;U�. Here, we will show the following
generalization of the previously mentioned results:

Theorem 1.1. Let G be any group, H any l-group and l a regular uncountable

cardinal with lV jGj and l > jHj. Then there exists a doubly homogeneous chain

�S;U� of cardinality l such that G GOut�A�S�� and H l-embeds into A�S�.

Here, the realization result G GOut�A�S�� involves constructing a doubly homoge-
neous chain �S;U� such that A�S � acts on the set of orbits of A�S� in S just like G.
Using codings of the group action of G through a system of suitable stationary sub-
sets of l inside S, we will ®rst describe a class of doubly homogeneous chains �S;U�
for which G GOut�A�S�� follows. Then, in Section 4, we will actually construct these
chains. As often for homogeneous structures, this could be done by suitable amalga-
mations of linear orderings, but here we will use methods of [3] for a more explicit
construction. For the simultaneous embedding of H into A�S�, we will use Holland's
result [9].

By a LoÈwenheim-Skolem argument, we obtain as a consequence:

Corollary 1.2. Let H be any l-group, G any group and l a regular uncountable cardinal

with lV jGj and l > jHj. Then there exists an l-group K with H JK (as l-groups)

and jK j � l such that Out�K�GG.

Here, each group automorphism of K is also a lattice automorphism of (the l-group)
K.

Similar realization results have been established in the literature for various classes
of groups. Dugas and GoÈbel [5] showed that any countable group arises as the outer
automorphism group of some locally-®nite p-group, and GoÈbel and Paras [7] estab-
lished the corresponding result for the class of torsion-free metabelian groups. Note
that the groups A�S� of Theorem 1.1 are not simple. In Droste, Giraudet and GoÈbel
[4], Theorem 1.1 will be used to show that any group can be realized as outer auto-
morphism group of a simple group, which in turn arises as the automorphism group of
a suitable homogeneous circle.
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2 Outer automorphisms

In this section, we will present a class of doubly homogeneous chains �S;U� for
which Out�A�S��GG, for a given group G.

For any chain �S;U�, we denote by S its Dedekind-completion. Clearly, each
automorphism f of �S;U� extends uniquely to an automorphism of �S;U� which we
will also denote by f; hence A�S�JA�S �. We recall that �S;U� is doubly homoge-
neous, if for all u; v; x; y A S with u < v and x < y there is g A A�S� such that ug � x

and vg � y. If x A S, the set xA�S� � fx f : f A A�S�g is called an orbit of A�S� in S.
The following result relates outer automorphisms of A�S� to automorphisms of S

permuting the orbits of A�S�.

Proposition 2.1 ([6]). Let �S;U� be a doubly homogeneous chain. Each automorphism j
of A�S� corresponds bijectively to an automorphism or anti-automorphism f of �S;U�,
which permutes the orbits of A�S� in S, such that gj � f ÿ1 � g � f for all g A A�S�.

Now assume �S;U� is not anti-isomorphic to itself, and let Z :� fU J S : U orbit of
A�S� in S, and �S;U�G �U ;U�g. By Proposition 2.1, each automorphism j of A�S�
induces an element f A A�S � which permutes Z, and we obtain an epimorphism from
Aut�A�S�� onto the group GZ � fp A Sym�Z� : b f A A�S �: f induces pg with kernel
Inn�A�S��. Hence Out�A�S��GGZ. In order to prove Theorem 1.1, given any group
G we therefore have to construct a doubly homogeneous chain �S;U� with �S;U�
not anti-isomorphic to itself such that G represents the action of A�S � on the orbits
of A�S� in S, i.e. G GGZ.

We recall some notation, which is mostly standard. Let �S;U� be any chain. If
x A S has no immediate predecessor, we de®ne the co®nality of x to be

cof�x� :� minfjAj : AJ S; x B A; x � sup Ag:

We adopt the convention that if x has an immediate predecessor, then cof�x� �
@0. We de®ne the coinitiality coi�x� of x dually. If cof�x� � coi�x� then this cardinal
is called the coterminality of x, denoted cot�x�. The ordered pair �cof�x�; coi�x�� is
called the character of x, denoted char�x�, and we let char�S� � fchar�x� : x A Sg.
If X J S, we let char

S
�X� � fchar�x� : x A Xg, where char�x� is determined in S. If

a; b A S with a < b and X J S, let �a; b�X � fx A X : aU xU bg. If A;BJ S, we
write A < B to denote that a < b for all a A A, b A B, and A < x abbreviates A < fxg.
The chain �S;U� has countable coterminality, denoted cot�S� � @0, if it contains a
countable subset which is unbounded above and below in S. We say that �S;U� is
dense, if for all a < b in S there is s A S with a < s < b, and unbounded, if S does
not contain a greatest or smallest element.

Clearly, all points in a given orbit of A�S� in S have the same character. Also, it
is well-known and easy to see by piecewise patching of automorphisms of S (cf. [6]
or below the argument for Lemma 3.1), that if �S;U� is doubly homogeneous, then
all elements x A SnS with cot�x� � @0 form a single orbit of A�S� in S. Hence when
constructing the chain �S;U� for Theorem 1.1, we have to resort to orbits of A�S�
whose elements do not have countable coterminality.
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As usual, we identify cardinals with the least ordinal of their cardinality. A subset
A of a cardinal l is called stationary, if AXC 0j for each closed unbounded
subset C of l. A sequence hxi : i A liJ S is called continuously increasing if xi < xj

for each i < j < l, and xj � supi<j xi in S for each limit ordinal j < l. We de®ne
continuously decreasing dually.

Now we make the following

General assumption. In all of this section let G be a group with neutral element e,
and let @0 U k < l be two regular cardinals such that lV jGj. Let S l

k � f j < l :
cof� j� � kg, a stationary subset of l. By Solovay's theorem [15], we split S l

k �S
_ g AG Sg into jGj pairwise disjoint stationary subsets Sg �g A G�.

Now we de®ne a class of chains which will be crucial in all of our subsequent con-
siderations.

De®nition 2.2. Let K be the class of all structures S � �S;U; �Pg�g AG; �Qg�g AG� with
the following properties:

1. �S;U� is a dense unbounded chain;

2. Pg, Qg �g A G� are pairwise disjoint non-empty subsets of SnS; let P � S_ g AG Pg

and Q � S_ g AG Qg;

3. whenever x A Pg �g A G�, then char�x� � �l; k�, and there is a continuously in-
creasing sequence hxi : i < li in S such that x � supi<l xi and whenever h A G

and j A Sh, then xj A Qhg;

4. whenever y A Qg �g A G�, then char�y� � �k; l�, and there is a continuously de-
creasing sequence hyi : i < li in S such that y � inf i<l yi and whenever h A G
and j A Sh, then yj A Phg;

5. whenever a; b; c; d A S with a < b, c < d, x A PX �a; b�, y A QX �a; b� and f :
�a; b�

S
! �c; d �

S
is an order-isomorphism, then x f A P and y f A Q.

We will refer to the sets Pg, Qg �g A G� as the colours of S, and the sets Pg �g A G�
are the P-colours. Condition 2.2(5) means that we can ``locally recognize'' points
belonging to P or to Q. It ensures that then

��� P f � P and Q f � Q for each f A A�S �:

If @0 < k < l, we note that we will construct our structures S such that

�1� char
S
�P� � fx A S : char�x� � �l; k�g and

�2� char
S
�Q� � fy A S : char�y� � �k; l�g;

this obviously implies condition 2.2(5). Next we note:
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Lemma 2.3. Let S � �S;U; �Pg�g AG; �Qg�g AG� A K. Let f A Aut�S;U� satisfy P f
e J

Pg for some g A G. Then P
f

h JPhg and Q
f

h JQhg for each h A G. In particular, if

P f
e JPe, then each Ph and each Qh �h A G� is invariant under f.

Proof. Let h A G. We ®rst show that Q
f
h JQhg. Choose any x A Qh. By requirement

2.2(5), clearly x f A Q. So, x f A Qk for some k A G. By condition 2.2(4), we can ®nd
two continuously decreasing sequences hyi : i < li and hzi : i < li in S such that
x � inf i<l yi, x f � inf i<l zi, and whenever h 0 A G and j A Sh 0 , then yj A Ph 0h and zj A
Ph 0k. Standard back-and-forth arguments involving closed unbounded subsets of
uncountable cardinals show that C � fi < l : y

f
i � zig is a closed unbounded sub-

set of l. Since Shÿ1 is stationary, there is j A Shÿ1 with y
f

j � zj. So, yj A Pe and
zj � y

f
j A Pg XPhÿ1k. Thus k � hg as claimed.

By a similar argument, it now follows that P
f

h JPhg for each h A G. The ®nal
statement is then immediate. r

Now let S � �S;U; �Pg�g AG; �Qg�g AG� and S 0 � �S 0;U; �P 0g �g AG; �Q 0g�g AG� A K and
AJ S, BJ S 0. Let h A G and f : �A;U� ! �B;U� be an order-isomorphism. We say
that f maps the colours as prescribed by h, if

�AXPg� f � BXP 0gh and �AXQg� f � BXQ 0gh for each g A G:

If here S �S 0, we also say that f permutes the colours as prescribed by h.
We call S doubly homogeneous in the P-colours, if for any g; h A G and u; v A Pg,

x; y A Pgh with u < v and x < y, there is f A A�S� such that fu; vg f � fx; yg and f

permutes the colours as prescribed by h.
Now we can prove:

Theorem 2.4. Let S � �S;U; �Pg�g AG; �Qg�g AG� A K be doubly homogeneous in the P-

colours such that �S;U� is not anti-isomorphic to itself, and let X � Pe. Then �X ;U� is

a doubly homogeneous chain and Out�A�X��GG.

Proof. Clearly, �X ;U� is doubly homogeneous and dense in S. We identify X � S.
By Lemma 2.3, each Pg and each Qg �g A G� is invariant under A�X�. By homo-

geneity we get Pg � P
A�X �

g for each g A G. Hence each Pg �g A G� is an orbit of A�X �
in X . By Proposition 2.1, any outer automorphism c of A�X� determines an
automorphism f of X which permutes the orbits of A�X� in X and hence by re-
quirement 2.2(5), permutes the orbits Pg �g A G� among themselves. By Lemma 2.3,
this permutation f determines an element h of G. Conversely, by homogeneity of S,
any element h of G can be realized in this way by an automorphism f of X permuting
the sets Pg �g A G�, and hence h is realized by an outer automorphism c of A�X�.
This correspondence constitutes the required isomorphism. r

3 Isomorphisms between intervals

It is well-known that a chain �S;U� is doubly homogeneous if and only if any two of
its intervals �a; b�S and �c; d �S (a; b; c; d A S with a < b, c < d) are order-isomorphic.
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In this section we will derive a similar result for particular structures in K. In all of
this section, we make the general assumption of Section 2.

Let S � �S;U; �Pg�g AG; �Qg�g AG� A K. We say that S is G-homogeneous for S-

intervals, if for any u < v and x < y in S and any h A G, there is an isomorphism
f : �u; v�S ! �x; y�S permuting the colours as prescribed by h.

We call S G-homogeneous for P-intervals, if for any g; h A G and u; v A Pg, x; y A
Pgh with u < v and x < y, there is an isomorphism f : �u; v�S ! �x; y�S permuting the
colours as prescribed by h.

Clearly, if S is doubly homogeneous in the P-colours, S is also G-homogeneous
for P-intervals. For the converse we need additional assumptions on S. In general,
there seems to be no relationship between G-homogeneity for S-intervals and for P-
intervals, respectively. However, in this section we will show for particular structures
S A K that G-homogeneity for S-intervals implies G-homogeneity for P-intervals.
First we note:

Lemma 3.1. Let S � �S;U; �Pg�g AG; �Qg�g AG� A K be G-homogeneous for S-intervals.

Let u; v; x; y A S such that u < v, x < y and cot�u; v� � @0 � cot�x; y�. Let h A G. Then

there is an isomorphism f : �u; v�S ! �x; y�S permuting the colours as prescribed by h.

Proof. Choose Z-sequences �ai�i AZ J �u; v�S and �bi�i AZ J �x; y�S such that ai < ai�1

and bi < bi�1 for each i A Z and u � inf i AZ ai, v � supi AZ ai, x � inf i AZ bi, y �
sup i AZ bi. For each i A Z, there is an isomorphism fi : �ai; ai�1�S ! �bi; bi�1�S per-
muting the colours as prescribed by h. Patching the fi's together, we obtain the
required isomorphism f. r

Now we turn to the de®nition of structures S A K for which there is a closer rela-
tionship between the three types of homogeneity we de®ned.

A partially ordered set �T ;�� is called a tree, if it contains a smallest element and
for each x A T , the set �ft A T : t � xg;�� is well-ordered; the cardinality of this set
will also be called the height of x. We write Mx for the set of immediate successors
(� minimal strict upper bounds) of x in �T ;��. We will now consider particular trees
together with a partial ordering which will later on be extended to a linear ordering.

De®nition 3.2. Let T be the class of all structures �T ;�;U� with the following
properties:

1. �T ;�� is a non-singleton tree and U is a partial order on T;

2. each element x A T has ®nite height and if the height of x is even (odd), then
�Mx;U� is either empty or a chain isomorphic (anti-isomorphic, respectively) to l;

3. whenever y A Mx for some x A T of even (odd) height, then My 0q if and only if
in �Mx;U� we have cof�y� � k �coi�y� � k, respectively).

Observe that each such tree has size l.
Let �T ;�;U� A T. We denote the smallest element of �T ;�� by t0. Now we extend

the partial order U to a linear order U0 on T as follows. First, we put Mt0
< 0 t0.
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Now assume x A T has even (odd, respectively) height and y A Mx with My 0j.
Then put y < 0 My <

0 y� ( y� < 0 My <
0 y) where y� denotes the immediate successor

(predecessor) of y in �Mx;U�, respectively. For simplicity, we denote this extension
U0 also by U.

Observe that in the Dedekind-completion �T ;U�, each element x A T nT corre-
sponds uniquely to a maximal path �ai�i Ao in �T ;U� such that a0 � t0, ai�1 A Mai

,
and a2i�1 < a2i�3 < a2i�2 < a2i for each i A o, and x � supi Ao a2i�1 � inf i Ao a2i in
�T ;U�. In particular, cot�x� � @0. Hence char�T nft0g� � f�m;@0�; �@0; m� : @0 U
m < l; m0 k; m regulargW f�l; k�; �k; l�; �@0;@0�g and cof�t0� � l.

Next, we de®ne for each k A G a coloured linear ordering Lk � �Lk;U; �Pg�g AG;
�Qg�g AG� as follows. Let �A;U� be a ®xed linear ordering anti-isomorphic to k
and put, irregardless of k, �Lk;U� � �T ;U� � �A;U�, the disjoint sum with �T ;U�
``to the left'' of �A;U�. Thus t0 � inf A in �Lk;U�. We de®ne the sets Pg;Qg JT

now. Only elements of even (odd) height will belong to
S

g AG Pg (
S

g AG Qg), respec-
tively. First, put t0 A Pk. By induction, assume t A T satis®es t A Pg and �Mt;U�G l,
thus Mt � fxi : i A lg with xi < xj if i < j in l. Then for each h A G and j A Sh put
xj A Qhg. Next, let t A Qg and �Mt;U� be anti-isomorphic to l, thus Mt � fyi : i A lg
with yj < yi if i < j in l. Then for each h A G and j A Sh put yj A Phg.

The reader will notice the similarity of Lk to the structures in K. In fact, the
chains Lk will be basic building blocks for particular chains in K. Observe that jPgj �
jQgj � l for each g A G, since any stationary subset of l has size l. First we note:

Lemma 3.3. Let h; k A G.

(a) Let Lk � �Lk;U; �Pg�g AG; �Qg�g AG� and Lkh � �Lkh;U; �P 0g �g AG; �Q 0g�g AG�. Then

f � id : Lk ! Lkh satis®es P f
g � P 0gh and Q f

g � Q 0gh for each g A G.

(b) Let S � �S;U; �Pg�g AG; �Qg�g AG� A K and let p : �S;U� ! �X ;U� be an order-

isomorphism. Then we can ®nd P 0g , Q 0g JX �g A G� such that X � �X ;U; �P 0g �g AG;
�Q 0g�g AG� A K and p maps the colours as prescribed by h.

Proof. (a) Observe that t0 A Pk in Lk and t0 A Pkh in Lkh. Now continue by induction
through �T ;U� and construction of Lk, Lkh.

(b) Put P 0gh � P p
g and Q 0gh � Q p

g �g A G� to obtain the result. r

If �C;U� is a chain and a; b A C are such that a < b and there is no c A C with
a < c < b, we call the pair �a; b� a gap of C, denoted �ajb�.

Let S � �S;U; �Pg�g AG; �Qg�g AG� A K, let h A G and let Lh � �Lh;U; �P 0g �g AG;
�Q 0g�g AG�. An embedding j : �Lh;U� ! �S;U� is called nice, if it satis®es:

1. j preserves all suprema and in®ma, i.e. �sup A�j � sup Aj and �inf A�j � inf Aj

in �S;U� for each non-empty subset AJLh;

2. L
j
h J SnS and �P 0g �j � Pg XL

j
h , �Q 0g�j � Qg XL

j
h for each g A G ;

3. whenever x < y form a gap in Lh, then cot�xj; yj� � @0 in �S;U�;
4. cot�x� � @0 if x is the smallest or the largest element of �Lh;U�.
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A structure S � �S;U; �Pg�g AG; �Qg�g AG� A K is called nice, if for each h A G and
x A Ph in S there exists a nice embedding j : Lh !S with t

j
0 � x. We denote by

Knice the class of all nice structures in K.

Proposition 3.4. Let S � �S;U; �Pg�g AG; �Qg�g AG� A Knice be G-homogeneous for S-

intervals. Then S is G-homogeneous for P-intervals. In particular, if �S;U� has

countable coterminality, then j is doubly homogeneous in the P-colours.

Proof. Choose g; h A G and u; v A Pg, x; y A Pgh with u < v and x < y. By assumption,

there are nice embeddings j; j 0 : Lg !S and c;c 0 : Lgh !S with t
j
0 � v, t

j 0
0 � u,

t
c
0 � y, t

c 0

0 � x.
First, from j 0;c 0 we obtain two continuously decreasing sequences �ai�i A k J �u; v�

and �bi�i A k J �x; y� such that:

(i) u � inf i A k ai and x � inf i A k bi;

(ii) ai; bi A Sn�S WPWQ� for each i A k;

(iii) cot�ai�1; ai� � @0 � cot�bi�1; bi� for each i A k.

By Lemma 3.1, for each i A k there is an isomorphism fi : �ai�1; ai�S ! �bi�1; bi�S
permuting the colours as prescribed by h. Patching these isomorphisms fi �i A k�
together, we obtain an isomorphism f : �u; a0� ! �x; b0� which permutes the colours
as prescribed by h.

Secondly, let m � min�T ;U�. Then mj < v and mc < y, and we may assume
that a0 < mj and b0 < mc (otherwise consider appropriate upper segments of Lj

g

and Lc
gh subsequently). Observing Lemma 3.3, we see that jÿ1c maps �mj; v�XLj

g

onto �mc; y�XL
c
gh permuting the colours in these subsets of S as prescribed by h. We

have �mj; v�nLj
g �

S �aj; bj� and �mc; y�nLc
gh �

S �ac; bc� where the two unions are
taken over all gaps �ajb� in �T ;U�. Moreover, for each gap �ajb� in �T ;U�, we have
cot�aj; bj� � @0 � cot�ac; bc�, and by Lemma 3.1 there is an isomorphism r�ajb� :
�aj; bj� ! �ac; bc� permuting the colours as prescribed by h. Patching all these iso-
morphism r�ajb� together with jÿ1c above, we obtain an isomorphism f 0 : �mj; v� !
�mc; y� which permutes the colours as prescribed by h.

Again by Lemma 3.1, there is also such an isomorphism f 00 : �a0;m
j� ! �b0;m

c�.
Now f W f 00W f 0 maps �u; v�S isomorphically onto �x; y�S and permutes the colours
as prescribed by h. Hence j is G-homogeneous for P-intervals.

Since j is G-homogeneous for S-intervals, the P-colours are dense, hence un-
bounded, in S. Now a patching argument similar to the one used for Lemma 3.1
implies the ®nal statement. r

4 Construction of doubly homogeneous chains

In this section, we wish to prove Theorem 1.1 ®rst without considering H, i.e. for
H � f1g. Afterwards, we will point out how to change our constructions in order to
accommodate arbitrary l-groups H.
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Therefore, until Theorem 4.3 we make the general assumption of Section 2. We
will construct a structure S A K which is G-homogeneous for S-intervals. By Prop-
osition 3.4 it will follow that S is doubly homogeneous in the P-colours as needed
for Theorem 2.4.

The building blocks of our chain �S;U� are the following orderings, which were
already de®ned and used in [3].

De®nition 4.1 ([3]). A chain �L;U� is called a good l-set if the following conditions
are satis®ed:

1. jLj � l and �L;U� is dense and unbounded;

2. each x A L has countable coterminality;

3. whenever x; y A L with x < y, there is a set AJ �x; y�LnL such that jAj � l and
each a A A has countable coterminality.

We let Kl comprise all structures S � �S;U; �Pg�g AG; �Qg�g AG� A K for which
�S;U� is a good l-set, and jPgj � jQgj � l for each g A G. We let Kl

nice consist of
all nice S A Kl. The following clari®es the existence of good l-sets.

Lemma 4.2 ([3, Lemma 4.2]). There exists a good l-set �L;U� of countable coter-

minality such that char�L� � f�m;@0� : @0 U mU l; m regularg.

Here the ®nal statement on char�L� follows easily from the construction for [3,
Lemma 4.2].

The proof of Theorem 1.1 uses two basic construction techniques from [3] which
we now describe.

Basic Construction A (de®ning a colour-permuting isomorphism)

Let S � �S;U; �Pg�g AG; �Qg�g AG� A Kl. Let h A G and a; b; c; d A S with a < b <
c < d. We will enlarge S to a superstructure S�KS with S� � �S �;U; �P�g �g AG;

�Q�g�g AG� such that there is an isomorphism f : �a; b�S � ! �c; d �S � permuting the
colours of S� as prescribed by h. This will be obtained by splitting both �a; b�S
and �c; d �S into countably many subintervals, inserting copies of these intervals into
�c; d �S and �a; b�S, respectively, to obtain S �, hereby changing the colours as pre-
scribed by h, and de®ning the isomorphism f correspondingly.

First, we choose Z-sequences �ai�i AZ J �a; b�
SnS and �bi�i AZ J �c; d �

S nS such that

cot�ai� � cot�bi� � @0, ai < ai�1 and bi < bi�1 for each i A Z and a � inf i AZ ai, b �
sup i AZ ai, c � inf i AZ bi, d � supi AZ bi. For each i A Z let A 0i be a copy of Ai :�
�ai; ai�1�S, let B�i be a copy of Bi :� �bi; bi�1�S, and let pAi

: Ai ! A 0i , pB�
i

: B�i ! Bi

be isomorphisms. Put S � � S W
S

i AZ �A 0i WB�i �.
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We de®ne a linear order U on S � in the natural way so that it extends the orders
of S and of each A 0i , B�i and the Dedekind-completions of these sets satisfy in
�S �;U�

Biÿ1 < A 0i < Bi and Ai < B�i < Ai�1 for each i A Z:

We de®ne a mapping f : �a; b�S � ! �c; d �S � as in Figure 1 by putting a f � c, b f � d,
f jAi
� pAi

and f jB�
i
� pB�

i
. Then f is an order-isomorphism.

Now de®ne colours by putting, for each g A G and i A Z,

P 0gh; i � ��ai; ai�1�XPg�pAi JA 0i ;

Q 0gh; i � ��ai; ai�1�XQg�pAi JA 0i ;

P�g; i � ��bi; bi�1�XPgh�
pÿ1

B�
i JB�i ;

Q�g; i � ��bi; bi�1�XQgh�
pÿ1

B�
i JB�i ;

P�g � Pg W
S

i AZ
�P 0g; i WP�g; i�;

Q�g � Qg W
S

i AZ
�Q 0g; i WQ�g; i�:

Then S� � �S �;U; �P�g �g AG; �Q �g�g AG� A Kl, and it follows that f permutes the

colours as prescribed by h. Note that if S is nice, then so is S�. r

Fig. 1. De®ning a colour-permuting isomorphism.
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Basic Construction B (extension of a colour-permuting isomorphism)

Let U � �U ;U; �Pg�g AG; �Qg�g AG�, V � �V ;U; �P 0g �g AG; �Q 0g�g AG� A Kl such that U
is a substructure of V in the usual sense. Assume that

whenever v A VnU , then the set

D � fx A V WP 0WQ 0 : Eu A U : �u < v$ u < x�g

has no greatest or smallest element and has countable coterminality, the
set E � fx A U WPWQ : x < vg has no greatest element, and the set
F � fx A U WPWQ : v < xg has no smallest element.

(�)

Now let a; b; c; d A U with a < b < c < d, let h A G and let f : �a; b�U ! �c; d �U be
an isomorphism permuting the colours of U as prescribed by h. We want to enlarge V
to a superstructure WKV with W � �W ;U; �P�g �g AG; �Q�g�g AG� such that f extends
to an isomorphism f : �a; b�W ! �c; d �W permuting the colours in W as prescribed by
h. This is achieved by inserting, for certain decompositions �a; b�U � AWB with

A < B, points into V between the sets A and B and also between A f and B f .
Consider a decomposition �a; b�U � AWB with A < B. We distinguish between

four cases.

Case 1. There is no x A V with A < x < B and no y A V with A f < y < B f .
In this case, no point is inserted, either between A and B or between A f and B f .

Case 2. There is x A V with A < x < B but no y A V with A f < y < B f .
In this case, let X � fx A V : A < x < Bg, let �Y ;U� be a copy of �X ;U�, and let

p : �X ;U� ! �Y ;U� be an isomorphism. We insert Y into V between A f and B f .
Next, using Lemma 3.3(b), we de®ne colours in Y such that p permutes the colours as
prescribed by h.

Case 3. There is y A V with A f < y < B f but no x A V with A < x < B.
This case is dual to Case 2.

Case 4. There are x; y A V with A < x < B and A f < y < B f .
In this case, let X � fx A V : A < x < Bg and Y � fy A V : A f < y < B f g and

de®ne a 0 � infV X , b 0 � supV X , c 0 � infV Y , d 0 � supV Y . By ���, X and Y contain
no greatest or smallest element and have countable coterminality. Hence we can deal
with the intervals �a 0; b 0�V and �c 0; d 0�V precisely as we dealt with the intervals �a; b�S
and �c; d �S in Basic Construction A, the only di¨erence being that the endpoints
a 0; b 0; c 0; d 0 all belong to V . By ���, in fact we have a 0; b 0; c 0; d 0 A V n�V WP 0WQ 0�.
Hence, using Basic Construction A we enlarge the intervals �a 0; b 0�V and �c 0; d 0�V to
intervals �a 0; b 0�W and �c 0; d 0�W , respectively, de®ne colours in them appropriately
and obtain an isomorphism p : �a 0; b 0�W ! �c 0; d 0�W which permutes the colours as
prescribed by h.
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If these constructions are carried out for each decomposition �a; b�U � AWB with
A < B, we clearly obtain the required extension W and, by patching together all the
``local'' isomorphisms, also the isomorphism f as required. Note that if U;V A Knice,
then also W A Knice. Moreover, we have V A Kl, and if there are at most l decom-
positions �a; b�U � AWB as described, then again W A Kl.

Theorem 4.3. Let G be any group and lV jG j a regular uncountable cardinal. Then

there exists S A Kl
nice with the following properties:

1. S is doubly homogeneous in the P-colours;

2. �S;U� has countable coterminality;

3. �S;U� is not anti-isomorphic to itself.

Proof. We will ®rst consider the case @0 < k < l (although the case @0 � k < l will be
quite similar). We ®rst construct S A Kl

nice which is G-homogeneous for S-intervals.
Let Le � �Le;U; �P0

g �g AG; �Q 0
g�g AG� be the coloured linear ordering de®ned above.

Let P be the set of all gaps of �Le;U�. For each gap �ajb� of �Le;U�, choose a
copy L�ajb� of the good l-set given by Lemma 4.2. De®ne

S0 �
S fL�ajb� : �ajb� A Pg:

Next we de®ne a linear order on Le WS0 in the unique way so that it extends the given
orders of Le and each L�ajb� and so that a < L�ajb� < b for each �ajb� A P. By con-
struction of Le, whenever c; d A Le with c < d, there is �ajb� A P with cU a < bU d

and so there is s A S0 with a < s < b. Therefore we regard C :� Lenfmax Le;min Leg
as a subset of S0nS0, and we put

S0 � �S0;U; �P0
g �g AG; �Q 0

g�g AG�:

Clearly, S0 satis®es conditions 2.2(1)±(4). By Lemma 4.2, observe that char�L�ajb�� �
f�m;@0� : @0 U mU l; m regularg for each gap �ajb� A P. Hence, if x A L�ajb� with

cof�x� � l, there is a continuously increasing sequence �ai�i<l JL�ajb�J S0 such
that x � sup i<l ai and coi�ai� � @0 for each i < l. However, note that since S0 sat-
is®es conditions 2.2(3), (4), the above is impossible for points x A S0 with x A P0.
Since char

S0
�Q0� � fy A S0 : char�y� � �k; l�g, it follows that S0 also satis®es

condition 2.2(5) and hence S0 A Kl
nice. Moreover, the set L�ajb� with b � max Le

�a � min Le� is a ®nal (initial) segment of S0, respectively, and has countable co-
terminality, so cot�S0� � @0.

We wish to obtain the required structure S � �S;U; �Pg�g AG; �Qg�g AG� A Kl
nice as

the union of a tower (indexed by l) of structures Si � �Si;U; �P i
g �g AG; �Q i

g�g AG� A
Kl

nice. For this, we employ the construction in the proof of Theorem 2.11 (parts (I)±
(III)) of [3]; here our description will be less formal.

We let Mi be the set of all quintuples �h; a; b; c; d� such that h A G, a; b; c; d A Si

and a < b < c < d, and enumerate Mi by a suitable subset mi J l. If we deal during
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the construction with such a quintuple �h; a; b; c; d� A Mi for the ®rst time at step
i � 1, we employ Basic Construction A to obtain Si�1 and an isomorphism from
�a; b�Si�1

onto �c; d �si�1
permuting the colours as prescribed by h. Later on, we employ

Basic Construction B to extend isomorphisms constructed at previous stages.
For limit ordinals j, we just put Sj �

S
i<j Si, in the natural way. Since we per-

form the extension of a constructed isomorphism l many times, for each i < l and
�h; a; b; c; d� A Mi we ®nally obtain an isomorphism f : �a; b�S ! �c; d �S permuting
the colours as prescribed by h. This shows that S is G-homogeneous for S-intervals.

Also since Constructions A and B are carried out only at points x A SinSi, i.e.
``inside'' Si, the set S0 remains unbounded above and below in each Sj � j < l� and in
S. So, �S;U� has countable coterminality.

We have to ensure that all structures Si �i < l� and S belong to Kl
nice. To see

that each element s A S has countable coterminality, observe that this is true in S0,
and that if i < l, then in the construction of Si�1 new elements only get inserted
at points of SinSi; so, in particular, each s A Si has the same character in Si�1 as
in Si.

Moreover, if i < l and j : Lh !Si is a nice embedding with t
j
0 A Pi

h , then
j : Lh !Sj should remain nice for each i < j < l. This is the case, if all inser-
tion processes of Basic Construction A and B are only carried out at points x A
Sj n�Sj WL

j
h �. Indeed we have C J S0nS0, and we declare all points of C ``forbidden

points'' in the terminology of [3]. This means that we are never allowed, later on, to
perform insertion processes at the cuts x A C. This ensures that C J SinSi for each
i < l, and id : Le ! S is a nice embedding. Furthermore, during the Basic Con-
structions A and B, to construct Si�1 we insert copies of the whole intervals of Si

only into particular points x A SinSi with cot�x� � @0 which are not ``forbidden'' in
Si. Then we declare in the copy I 0 of I all elements x 0 A I 0 nI 0 which correspond to a
forbidden point x A I nI is Si as forbidden points in Si�1 (cf. [3], pp. 256±258). This
ensures that our isomorphisms also preserve forbidden points, and if j : Lh !Si

is a nice embedding, then j : Lh !Sj remains nice for each i < j < k, and so is
j : Lh !S.

Also, fx A S0nS0 : cot�x� � @0g is l-dense in S0. Now assume that i < l and x A
SinSi with cot�x� � @0. Suppose that in the construction of Si�1 the chain �X ;U�
gets inserted into Si at x. Then by property ��� of Basic Construction B, we may
assume that �X ;U� has countable coterminality and the elements inf X , sup X of
Si�1 become forbidden points. This ensures that inf X , sup X retain their countable
character in each Sj �i < j < l� and in S.

We have to show that the forbidden points do not prevent our constructions. By
induction, we may assume that if i < j < l, then there are only <l many points x A
SinSi into which elements have been inserted in order to construct Sj. Hence at stage
j, for any a < b in Si there are still l many cuts x A �a; b�

Sj nSj
with cot�x� � @0 into

which no element got inserted and which are not forbidden in Sj, and these can be
used when we deal again with a quintuple in Mi. Moreover, then at stage j again only
< l many new forbidden points are created, keeping the above induction hypothesis.
Since l is regular, also for limit ordinals j for any a < b in Sj we have a; b A Si for
some i < j, and it follows that the set fx A �a; b�

Sj nSj
: cot�x� � @0g has size l.
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Next we consider the characters of elements of S. As noted before, each inserted
good l-set L�ajb� satis®es char�L�ajb�� � f�m;@0� : @0 U mU l; m regularg. Also, for

Le � Le J SnS we have (inside S ) char�Le� � f�m;@0�; �@0; m� : @0 U mU l, m0
k; m regulargW f�l; k�; �k; l�g. So, char�S0 � � char�Le�W f�k;@0�g. We want to
ensure that our construction neither destroys these characters nor adds new ones.
The ®rst part is clear, since we insert sets with countable coterminality only at
points x A SinSi with cot�x� � @0 and add a forbidden point to the left and to
the right of the inserted set, thereby preventing further insertions of sets at these
points.

To ensure the second part, we may proceed as in [2, p. 231, Cor. 2.5]. That is,
suppose � ji�i AN is a countable sequence of ordinals < l and ai; bi A Sji�1nSji with
ai < ai�1 < bi�1 < bi for each i A N. Let j � supi AN ji. Then in Sj �

S
i AN Sji we

have supfai : i A Ng � inffbi : i A Ng �: x A Sj nSj and cot�x� � @0 in Sj. In order
to prevent sets getting inserted at later stages at x, we declare x (and any point
arising in this way) as a forbidden point of Sj. This ensures that also cot�x� � @0 in
S. Therefore char�S� � char�S0 �.

In particular, since @0 < k < l, we have �k;@0� A char�S � but �@0; k� B char�S �,
so �S;U� is not anti-isomorphic to itself.

By similar remarks as above about S0, we also obtain that each Sj � j < l� and S
satisfy condition 2.2(5).

Now S A Knice is G-homogeneous for S-intervals and hence, by Proposition 3.4,
also G-homogeneous for P-intervals and doubly homogeneous in the P-colours.

It remains to consider the case l � @1 and so k � @0. The above construction
would also work to give S A Kl

nice with (1), (2) and char�S � � f�@0;@0�; �@1;@0�;
�@0;@1�g, but now this does not imply that �S;U� is not anti-isomorphic to itself. To
remedy this, we can proceed as follows. Let �D;U� be the chain obtained by inserting
in the ordinal o1 � 1 between each element and its successor a copy of o�1 , the con-
verse of o1, and also adding a copy of o�1 to the right of o1 � 1. Then D � D, and
there is a unique element z A D with char�z� � �@1;@1�. Now put �D;U� to the right
of �Le;U� and proceed, with Le replaced by Le WD, as above, inserting copies of
good @1-sets into each gap of the chain �Le WD;U� to obtain S0.

The construction above now produces a chain �S;U� with DJ SnS. In partic-
ular, z A D also satis®es cot�z� � @1 in S0. By construction, there is a continuously
increasing sequence �ai�i Ao1

JDJ S0 such that z � supi Ao1
ai and coi�ai� � @1 for

each i A o1. There is also a continuously decreasing sequence �bj�j Ao1
JDJ S0 such

that z � inf j Ao1
bj and cof�bj� � @0 for each j A o1. But there is no element z 0 A S0

with cot�z 0� � @1 and these two asymmetric ascending respectively descending ap-
proximation properties interchanged, so �S0;U� is not anti-isomorphic to itself.
Since z A DJ S keeps these properties in �S;U�, but the construction produces no
z 0 A S with the interchanged properties, it follows that �S;U� is not anti-isomorphic
to itself. r

We note that we could have ensured that �S;U� is not anti-isomorphic to itself easier,
without analysing the ``interior'' character of (elements of ) �S;U�, by constructing
the set �S;U� with uncountable co®nality and countable coinitiality. However, for

M. Droste, S. Shelah618

Brought to you by | Universität Osnabrück
Authenticated

Download Date | 5/27/15 12:52 AM

Sh:743



use of Theorem 4.3 in [4] it will be essential that S has countable coterminality. Now
we have:

Proof of Theorem 1.1 in case H � f1g. Immediate by Theorems 4.3 and 2.4. r

Next we wish to show how to change the above construction in order to embed an
arbitrary l-group into A�S�. First we recall:

Proposition 4.4 (Holland [9]). Let H be any l-group. Then there exists a chain �C;U�
with jCj � jHj such that H l-embeds into A�C�.

Next we want to embed A�C� into A�S�, for some suitable doubly homogeneous
chain �S;U�. The following tool uses ideas already contained in Holland [9, proof of
Theorem 4].

Proposition 4.5 ([2, Theorem 4.3]). Let �S;U� be a doubly homogeneous chain. Let

C J SnS such that C contains all suprema and in®ma (taken in S) of bounded

subsets of C and cot�a; b�S � @0 for each gap �a; b� of �C;U�. Then there exists an l-
embedding of A�C� into A�S�.

Now we obtain:

Proof of Theorem 1.1 in the general case. By Proposition 4.4, we can choose a chain
�Y ;U� with jY j � jHj such that H JA�Y � (as l-groups). Let Y � f1; 2g be ordered

lexicographically, let �X ;U� be the chain Y � f1; 2g with a copy of o added to the
right of Y � f1; 2g. Observe that Y � f1; 2g is the same as the chain Y with each
element of Y replaced by a 2-element chain. We identify A�Y� with A�Y � f1g�J
A�X�. Now perform the construction of the above proof of Theorem 4.3, with Le

replaced by Le WX , where �X ;U� is placed to the right of Le if lV@2, and with
Le WD replaced by Le WDWX with X placed to the right of Le WD, if l � @1. The
points of X also become ``forbidden'' points in S0. Since cof�x�; coi�x�U jY j < l for
each x A X , condition 2.2(5) is not disturbed and we obtain S0 A Kl

nice. Hence we
can continue our construction as before, obtaining S A Kl

nice such that (cf. the proof
of Theorem 2.4) the chain �Pe;U� is doubly homogeneous and Out�A�Pe��GG. Since
X XP �q and by construction cot��y; 1�; �y; 2�� � @0 for each y A Y , Proposition
4.5 now yields an l-embedding of A�X �, hence of H, into A�Pe�. r

Next we wish to turn to the proof of Corollary 1.2. Let �S;U� be an in®nite chain
and H JA�S� a subgroup. Then �H;S� is called a triply transitive ordered permu-

tation group, if whenever A;BJS each have three elements, there exists h A H with
Ah � B. An element h A H is called strictly positive, if h > e in A�S�, and bounded,
if there are a; b A S with a < b such that each x A S with xh 0 x satis®es a < x < b.
For the proof of Corollary 1.2 we need the following special case of McCleary [12].
It generalizes one implication of Proposition 2.1.
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Proposition 4.6 (McCleary [12, Main Theorem 4]). Let �H;S� be a triply transitive

ordered permutation group such that H contains a strictly positive bounded element and
�S;U� is not anti-isomorphic to itself. Then each automorphism j of H is induced by a

unique automorphism f A A�S �, which permutes the orbits of H in S, such that

hj � f ÿ1 � h � f for each h A H:

Using this and Theorems 1.1 and 4.3, we can give the

Proof of Corollary 1.2. By the proof of Theorem 1.1, in particular by Theorems 4.3
and 2.4, there exists S � �S;U; �Pg�g AG; �Qg�g AG� A Kl with the properties of The-
orem 2.4 and such that H JA�X� (as l-groups, where X � Pe). In particular, G G
Out�A�X ��, the sets Pg �g A G� are all the A�X�-orbits in X which are isomorphic to
X, and for each g A G there is fg A A�X� permuting the A�X�-orbits such that X fg �
Pg. So, A�X� fg � A�X� for each g A G. By LoÈwenheim-Skolem, we can ®nd an l-
group K of size l such that H JK JA�X� (as l-groups), �K ;X �, just like �A�X �;X�,
is triply transitive and contains a strictly positive bounded element, and K fg � K for
each g A G. Hence fg A Aut�K�, and by Proposition 4.6, fg permutes the orbits of K

in X . So, X fg is an orbit of K, showing that each Pg �g A G� is also an K-orbit. Now
let U be any K-orbit in X with U GX . By condition (2.2.5) it follows that U JP.
Thus U � Pg for some g A G, showing that K and A�X � have the same orbits in X

which are isomorphic to X. Also, Aut�K� and Aut�A�X�� induce the same permuta-
tions of these orbits. Thus Out�K�GOut�A�X ��GG. r

Finally we just remark that in a similar way, by LoÈwenheim-Skolem arguments it
follows that Theorem 1.1 also holds for singular cardinals l > jGj, and hence so does
Corollary 1.2.
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