
The Journal of Symbolic Logic
http://journals.cambridge.org/JSL

Additional services for The Journal of Symbolic Logic:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

Similar but not the same: various versions of ♣ do not
coincide

Mirna Džamonja and Saharon Shelah

The Journal of Symbolic Logic / Volume 64 / Issue 01 / March 1999, pp 180 - 198
DOI: 10.2307/2586758, Published online: 12 March 2014

Link to this article: http://journals.cambridge.org/abstract_S0022481200013979

How to cite this article:
Mirna Džamonja and Saharon Shelah (1999). Similar but not the same: various versions of ♣ do not
coincide . The Journal of Symbolic Logic, 64, pp 180-198 doi:10.2307/2586758

Request Permissions : Click here

Downloaded from http://journals.cambridge.org/JSL, IP address: 129.93.24.73 on 17 Mar 2015

Sh:574



THE JOURNAL OF SYMBOLIC LOGIC 

Volume 64. Number 1. March 1999 

SIMILAR BUT NOT THE SAME: 
VARIOUS VERSIONS OF * DO NOT COINCIDE 

MIRNA DZAMONJA AND SAHARON SHELAH 

Abstract. We consider various versions of the £ principle. This principle is a known consequence of 
0- It is well known that 0 is not sensitive to minor changes in its definition, e.g., changing the guessing 
requirement form "guessing exactly" to "guessing modulo a finite set". We show however, that this is not 
true for A. We consider some other variants of A as well. 

§1. Introduction. In this paper we consider various natural variants of X princi­
ple. We answer questions of S. Fuchino and M. Rajagopalan. 

The principle was introduced by A. Ostaszewski in [7]. It is easy to see that & 
follows from 0, and in fact it is true that 0 is equivalent to £ + CH, by an argument 
of K. Devlin presented in [7]. By ([10, §5]) 0 and £ are not equivalent, that is, 
it is consistent to have X without having CH. Subsequently J. Baumgartner, in an 
unpublished note, gave an alternative proof, via a forcing which does not collapse 
Ni (unlike the forcing in [10]). P. Komjath [5], continuing the proof in [10, §5] 
proved it consistent to have MA for countable partial orderings +->CH, and ft. 
Then S. Fuchino, S. Shelah and L. Soukup [2] proved the same, without collapsing 
Ni. 

The original R. Jensen's formulation of 0 ([3]) is about the existence of a sequence 
{As : 8 < co\) such that every Ag is an unbounded subset of 8, and for every 
A e [a>i]Nl, we have A C\3 — As stationarily often. Many equivalent reformulations 
can be obtained by using coding techniques (see [6]). As a well known example, we 
mention K. Kunen's proof ([6]) that <0~ is equivalent to <0>. Here 0~ is the version 
of 0 which says that there is a sequence 

{{Ad
n:n<co}:5<a>\), 

each As„ C 8, and for every A e [eoi]Nl, we stationarily often have that A n 8 = A6
n 

for some n. 
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SIMILAR BUT NOT THE SAME: VARIOUS VERSIONS OF * DO NOT COINCIDE 181 

We consider the question asking if Jft has a similar invariance property. To be 
precise, we shall below formulate some versions of Jft, and ask if any two of them 
are equivalent. We are particularly interested in those versions of Jk which have the 
property that the parallel version of 0 is equivalent to <C>. The main result of the 
paper is that almost all of the ^-equivalences we considered, are consistently false. 

Versions of Jft which are weaker than the ones we consider, are already known 
to be weaker than Jft. Namely, in his paper [4], I. Juhasz considers the principle Jit' 
claiming the existence of a sequence 

{(A3
n:n<co):8 limit < co\) 

where for any 8 sets { As
n : n < co } are disjoint, and such that for every A e [co]]^1 

there is 8 such that for all n we have s u p ( ^ n co\) = 8. I. Juhasz shows that Jft' is 
true in any extension by a Cohen real. 

We heard of the question on the equivalence between Jk and Jit' from F. Tall, who 
heard it from J. Baumgartner. J. Baumgartner credited the question to F. Galvin, 
who credited it to M. Rajagopalan. And indeed, M. Rajagopalan asked this ques­
tion in [8], where he introduced Jk' (denoted there by JltF )• In the same paper M. Ra­
jagopalan also introduced Jit2 (denoted there by Jit00) and showed that CH + Jit2 

suffices to construct an Ostaszewski space. He also asked if Jit2 was equivalent to 
Jit. The answer is negative by Theorem 2.1 below. 

Most of the other equivalence questions we consider here were first asked by 
S. Fuchino. 

We now proceed to give the relevant definitions. 

DEFINITION 1.1. We define the meaning of the principle Jkl
r for / ranging in 

{0,1,2,*} and T a limit ordinal < u>\. (If T = co then we omit it from the 
notation.) 

CASEI . / = 0. 

For some stationary set S C co\ n LIM, there is a sequence (As-: 8 e S} such 
that 

(a) As is an unbounded subset of 8. 
(b) otpUa) = T. • 
(c) For every unbounded A C a>\, there is a 8 such that As C A. 

CASE 2. / = 1. 

For some stationary subset S of co\ n LIM, there is a sequence (As : 8 e S) such 
that 

(a) As is an unbounded subset of 8. 
(b) otpUa) = T. 

(c) For every unbounded A C a>\, there is a 8 such that \As \ A \ < NO-

CASE 3. / = 2. 

For some stationary S C a>\ n LIM, there is a sequence 

{{As
n:n<co}:8eS) 

such that 

(a) Each As
n is an unbounded subset of 8. 
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182 MIRNA DZAMONJA AND SAHARON SHELAH 

(b) O t P ( 4 ) = T. 

(c) For every unbounded A C a>\, there is a 8 and an n such that Ad„ C A. 

CASE 4. / = • . 

For some stationary set 5 C a>\ n LIM, there is a sequence 

( { / f f l : f f l < m ^ ) } : < i 6 S ) 

such that 
(a) Each A6

m is an unbounded subset of 8. 
(b) o tp(4 , ) = T. 
(c) For every unbounded A C a>\, there is a <S and a n m < m*(<5) such that 

(d) For all relevant <S, we have m*{8) < co. 

In the above, LIM stands for the class of limit ordinals. 

REMARK 1.2. 

(1) One could, of course, consider the previous definitions with a>\ replaced by 
some other uncountable ordinal, in fact an uncountable regular cardinal. As our 
proofs only deal with w\, we only formulate our definitions in the form given above. 

Also, we could consider principles of the form Jtt'r{T) in which T is a stationary 
subset of co\ and parameter 8 in the above definitions is allowed to range only in T 
(i.e., S n T). 

(2) The definition that A. Ostaszewski [7] used for a Jfr-sequence (As : S € S) 
requires that for each A e [a>i]Nl there is a stationary set of 5 such that A$ C A. It is 
well known that this is equivalent to our definition of Jk°. Hence 4k° is the usual A 
principle of Ostaszewski, and we shall often omit the superscript 0 when discussing 
this principle, and freely use the equivalence between the definitions. 

It is obvious that ^ ==> X^ = > Jft\, and that ^ ==> 4k* ==> 4»x- The result 
of the first Sections 2 and 3 of the paper is that, except for the following simple 
theorem, the above are the only implications that can be drawn. 

THEOREM 1.3. 

(1) Suppose that T\, T2 < a>\ are limit ordinals and that 4»Ti and Jf»x2 b°tn hold. 
ThenJttrl.r2 holds. 

(2) 4I»T] T2 ==> *̂»T| for T\ limit < a>\ and T2 < co\. Similarly for the other versions 
of ^ considered. 

PROOF. 

(1) Let ( 4 : <5 e S,) for / = 1, 2 exemplify * r , • For 5 e lim(5i) n S2 we let 

Bs^ (jAl 
0 

Hence Bs is an unbounded subset of 8. 
Suppose that A e [cui]N|- For each a < co\, the set A \ a is an unbounded 

subset of a>i, hence contains stationarily many A\ as subsets. So we can find an 
unbounded subset T\ — T\[A] ofS\ such that 

a ETi^Alc ^ \ s u p ( r , Ha) . 
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SIMILAR BUT NOT THE SAME: VARIOUS VERSIONS OF * DO NOT COINCIDE 183 

Now we can find a S e lim(5'i) n S2 such that Aj c T\. Hence B$ C 4̂ and fi,$ is 
unbounded in <S. Moreover, o\p{Bs) = T\ • T2. 

We have shown that (Bs :S £ \im(S\) n 52 & otp(5^) = Tj • T 2 ) witnesses that 
AT, x2 holds (note that the fact that the set of relevant <S is stationary follows from 
the previous paragraph). 

(2) Easy. H 

The questions considered in the paper are answered using the same basic tech­
nique, with some changes in the definition of the particular forcing used. A detailed 
explanation of the technique and the way it is used to prove that A1 does not im­
ply Jk°, is given in §2. The changes needed to obtain the other two theorems are 
presented at the end of §2 and in §3. 

§2. Consistency of A1 and ->A0. 

THEOREM 2.1. C O N ( * ' + ^ * ) . 

PROOF. Throughout the proof, / is a fixed large enough regular cardinal. 
We start with a model V of ZFC such that 

K |= O M + 2 * = N2, 

and use an iteration Q = (Pa,Qp : a < cu2 & ft < a>2). The iteration is defined in 
the following definition. 

DEFINITION 2.2. 

(1) By a candidate for a &, we mean a sequence of the form (As : S < a>\ limit}, 
such that As is an unbounded subset of 8, with o t p ^ ) = co. 

(2) In F , we fix a continuously increasing sequence of countable elementary 

submodels of (Wix), €, < p , call it N = {N? : i <co\), such that -

^(Ni) C |J JV,0 

i<co\ 

(this is possible by CH), and (JV? : j <i) £ Nf for i <a>\. 
(3) During the iteration, we do a bookkeeping which hands us candidates for £ . 
(4) Suppose that /? < co2, and let us define Qp, while working in Vpt. 
(a) Suppose that CH holds in Vp" and the bookkeeping gives us a sequence 

A? = (A% : 8 < a>\ a limit ordinal) which is a candidate for £ . For some club 
Ep of ct>i we choose a continuously increasing sequence N& = (Nf : / £ Ep ) of 
countable elementary submodels of (•#"(/), € ,<*) , such that we have 

*(Ni) Q (J Nf, 
ieE/i 

and such that for every i £ Ep we have Nf n V = N°, while 

(< : i< ' )^ l ( ¥ ( i + , ) r 
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184 MIRNA DZAMONJA AND SAHARON SHELAH 

Furthermore, A& e Np. ,r ,. Then OR = OR.. „ is defined by 

Qp = { f : (i) / is a partial function from a>\ to {0,1} 

(ii) otp(Dom(/)) < com 

(m)ft(Nfnc0l)eN^n{E^{M)),{oTieEp 

(iv) / - 1 ( { l } ) n 4 = 0 = ^ | D o m ( / ) n 4 | < ^ o 

(v) fev}. 

(b) If -iCH, then Qp = 0. (Of course, our situation will be such that this case 
never occurs.) 

In Qa, the order is given by 

f < g -*=>• g extends / as a function. 

(5) For a < co2, we define inductively 

Pa = {p: Dom(p) e [ a p ° & (Vfi e Dom(/>)) 

(/>(/?) is a canonical hereditarily countable over Ord 

Pp-name of a member of Qp, and p\fi \t-P "p(p) £ Qp") }• 

The order in Pa is given by 

p < q -4=> (i) Dom(j?) C Dom(g). 

(ii) For all fi < a, we have q \fi Ih >(/?) < ?(/?)". 

(iii) { y G Dom(^) : p(y) / q{y) } is finite. 

DEFINITION 2.3. Suppose a < co2, and p <q £ Pa- Then 
(1) We say that q purely extends p, if q\~Dom{p) = p. We write/? <p r q. 
(2) We say that q apurely extends p, if Dom(/?) = Dom(#). We write /> <apr <jr. 
(3) The meaning of p >pr g and p >apr # is denned in the obvious way. 

DEFINITION 2.4. Suppose that y < a>\. A forcing notion P is said to be purely 
y -proper if: 

For every p e P and a continuously increasing sequence (N; : i < y) 
of countable elementary submodels of {%"(x), £, <*x) with p, P e No, 
{Nj : j < i) e JV,-+i, there is a g >p r /> which is (iV,-, P)-generic for all 
i < y. 

FACT 2.5. A ccc forcing notion is purely y-proper for every y < co\. 

PROOF OF THE FACT. This is because every condition in a ccc forcing is generic, 
see [9, III, 2.6 and 2.9]. H 

General facts about the iterations like the one we are using. 

FACT 2.6. Iterations with the support we are using, have the following general 
properties: 

(1) a < p =>• Pa C Pp as ordered sets. 
(2) (a<p&qePp)^(q\aePa&q\a<q). 
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SIMILAR BUT NOT THE SAME: VARIOUS VERSIONS OF * DO NOT COINCIDE 185 

(3) (a < fl & p e Pp & p\a < q 6 Pa) =>• q U (p\[a, /?)) 6 Pp is the least upper 
bound of p andq. 

(4) If a < p, then Pa <o Pp. Hence, Gpa+JGpa gives rise to a directed subset of 
Qa over V[GPJ. 

(5) If {pt : i < i* < co\} is a <pr-increasing sequence in Pa* for some a* < a>2, 
def 

then p = U « c Pi is a condition in Pa* and for every i < i* we have pt <pr p. 
(6) Pure properness is preserved by the iteration. Moreover, for any y < a>\, pure 

y-properness is preserved by the iteration. 

PROOF OF THE FACT. 

(l)-(5) Just checking. 
(6) The statement follows from some more general facts proved in [9, XIV]. 

A direct proof can be given along the lines of the proof that countable support 
iterations preserve properness, [9, III, 3.2]. H 

Back to our specific iteration. 

CLAIM 2.7. Suppose a* < a>2- In VPa", the forcing Qa- has the ccc. Moreover, it 
has the property ofKnaster. 

PROOF OF THE CLAIM. We fix such an a* and work in Vp°*. We assume CH, as 
otherwise we have defined Qa* as an empty set. 

Hence sequences Na" = (N"* : i € Ea* ) and (A"" : 8 < a>\ limit) are given. 
Let 

E =f {3 € Ea. : Nf* nco, =3}, 

so E is a club of co\. Suppose that qa e Qa* for a < a>\ are given. Let 

A = {8 e E : for some a € E N S we have<5 > sup(<5 n Dom(qa)) } . 

A contains a final segment of acc(£), as otherwise we can find an increasing sequence 
(St : i <coOJ) from acc(£) \ A. Choose a > sup{<5, : i < cow } with a e E. Hence 
for all i < oim we have that <5, = sup[Dom(#a) n St], which is in contradiction with 
otp(Dom(^rQ)) < co™. 

Let C be a club such that ADC. For S e C, we fix an ordinal ari witnessing 
that S e A. So as € E \ S and S > s\ip(S n Dom(^aJ) . 

For S e C, let g(S) be defined as the minimal ordinal e E such that qas e Nafo 
(note that g is well defined). Hence, the set of 3 e C which are closed under g, is a 
club of a>\. Call this club C\. 

Note that there is a stationary S C C\ such that for some <J* we have 

8 G S = • sup(<5 n Dom( ? 0 J ) = <J*. 

Now notice that for <5i < <52 6 C\, we have 

Dom(^Qi!i) C N^ n coi = a^2. 

So, if <5i < <S2 e S, we have 
D o m f ^ ) n D o m ( ^ 2 ) C aSl n T>om(qah) C <J*. 
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186 MIRNA D2AM0NJA AND SAHARON SHELAH 

Now let 3* = min(5'), so S* > £*. By (iii) in the definition of Qa, ^„*, for every 
8 e S we have 

qaJ(Dom(qas)nC) = (qaJ(Dom(gas) nS*))\C e KwBB.^s-+i)y 

So, there are only countably many possibilities, hence we can find an uncountable 
set of as such that qas are pairwise compatible. H 

REMARK 2.8. ccc orders like the one above were considered by Abraham, Rubin 
and Shelahin [1], 

CONCLUSION 2.9. For all a < a>2, the forcing Pa is purely y-proper for all y < co\. 

[Why? By Fact 2.5, Fact 2.6 (6) and Claim 2.7.] 

CLAIM 2.10. The following hold for every a* <a>2-

(1) In Pa*, if p < r, then for some unique q we have 

P <Pr q <apr r & (a G Dom(q) & q(a) ^ r(a) => a € Dom(p)). 

(2) The following is impossible in Pa*: 
There is a sequence (qt : i <a>\) which is <pr-increasing, but for which 
there is an antichain {r, \ i <a>\) such that qi <apr r,-. 

(3) Ifp € P„« and T is a Pa*-name of an ordinal, then there is q e Pa* with p <pr q, 
and a countable antichain I_ C { r : q <apr r } predense above q, such that each 
r € I_ forces a value to T. 

(4) If a* < co2, then U-Pa. ~"\Qa. \ = H{". 
(5) If a* < a>2, then Vp°* N CH. 
(6) Qa' is closed under finite unions of functions which agree on their common 

domain. 
(7) Vp*' \= 2N' = N2. 
(8) Pa* satisfies ^2-cc. 

PROOF OF THE CLAIM. 

(1) Define q by q =f p U (r t(Dom(r) \ Dom(/?)). 
(2) We prove this by induction on a*. The case a* = 0 is vacuous, and if a* is 

a successor ordinal, the statement easily follows from the fact that each Qa has the 
property of Knaster. 

Suppose that a* is a limit ordinal and (qi : i < a>\), {r, : i < a>\) exemplify a 
contradiction to (2). For i <co\ let 

wt = {a e Domfe) : n(a) ^ # ( a ) }, 

hence Wj is a finite set. Without loss of generality, we can assume that sets w,{i < co\) 

form a A-system with root w*. Let /?* = Max(w*) + 1, so /?* < a*. 
Now notice that 

a e Dom(r,) n Dom(ry) & -i(ll-/>a "r,(a), r ; ( a ) are compatible") 

implies that a G to*, for any /, j < co\. Hence, (q( \ft* : i < a>\) and (rt \ji* : /' < 
co\) exemplify that (2) fails at /?*, contradicting the induction hypothesis. 

(3) We work in VPa". Fix such p and T. Let J be an antichain predense above p, 
such that every r e J forces a value to T. 
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SIMILAR BUT NOT THE SAME: VARIOUS VERSIONS OF * DO NOT COINCIDE 187 

We try to choose by induction on i < co\ conditions p{, rt such that 

• Po = p, 
• j < i=>Pj <Pr Pi, 
• n e J, 
• Pi <apr rt, 
• j < i=$>rj±rj. 

If we succeed, (2) is violated, a contradiction. 

So, we are stuck at some i* < co\. We can let q = /?,* and I = {n : i < i* } . 
(4) Obvious from the definition of Qa-. 
(5) Can be proved by induction on a*, using (3) and (4). 
(6) Just check. 
(7) Follows from the definition of Pa-, part (3) of this claim, and the fact that 

V 1= 2N> = H2. 
(8) By 2.2(5) and part (4) of this claim (see [9, III, 4.1] for the analogue in the 

case of countable support iterations). H 

CLAIM 2.11. It is possible to arrange the bookkeeping, so that \\-pa -i^k. 

PROOF OF THE CLAIM. As usual, using Claim 2.10(7), it suffices to prove that for 
every a* < a>2, in VPa' we have 

\\-Qa, "{Af : 8 < co\) is not a ^-sequence." 

Let G be ga.-generic over Vp°', and let F = \JG. Let A = F~] ({0}). Suppose 
that A 2 Ag* for some<5. Then for every / e G we have / - 1 ( { 1 } ) n Af = 0, so 
| D o m ( / ) n ^ f | < N 0 . 

However, the following is true: 

SUBCLAIM 2.12. The set 

J = {f € 2a* : | D o m ( / ) n ^ a * | = Ho orf~\{l})nAf ^ 0 } 

is dense in Qa*. 

PROOF OF THE SUBCLAIM. Given / e Qa-. If Dom( / ) n Af is infinite, then 

/ 6 / . Otherwise, let 0 =f mm(Af) \ Dom( / ) . Let g = f U {{p, 1)}, hence 

We obtain a contradiction, hence A is not a superset of Af. H 

DEFINITION 2.13. Suppose that 

(a) y_<m\, 
(b) N = (Ni : i < y) is a continuous increasing sequence of countable elementary 

submodels of {&(%), e, <*), 

(c) z,QeN0 and peP^Ci No, 
(d) /»H-"TG[o»i]Rl"and 
(e) N\{i + I) eNi+i for i<y. 

We say that e < y is bad for (iV", T, p, Q) if e is a limit ordinal, and there are no r„, 
P„ £ Ne (n < co) such that 

(1) r„ lh, «pn e T", 

Sh:574



188 MIRNA DZAMONJA AND SAHARON SHELAH 

(2) lU^^n©,, 
(3) rn > p for all n, 
(4) pn increase with n, 
(5) for some n0 e co the set { rn : n > «0 } has an upper bound in PW2, 

(6) FN\e,P.r = (r„ : « < co} and ^ k M = ( A : « < co) are definable in 
(<*"(*) K> e, <*) from the isomorphism type of ((N( : £ < e ),p, z, Q) (we 
shall sometimes abbreviate this by saying that these objects are defined in a 
canonical way). 

MAIN CLAIM 2.14. Suppose that N, y, p andz are as in Definition 2.13. Then the 
set 

B = {e<y:e badfor {N,z,p, Q) } 

has order type < com. 

PROOF OF THE MAIN CLAIM. We start by 

SUBCLAIM 2.15. Let N, y, p and z be as in the hypothesis of Claim 2.14. Then, we 
can choose canonically a sequence p = (pj : j < coy ) such that 

(1) p is <pr-increasing. 
(2) /?o = P-
(3) For i < y and n < co,we have that pmi+n € Ni+\. 
(4) For each i < y, for every formula y/(x,y) with parameters in Nit there are 

infinitely many n such that one of the following occurs: 
(a) For no p' > pmi+n do we have that for some y, the formula y/{p'', y) holds. 
(/?) For the <*-first r > pmi+n such that y/{r,y) holds for some y, we have 

r ^ a p r Pcoi+n + l-

(5) For j < coy a limit ordinal, we have pj = (J( /»,-. 

PROOF OF THE SUBCLAIM. We prove this by induction on y, for all N and p. 
If y = 0 , there is nothing to prove. 
If y < co\ is a limit ordinal, we fix an increasing sequence (% : k < co) which 

is cofinal in y, such that yo = 0 (we are taking the <*-first sequence like that). By 
def 

induction on k we define (pj : coyk < j < coyk+\ ) • We let po = p. At the stage k of 
the induction we use the induction hypothesis with pmyk, {Nj : coŷ  < j < coyk+\) 
here standing for p, N there, obtaining (pj : coyk < j < coyk+]), noticing that 

def 

Po>yk e A ^ , . We define pmyM = [jj<myk pj. We thus obtain 
(pj : coyk < j < coyk+] ) 

in V, As the parameters used are in Nwyi(+\, by the fact that our choice is canonical, 
we have that (pj : coyk < j < coyk+1) e A^+i+i • 

Suppose that y = y' + 1. By the induction hypothesis, we can find a sequence 
(pj : j < coy') satisfying the subclaim for p and N\y'. As N\y e Ny, again we 

def 

have that the sequence {pj : j <coy') is in Ny. Let pwy' = \Jj<coy, Pj• 
We list as ( y/y

n = y/„ : n < co} all formulas y/(x,y) with parameters in Nyi, so 
that each formula appears infinitely often, picking the <*-first such enumeration. 
By induction on n < co, we choose pmy'+n- We have already chosen pwy<. 
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SIMILAR BUT NOT THE SAME: VARIOUS VERSIONS OF * DO NOT COINCIDE 189 

At the stage n + 1 of the induction, we consider y/„. If (a) holds, we just let 

>+„. Otherwise, there is a condition r > pmy'+n such that y/n{r,y) 
for some y. By elementarity, the <*-first such r ism. Nyi+\. By Claim 2.10(1), there 
is a unique q such that r >apr q >p r Pwy'+n and 

a G Dom(g) & r(a) ^ q{a) ==> a G Dom(^). 

def 

Hence, <7 G Ny>+\ and we set pmy+n+i = q. H 

We now choose p as in the Subclaim, using our fixed y, N, t and p. 

NOTE 2.16. For every limit e < y we have that Dom(/?M£) = Ne (~) a>2. 

[Why? Let / < coe be given, and let a G Nt n <»2. Consider the formula y/(x, _y) 
which says that x = y G P ^ and a G Dom(x). This is a formula with parameters 
in Nj. Option (a) from item 2.15 of Subclaim 2.15 does not occur, so there is m 
and r >apr pa,i+m such that y/(r, y) holds for some y. Hence 

a G Dom(r) = T>om.{pmi+m) C Dom(^£o(,+1)). 

So Nt n a>2 C Dom(/7w(,+1)), and hence Nenco2 Q D o m ^ ) . 
On the other hand, if a G Dom(/w) , there is i < e such that a G Dom(/?co,) C 

Ni+i C JVe.] 

OBSERVATION 2.17. Suppose a < a>2, while q £ Pa and w G [Dom(#)]<N°. Then 
there is q+ > q in Pa such that 

(*)Q If i G w U {y G Dom(#) : #(./') ^ tf+O') }, then q+(i) G F (an object), and 
not just 9+fi lh "q+(i) G V" (not just a name). 

[Why? By induction on a. The induction is trivial for a = 0, and in the case of 
a a limit ordinal it follows from the finiteness of w. Suppose that a = /? + 1. We 
have q\fj lh "<?(/?) G V", so we can find r G Pp such that r >q\ji, and A such that 
r lh "<?(/?) = .4". Now apply (*Y with r in place of q and 

(Wn/?)U{y:rO-)^<?0')} 

to obtain q+. Letq+ = q+ <- {{0,A)}.] 

Continuation of the proof of 2.14. Since p is <pr-increasing, the limit of p is a 
condition, say p*. Now let q* > p* be the <*-first such that q* lh "/? G T" for some 
P> NyC\a>\, and with the property 

[a G Dom(/>») & p*(a) ^ g*(a)]=>g*(a:) an object, 

def 

which exists by Observation 2.17. Let w* = { a G Dom(/>„) : /?*(«) 7̂  q*(a) }• 
We now define 

b =f J e < y : ( [ J Dom(?*(a)) n (JVe D 01) ] is unbounded in 7Ve l~l co\ \. 

NOTE 2.18. otp(Z>) < com. 
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[Why? Suppose that e, for j < of are elements of b, increasing with j . Now, for 
every j < of we know that Nej fl a>\ is bounded in Nej+i n co\, but 

(J Dom(?*(a))n(JVey+ina>i) 

is unbounded in JV£;+1 n «i. Hence 

(J Dom(<7*(<*)) n [Nej n<altNej+l Ho,) 7̂  0-

However, by the definition of the forcing, 

otpf ( J Dom(q*(a))\ <coa, 

a contradiction.] 
Continuation of the proof of 2.14. Our aim is to show that B C b (B was defined 

in the statement of the Main Claim). So, let e* e (y + 1) \ b be a limit ordinal. We 
def ~ def ~ 

show that e* ^ B. We have to define f = F^fe. and /? = Pfj\e..p,x so to satisfy 
(l)-(5) from the definition of B, and to do so in a canonical way, to be able to prove 
Subclaim 2.19 below, hence showing that (6) from Definition 2.13 holds. 

Let 
sup( (J Dom{q*{a)\ nN£* nco\ 

so (J < Ne* Dco\. We enumerate Ne. flu;* as{c*o>. . . ,a„ ._i}. By Note 2.16, we can 
fix j * < e * such that {ao >•••>««*-1} Q Dom(pmj«). Let j * be the first such. Also 

let<5 = Ne* n on. Now we observe that for all / < «*, we have q*{oti) \£ 6 N€*. 
[Why? Clearly, there is e' < e* such that {a0, . . . ,an.-\,£,} C Nc>. With fi 

defined in Definition 2.2 (2), we have that N e No. Also, we have that 

0 lhQn._, "E = f] Ea, is a club of on", 
I<n" 

(cf. Definition 2.2 (4) (a). Hence, by properness and the choice of TV, we have that 
for every e € [e', y], we have that 

0»-a..-i uNenm eE". 

Let 1 =f Ne> n t»i, hence N? e iVV+i- In particular, we have 0 lhQn,_, "i € £"' and 
N?r)a>] < N£* n coi. So for all / < n* we have 

«*(a/)tf = **(«/) K^Do,,), 
but 

0iha, "ivf n « i = ^ n f f l i " , 

hence by Definition 2.2 (4) (a) (iii), we have 

^ra,ihV(«/)^e<i n (^v ( , .+ 1 ) )". 

But 

Qa, lh "min(£Q, x (1 + 1)) e Nc.+l[G]n, 
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hence 

q\al\\-"q(a,)\ZeNe,+1[G]". 

By properness and the fact that q*{ai) G V, we have q*{a{) \£, G Ne>+\.] 

Let us pick the <*-first increasing sequence (e„ : n <co) such that e* = \Jn<a) en, 
while coj* + 1 < e0 and £ G Neo, in addition to (W < n*)[q*(ai) \£ G N£o\. 

def 

Defining r„ and /?„. We do this by induction on n. If « = 0, we set ro = /W0> and 
also let w0 = 0, £0 = £. 

At stage « + 1, we assume that at stage n we have chosen r, e JVEi+i n PWl and 
mn < a> so that r„ >apr /W„+m„ • We also have chosen £„, fin G iV£B+i. 

We define a formula y>„(*, 7) which says 
(1) x G Peu2 and j is an ordinal > Max{/?„, JV£„ n eoi}. 
(2) x Ih ' > ' G T" for some y' > y. 
(3) If / < n*, then x(c*/) is an object, not a name, and x(a/) |"<j; = q*{at) \£. 
(4) For / < «*, we have x(a;)f<J G N£0 and Dom(x(a/)) \ £, C a>i \ <!;„. 
(5) For all a we have 

a G Dom(x) n Dom(/7co£n+OTn) & x(a) ^ (a) 

=>a G {ao. • • - a n * - i } . 

Hence, y?„ is a formula with parameters in NCn+i C JVe„+1. Also, we have that 
< „̂(9*,<5) holds. 

By the choice of p, there is mn+\ > mn (we pick the first one) such that for the 
<*-first r > pw(£„+l)+mn+l-] for which there is y for which <pn(r,y) holds, we have 
'•>aPr/'«0(e,+1)+«.+1-Welet 

r„+i = r U (/w„+1+m„+1 |'Doni(/>eu£„+1+mii+1) \ Dom(r)). 

Note that r„+\ G #£„+,+1 and that <p„(r„+\, y) must hold for some y. The <*-first 
suchy is an element of N£li+t+\, and we choose it to be fi„+\. 

Finally, we define £„+i = min(NSn+] \ sup{U/<B. Dom(r„+i(a,)) \ £,}). 
At the end, we obtain (canonically chosen) sequences (r„ : n < co),{f$n : n < co), 

(£„ : n < co) and (m„ : n < co) such that 

vU '"n —apr Pmen+m„' 

(2) £0 = £ and £„ are strictly increasing with n. 
(3) For all / < «*, we have Dom(r„(a/)) \ £ C (£„, £„+i) and r„(a/) is an object. 
(4) r„ I h ^ "/?„ G r". 
(5) /?„+, > fa. 
(6) U„<c0A=^-n«1. 
(7) r„GJV>. 
(8) F o r / < « * , w e h a v e r „ ( a , ) ^ = ri{a,)\£. 
(9) a G { / ? G D o m ( r „ ) : r „ ( / ? ) ^ 

P(oe„ +m„ 
()?)}=> a G {a0,...Q!„. - 1 } . 

[Why? By item 2 in the definition of ipn.] 
We will use r„, /?„ (n < to) to witness that e* £ J?. It is true that rn> p and /?„ 

increase with w, and their limit is Ne* n co\. We need to show that for some no, the 
sequence rn (« > no) has an upper bound in Pmi. The natural choice to use would 
be (J«<ro

 rn > but this is not necessarily a condition! 
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[Why? By item 2 above, all r„ for n > 0 agree on a such that a <£ {«o. •• •,««*-1 }• 
By items 2, 2. and 2 above, we even know that for every I < n*, the union 

U r„(a/) 

is a function. If 5f < N£* n eai, then for all / < «* we have 

for some n' < co, so this is a condition in gQ, (by Claim 2.10 (6)). If S' > N£*na)l, 
then (Jn«u rn{oti) n <5' is finite. However, it is possible that for some a/ it is forced 
that the intersection of the set 

( J Dom(r„(a,)) 

with A%, is infinite, so \J„<m r„{ai) might fail to be a condition in Qar] 

(We remark that it is because of this point that we are getting A1 and not £ in 

def 

Now, we define conditions q* for / < «* as follows. First set a„* = a>2- By 
induction on / < n* we choose #* € PQ/, so that 

(a) qf <q*+x, 
(b) ^* fa/ is above r„ \a/ for all n large enough. 

This clearly suffices, as q*. Uq* \{T>om{q*) \ Dom(#*.)) is a condition in PM2 which 
is above all but finitely many r„. 

def 

The choice of q*. Let q£ = q* \ao = p* \<XQ. Given q* e Pa/, with I < n*. We 
can find q** > q* in i%, such that 

^ * l h " m i n ( ^ , n m i x 6 ) = ( / " 

for some ordinal (/. By item 3, above, the ordinal Ci belongs to Dom(r„(a/)) for at 
most one n. Let n\ be greater than this n. Hence there is a condition qf in Pa,+\ 
such that qf(ai) is an object and 

q+\a, = qf* & q+{a,) > \J rn{a,) & ^ ( a / X f / ) = 1. 
n>ni 

Now let 

9*+i = it u I J ''"ft"/ + l."/+i)-

Note that q*+](a) is forced to be a function, for any a e Dom(qi), as all r„ agree 
on [a; + 1, a/+ 1). Also, q*+i (a) is forced to be in V. 

Now, the sequence (q*t : / < n*) is as required. 
To finish the proof of the Main Claim, we need to observe 

SUBCLAIM 2.19. Suppose that N andM are two equally long countable continuously 
increasing sequences of countable elementary submodels of (&(x)> €> <*X>P>Z> Q) 
with QN = QM = Q, and F = (f, : i < \g(N)) is an increasing sequence of 
isomorphisms / , : Nt —• M,-. 
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Then, ifPf,,pj andr^ pi are defined, so are PM.F(P),F(^
 andFM,F(P),F(l)- Moreover, 

PM,F{P),F(I) — PN.P.X
 and ?M.F(p),F{r) = F^N.p.r)-

PROOF OF THE SUBCLAIM. Check, looking at the way ft, r were defined. H 

To finish the proof of the Theorem, we prove 

CLAIM 2.20. \\-Poti * ' . 

PROOF OF THE CLAIM. We use the following equivalent reformulation of 0 in V: 
There is a sequence 

(N* = (Nf :i<8) :3<a>i), 

such that 
(1) Each Ns = (Nf : i < 8) is a continuously increasing sequence of countable 

elementary submodels of (^(x), G, <*, p, T, Q), with Nf Dan < 8 and Ns \(i +1) € 
Nf+l for i < 8. Here, p, Q and T are constant symbols. In addition, QN° = Q. 

(2) For every continuously increasing sequence N = (Nj : i < a>\) of countable 
elementary submodels of {^(x), €,<*,/>, T, Q) such that QN° = Q, there is a 
stationary set of 3 such that for all / < 3 the isomorphism type of JV, and Nf is 
the same, as is witnessed by some sequence of isomorphisms (ff:i<d) which is 
increasing with i. 

For each limit ordinal 8, let Ns = \Ji<s Nf. We define As; 

If PfjsNS_TNS is well defined, then we let Ag = R a n g ( ^ , as TNS). Other­
wise, we let As be the range of any cofinal co-sequence in 3. Note that in 
any case Ag is an unbounded subset of 8 of order type co. 

We claim that (As : 8 < co\) exemplifies that Vp f= J/tl(co\). We have to 
check that for every unbounded subset A of coi in Vp°^, there is a 8 < co\ with 
M * N ^ | < N 0 . 

Suppose this is not true. So, there are p*, x* exemplifying this, that is 

p* V "T* e [coif' and for all 8 we have \AS \ r ' | = H0". 

We fix in V a continuously increasing sequence N = {N,• : / < co\) of countable 
elementary submodels of (<%"(/), €, <*x,p, I» Q) such that pN° = p*, while T^0 = T* 
and QNo is our iteration Q. In addition, N\(i + 1) e iV,-+i for all /. For every 
7 < coi, we can apply Claim 2.14 to N \{y + 1). Using this, we can easily conclude 
that the set 

C = {8<coi : (a) Nsna,i=8 

(b) 8 is a limit ordinal 

(c) fa\i.p:? and^r*./»M« are defined} 

is a club of coi. Let <S g C be such that sequences N \8 and (Nf : i <3) have the 
same isomorphism type. Let this be exemplified by F = (/,• : i < 8), an increasing 
sequence of isomorphisms /,•: Nt —* Nf. By our choice of constant symbols, we 
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also have that F(Q) = Q, F{p*) = pN« and F(?*) = rN». By Subclaim 2.19, we 
have that 

We now let (/?„ : n < co) = p~ _ Ns Ns. By the definition of f and p~, there is 
N° ,p 0 ,j 0 

no and condition q such that q lh "/?„ € T*" for all n > n0, and q > p*. Hence 
# II- " | ^ - \ I*| < No", which is in contradiction with the fact that q > p*. H 

NOTE 2.21. 

(1) We note that the present result clearly implies that 4 and f are not the same 
(even without CH). 

Clearly, VPa* 1= 2Ko = N2. One of the ways to see this is to notice that under 
CH the full A and 4k1 agree (while Vp°>i t= 2H° < H2 obviously). 

(2) Note that the sequence {As : S < co\) exemplifying • ' in Vp, is in fact a 
sequence in V. 

For clarity of presentations we decided to give details of the proof of Theorem 2.1 
rather than Theorem 2.22 below, which is of course stronger than Theorem 2.1. 
Now the obvious changes to the proof of Theorem 2.1 (just change the definition 
of Qp) give 

THEOREM 2.22. CON(*1 + - . * • ) . 

In the next section we encounter another similar proof, where the changes needed 
to the proof of Theorem 2.1 are more significant, and we spell them out. 

§3. Consistency of • * and ->• ' . 
THEOREM 3.1. CON(** + - * ' ) . 

PROOF. The proof is a modification of the proof from §2, so we shall simply 
explain the changes, keeping all the non-mentioned conventions and definitions in 
place. 

Our iteration is again called Q = {Pa,Qis '• a < a>2, P < co2), but Qp will be 
redefined below. 

DEFINITION 3.2. 

(1) A candidate for a • ' is a synonym for a candidate for ft. 
(2) Suppose that ft < a>2, and let us define Qp, while working in Vpf. It is defined 

the same way as in Definition 2.2 (3), but we change the condition (a) (iv) into 
(iv') Dom( / ) n Af

s infinite => {3°°y G Dom( / ) n Ap
s)[f{y) = 0]. 

NOTE 3.3. The following still hold with the new definition of the iteration 

(1) Claim 2.7. 
(2) Conclusion 2.9. 
(3) Claim 2.10. 

[Why? The same proofs.] 

CLAIM 3.4. It is possible to arrange the bookkeeping, so that Ih/^ -iJIk1. 
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PROOF OF THE CLAIM. It suffices to prove that for every a* < a>2, in Vp** we have 

lhgo, "(Ag : S < a>\) is not a •'-sequence." 

Let G be 0a.-generic over Vp°', and let F = \J G. Let A =f ^ ( { l } ) . Suppose 
that \Af \ A\ < Ho- We can find p* e G which forces this, in fact without loss of 
generality for some e < 5 we have 

p* Ih "Af \AC e". 

But consider 

J =f { q > p" • 0? 6 (Af x e) n Domfo))fe(y) = 0]}. 

This set is dense above p*\ if r > p* is such that Dom(r) n Af is infinite, then 
r e J2". Otherwise, let 

y = m i n ( ^ * \ (Dom(r) u e)) 

and let q = rU{(y,0)}. Contradiction. H 

DEFINITION 3.5. Suppose that 

(a) y_<cou 

(b) N = (Ni: : i < y ) is a continuous increasing sequence of countable elementary 
submodels of (./T (*),€, <*), 

(c) z,QeN0 and /? e J P ^ n No, 
(d) />lh"r €[£»!]"'"and 
(e) iVT(i + 1) G JV,-+i for i < y. 

We say that e < y is bad for (N,x,p,Q) if e is a limit ordinal, and there is no 
w(e) = m{N\e,p,i) < co and sequences {r™ : n < co) and (/?™ : n < co) for 
m <m(e) such that r™, yS™ e JV£ and 

(1) C Ih^ "fl? e z", 
(2) U„6e,A

m = ^ n c 0 l , 
(3) C >/>fora l ln ,m, 
(4) /?™ increase with n, 
(5) for some m < m(e) the set { r™ : « < <u } has an upper bound in P^ 
(6) m{e) and 

F ^r^ . i =f {{C : n < co) : m < m{e)) 

and 

are definable in (W(x)v, €, <£) from the isomorphism type of ((N{ : £ < 
e )> /"> I> Q) (w e shaH sometimes abbreviate this by saying that these objects 
are defined in a canonical way). 

MAIN CLAIM 3.6. Suppose that N,y, p and r are as in Definition 3.5. Then the set 

has order type < coa 

B = {e<y:e badfor (N.z.p, Q) } 
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PROOF OF THE MAIN CLAIM. Fix such N, y, p and T. We define p = p(y, N, T, p) 
as in Subclaim 2.15 and />*, q*, w*, b as in the proof of Main Claim 2.14. We shall 
show that B C b, by taking any limit ordinal e* e (y + 1) \ b and showing that it 
is not in B. 

Given e*, we define «*, ^ and (r„ : n < co) and (/?„ : n < co)the way we did in 
the proof of Main Claim 2.14. We let m(e*) = 2"" - 1. For tn < m{e*), we let 
{ i™ : n < co } be the increasing enumeration of 

{i < co : i = m (mod2"') } 

and let r™ = r,-™ and /?" = /?,-».. We shall show that for some m < m(e*)( the 
sequence (r™ : n < co) has an upper bound in PW1. Recall the definition of a/ for 
I < n* from the proof of Main Claim 2.14. Notice that it is not a priori clear that 
Un<co

 r™ 1S a condition, as it may happen that for some / < n* it is forced that 

^ U D o m t O M n ^ . n ™ , 
n<aj 

is infinite, yet UH«u C (<*/) f-3f / *s 0 o n ly finitely often. 
By induction on / < n* we choose q* e Pa, and ki <2l, so that 

(a) q* >p*\ai, 
(b) (VH < co)[n = A:,(mod 2') =>• r„ \at < qf\. 

(c) ?;<?;+,. 
This clearly suffices, as we have that g„. € Pmi is a common upper bound of 
{ r„" : n < co }. 

def 

Let#o = q*\a0 = p*\a0. 
Given q* e Pa, and &/ < 2l for some I <n*. Let 

r = { n < « : « = A:/ (mod 2 ' )} . 

Let k[ = ki and k'2 = ki + 2!. Then r = T\ U T2, where Tj and T2 are infinite 
disjoint and defined by the following, for j e {1,2}. 

rj={ner:n = k'j (mod2 / + 1 )} . 

If 

qf\\-" ( J Dom(r„(a,)) 
n ^ . n o i n m t e " 

def 

for at least one j e {1,2}, let _/'* be the smallest such j and let ki+\ = k'j,. Let 

*• \ «er> ' -1 

Otherwise, we can find some q\ e Pa, such that q\ > q* and 

ft' Ir- " ( J D o m ( r „ ( a , ) ) n 4 ^ n m i infinite". 
«er2 
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Let j * = 1 and ki+\ = k[, and let 

9l + l =<i'l ~ { (<*l> ( J r " ^ U 0 M Dom(r.(a,)K« ) \ ~ P * K"/><*/+l)-

(Remember that for ti\ ^ «2. we have that Dom(r„, (a/)) \ £, and Dom(r„2(a/)) \ £, 
are disjoint.) 

Observe, similarly to Subclaim 2.19, that the choice of r and yS in this proof was 
canonical. H 

CLAIM 3.7. I h ^ * \ 

PROOF OF THE CLAIM. Let (Ns = (Nf : i < 3) : 3 < a>\) be as in the proof of 
Claim 2.20, as well as Ns for limit ordinal 5 < co\. 

For limit 8 < co\, we define n*(S) and (A™ : m < m* (<5)) as follows. 

If 
PNS.P

NS.INS and?N'>,p'i6.T
N6 are well defined, then we let m*{3) = mf/stPns^ns and 

for m < m*{8) we let A™ = {fi™:n<co } . Otherwise, we let m*& = 0 and Aj be 
the range of any cofinal co-sequence in 3. 

We claim that 
({Af :m<m*(S)) :d<m) 

exemplifies that Vp |= W{CD\). 

Suppose that 

p* Ih "f e [co,]Nl and for all 3, m we have ̂ \ j V 0"-

Let N, C,3 and F be as in the proof of Claim 2.20. It is easily seen that qn- obtained 
as in the proof of Main Claim 3.6 exemplifies a contradiction. H 
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