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ABSOLUTELY INDECOMPOSABLE MODULES

RÜDIGER GÖBEL AND SAHARON SHELAH

(Communicated by Bernd Ulrich)

Abstract. A module is called absolutely indecomposable if it is directly in-
decomposable in every generic extension of the universe. We want to show
the existence of large abelian groups that are absolutely indecomposable. This
will follow from a more general result about R-modules over a large class of
commutative rings R with endomorphism ring R which remains the same when
passing to a generic extension of the universe. It turns out that ‘large’ in this
context has a precise meaning, namely being smaller than the first ω-Erdős
cardinal defined below. We will first apply a result on large rigid valuated
trees with a similar property established by Shelah in 1982, and will prove
the existence of related ‘Rω-modules’ (R-modules with countably many dis-
tinguished submodules) and finally pass to R-modules. The passage through
Rω-modules has the great advantage that the proofs become very transparent
essentially using a few ‘linear algebra’ arguments also accessible for graduate
students. The result closes a gap of Eklof and Shelah (1999) and Eklof and
Mekler (2002), provides a good starting point for Fuchs and Göbel, and gives
a new construction of indecomposable modules in general using a counting

argument.

1. Introduction

There is a whole industry transporting symmetry properties from one category
to another. For example consider a tree or a graph (with extra properties if needed)
together with its group of automorphisms. Then encode the tree or the graph into
an object of your favored category in such a way that the branches (or vertices) of
the tree (of the graph) are recognized in the new structure. If the new category is
an abelian group argue by (infinite) divisibility, in the case of groups and fields use
of course infinite chains of roots (with legal primes), etc. Thus the automorphism
group of the tree or the graph is respected in the new category, and by density argu-
ments (or killing unwanted automorphisms by prediction arguments ‘on the way’) it
happens that the automorphism group we start with becomes (modulo inessential
maps: inner automorphisms in the case of groups and Frobenius automorphisms
in the case of fields) the automorphism group of an object of the new category.
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1642 RÜDIGER GÖBEL AND SAHARON SHELAH

For a few illustrating details the reader may want to see papers by Heineken [22],
Braun, Göbel [2] in the case of groups, Corner, Göbel [7] in the case of modules
(with group rings as the first category) or Fried and Kollar [14], Dugas, Göbel [9]
in the case of fields and [10] for automorphism groups of geometric lattices. In this
paper we also argue with symmetry properties of trees, but they are of a different
kind. Given a cardinal λ which is not extraordinary large (we explain what we
mean by ‘extraordinary large’ in the next section), there is an absolute and rigid
family of (ω-)valuated trees based on this cardinal. This is a family of λ subtrees
T of size λ of the tree Tλ = ω>λ of finite sequences of ordinals in λ together with a
valuation map v : T −→ ω. Rigid means that there is no level-preserving valuated
homomorphisms between any two distinct members. (A tree homomorphism is val-
uated if the value of a branch is the same as the value of its image.) Moreover this
property is preserved if we change the universe, passing to a generic extension of
the given universe (of set theory) we live in. The existence of such trees was shown
by Shelah [26]. These trees (used also in applied mathematics) were considered
earlier in papers by Nash-Williams; see [24] for example. We will encode them
into free Rω-modules over an arbitrary not extraordinary large commutative ring
R with 1 �= 0. To be definite we can assume that R is the field Q of rationals or
Z. Recall that Rω-modules are R-modules with countably many (ω) distinguished
submodules and that free means that the module and its distinguished submodules
and factor modules are free as well. Such creatures are considered in Brenner, But-
ler, Corner (see [3, 4, 5, 1]) and Göbel, May [18] for arbitrary commutative rings,
and an account about the advanced theory in the case of fields can be seen in [27]
and in the references given there. We will show the existence of free Rω-modules
with endomorphism algebra R by transporting the absolute rigid trees into the
category of Rω-modules. It turns out that the passage through Rω-modules makes
the anticipated proofs very transparent. Moreover our main result on Rω-modules
with distinguished submodules is only a few steps away from the desired result on
R-modules if R has enough primes (like Z).

The corollary on the existence of large absolutely (fully) rigid abelian groups
replaces the earlier unsuccessful approach in [12] and [11, Chapter XV]: Let R �= 0
be any fixed countable ring. Then by Corollary 4.2 there exists an absolutely
rigid Rω-module of size λ (or an absolute family of size λ of non-trivial R-modules
with only the zero-homomorphism between distinct members) iff λ < κ(ω). The
same holds if Rω-modules are replaced by abelian groups. Thus as a byproduct we
present a new construction of large, absolutely indecomposable abelian groups, not
using stationary sets as in [25, 7]. So, if we restrict ourselves to the problem on
the existence of large absolute indecomposable abelian groups addressed in [12, 11],
then it follows from the above (realizing for example Z as the endomorphism ring
in Corollary 4.2) that from λ < κ(ω) follows the existence of such abelian groups.
The converse direction would need a strengthening of Theorem 2.2 from [12] now
showing the existence of non-trivial idempotents.

It is also a different matter of how to replace Rω-modules by R4-modules or
R5-modules and the endomorphism algebra R by a general not extraordinary large
prescribed R-algebra A. This will follow from [16], a paper which had to wait for
Theorem 4.1 in place of [12].
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ABSOLUTELY INDECOMPOSABLE MODULES 1643

2. Rigid families of valuated trees

and the first ω–Erdős cardinal

We first describe the result on trees we want to apply by encoding them into
modules with distinguished submodules.

Let κ(ω) denote the first ω-Erdős cardinal. This is defined as the smallest car-
dinal κ such that κ → (ω)<ω, i.e. for every function f from the finite subsets of
κ to 2 there exist an infinite subset X ⊂ κ and a function g : ω → 2 such that
f(Y ) = g(|Y |) for all finite subsets Y of X. The cardinal κ(ω) is strongly inaccessi-
ble; see Jech [23, p. 392]. Thus κ(ω) is a large cardinal. We should also emphasize
that κ(ω) may not exist in every universe.

If λ < κ(ω), then let

Tλ = ω>λ = {f : n −→ λ : with n < ω and n = Dom f}

be the tree of all finite sequences f (of length or level lg(f) = n) in λ. Since
n = {0, . . . , n − 1} as ordinal, we also write f = f(0)∧f(1)∧ . . . ∧f(n − 1). By
restriction g = f �m for any m ≤ n we obtain all initial segments of f . We will
write g � f . Thus

g ≤ f ⇐⇒ g ⊆ f as graphs ⇐⇒ g � f.

A subtree T of Tλ is a subset which is closed under initial segments, and a ho-
momorphism between two subtrees of Tλ is a map that preserves levels and initial
segments. (Note that a homomorphism does not need to be injective or preserve
�.) The tree T is valuated if with the tree we have a valuation map v : T −→ ω.
In the following a tree will always come with a valuation and Hom(T1, T2) denotes
the valuated homomorphisms between subtrees T1 and T2, i.e if vi is the valuation
of Ti (i = 1, 2) and ϕ is such a valuated homomorphism, then v2(ηϕ) = v1(η) for
all η ∈ T1. Shelah [26] showed the existence of an absolutely rigid family of 2λ

valuated subtrees of Tλ.

Theorem 2.1. If λ < κ(ω) is infinite and Tλ = ω>λ, then there is a family Tα

(α ∈ 2λ) of valuated subtrees of Tλ (of size λ) such that for α, β ∈ 2λ and in any
generic extension of the universe the following holds:

Hom(Tα, Tβ) �= ∅ =⇒ α = β.

Proof. The result is a consequence of Main Theorem 5.3 in [26, p. 208]. The family
of rigid trees is constructed in [26, p. 214, Theorem 5.7] and the proof, that the
trees are rigid, follows from Theorem 5.8 using the Conclusion 2.14 in [26]. In
Shelah’s notation κ(ω) is the first beautiful cardinal > ℵ0. �

This property of rigid families of valuated trees in Theorem 2.1 fails, if we choose
λ ≥ κ(ω). In fact the following result from [12] on rigid families of R-modules
reflects this.

Theorem 2.2 (Eklof-Shelah [12]). Let λ be a cardinal ≥ κ(ω) and R any ring with
1.

(i) If {Mν | ν < l} is a family of non-zero left R-modules, then there are
distinct ordinals µ, ν < λ, such that in some generic extension V [G] of the
universe V , there is an injective homomorphism φ : Mµ → Mν .
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1644 RÜDIGER GÖBEL AND SAHARON SHELAH

(ii) If M is an R-module of cardinality λ, then there exists a generic extension
V [G] of the universe V , such that M has an endomorphism that is not
multiplication by an element of R.

Thus κ(ω) is the precise border line for Theorem 3.1, and we cannot expect
absolute results on endomorphism rings and rigid families of abelian groups above
κ(ω); see Corollary 4.2.

Combining Theorem 2.2 with our main result also conversely shows that the
implication of Theorem 2.1 fails whenever λ ≥ κ(ω), i.e. there is a generic extension
V [G] of the universe V and there are distinct ordinals α, β ∈ 2λ with Hom(Tα, Tβ) �=
∅.

3. The main construction

Let R �= 0 be a commutative ring. As we shall write endomorphisms on the
right, it will be convenient to view R-modules as left R-modules. Next we define a
free R-module F of rank λ over a suitable indexing set (obviously) used to encode
trees Tα from Theorem 2.1 into the structure when turning the free R-module F
into an Rω-module module F with ω distinguished submodules.

We enumerate a subfamily of λ valuated trees from Theorem 2.1 by the indexing
set I = ω>(ω>λ). Thus

Tη with valuation map vη : Tη −→ ω (η ∈ I)

without repetition. Next define inductively subsets Sn ⊆ n(ω>λ) such that the
following hold:

(0) S0 = {⊥}.
(1) If Sn is defined, then Sn+1 = {η∧〈ν〉 : η ∈ Sn,⊥ �= ν ∈ Tη}.

Let S =
⋃

n∈ω Sn and also let η∧〈⊥〉 = η for ⊥ ∈ Tη.
Put Snk = {η∧〈ν〉 ∈ S : lg η = n, lg ν = k} ⊆ Sn+1. Here ν = ν0

∧ . . .∧νk−1

with νi ∈ λ is a sequence of ordinals and η = η0
∧ . . .∧ηn−1 with ηi ∈ Tη0

∧...∧ηi−1

a sequence of branches from special trees. Moreover write

T k
η = {ν ∈ Tη : lg ν = k} ⊆ Tη and Tkη = {ν ∈ Tη : vη(ν) = k} (η ∈ I).

Now we define the free R-modules:

(i) F =
⊕

η∈S Reη,
(ii) Fnk =

⊕
η∈Sn

⊕
ν∈T k

η
R(eη∧〈ν � k−1〉 − eη∧〈ν〉),

(iii) Fnk =
⊕

η∈Sn
(
⊕

ν∈T k
η

Reη∧〈ν〉),

(iv) F k
n =

⊕
η∈Sn

(
⊕

ν∈Tkη
Reη∧〈ν〉),

(v) F0 = 〈R(eη − eη′) : η, η′ ∈ S〉 and F1 = Re⊥.

We note that F0 =
⊕

⊥ �= η ∈S R(e⊥ − eη) and F = F0 ⊕ F1.
Next we define Rω-modules. These are R-modules with ω distinguished sub-

modules. We enumerate the distinguished submodules by a particular well-ordered,
countable indexing set

W = 〈0, 1〉∧L1
∧L2

∧L3 with Li a copy of ω × ω (i = 1, 2, 3).

We view W as an ordinal. Then an Rω-module X is an R-module X with a
family of submodules Xi (i ∈ W ). We will also say that X is a free Rω-module if

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:880



ABSOLUTELY INDECOMPOSABLE MODULES 1645

X, Xi, X/Xi (i ∈ W ) are free R-modules. In particular

(3.1) F = (F, F0, F1, Fnk, F pq, F r
s :

(nk) ∈ L1, (pq) ∈ L2), (rs) ∈ L3) is a free Rω-module.

If X,Y are Rω-modules, then ϕ is an Rω-homomorphism (ϕ ∈ HomR(X,Y))
if ϕ ∈ HomR(X, Y ) and Xiϕ ⊆ Yi for all i ∈ W , where Y = (Y, Yi : i ∈ W ). We
also write HomR(X,X) = EndRX.

We want to show the following.

Theorem 3.1. Let R be a commutative ring with 1 �= 0 and |R|, λ < κ(ω). A free
R-module F of rank λ can be made into a free Rω-module F = (F, Fi : i ∈ W )
such that EndRF = R holds in any generic extension of the given universe.

Note that the size of R and the rank λ can be arbitrary < κ(ω); in particular
R = Z/2Z. If λ is finite, then we can directly choose a suitable finite family of Fis
with the required endomorphism ring. Otherwise λ is infinite and we can apply
Theorem 2.1. So we choose F = (F, Fi : i ∈ W ) as in (3.1) depending on the
valuated trees from Theorem 2.1. Then clearly it remains to show EndRF = R.
We first show the following crucial

Lemma 3.2. Let ϕ ∈ EndRF with F as in (3.1) and F =
⊕

η∈S Reη. If η ∈ S,
then

eηϕ ∈ Reη.

Proof. Let η ∈ S be fixed and recall that T k
η = Tη ∩ kλ. We consider its successors

η∧〈ν〉 in S with ⊥ �= ν ∈ Tη and let lg η = n, lg ν = k. Thus η∧〈ν〉 ∈ Snk and
ν ∈ T k

η . If ϕ ∈ EndRF, then we claim

(3.2) eη∧〈ν〉ϕ =
∑
l<lν

rνleρνl
∧〈σνl〉 with ρνl ∈ Sn, σνl ∈ T k

ρνl
and 0 �= rνl ∈ R.

If eη∧〈ν〉ϕ = 0, we choose lν = 0 and have the empty sum which is 0. By
definition of Fnk follows eη∧〈ν〉 ∈ Fnk, thus eη∧〈ν〉ϕ ∈ Fnk, showing that eη∧〈ν〉ϕ
is of the desired form (3.2).

We will now use F to derive further restrictions of the expressions in (3.2).
If ν1 ∈ T k+1

η , then ν0 = ν1 � k ∈ T k
η and eη∧〈ν0〉 − eη∧〈ν1〉 ∈ Fn k+1, hence

w := (eη∧〈ν0〉− eη∧〈ν1〉)ϕ ∈ Fn k+1 as well. Using (3.2) and the definition of Fn k+1

we get

w =
∑

l<lν0

rν0 leρν0l
∧〈σν0l〉−

∑
l<lν1

rν1leρν1l
∧〈σν1l〉=

∑
i<lw

swi

(
eρwi

∧〈νwi � k〉 − eρwi
∧〈νwi〉

)

with ρwi ∈ Sn, νwi ∈ T k+1
ρwi

and 0 �= swi ∈ R.
Now we collect terms of length k and k + 1 respectively, and it follows that

length k:
∑

l<lν0

rν0 leρν0l
∧〈σν0l〉 =

∑
i<lw

swieρwi
∧〈νwi � k〉,

length k + 1:
∑

l<lν1

rν1leρν1l
∧〈σν1l〉 =

∑
i<lw

swieρwi
∧〈νwi〉.

We will apply the two displayed equations and suppose for contradiction that
eηϕ /∈ Reη. Hence eηϕ =

∑
l<lη

rl eηl
and there is η0 �= η with r0 �= 0. We want to
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1646 RÜDIGER GÖBEL AND SAHARON SHELAH

construct a (level-preserving) valuated homomorphism

g : Tη −→ Tη0
with vη0

(g(ν)) = vη(ν) for all ν ∈ Tη.

Hence Tη, Tη0
are not rigid, and this would contradict the implication of Theorem

2.1. We will construct g =
⋃

k∈ω gk as the union of an ascending chain of valuated
homomorphisms

gk : Tη ∩ k≥λ −→ Tη0
∩ k≥λ.

Let g0(⊥) = ⊥ and suppose that gk is defined subject to the following condition
which we carry on by induction:

If ν1 ∈ T k
η , then η0

∧〈gk(ν1)) ∈ {ρν1l
∧〈σν1l〉 : l < lν1},(3.3)

thus gk(ν1) ∈ Tη0
for η0 = ρν1l. Note that (3.3) is satisfied for k = 0 by the

assumption on ϕ. Thus we can proceed. If now ν1 ∈ T k+1
η and ν0 = ν1 � k, then

gk(ν0) ∈ T k
η0

is given and we want to determine gk+1(ν1). By induction hypothesis
we have some l∗ < lν0 with ρν0l∗ = η0 and gk(ν0) = σν0l∗ ∈ Tη0

.
We must find l′ < lν1 (see (3.2)) such that ρν1l′ = η0 and σν0l∗ = σν1l′ � k. The

second condition ensures that g will be the union of an ascending chain of gk’s and
also level preserving. The first assertion is our induction-bag which we must carry
along. It is also the link to the undesired map ϕ.

By the displayed equation for length k, there is some i (perhaps more than one)
such that swi �= 0 and ρwi

= η0 and νwi � k = σν0l∗ . Then the other displayed
equation of length k + 1, by picking one of the preceding i, yields the desired l′.

We now have l′ < lν1 with ρν1l′ = η0 and σν1l′ ∈ Tη0
of length k + 1 with

σν1l′ � k = σν0l∗ . So we can map gk+1(ν1) ∈ Tη0
. If vη(ν1) = k, then (using lg(η) =

n) eη∧〈ν1〉 ∈ F k
n and by (iv) eη∧〈ν1〉ϕ ∈ F k

n and vη0(gk+1(ν1)) = k = vη(ν1) also
follows. Thus valuation is preserved.

We argue like this for all ν1 ∈ Tη of length k + 1. This completes the definition
of gk+1. Thus g : Tη −→ Tη0

exists, a contradiction. �

Proof of Theorem 3.1. From Lemma 3.2 follows e⊥ϕ = re⊥, eηϕ = rηeη for some
r, rη ∈ R and all ⊥ �= η ∈ S. Moreover (e⊥−eη) ∈ F0, and therefore (e⊥−eη)ϕ ∈ F0

and (e⊥ − eη)ϕ = re⊥ − rηeη ∈ R(e⊥ − eη) by support (in the direct sum). Hence
re⊥ − rηeη = r′(e⊥ − eη) for some r′ ∈ R, and r = r′, rη = r′ implies rη = r for all
η ∈ S. Thus ϕ = r ∈ R. �

4. Extension to fully rigid systems

We want to strengthen Theorem 3.1 showing the existence of fully rigid systems
of Rω-modules on λ. This is a family FU (U ⊆ λ) of Rω-modules such that the
following holds:

HomR(FU ,FV ) =
{

R if U ⊆ V,
0 if U �⊆ V.

This result will be the starting point for realizing R-algebras A as endomorphism
algebras EndRF = A which are also absolute; see Fuchs, Göbel [16]. We first extend
the well-ordered indexing set W for F by one more element and let

W ′ := 〈0, 1, 2〉∧L1
∧L2

∧L3 with Li
∼= ω × ω.
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ABSOLUTELY INDECOMPOSABLE MODULES 1647

Hence W ′ and W are both order-isomorphic to ω × ω, but W ′ has virtually one
more element than W added at place 2 to the definition of F. This allows us to
replace F from Theorem 3.1 by FU where the new place is

F2 := FU :=
⊕
e∈U

eR for any U ⊆ S.

From Theorem 3.1 follows

HomR(FU .FV ) ⊆ R for any U, V ⊆ S.

Clearly HomR(FU .FV ) = R if U ⊆ V . On the other hand, if u ∈ U \V , then euϕ =
reu by the displayed formula. But reu ∈ FV only if r = 0. Hence HomR(FU .FV ) =
0 whenever U �⊆ V . Finally note that |S| = λ. We established the existence of fully
rigid systems.

Theorem 4.1. If R is any commutative ring with 1 �= 0 and λ, |R| < κ(ω), then
there is a fully rigid system FU (U ⊆ λ) of free Rω-modules with the following
properties:

(i) F is free of rank λ and FU = (F, F0, F1, FU , Fi : i ∈ L1
∧L2

∧L3), thus
only F2 = FU depends on U .

(ii) The family FU (U ⊆ λ) is absolute, i.e. if the given universe is replaced
by a generic extension, then the family is still fully rigid.

The last theorem and a result from [12] (see Theorem 2.2) immediately charac-
terize the first ω-Erdős cardinal. For clarity we restrict ourself to countable rings
R.

Corollary 4.2. Let R by any countable commutative ring. Then the following
conditions for a cardinal λ are equivalent:

(i) There is an absolute Rω-module X of size λ with EndR M = R.
(ii) There is a fully rigid family FU (U ⊆ λ) of free Rω-modules.
(iii) There is a family of Rω-modules of size λ with only the zero-homomorphism

between two distinct members.
(iv) λ < κ(ω) with κ(ω) the first ω-Erdős cardinal.

We note that the last theorem can also be applied to vector spaces (and ω in (i),
(ii) and (iii) can be replaced by 4 or 5 as demonstrated in [16]).

5. Passing to R-modules

We will restrict ourselves to only one application of Theorem 4.1. A forthcom-
ing paper by Fuchs, Göbel [16] will exploit Theorem 4.1, and new results will be
obtained in two directions. First the number of primes needed in Corollary 5.1
will be reduced to four (which is minimal), moreover R-algebras A will be realized
as EndR M = A in order to give more absolute results. These applications were
obtained earlier but had to wait for publication until it became possible to replace
certain results in [12] by Theorem 4.1.

Corollary 5.1. Let R be a domain with infinitely many comaximal primes. If
λ, |R| < κ(ω), then there is an absolute fully rigid family MU (U ⊆ λ) of torsion-
free R-modules MU of size λ. Thus the following holds in any generic extension of
the given universe of set theory:

HomR(MU , MV ) =
{

R if U ⊆ V,
0 if U �⊆ V.
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1648 RÜDIGER GÖBEL AND SAHARON SHELAH

Proof. Let pi (i ∈ W ′) be a countable family of comaximal primes of R and choose
FU = (F, F0, F1, FU , Fi : i ∈ L1

∧L2
∧L3) from Theorem 4.1. We will now construct

R-modules MU with
F ⊆ MU ⊆ Q ⊗ F,

where Q denotes the quotient field of R. Also, if X ⊆ F , then we denote by

p−∞X :=
⋃
n∈ω

p−nX ⊆ Q ⊗ F.

Now let
MU := 〈p−∞

i Fi, p
−∞
2 FU : i ∈ W 〉.

Thus F ⊆ MU ⊆ Q ⊗ F because F0 + F1 = F and Q ⊗ FU := (Q ⊗ F,
Q ⊗ F0, Q ⊗ F1, Q ⊗ FU , Q ⊗ Fi : i ∈ L1

∧L2
∧L3) satisfies EndQ(Q ⊗ FU ) = Q

by Theorem 4.1. Now consider any ϕ ∈ EndR MU . The primes ensure that
p−∞

i Fiϕ ⊆ p−∞
i Fi for all i ∈ W ′ and ϕ extends uniquely to an endomorphism

(also called) ϕ ∈ EndQ(Q ⊗ FU ). It follows that ϕ = q ∈ Q, thus ϕ is scalar
multiplication by q on the right. It remains to show that (ϕ =)q ∈ R and possibly
ϕ = 0.

Now we recall that the family of primes, in particular p0 and p1, are comaximal,
thus p−∞

0 R ∩ p−∞
1 R = R. Choose any eη ∈ F1. Then eηϕ ∈ p−∞

1 Reη, hence q ∈
p−∞
1 R. Similarly, e⊥ϕ ∈ p−∞

0 Re⊥, thus also q ∈ p−∞
0 R and q ∈ p−∞

0 R∩p−∞
1 R = R

as required. If U �⊆ V , then HomQ(Q ⊗ FU , Q ⊗ FV ) = 0 by Theorem 4.1, and the
unique extension of ϕ to the corresponding Q-vector space must by zero. Hence
ϕ = 0, and the corollary follows. �

We would like to mention that the infinite set of primes in the corollary can
be replaced by 4 primes, see [16]; and primes can also be replaced by comaximal
multiplicatively closed subsets. The latter is a natural straight extension suggested
by Tony Corner (unpublished); this can be looked up in [13].
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[17] R. Göbel, Vector spaces with five distinguished subspaces, Results in Mathematics 11 (1987),

211 – 228. MR0897298 (88g:13010)
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