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ABSTRACT 

Assume a complete countable first order theory is superstable with 

NDOP. We know that any R~-saturated model of the theory is N~-prime 

over a non-forking tree of "small" models and its isomorphism type can 

be characterized by its L~,~ (dimension qualifiers)-theory, or, if you pre- 

fer, appropriate cardinal invariants. We go one step further by providing 

cardinal invariants which are as finitary as seem reasonable. 

0. In troduct ion  

After the main  gap theorem was proved (see [Sh:c]), in a discussion, Har r ing ton  

expressed a desire for a finer s t ruc ture  - -  of f initary character  (when we have 

a s t ruc ture  theorem at  all). I point  out  tha t  the logic L~,~ o (d.q.) (where 

d.q. s tands for dimension quantifier) does not  suffice: suppose, e.g., for T = 

Th (~  × ~2, En)n<~ where (a,~)En(~,v) =:  7/ [ n = v [ n and for S C_ ~2 we 

define Ms = M [ {(a ,~)  : [~ E S ~ a < wl] and [~ E ~ 2 \ S  ~ a < w]}. Hence, 
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it seems to me we should try L~,a~ (d.q.) (essentially, in ~ we can quantify over 

sets which are included in the algebraic closure of finite sets, see below 1.1, 1.3), 

and Harrington accepts this interpretation. Here the conjecture is proved for 

~-sa tura ted  models. 

I.e., the main theorem is M --~-~L~,~(d.q.) N ~ M ~ N for ~-sa tura ted  models 

of a superstable countable (first order) theory T without dop. For this we analyze 

further regular types, define a kind of infinitary logic (more exactly, a kind of 

type of 0~ in M), "looking only up" in the definition (when thinking of the de- 

composition theorem). Recall that  for a ~-sa tura ted  model M of a superstable 

DNOP theory a R~-decomposition is (Mn,a ~ : ~ E T), where 

(a) I C_ ~> ord is nonempty closed under initial segments, 

(b) M~ -< M is ~-sa tura ted ,  

(c) v ~ E I ~ M~ -< M~, 

(d) if v = ~7 ̂  (ct) E I then Mv is RE-prime over M~ U {a.} and tp(a~, My) is 

orthogonal to Mp for p ,a v, and (the last is not essential but clarifies) 

(e) (M,j : ~ E I) is nonforking enough: for every v E I the set {a n : 7/ E 

Suci(v)} C_ M is independent over M. .  

The point is that  if ~ = v^(ct),Mn~,an are chosen, then to a large extent 

(Mp, a ,  : ~ ,~ p E I) is determined. But the amount of "to a large extent" which 

suffices in [Sh:c] is not sufficient here; we need to find a finer understanding. In 

particular, we certainly do not like to "know" (M.,  a,) .  So we consider a pair 

(A,B) where A C_ M~,A U {a,} C_ B C_ Mn, s tp . (B,A)  ~- s t p . ( B , M . )  and we 

try to define the type of such pairs in a way satisfying: 

(a) it can be impressed in our logic Loo,s~, 

(b) it expresses the essential information in (Mp, a o : r/,~ p E I). 

To carry out the isomorphism proof we need: (1.27) the type of the sum is the 

sum of types (infinitary types) assuming first order independence. The main 

point of the proof is to construct an isomorphism between M1 and 11//2 when 

M1 -~L~,a~(d.q.) Mz,Th(Me) = T where T and --~-~L~,~c(q.d. ) a r e  as above. So 

by [Sh:c, X] it is enough to construct isomorphic decompositions. The con- 

struction of isomorphic decompositions is by w approximations; in stage n, ,~ n 

levels of the decomposition tree are approximated, i.e. we have In ~ C_ n> Ord 
. l - n , 1  ^ - n , 1  ^ ^ - n , 1  - n /  E M~ for 7? E In,~--- 1,2 such that  ~p/avf0 a~I 1 . . .  a n ,0, M) = and a v 

tp(avl o-n,2 ^ avIl-~'2 ̂  . . .  ân-,~,2, 0, M2) with ~,e  being e-finite, so in stage n + 1, choos- 
-n+ l ,~^  -~,g ing ~+1 , ,  we cannot take care of all types a 0 a(a ) so the addition theorem 

takes care. So though we are thinking on ~-decomposit ion (i.e. the Mn's are 

R~-saturated), we get just a decomposition. 
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In the end of section 1 (in 1.37) we point out that the addition theorem holds 

in fuller generalization. In the second section we deal with a finer type needed 

for shallow T; in the appendix we discuss how absolute is the isomorphism type. 

Of course, we may consider replacing "Re-saturated models of an NDOP 

superstable countable T" by "models of an NDOP R0-stable countable T".  But 

the use of s-finite sets seems considerably less justifiable in this context; it seems 

more reasonable to use finite sets, i.e., L~,~ 0 (d.q.). But subsequently Hrushovski 

and Bouscaren proved that  even if T is Ro-stable, Loo,~o (d.q.) is not sufficient 

to characterize models of T up to isomorphism. This is not sufficient even if 

one considers the class of all ~e-saturated models rather than all models. The 

first example is R0-stable shallow of depth 3, and the second one is superstable 

(non-R0-stable), NOTOP, non-multidimensional. 

If we deal with R~-saturated models of shallow (superstable NDOP) theories 

T, we can bound the depth of the quantification 7 = DP(T); i.e., L ~ , ~  suffice. 

We assume the reader has a reasonable knowledge of [Sh:c, V,§1,§2] and mainly 

[Sh:c, V,§3] and [Sh:c, X]. 

Here is a slightly more detailed guide to the paper. In 1.1 we define the logic 

L ~ , ~  and in 1.3 we give a back and forth characterization of equivalence in this 

logic which is the operative definition for this paper. 

The major tools are defined in 1.7, 1.11. In particular, the notion of tpa defined 

in 1.5 is a kind of a depth a look-ahead type which is actually used in the final 

construction. In 1.28 we point out that  equivalence in the logic Loo,e~ implies 

equivalence with respect to tp~ for all a. Proposition 1.14 contains a number of 

important concrete assertions which are established by means of Facts 1.16-1.23. 

In general, these explain the properties of decompositions over a pair (~). Claim 

1.27 (which follows from 1.26) is a key step in the final induction. Definition 1.30 

establishes the framework for the proof that  two R~-saturated structures that  

have the same tpo o are isomorphic. The induction step is carried out in 1.35. 

ACKNOWLEDGEMENT: I thank John Baldwin for reading the typescript, point- 

ing out needed corrections and writing down some explanations. 

0.1 Notation: The notation is from [Sh:c], with the following additions (or 

reminders). 

If ~ = v ̂  (a) then we let ~-  = v; for I a set of sequences ordinals we let 

SuCT(~) = {v:  for some a , u  = n^(a) • I}. 

We work in ~eq and for simplicity every first order formula is equivalent to a 

relation. 

Sh:401



64 S. SHELAH Isr. J. Math. 

(1) _/_ means orthogonal (so q is ± p means q is orthogonal to p), remember 

p _l_ A means p orthogonal to A; i.e., p 2 q for every q E S(ace(A)) (in 
~eq).  

(2) ±a means almost orthogonal. 

(3) ±w means weakly orthogonal. 

(4) -~ and fi/B means tp(~,S) .  

(5) ~ or A/B means tp,(A, B). 

(6) A + B means A U B. 

(7) U{B~ : i  < a} means {Bi : i  < c~} is independent over A. 
A 

(8) A U C means {A, C} is independent over B. 
B 

(9) {Ci : i < c~} is independent over (B, A) means that  1 

j<c~tp , (Cj ,  UCiuB ) does not fork over A. 
iCj 

(10) Regular type means stationary regular type p E S(A) for some A. 

(11) For p E S(A) regular and C a set of elements realizing p, dim(C,p) is 

Max{lI] : I c_ C is independent over A}. 

(12) act(A) = {c : tp(c, A) is algebraic}. 

(13) dc~(A) = {c: tp(c, A) is realized by one and only one element}. 

(14) Dp(p) is depth (of a stationary type); see [Sh:c, X, Definition 4.3, p. 528, 
Definition 4.4, p. 529]. 

(15) Cb(p) is the canonical base of a stationary type p (see [Sh:c, III, 6.10, 
p. 134]). 

(16) B is ~ -a tomic  over A if for every finite sequence b from A, for some finite 

A0 C_ A we have stp(b, Ao) F- stp(b, A), equivalently for some ~-finite A0 C_ 

act(A) we have tp(b, Ao) F- tp(b, act(A)). 

1. N~-saturated models  

We first define our logic, but, as noted in section 0, we shall only use the condition 

from 1.4. T is always superstable complete first order theory. 

1 Actually, by the nonforking calculus this is equivalent to: {Ci : i _< (~} is inde- 
pendent over A, where we let Co = B. 
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1.1 Definition: (1) The logic L~,s ,  is slightly stronger than L~,s  o ; it consists of 

the set of formulas in L~,ITI+ such that any subformula of ~ of the form (32)~ 

is actually the form 

(~'0'  xl) [ ~1 (~:1 ' ff)~5 A (Oi(X:''~O)~(3<R°Z)Oi(z'xO))] ' 
i<eg~ a 

with 2 ° finite, Z1 not necessarily finite but  of length < ITI+; so ~ "says" ;~1 _C 
acg(2°); note that our final proof of the theorem always uses ITI _> •0. 

(2) L~,e,  (d.q.) is like L~,s ,  but we have cardinality quantifiers and, moreover, 

dimensional quantifiers (as in [Sh:c, XIII, 1.2, p. 624]); see below. 

(3) The logic L~,s ,  consist of the formulas of L~,s ,  such that p has quantifier 

depth < ~/(but we start the inductive definition by defining the quantifier depth 

of all first order as zero). 

(4) ~ L~,~ (d.q.) is like L~,s~ but we have cardinality quantifiers and, moreover, 

dimensional quantifiers. 

1.2 Remark: (1) In fact the dimension quantifier is used in a very restricted way 

(see Definition 1.10 and Claim 1.28 + Claim 1.30). 

(2) The reader may ignore this logic altogether and use just  the characterization 

of equivalence in Claim 1.4. 

1.3 CONVENTION: (1) T is a fixed first order complete theory, ~ is the "mon- 

ster" model, as in [Sh:c], so is ~-saturated; Eeq is as in [Sh:c, III, 6.2, p. 131]. We 

work in ¢eq so M, N vary on elementary submodels of ~eq of cardinality < ~. 

We assume T is superstable with NDOP (countability is used only in the Proof 

of 1.5 for bookkeeping, i.e. in the proof of 1.30 (and 1.29)). 

Remember a, b, c, d denote members of ~eq; ~, ~, ~, ~ denote finite sequences of 

members of ~eq; A, B, C denote subsets of ~eq of cardinality < ~. 

Remember acg(A) is the algebraic closure of A, i.e., 

{b : for some first order and n < w, ~(x, ~) and 5 C_ A we have 

and 5 denotes Rang(a) in places where it stands for a set (as in acg(5)). We write 

E A instead of ~ E ~>(A). 

(2) A is e-finite, if for some a e ~>A,A = acg(~). (So for stable theories a 

subset of an e-finite set is not necessarily e-finite but, as T is superstable, a 

subset of an e-finite set is e-finite as if B C acg(~); b e B is such that tp(5, B) 

does not fork over b; then trivially acg(b) C_ A and, if acg(b) ¢ B, t p . ( B , 5 % )  
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forks over B, hence ([Sh:c, III, 0.1]) tp(~, B) forks over b, a contradiction. So if 

act(A) = acg(B), then A is e-finite iff B is e-finite.) 

(3) When T is superstable by [Sh:c, IV, Table 1, p. 169] for F = F a all the 
b~ 0 , 

axioms there hold and we write ~ instead of F and may use implicitly the 

consequences in [Sh:c, IV, §3]. 

Instead of Definition 1.1 we may use directly the standard characterization 

from 1.4; as actually less is used we state the condition we shall actually use: 

1.4 CLAIM: For models M1, M2 o f T  we have M1 =L~.~(d.q.) M~ i_f 

there is a non-empty family yr such that: 

(a) each f E .7: is an (M1, M2)-elementary mapping (so Dora(f)  C_ M1, 

Rang(f )  C_ M2), 

(b) for f E ~-, Dora(f)  is e-finite (see 1.3(2) above), 

(c) if f E U, ge E Me(g = 1, 2) then for some 9 E jr we have: f C_ g and 

acg(gx) C_ Dom(f)  and acg(g2) C_ Rang(f) ,  

(d) if f O {(al, a2)} E 5 c and tp(al ,  Dom(f))  is stationary and regular 

then dim({a I E M I :  f U  {(al,a2)} E ~r}, M~) 

= dim({a~ E M2:  f U  {(al,a~}} E ~},  M2). 

Our main theorem is 

1.5 THEOREM: Suppose T is countable (superstable complete first order theory) 
with NDOP. Then: 

(1) The L~,~  (d.q.) theory of an R~-saturated model characterizes it up to 
isomorphism. 

(2) Moreover, if M1, M2 are R~-saturated models of T (so Me -< ~eq) and 

@Mo,M1 Of 1.4 holds, then M1, M2 are isomorphic. 

By 1.4, it suffices to prove part (2). 

The proof is broken into a series of claims (some of them do not use NDOP, 

almost all do not use countability; but we assume T is superstable complete all 

the time (1.3(1))). 

1.6 DISCUSSION: Let us motivate the notation and Definition below. 

Recall from the introduction that we are thinking of a triple (M, N, a) which 

may appear in ~-decomposi t ion (Mn, a n : ~ E I / of N, in the sense that for some 

E I \ { < > }  we have (M,M' ,a)  -- (Mn-,Mn,an) so M , M '  are ~-sa tura ted ,  
a n E M' \M' ,  M' is R~-prime over M + a and tp(a, M) is regular. But this is 

"too large for us", hence we consider an approximation (A, B) where A C_ M 
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(= M,- ) ,A  C_ B C_ M'(= M,)),a = a, E B and B/M(= B /M, - )  does not 

fork over A. We would like to define the a-type of (A, B) in N, which tries 

to say something on the decomposition above (M, M', a) = (M,- ,  M,, a,), i.e., 

on (MR, ap : ~ ~ p G I). There are two natural "successors" of (A, B) we may 

choose in this context: the first, 1.7 below, replaces (A, B) by (A', B') such that 

A C_ A' C_ M(= M,- ) ,  B C_ B' C_ M' (=  M,) and (as M' is R~-prime over M + a) 

we have sAp, (B', A' U B) t- stp(B', M), so tp(B', A' U B) is almost orthogonal 

to A'; we can think of this as "advancing in the same model"; in other words, 

as A, B are e-finite, we have to increase them in order to capture even (M, M'). 

This is formalized by _<a in Definition 1.7 below. 

The second is to pass from (M~-, M~, a) to (M~, M~, a~) for some u an im- 

mediate successor (in I) of ~ E I. So the old B is included in the new W and 

B' = A' U {a} where tp(a, A') is regular and is orthogonal to A (as in the decom- 

position we require tp(a~, M, - ) (M,  when v < rj-)). This is formalized by _<b in 

Definition 1.7 below. 

1.7Definition: (1) F = {(A,B) : A _C B are e-finite}. Let 

F(M) = {(A,B) E F:  A C_ B c_ M}. 

BuA (2) For members (A,B) o f f  we may also write (~); i_f A ¢ B we mean ( A )" 

(3) (Bll) _<~ (U~) (usually we omit a) if (both are in F and) AI C_ A2, 

BICB2,B1  [.[JA2and Bo -LaA2. 
- -  B I + A 2  

A I  

is regular orthogonal to A~. (4) (~1) _<b (B~) if A2 = B1,B2\A2 = b and 
(5) <* is the transitive closure of _<a U _<b. (So it is a partial order, whereas in 

general _<, U <b and _<b are not.) 
(6) We can replace A, B by sequences listing them (we do not always strictly 

distinguish). 

Remark: The following observation may clarify. 

1.8 OBSERVATION: If (~1i) -<* ( ~ ) t h e n  we can find (B~ : ~ _< n ) a n d  

{ce : 1 _< e < n) for some n _> 1, satisfying ( ~ )  _<b ~B; j'cetB'~ E Be+ 1 , '  ~B~ reg- 

ular, ~u~+l ±a B~, A2 --= B '_I ,  B2 = Bn.' 

Remark: (1) Note that actually <~ is transitive. This means that in a sense _<b 

is enough, <a inessential. (2) We may in 1.7(4) use b = (c); it does not matter. 

Proob By the definition of <* there are k < w and (~ )  for ~ _< k such that: 

_<:c(e) ~A'+', for e < k and x(Q E {a,b} and (AO) = (~,{), (A~) = (~:) and 
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without loss of generality, x(2£) = a, x(2£ + 1) = b. Let No -< ~ be R¢-prime 
over ~ such that  A ° C_ No,Bo U No and fo = idAo. We choose by induction on 

A o 

<_ k, Nt+l, fe+l such that: 

(a) Dom(fe+l)  = B ~, 
(b) Nt -~ Nt+l,  
(c) if x(g) = b, then f~+l is an extension of fe (which necessarily has domain 

Ae, check) with domain B t such that  ft(B ~) ~ Ne and N~+I is R~-prime 

over N~ U f~(B~), 
(d) if x(e) = a, then ]e+l maps A e into Nt-1, B t into Ne and N~+I = Ne. 

This is straightforward. Now on (Ne : g <_ k + 1) we repeat the argument (of 
choosing (Be : ~ < n)) in the proof of 1.14(6) above, i.e., choose B ~ C_ Ne by 
downward induction on ~ large enough as required. |z.s 

1.9 Definition: (1) We define tp,[(AB), M] (for A C_ B C M, A and B are e-finite 
and a is an ordinal) and Sa((~),M),S~(A,M) and r B r S~((A), M),S~(A, M) by 
induction on a (we mean simultaneously; of course, we use appropriate variables): 

(a) tPo[(AB), M] is the first order type of A U B, 
1,0~ 2,~ 1,~ 

(b) tp~+ , [ (~) ,M]  = the triple (Y~,B,M,Y~,B,M,tP~((BA),M)) where: YA,B,M 
=: { t p a [ ( ~ i ) , i ]  : for some A',B' we have (~) <_a (BI) • F(M)},  and 

2,¢r T r =: AM,,) T • S~(B,M)} where YA,.,M {(T, : 

/~M,BT = dim[{d : tPc~ [ ( B ;  d ) ,  M] = T}, B], 

(c) for 5 a limit ordinal, tp~[(S) ,M] = ( tp~[(~) ,M] : a < 5 / (this includes 
5 = oo, really IIMI[ + suffice), 

(d) $a(d, M) = {tpa[(B), M] :  for some B such that  B C_ M, 
and (B) • r(M)}, 

(e) Sat ((AS), M) B+c = {tp.[( , ),M]: for some c • M we have 
c 3_ A and c is regular), 

(f) S~(A, Z )  = { t p a [ ( ~ c ) ,  M ] : c  • M and ~ regular). 
(2) We define also tp . [A,  M], for A an e-finite subset of M: 

(a) tP0[A, M] = first order type of A, 
1,a 2,c~ 1,(~ (b) tp~+l[A, M] is the triple (YA,M, Y~,M, tp~[A, M]) where YA,M =: Sa(A; M) 

and YA,M =: {<T,dim{d • M :  tpa[(A+d),M] = T } ) :  T • $~(A,M)}, 
(c) tp~[A,M] = ( t p ~ ( A , M ) : a  < 5). 

(3) tpa[M] = tpa[@, M]. 
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1.10 DISCUSSION: Clearly tP[(AB),M] is intended, on the one hand, to be ex- 

pressible by our logic and, on the other hand, to express the isomorphism type 

of M "in the direction of (~)". To really say it we need to go back to the 

Re-decompositions of M, a central notion of [Sh:e, Ch. X]. 

For the reader's benefit, at the referee's request, let us review informally 

the proof in [Sh:c, Ch. X]. Let M be an Re-saturated model, and we choose 

(M n : 7/ E I M n O r d ) , ( a  n : r/ E IMn+IA)  by induction on n. For n = 0, of 

course, IM ° Ord = {<>},  we let N<> -~ M be Re-prime over 0 and let I<> be a 

maximal subset of {c E M : tp(c, N<>) regular} which is independent over N<>; 

let (a<~> : a < [I<>l) list I<>. Similarly for n +  1,~ E IM n+l Ord, let N n -~ M 

be Re-prime over M n- + a n, let I n be a maximal subset of {c E M : tp(c, Mn) is 

regular orthogonal to M n- } independent over N n. Lastly, let (cn~<~> : a < [In[ } 

list I n and l e t l M n + l O r d = { r / ^ < a > : ~ E I M n O r d a n d a < [ I n [  } . 

To carry this we use the existence of Re-prime models (and the local character 

of indpendent). Also, looking at the set U{M n : ~ E I}, its first order type is 

determined by the nonforking calculus. In fact, for any ~ E I \ { < > } ,  the sets 

U{N~ : ~ ~ u E I} ,U{N n : -~(~/ < v) and v E I} are independent over N n. 

Let N -~ M be Re-prime over U{N n : ~ E I}. Now i f M  = N, we are done 

decomposing M; if not, some c E M\N realize a regular type (we use density of 

regular types). By NDOP, the tp(c ,N) is not orthogonal to some Nn. Choose 

r /of  minimal length, hence v q r 1 =~ tp(c, Mn) _1_ N, .  By properties of regular 

types, without loss of generality tp(c, N) does not fork over N n, so we get a 

contradiction to the maximality of {a~ : v E Suc1(~)} (this explains the role of 

P in Definition 1.11(5) below). 

We are interested in the possible trees (N~ : ~/q ~ E I). 

Now the tree determines M up to isomorphism, but there are "incidental" 

choices, so two trees may give isomorphic models (for investigating the number 

of non-isomorphic models it is enough to find sufficiently pairwise far trees I). 

Here we like to get exact information and in as finitary a way as we can. So we 

replace (Mn-, M~, an) by (AB), where A C_ M~-, A + a n C_ B C Mn, tp(B, M n-) 

does not fork over A. 

Now for ~ E I \ { < > }  we are interested in the possible trees (N~ : ~,u, E I), over 

(Nn:, Nn, a~). But not only different trees may be equivalent (giving isomorphic 

Re-prime models) but the other part of the tree, (N~ : ~, E I but --(~/~ v)/, may 

apriori cause non-equivalent trees to contribute the same toward understanding 

M. This is done in [Sh:c, Ch. XII], but here we have to deal with E-finite A, B. 

The following claim 1.11 really does not add to [Sh:c, Ch. X], it just collects 
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the relevant information which is proved there, or which follows immediately 

(particularly using the parameter (A, B)). We allow here av/M~ to be not regular, 

but this is not serious: we can here deal exclusively with this case and we can 

omit this requirement in [Sh:c, Ch. X]; however, this does not eliminate the use 

of regular types (in the proof that  M is ~ -p r ime  over every Re-decomposition of 

it). 

1.11 Definition: (1) (N~, a~ : ~ E I) is an R~-decomposition inside M above (or 

over) the pair (A u) (but we may omit the " R e -  ") if :  

(a) I is a set of finite sequences of ordinals closed under initial segments, 

(b) (/, (0) E I, ~? E I \{( )}  ~ (0) ~ ~, let I -  = I \{()} ,  really a(), is meaningless, 

(c) A C N(), B C_ N(o), N 0 U B and dc~(a(o)) C dc~(B), 
A 

(d) if v = ~ ((~) E I then N.  is ~cpr imary  over N v U a. ,  N() is ~ -p r ime  over 

A, 

(e) for 77 E I such that k = gg(~) > 1 the type av/Nvr(k_l) is orthogonal to 

Nvl(k-2), 

(g) M is R~-saturated and N77 ~ M for ~ E I, 

(h) if ~ E I \ ( 0 } ,  then {a,  : v E Suci(v)} is (a set of elements realizing over 

N v types orthogonal to N v- and is) an independent set over N v. 

(2) We replace "inside M" by "of M" if, in addition, 

(i) in clause (h) the set is maximal. 

(3) (N v, av :  ~ E I) is an Rcdecomposition inside M i_f (a), (d), (e), (f), (g), (h) 

of part (1) holds and in clause (h) we allow ~ = 0 (call this (h)+). We add "over 
A" if A C M<>. 

(4) (Nv, a v : ~ E I) is an iq~-decomposition of M if in addition to 1.11(3) we have 

the stronger version of clause (i) of 1.11(2) by including ~ = (), i.e., we have: 

(i) + for v E I, the set (a v : ~ E Suci(v)} is a maximal subset of M independent 

over N. .  

We may add "over A" i_f A C_ M. 

(5) If (N~, a~ : ~? E I) is an Rcdecomposition inside M we let 

P ( ( N  n, av :  ~ E I), M) = {p E S ( M ) :  p regular and for some ~ E I \ { 0 )  we 

have p is orthogonal to Nv- but not to Nn }. 

As noted earlier, it is natural to use regular types. 
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1.12 Definition: (1) We say that (Nn,a ~ : ~ e I),  an R,-decomposition inside 

M, is J-regular if J C I and: 

for each ~ E I \ J  there t is c n such that a n E acg(N~ + cn) , 

(*) c--2-~ is regular and if ~ # () then a ,  -l-a N(n- ). 
Nn Nn +cn 

(2) We say "<Nn, a n : 7/E I / is a regular lqcdecomposition inside M [of M]" if it 

is an Rcdecomposition inside M [of M] which is 0-regular. 

(3) We say "(Nn, av : ~ E I) is a regular Rcdecomposition inside M [of M] over 

(AB) " if it is an R~-decomposition inside M [of M] over (2) which is {<) }-regular. 

1.13 CLAIM: (.1) Every R~-saturated model has an Re-decomposition (i.e., of  it). 

(2) I f  M is lq~-saturated, (N  n, a n : ~7 6 I> is an lqcdecomposition inside M,  then 

for some J, and Nn,a  n for ~ 6 Y \ I  we have: I C_ J and <Nn,a n : ~/6 J} is an 

~-decomposi t ion of  M (even a ( J \I)-regular one). 

(3) I f  M is R~-saturated, (N~, a n : ~ E I) is an Re-decomposition of M,  then M is 

R,-prime and lq,-minima1* over Unel Nn; if in addition (Nn, a n : 7/E {<), (0>}> is 

an Re-decomposition inside M above (~),  then <Nn, av : ~ E If~(~ # () --+ <0) <3 

~)) is an R~-decomposition of  M above (B). 

(4) I f  (N  n, ate: ~ E I> is an Rcdecomposition inside M above (~), then it is an 

Re-decomposition inside M.  

(5) I f  <Nn, a v : q 6 I) is an Re-decomposition inside M [above (~)], ~ 6 I, 

[V 6 I \{ ( )} ] , a  = Min{fl: ~7^(/3) ~ I } , v  =: q^ (a ) , a .  6 M \ N  n, ~ is orthogonal 

to M n- i f  v -  i f  T~ (),N~ -< M is Re-primary over N n + a~ and av ~J (Upel Np) 
N o 

(enough to demand {ap : p -  = ~ and p e I}  is independent over a , /Nn) ,  then 

(Np, ap:  p E I U {~}) is an R~-decomposition inside M [over (B)]. 

(6) Assume (N n, a n : ~ E I> is an R~-decomposition of M,  i_f p is regular (sta- 

tionary) and is not orthogonal to M (e.g., p E S ( M ) ) ,  then for one and only one 

71 E I, there is a regular (stationary) q E S(Nn)  not orthogonal to p such that: if 

~ -  is well defined (i.e., ~ # 0) ,  then p ± Nn- .  

(7) Assume I = U~<~(.)I~,  for each a we have <Nn,a n : ~ E I~> is an R,- 

decomposition inside M [above (BA) ] and for each ~1 E I for every n < w and 

ve = ~^(3e> 6 I for f < n, for some a we have: {re : f < n} C I~ (e.g., I~ 

increasing). Then (Nn,an : ~ E I)  is an Re-decomposition inside M [above (~)]. 

(8) In (7), i f  77 # (> and some ~t is not ,~-maximal in I and ~,, is regular, it is 

t Wlogc~ = ao. 
:[: Here we use NDOP. 
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enough: 

e, < < V c ±.]. 
~<a(*) 

(9) I f (No,  a n : ~ E I) is an RE-decomposition inside M, I1, I2 C_ [ are closed under 

initial segments and Io = 11 Q 12, then (Unclx Am) ~ (Un~i2 No). 

(10) Assume that for e = 1, 2 that (N~,ane e : rl E I) is an R~-decomposition 

inside Me, and for q E I the function fn is an isomorphism from N 1 onto N~ 

and ~ ,~ u ~ fo C_ f , .  Then (Joel fo is an elementaxy mapping; if  in addition 
(Nev,a~ : ~ E [) is an R,-decomposition of  Me (fore = 1,2), then Uncl fo can be 
extended to an isomorphism from M1 onto M2. 

(11) I f  (No,an: ~1E I) is an Rcdecomposition inside M (above (B)) and M -  -4 

M is R,-prime over Un~! No, then (Am, a n : ~ E I) is an R~-decomposition of M 

(above ). 
(12) I f ( N o , a n :  ~ E I ) i n  an Re-decomposition inside M / o f  M (above (B)) and 

a'~ • N o and N o is Re-prime over N o- + a~ for r / e  I \ {( )} (and a~o ) = a(o) or 
at least dcl(a~o)) C_ dcl(B)), then (No, a'v : ~] E I) in an Re-decomposition inside 

M / o f  i (above (B)). 

Proof'. (1), (2), (3), (5), (6), (9), (10). Repeat the proofs of [Sh:c, X]. (Note 
that here an/N o is not necessarily regular, a minor change.) 
(4), (7). Check. 
(8) As Dp(p) > 0 ~ p is trivial, by [Sh:c, Ch. X, 7.2, p. 551] and [Sh:c, Ch. X, 
7.3]. |1.13 

We shall prove: 

1.14 CLAIM: (1 ) I fM is R~-saturated, (A B) • F(M), then thereis (Am, an:  ~ E I), 
an R~-decomposition of M above (S). 

(2) Moreover if  (No, a n : r l E I) satisfies clauses (a) - (h) of Definition 1.11(1), 

we can extend it to satisfy clause (i) of  1.11(2), too. 

(3) I f  (No,a n : ~ • I) is an R,-decomposition of M above (BA) , M -  -4 M is 

R,-prime over Une! No, then: 

(a) (N n :0 • I) is a R,-decomposition of M - ,  

(b) we can find an R~-decomposition (No, a n : ~ E J) of M such that J D I 

and [O E J \ I  ¢* (~ ~ 0 and -~(0) ,~ r/)]; moreover, the last phrase follows 
from the previous ones. 

(4) I f  in (3)(b) the set J \ I  is countable (finite is enough for our applications), 
then necessaxily M, M -  axe isomorphic, even adding all members of an e-finite 
subset of  M -  as individual constants. 
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(5) I f  (Nv,a, : q 6 I) is an R,-decomposition of M above (BA),I C_ J and 

(N~7, a v : ~ • J) is an Rcdecomposition of M, M -  -~ M is R~-prime over UveI Nv 

and (B) _~, (~l) and S 1 _C M and c • M and ~ J_ A1 and ~ is (stationary 

and) regular, then 
(~) ~ 3_ ~{N.:,eJ\I} 

N<> 
(3) ~7 is not orthogonal to somep • 7)((N,,an : ~ E I ) , M - ) .  

(6) I f  (Nn,an : ~ • I) is an R~-decomposition of M above (B) and M -  is R~-prime 
over UneI Nn, then the set P = :P((Nn : ~ E I), M) depends on (~) and M only 
(and not on (N n : ~ • I) or M - ) ,  recalling: 

p = P ( ( N ,  : ~ e z) ,  M )  = {p • S(M) :p reguJar and for some 

E I \{<>},  we have: 

p is orthogonal to N~- but not to N~}. 

So let 7~((S), M) =: P((Nv : ~? E I ) ,M).  

(7) I f  -~ is regular of depth zero or just b <_a B, b regular of depth zero and 

M is R¢-saturated and B C_ M, then 

(a) for any a, we havetp~( (~) ,M) depends just on tPo((AB),M), 
(b) if (I) <* (~') e r(M) then tp~((~') ,M) depends just on tPo((S),M) 

(and (A, B, A', B) but not on M). 

(8) For a < 8, from tpz((~),M) we can computetpa((S) ,M).  

(9) If  f is an isomorphism from M1 onto 2142, A1 C_ B1 are e-finite subsets of M1 

and I(A1) = A2, f(B1) = B2, then 

tP~( (B : ) ,  M1) -- tP~( (A: ) ,  M2) 

(more pedantically tp~((~) ,  M2) = t B, f[ pa((A,),M1)] or consider the Ae, Be as 
indexed sets). 

We delay the proof (parts (1), (2), (3) are proved after 1.22, part (4), (6) after 
1.23, and after it parts (5), (7), (8)). Part (9) is obvious. 

1.15 Definition: (1) If (A B) E F(M), M is lqcsaturated, let p(M) be the set P from 

Claim 1.14(6) above (by 1.14(6) this is well defined as we shall prove below). 
.DO.: ~q (2) Let T'(~) = {p : p is (stationary regular and) parallel to some p' E --(~) }. 

1.16 Definition: If (Nn e, a n : z] E J) is a decomposition inside ~ for g = 1, 2 we 
say that (N 1, a~: rl E J) <* 2 J) if: --direct (N~, a v : ~ E 

(a) N~) -~ N~), 
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(b) N~) ~ {a(~): (o~) • J}, 

(c) for ~ E J \ {0} ,N~  is ~-pr ime over N¢ ~ U  ~ 

1.17 CLAIM: (1) M is ~ - p r i m e  over A i___ff M is R~-primary over A i__ff M is 

R~-saturated, A C_ M,  M is ~e-atomic over A (see 0.1(16)) for every I _C M 
indiscernible over A we have: dim(I, M) <_ ~o i_ff M is ~-saturated,  A C_ M,  

M is Re-atomic over A and for every finite B C_ M and regular (stationary) 

p ~ S ( A  U B),  we have dim(p, M) <_ ~o. 
(2) I f  N~, N~ are R~-prime over A, then they are isomorphic over A. 

Proof: By [Sh:c, IV, 4.18] (see Definition [Sh:c, IV, 4.16], noting that we replace 
F a by ~e and that part (4) there disappears when we are speaking on F~o ). 

b~o 

|1.16 

However, we need more specific information saying that "minor changes" pre- 
serve being ~cprime. This is done in 1.18 below; parts of it are essentially done 

in [Sh 225] but we give a full proof. 

1.18 FACT: (0) I fA is countable, N is ~-primary over A then N is ~-pr imary 

over 0. 
(1) If N is Rcprime over 0, A countable, N + is R~-prime over N U A, then N + 

is ~-pr ime over 0. 
(2) If (Nn : n < w) is increasing, each Nn is ~-pr ime over 0 or just Re- 

constructible over 0 and N~ is ~-pr ime over Un<~ Nn, then N~ is ~-pr ime over 
0 (note that if each Nn is ~-saturated then N~ = [-Jn<~ Am). 

(2A) If N is Re-prime over C, ~A~ C_ N, tp(b,~) is regular (stationary) and 
orthogonal to C, then dim(tp(/~, ~), N) <_ ~o; also, if q E S (C  U ~t) is a nonforking 
extension of tp(b, ~) then dim(q, C U ~) = dim(tp(b, ~), N) = R0. 

(2B) If Cto~^b C_ N and 0./b is a regular type orthogonal to C and q E S ~g(u) (N) 

is a nonforking extension of ~/b, then dim(p [ (C + b), N) _< dim(~/b, N) 
<_ dim(p [ (C + b), N) + ~o; moreover, dim(p [ (C + b), N) <_ dim(0~/b, N) < 

dim(p I (C + b), N) + + ~o. 
(3) If N2 [JJ N1, each Ne is ~-saturated,  N2 is R~-prime over No tO ~, and N3 

No 
is ~cprime over N2 U N1, then N3 is 8~-prime over N1 U ~. 
(4) If N1 -~ N2 are ~-primary over 0, then for some ~-saturated No -< N1 
(necessarily Rcprimary over ~) we have: N1, N2 are isomorphic over No. 
(5) In part (4), if A C_ N~ is e-finite then we can demand A C_ No. 
(6) If Mo is Rcsaturated, A ~ B, M~ is R~-primary over Mo tO A, then M~ ~J B. 

Mo Mo 
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(7) Assume No -~ N1 -~ N2 are Re-saturated, N2 is Re-primary over N1 + a and 

N-~- "j- .NO (and a ~ N1). If N~ -~ No, N~ -~ N; -~ N1, N; U No and N1 is R~- 
N~ 

primary over No (J ' * * * N1, A 1 C_ N;,  A 2 C_ N2 are c-finite and tp,  (As, N1) does not 

fork over A~, then we can find a', N~ such that: N~ is Re-saturated, Re-primary 

over N~ + a', N[ -~ N~ -~ N2, N1 U N~ and N2 is Rcpr imary over N1 U N~ and 
N; 

A~ C_N~. 

(8) Assume N~ -~ No -~ N1 and a E N1 and N1 is R~-prime over No + a and 

a ± N~ and A~ C N~,A~ C N1 are c-finite and tp ,(A~,No) does not fork over 
N o  - -  - -  

A~; then we can find a', N~ such that a' E N', N~ -< N[ -< NI, N~ W No, N~ is 
N; 

R~-prime over N~ + a and 3}i is R~-prime over No + N~ and A~ C_ N~. 

(9) If NI is Rcprime over ~ and A C_ B C NI and A, B are e-finite, then we can 
find No such that: A C_ No -< NI, No is R~-prime over 0, A _C No, B ~ No, and 

A 

N1 is b~e-prime over No U B. 

(10) If No is Rcprime over A and B C_ No is e-finite, then No is Re-prime over 

A U B (and also over A' if A C_ A' C_ acl(A)). 

1.19 Remark: In the proof of 1.18(1)-(6),(10) we do not use "T has NDOP".  

Proo£" (0) There is {a~ : a < a*}, a list of members of N in which every member 

of N \ A appears such that for a < a(*) we have: tp(a~, A U {az :/3 < a}) is 

R~-isolated (which means just F ~ -isolated). b~o 
[Why? By the definition of "N is R~-primary over A".] Let {b. : n < w} list A 

(if A = 0 the conclusion is trivial, so without loss of generality A ¢ 0, hence we 
can find such a sequence (b. : n < w)). Now define fl* = co +/3 and b~+~ = a~ 

for a < a*. So {bz :/3 </3*} lists the elements of N (possibly with repetition, 

remember A C N and check). We claim that tp(bz, {b~ : 7 < ~}) is F ~ -isolated 
- -  N o  

for/3 </3".  
[Why? If/3 > co, let/3'  = /3  - co (so/3 < a*); now the statement above means 

tp(az,, AU{a~ : "y < fl'}) is F~o-isolated, which we know. If/3 < co this statement 

is trivial.] By the definition of "F~o-primary", clearly (bz :/3 < co+a) exemplifies 

that  N is F~o-primary over 0. 

(1) Note 

(*)i if N is Rcprimary over 0 and A C_ N is finite, then N is Re-primary over A 

[why? see [Sh:c, IV, 3.12(3), p. 180] (of course, using [Sh:c, IV, Table 1, 

F a  • p. 169] for ~o], 
(*)2 if N is Re-primary over 0, A C_ N is finite and p E SIn(N) does not fork 

over A and p [ A is stationary, then for some {ge : f < w} we have: ae E N 
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realize p, {at : ~ < w} is independent over A and p [ (A U Ut<~ at) I- p 

[why? [Sh:c, IV, proof of 4.18] (i.e., by it and [Sh:c, 4.9(3), 4.11]) or let N '  

be R~-primary over A U Ue<~ 5t and note: N t is R~-primary over A (proof 

like the one of 1.18(0)) but also N is R~-primary over A, so by uniqueness 

of the R~-primary model N r is isomorphic to N over A, so without loss of 

generality N '  = N; and easily N t is as required]. 

Now we can prove 1.18(1), for any ~ E ~>A, we can find a finite B~ C_ 

N such that tp(~,N) does not fork over B 1, let be E ~>N realize stp(~,B~) 

and let Be = B~ Ube, so tp(~,N) does not fork over Be and tp(~,B~) is 

stationary, hence we can find ( ~  : g < w} as in (*)2 (for tp(~, Be)). Let A' = 

U{Be : ~ E ~>A} U {5~ : ~ E ~>A and ~ < w}, so A' is a countable subset of 

N and tp , (A ,A ' )  ~- tp (A,N)  = s tp(A,N) .  As N is lq~-primary over 0 we can 

find a sequence (da : a < a*) and (wa : a < a*) such that N = {d~ : a < a*} 

and wa C_ a is finite and stp(d~, {d~ : /3 E wa}) ~- stp(da, {dz : /3 < a}) and 

~ < a ~ d ~ 7 ~ d ~ .  
We can find a countable set W C_ a* such that A' C_ {d~ : a E W} and 

a E W =~ w~ C_ W. Let A" = {a~ : a  E W}. By [Sh:c, IV, §2, §3] without loss 

of generality W is an initial segment of a*. Easily 

a < a*&a ~ W ~ stp(da, {d~ : 13 E wa) ~- stp(da, A U {d~ : fl < a}). 

As N + is R~-primary over N U A  we can find a list {da : a E [a*,a**)} of 

N+\(N U A) such that tp(da, N U A U {d~ :/3 E [a*, a**)}) is R~-isolated. So 

(da : a ~ W, a < a**) exemplifies that N + is R~-primary over A U A", hence by 

1.18(0) we know that N + is N~-primary over 0. 

(2) We shall use the characterization of "N is F~o-prime over A" in 1.17; more 

exactly we use the last condition in 1.17(1) for A = 0, M = N~. Clearly Nw is 

R~-saturated (as it is Ncprime over U~<w Nn). Suppose B _C N~ is finite and 

p E S(B) is (stationary and) regular. 

CASE 1: p not orthogonal to Un<~ Am. 

So for some n < w,p is not orthogonal to Nn, hence there is a regular Pl E 

S(Nn) such that P, Pl are not orthogonal. Let A1 C_ Nn be finite such that Pl 

does not fork over A and Pl [ A1 is stationary. So by [Sh:c, V, §2] we know 

dim(p, N~) = dim(p1 [ A1, N~), hence it suffices to prove that the latter is 1%. 

Now this holds by [Sh:c, V, 1.16(3), p. 237] or imitate the proof of (*)2 above. 

CASE 2: p is orthogonal to U~<~ Nn. 

Note that  if each Nn is Re-prime, then Un<~ Nn is Re-saturated, hence N = 

Un<,~ Nn hence this case does not arise. Let A = U~<~ Nn, so dim(p, N)  _< Ro 
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follows from (2A) below. 

Alternatively (and work even if we replace Nn by a set An, F a -constructible Ro 
over 0), see below. 

(2A) By (2B). 

(2B) The first inequality is immediate (as T is superstable and 5, b are finite), so 

let us concentrate on the second. Let B C_ C be a finite set such that tp, (~^b, C) 

does not fork over B and stp,(~^b,B) }- stp,(5^b, C). Recall q E S(N) extend 

5/b and do not fork over b, let b* E ~ realize q and let ql = stp(b*, BUb) and q2 = 

stp(b*, C U b). Now by the assumption of our case ql is orthogonal to tp,(C, B) 

hence (see [Sh:c, V, §3]) ql }- q2 and let {an : a < a*) C_ (ql [ (b (-J B))(N) 
be a maximal set independent over C + b, so la*l _< dim(5/(C + b),N) and 
q [ ( C O b U  {an : a  < a*}) t- q. Also clearly stp,({an : a  < a * } , b U B )  t- 

s tp,({an : a  < a * } , b U C ) .  Together d im(ql ,N)  < ]a* I and as ]B] < R0 = nr(T) 

clearly dim(a/b, N) < Ro + dim(q1, N)  +, so we are done. 

We can use a different proof for part (2), note: 

®1 if n = cf(n) _> nr(T) and Ba is F~-constructible over A for a < 5, 5 _< 

and a </3 < 5 ~ Bn C_ B~, then Un<~ Bn is F~-constructible over A. 

[Why? See [Sh:c, IV, §3], [Sh:c, IV, 5.6, p. 207] for such arguments; as- 

sume Aa = (A, (a~ : i < in), (B~ : i < in)) is an Fa-construction of Bn 

over A. Without loss of generality i < j < in ~ a~ # aq,, and choose 

by induction on 4, (u~ : a < 5> such that: u~ _C in, u~ increasing contin- 

uous in i,u~ = O,]u~a+l\u~l < ~,u~ is An-closed and a < /3 < 5 implies 

{a~:  j E u~} c_ {a~:  j • u~} and tp,({a/Z : i • ug} ,AU{a~ : i < is}) 
does not fork over AU {a~ : i • u~}. Now find a list (aj : j < j*} such that 

n n for some a < 5, c < 4} is an initial segment for e a c h ~ , { j : a j • a i  : i • u ~  

/3¢ of j* and/3¢+1 ___~ /~¢ + g.] 

We use ®1 for ~ = R0. So each Nn is Re-constructible over 0, hence ~n<w Nn 
is R,-constructible over 0 and also N~ is R~-constructible over [-Jn<~ Nn, hence 

N~ is R,-constructible over 0. But  N~ is R~-saturated, hence N~ is Rcprimary 

over 0. Alternatively use: if B is Fa-constructible over A, ~ _> ai(~-) and I is 

indiscernible over A, I I [>  g then for some J _C I of cardinality _< ~, I \ J is an 

indiscernible set over B. 

(3) Suppose N~ is R~-saturated and N1 + a C N~. As N2 is tt~-prime over No + 

and No + 5 C_ N1 + ~ C N~ we can find an elementary embedding fo of N2 into N~ 

extending idNo+a. By [Sh:c, V, 3.3], the function fl  = f0 [-J idN~ is an elementary 

mapping and clearly Dom(f l )  = N1 U N2. As N3 is R~-prime over N1 U N2 and 

fl  is an elementary mapping from N1 (-J N2 into N~, which is an R~-saturated 
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model, there is an elementary embedding f3 of N3 into N~ extending f2. So as 
for any such N~ there is such f3, clearly N3 is l~cprime over N1 + 5, as required. 

(4) Let No be l~o-prime over ~ and let {pi : i < a} C S(No) be a maximal 
family of pairwise orthogonal regular types. Let I/ = { ~  : n < w} C_ ~ be a 
set of elements realizing p/independent over No and let I = IJ/<~ I / a n d  N~ be 

F~o-prime over No U I. Now 

(*) if 5, b C_ N~ and ~/b is regular (hence stationary), then dim(~/b, N~) _< R0. 

[Why? If g/b _1_ No, then dim(g/b, N~) _< R0 by part (2A) and the choice of the 
p~ and I / for  i < a. If g /b+ No, then for some ~1 ̂ 5' C_ No realizing stp(5^g, 0), we 
have g'/b'+g/b hence dim(g/b, N~) = dim(g'/b', N~), so without loss of generality 
b^g C_ No; similarly, without loss of generality there is i(,) < a such that g/b C__ 
p~(,) and p/(,) do not fork over b, now easily dim(5/b,N~) = dim(~/D, No) + 

dim(pi(,), No) _< l% + R0 = l% (see [Sh:c, V, 1.6(3)]). So we have proved (,).] 

Now use 1.17(1) to deduce: N~ is F~ -prime over ~, hence (by uniqueness of 
R~-prime model, 1.17(2)) N~ - N1. 

By renaming, without loss of generality N~ = N1. Now 

(**)(a) (N1, C)cENo, (N2, C)cENo are l~-saturated and 
(~) if ~ E E,5 E Ne,g/D a regular type and 5~J(No + b) (for e = 1 or ~ = 2), 

then dim(g/(b U No), Ne) = ~o. 
[Why? Remember that we work in (~eq, C)ceg(,. The "N~-saturated" follows from 
the second statement. 

Note: dim(g/(b U No), Ne) _< dim(g/b, Ne) <_ ~o (the first inequality by mono- 
tonicity, the second inequality by 1.17(1) and the assumption "Ne is ~e-prime over 
q}"). If5/b is not orthogonal to No, then for some i < ct we havepi+(g/b), so easily 
(using "Ne is N~-saturated") we have dim(5/(bUNo), Ne) = dim(p/, Ne) > IlIill = 
Ro; so together with the previous sentence we get equality. Lastly, if 5/5 l No 
by part (2B) of 1.18, we have dim(~/(b U No), Nt) < R0 =~ dim(g/b, Ne) < Ro, 
which contradicts the assumption "Ne is l~-saturated".] So we have proved (**), 
hence by 1.17(1) we get "N~, Ne are isomorphic over N~" as required. 

(5) This is proved similarly, because if N is R~-prime over A and B C_ N is e- 
finite, then N is R~-prime over A+B and also over A ~ i f A + B  C A' C acl(A+B); 
see part (10). 

(6) By [Sh:c, V, 3.2]. 

(7) First assume that A~ C_ N~ and a/N1 is regular. As N~ is R~-prime over 
No U N~ and as T has NDOP (i.e., does not have DOP), we know (by [Sh:c, X, 
2.1, 2.2, p. 512]) that N~ is R~-minimal over No U N[ and ~7 is not orthogonal 
to No or to N~. But a/N~ _l_ No by an assumption, so a/N~ is not orthogonal to 

Sh:401



Vol. 140, 2004 C H A R A C T E R I Z I N G  M O D E L S  OF  N D O P  T H E O R I E S  79 

N~, hence there is a regular p' • S(N~) not orthogonal t o  N~al , hence (by [Sh:c, 
V, 1.12, p. 236]) p' is realized say by a' E N2. By [Sh:c, V, 3.3], we know that N2 
is Re-prime over N1 + a'. We can find N~ which is R~-prime over N~ + a' and N~' 
which is Re-prime over Ni U N~, hence by part (3) of 1.18 we know that N~' is 
N~-prime over N1 + a', so by uniqueness, i.e., 1.17(1), without loss of generality 
N~' = N2, hence we are done. 

In general, by induction on a choose N~,a such that N~, o is N~-prime over 
N~ U A~, N~,a is increasing with a and Ni U N~,a. Easy for some a, N~,a is 

N~ 

defined but not N~,a+ i. Necessarily N2 is R~-prime over N~ U N~,a. Lastly, let 
a' • N~,c~ be such that tp(a, N1 U N~,a) dnf over N1 + a'. Easily N~,a is R~-prime 
over N~ + a' (by 1.17(1)). 
(8) A similar, easier proof. 
(9) Let N~ be N~-prime over A such that B ~J N~, and let N~ be l~e-prime over 

A 
N~ t2 B. By 1.18(1), we know that N~ is ~e-prime over @, and by 1.18(10) below 
N~ is Ne-prime over A U B; hence by 1.17(2) we know that N~, N1 are isomorphic 
over A U B, hence without loss of generality N~ = N1 and so No = N~ is as 
required. 
(10) By [Sh:c, IV, 3.12(3), p. 180]. |L~s 

1.20 FACT: Assume (N¢,a, : • E I) ~direct ( N 2 , a ~ ?  : ?7 • I) (see Definition 
1.16) and A g B G N~0> and AveI N~ -~ M. 

(1) If v = ~^(a) • I, then N~ U N~ and even N~ U (U ,e, Npi); and ~ v  • I 
N~ 1 N~ ~" ~ p 

implies N~ ~J ((.J .er NJ). 

(2) (N~,a~ 7 2  : ~ • I) is an Re-decomposition inside M above (~)_iff 
(N~,I an :r] E I) is an Re-decomposition inside M above (Am)" 

(3) Similarly, replacing "Re-decomposition inside i above (~)" by "Re-decom- 
position of M above (B),,. 

Proof." (1) We prove the first statement by induction on eg(7/). If y = < >  this is 
clause (b) by the Definition 1.16 and clause (d) of Definition 1.11(1) (and [Sh:c, 
V, 3.2]). If ~ ~ < > ,  then ~,, J_ N(in_) (by condition (e) of Definition 1.11(1)). 
By the induction hypothesis i2(v-) N~  N1 and we know N 2 is Re-primary over 

(,~-) 

N 2 t2 N~; we know this implies that no p • S(N  1) orthogonal to N 1 is (~-) v- 
a N2 a a ~ 2 

realized in N~, hence ~ _L ~-~, so ~ F ~ ,  hence ~ _L ~ hence N~ ~J N,  

as required. The other statements hold by the non-forking calculus (remember, 
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i fT/=  v^(a) E I then use tp(U{N~ : ~/~ p E I},N~) is orthogonal to N~ or see 

details in the proof of 1.21(1)(a)). 

(2) By Definition 1.16, for e = 1, 2 we have: (N~,t a 7 : 7 / E  I) is a decomposition 

inside ~ and by assumption A~ei N~ -4 N 2 -4 M. So for ~ = 1,2 we have to 
prove ,,/,t\~. ~, a T : ~ E I) is an lq~-decomposition inside M for (AB) '' assuming this 

holds for 1 - g. We have to check Definition 1.11(1). 

Clauses 1.5(1)(a),(b) for g hold because they hold for 1 - g. 

Clause 1.5(1)(c) holds, as by the assumptions A C_ B C_ Yl0> -~ N2<0>, A C_ N I >  

and Ni0 > U Y2<>. 
g~> 

Clauses 1.5(1)(d),(e),(f),(h) hold as (N~,a, :~ E I) is a decomposition inside 

(for g = 1 given, for g = 2 easily checked). 

Clause 1.5(1)(g) holds as AT N~ -~ N~ -< M is given and M is lq~-saturated. 

(3) First we do the "only if' direction; i.e., prove the maximality of 

(N~,I aT : ~  E I) as an R~-decomposition inside M for (~) (i.e., condition (i) 

from 1.11(2)), assuming it holds for (N~,a, :~ E I}. If this fails, then for some 

r] E I \ { < > }  and a E M,{aT~<~ > : 77 ̂  < a >E I} U {a} is independent over 
N~ and a ~ {aT~(~) : rfl(a) E I} and ~ _1_ N 1~_. Hence, i f~^ (a t )  E I for 

< k then a = (a)^(a,^<~,> : g < k) realizes over N~ a type orthogonal to N~_, 

but Nnl_ -4 N~, N 17_ "~ N27- and N~ ~J N 2 (see 1.20(1), hence (by [Sh:c, V, 
N 1 

2.8]) t p (~ ,N  2) _1_ N~_, hence {a} U {aT-(t): g < k} is independent over N~; but 

k,~?^{at)I for g < k were arbitrary, so {a} U {an-(a ) : r/^(a) E I} is independent 

( N ~ ,  aT : ,~ E over N~, contradicting condition (i) from Definition 1.11(2) for 2 I). 

For the other direction use: if the conclusion fails, then for some ~ E I \ { < > }  
and a E M\N~ \ {aT~(a ) : ~l(a)  E I} the set {a~^(~) : ~^(a) E I} U {a} is 
independent of N~ and tp(a, N 2) is orthogonal to N 2 • let N'  -4 M be Re-prime 

over N~ + a. But N~ is lq~-prime over N~ U N~_ (by the definition of <_direct) 
SO by NDOP tp(a,N~) ~ N 1, hence there is a regular q E S(N~) such that 

q + tp(a,N~).  Hence some a t E N ~ realizes q; clearly {a,*<~> : ~?̂  < a > 

E I} U {a'} is independent over N~ (and a' ¢({al,(~) : y~(a) E I}), hence over 

(N~, N~) and easily we get a contradiction. Ixa0 

] : ~ E I) is an Rcdecomposition inside M. 1.21 FACT: Assume (N, 1, 
a T 

(1) If N~> -4 N2> -4 M, N 2 is Re-prime over 0 and N2> U {a la>  :< a >E I}, 
N&> 

then 
u and 
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(3) we can find N~2(~ E I \{<>})  such that N~ -~ M, and 

1 * 2 1 I). (N~, aT: ~ E I) --~direct (N~, aT: ~ E 

~ >  al" +NO> (2) If Cb C_ NO> -4 NI> or at least NO> -~ N~> and ~ whenever 

o E Nv (for ~ E I \ {<>})  such that < a >E I, then we can find N O -~ M and av 
o o I ) < *  (N¢, ° : O E I ) .  (N~,  a ,  : / ]  E --direct aT 

(3) In part (2), if in addition we are given (B~ : ~ E I) such that B~ is an e-finite 
subset ofNn, tp,(B~ Nn) does not fork over B* and B~> C NO>, then we can 

$ demand in the conclusion that ~ E I ~ B n C_ N °. 

Proo~ (1) For proving (a) let {~i : i < i*} list the set I such that y~ ,~ ~j 

i < j ,  so ~o = < >  and, without loss of generality, for some a* we have Yi E 

{< a >:< a >E I} ¢=~ i E [1,a*). Now we prove by induction on/~ E [1,i*) that 

N~> ~ U{N~ : i < ~3}. For ~ = 1 this is assumed. For t3 limit use the local 
gl> 

character of non-forking. 

If/~ = 7+  1 E [1, a*), then by repeated use of [Sh:c, V, 3.2] (as {ano : j E [1,/~)} 
is independent over (Y~>,Y~>) and N~> is Re-saturated and 1 • g~j(3 E [1,7))is 
Re-prime over g l >  + anj ) we know that tp(av~,N~> U Ui<7 N~,) does not fork 
over NI>.  Again by [Sh:c, V, 3.2], the type 1 2 N 1 tp.(N¢, ,N<> uUi<7 n~) does not 
fork over NI>,  hence Ui<~ N~ U N~> and use symmetry. 

N~> 
Lastly, if/~ E 7 + 1 E [a*,i*),tp(an~,Nn~ ) is orthogonal to N~> and even to 

N 1 so again by non-forking and [Sh:c, V, 3.2] we can do it, so clause (a) (n~)-' 
holds. 

For clause (/~), we choose N~ for i E [1,i*) by induction on i < i* such that 
N~ 2 -~ M is Re-prime over N 2_ U N 1 By the non-forking calculus we can check 

ni n~" 
Definition 1.7. 

(2) We let {~i: i < i*} be as above. Now we choose N~ ° ,a  °, by induction on 
i E [1,i*) such that: 

(*) N~ ° -~ N~ and N 1_ N° ~ N~ ° and N1. is ~e-prime over N~ ° U N 1_ 
n~ ~ ' 

o (**) a °, E N~ ° and N°~ is Re-prime over N °_ + aT,. 
ni 

The induction step has already been done: if gg(~]i) ) 1 by 1.18(7) and if ~g(~i) -- 
1 by 1.18(8). 

(3) Similar. I~.2~ 

1.22 Fact: (1) If 1 i /  < .  2 I / and both R e- (N~,a~ : y E --direct (N~,a,~ : ~ E are 
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decompositions of M above (~), then 

1 I ) , M )  2 2 I ) , M ) .  

Proof." By Defintion 1.11(5) it suffices to prove, for each ~/E I \ { < > } ,  that  

(*) for regular p E S(M) we have p l Nvl_&p ± N 1 ¢¢ p _1_/Yv2_ &:p q - N 2. 

Now consider any regular p E S(M):  first assume p _L N~_&p + N~ where 

~/ E I \ {( )} so p ±  N~ (as Nv 1 -~ N~ and p ±  N 1) and we can find a regular 

q E S(N~) such that q ± p; so as p A_ N~_ also q A_ NI_,  now q A_ N2v- (as 

N~ ~ N 2 and q A_ N~ see [Sh:c, V, 2.8]), hence p A_ N~_. 7 -  
N 1 

Second, assume p _l_ Nv2_& p +N~2 where ~/E I \ {( )}; remember Nlv-' N17' N2, 

N 3 are Rcsaturated,  N 1 N1 ~ N~_ and N 2 is lqe-prime over N 1 U Nv2_ and T 

does not have DOP. Hence N~ is R~-minimal over N~ U N 2 and every regular ~/- 

q E S(N~) is not orthogonal to N 1 or to N 2 Also, as p ± N~ there is a regular 
?7-" 

q E S(N~) not orthogonal to p, so as p A_ N 2 also q A_ N 2 • hence by the 7 -  ~/- '  

previous sentence q ± N 1, hence p ± N¢. Lastly, as p _k N 2 and N 1 -~ N 2 ~/- 7 -  ~?- 

clearly p A_ N~_, as required. I1.22 

At last we start proving 1.14. 

P r o o / o f  1.14: (1) Let N ° -< ~ be Re-primary over A; without loss of generality 
N o ~ B (but not necessarily N o -~ M),  and let N 1 be ~cpr imary  over N o U B. 

A 
Now by 1.18(0) the model N o is ~e-primary over 0 and by 1.18(1) the model N 1 

is Re-primary over 0, hence (by 1.18(10)) is lqe-primary over B, hence without 

loss of generality N 1 -< M. Let N<> =: N° ,N<o> = N I , I  = { < > , <  0 >} 

and a<o> = B. More exactly av is such that dcl({av} ) = dcl(B). Clearly 

(N v, aT: ~/E I) is an Re-decomposition inside M above (~). Now apply part (2) 

of 1.14 proved below. 

(2) By 1.13(4) we know (Nv, a T : 77 E I) is an Re-decomposition inside M. By 

1.18(2) we then find g _D I and Nv, a T for ~/E ,1\I such that (Nv, a v : ~ E I) is 

an Re-decomposition of M. By 1.18(3), (Nv,a v : ~1 E J') is an Re-decomposition 

o f M a b o v e  (~) w h e r e J ' = : { ~ E  J : ~ = < >  or (0) <1~E J}. 

(3) Part  (a) holds by 1.13(2),(3). As for part (b), by 1.13(2) there is 

(Nv,a v : 7/ E J),  an Re-decomposition of M with I C_ J; easily 

[(0) _ ~ E g ~ ~/E I]. IL14(1),(2),(3) 

1.23Fact: If (N~,a~: ~ E I e) are Re-decompositions of M above (S), fore  = 1,2 
2 : ~/E I2), M). 1 : ?.] E I i ) , i )  -- 7)((N~,a n and NI<> = N2<>, then 7)((N1,% 
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1 for r} E Jl\I1 such that Proo~ By 1.14(3)(b) we can find j1 _D 11 and N~,av 
1 1 (N¢,a~? : r /E j1)  is an t~cdecomposition of M and moreover r} E Jl\I1 ca rl 

: :al N ::N1. ()&~((0} <~). Let j2 = 12 U ( j l \ /1 )  and for ~ E J2\Ie let a ,  
2 Easily (Ng,av:r 1 E j2} is an Rcdecomposition of M. By 1.13(6)we know that 

for every regular p E S(M) there is (for g = 1,2) a unique ~(p, f) E je such 

that p _1_ Nv(p,e)&p _l_ Nv(p,e)- (note 0 -  - -  meaningless). By the uniqueness of 
rl(p,g), if ~?(p, 1) E Jl\I1 then as it can serve as ~(p, 2) clearly it is r/(p, 2), so 
~(p, 2) = r/(p, 1) E j l \ I1  = j2 \ i2 ;  similarly r/(p, 2) E j2\I~ ~ rl(p, 1) E J~\I 1 
and ~(p, 1) = 0 ~ ~(P, 2) = (). So 

(*) r/(p, 1) E / 1 \ { 0 }  ~z~ ~](p, 2) E 12\{()}.  

But 
e : 7} E Ie), M). (**) ~(p,f) E I e \ { 0 }  Cap E P((Ne, a v 

Together we finish. 11.23 

We continue proving 1.14. 

Proof of 1.14(4): Let A* _C M -  be a-finite, so we can find an e-finite B* c_ 

U{Nv : r /E I} such that  stp(A*, B*) ~- stp(A*, U{Nv : r/ E I}). Hence, there is 

a finite non-empty I* C I such that < > E  I*, I* is closed under initial segments 

and B* C_ U{N~ : r/E I* }, so of course 

s t p . ( A * , U { N n : ,  E I*}) F- s tp(A*,U{Nv:  ~ E I}). 

We can also find (B~ : r/E I*} such that B~ is an e-finite subset of N, ,  B~ = 

acl(B;) and B* C U{B; : r} E I*},r} ¢ < > ~  a~ E B; ,  and if r/< u E I* then 

B~ C_ B ,  and t p . ( B , , N , )  does not fork over B v. W.l.o.g. B c_ B<o >. 

For rl E I\I* let B;  = B;t e where g < gg(~) is maximal such that ~ [ g E I*; 
such g exists as gg(q) is finite and < > E  I*. 

1 = a ,  for r~ E I and, without loss of generality, J ¢ I Let N~ = N~ and a v 
hence J \ I  ¢ O. 

Let N2<> -< M be l~-prime over U , e a \ i  N, ;  letting J \ I  = {~i : i < i*} be 

such that [~i < ~j ~ i < j] we can find N 2 • (for i < i*) increasing continuous, <>,z 
N 2 2 < >,0 = N< > and N< > #+1 is Re-prime over N# > # U N~,  hence over N~ > # + a~.  

Lastly, w.l.o.g. N~>,i. = N~>. 
By 1.18(1),(2) we know N~> is Re-primary over 0 and (using repeatedly 1.18(6) 

+ finite character of forking) we have N~> [JJ a<0>. By 1.18(4) (with N#>,  
N#> 

N~>,B)> D_ Cb(a<>/Nl<>) here standing for N1,N2,A there) we can find a 
model NO> such that a<o> [JJ N I >  and Cb(a<>/Nl>) C_ B#> C_ NO>, NO> -~ 

N~> 
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1 o N<>,N<> is ~q,-primary over 0 and N I > , N 2 >  are isomorphic over NO>. By 

I : ~ E I )  1.21(1/we can for , I choose < .  with < and IN ,. n 
-direct <* (N~,anl : 77 E I). Similarly, by 1.21(2) (here Suc l (<>)  = {(0)}) we 

o I) with o o I) can choose an lq~-decomposition (N °, a n : ~? E (Y,~,a n :~? E ~direct* 

(N¢,1 an0 :~? e I). Moreover, we can demand ~ E I* =~ B n* C_ N~° using 1.21(3). 

0 : ~ E I) is an Re-decomposition of By 1.13(12)+1.14(3) we know that (N~,a n 

0 : y E I) is an R~-decomposition of M. Now choose by M -  and easily (N~, a n 
induction on y E I an isomorphism fn from N~ onto N~ over N ° such that 

u ~  =~ f~ C_ ]n a n d ~  E I* =~ fn [ B~ = i d u : .  F o r ~  = < >  we have chosen 
N o such that 1 2 N¢, N~ are isomorphic over N °. For the induction step note that  

f(n-) UidN~, is an elementary mapping as N 2(n_) N ?  No and f (n - )U idN ° can 

01- } 
be extended to an isomorphism fn from N~ onto N~ as N~ is R~-primary (in fact 

even R~-minimal) over N(n_ ) U N ° for g = 1, 2 (which holds easily). If ~ E I* 

there is no problem to add fn [ B~ = idB;. Now by 1.13(3) the model M -  is R~- 

saturated and lq~-primary and R~-minimal over  U n e J  N n = UneI N~; similarly 
M is Re -primary over Une! N~. Now Un fn is an elementary mapping from 

UnEI N1 onto Unet N~, hence can be extended to an isomorphism f from M -  

into M. Moreover, as stp,(A*,U{B~ : ~? E I*}) ~- stp(A*,{N¢ : 7/ E I}), by 

[Sh:c, Ch. XII, §4] we have tp,(A*,U{B~ : ~ E I*} ~- tp(A*,U(N~ : ~ E I}, 
hence tp,(A*, U{B~ : ~ E I*}) has a unique extension as a complete type over 
U{N~ : ~ E I}, hence over U{N~ : ~? E I}, so without loss of generality f I A* = 

idA,. By the R~-minimality of M over Unei N n (see 1.13(3)), f is onto M, so f 
is as required. I1.14(4) 

We delay the proof of 1.14(5). 

: ~/ E I t) for g = 1,2, be R~-decompositions Proof of 1.14(6): Let (N,~, a n 

of M above (~), so dcl(d<>) = dcl(B). Let p E S(M), and assume that p E 
1 1 P((N~,  an:  ~/E I1), M), i.e., for some 7/E 11\{<>},  (Pn _1_ N n- ) and pn+Nn. We 

2 2 shall prove that the situation is similar for g = 2, i.e., p E P((N~,  a n : ~/E I2), M); 

by symmetry this suffices. 

Let n = g9(~); choose (Be : g < n) and d such that: 

(a) A C B0, 

(3) B c B1, 
(-y) anr e C Be C 1 _ _ N , ~ r e ,  for g < n, 
(6) Bg+l  ~j 1 

Be 
B~+I ~ N a B:-~I , 

(6") Be+a~n~(~+~) nrt-- .,(t+~) 
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(~) d E Bn, ~ d  is regular +p (hence _k Bn-1), 
(r/) Be is e-finite. 

[Why does such (Be : g _< n) exist? We prove by induction on n that for any 
r]E I of length n and e-finite B' C_ Nv, there is {Be : g < n) satisfying (c~) - (e), 
(~) such that B' C Bn. Now there is p' E S(N~) regular, not orthogonal to p; let 
B 1 C_ N 1 be an e-finite set extending Cb(ff). Applying the previous sentence to 
r/, B 1 we get (Be : t~ _< n); let d E N~ realize p' [ Bn. 

Now as n > 0, tp(d, Bn) _L Nv- , hence tp(d, Bn) _k Bn-1, hence tp(d, Bn) _k 
tp.(Nv-,Bn), hence as tp(d, Bn) is stationary, by [Sh:c, V,1.2(2), p. 231], the 
types tp(d, Bn), tp.(Nv-,  Bn) are weakly orthogonai, so tp(d, B~) }- tp(d, Nv- U 

B,~ T d ....~B -F d Bn), hence B,~_l+al I- % +a} ' . 

Now replace B~ by B~ U {d} and we finish.] 

Note that necessarily 

(5) + B~ U 1 N¢rm for m <_ n. 
S,,~ 

[Why? By the nonforking calculus.] 

@)+ B .  J-a Bm for m < n. 
B,,~+a~li(,,~+l } 
[Why? As 1 N¢t m is Rcsaturated.] 

Choose D* C N~> finite such that ~ does not fork over D* + B. 
- -  N < > + B  

[Note: We really mean D* C_ N~>, not D* C_ N~>.] 

We can find N<3>, Re-prime over 0 such that A C_ N3<> -< N2<> and D* U N3<> 
A 

and N~> is Re-prime over N3> U D* (by 1.18(9)). Hence Bn ~J N3> and 
A 

Bn ~ N3> (by the non-forking calculus). As tp.(B,  g2<>) does not fork over 
B 

3 (for '7 e I 2 \ { < > } ) ,  such A C_ N~> C_ N~> by 1.21(2) we can find h~,av 
that (N~,a~3 3 :T] E I) is an Re-decomposition inside M above (S) and 

3 3 2 3 (N~,a, : r]E 12> <* (N~,a v : r ]E  i2> and a3o> = a~o > (remember --direct 

3 : r]E 12) is an Re-decompo- dcl(a~o>) = dcl(B)). By 1.20(2) we know (N g, a v 
sition of M above (AB). 

By 1.22 it is enough to show p E P((Ng,a3: rl E [2),M). Let i 4 >  -.1N2> -< 

M be Re-prime over i 3 >  UBo. Now by the non-forking calculus B []J(N3> UBo). 
A 

[Why? Because 

(a) as said above Bn []J N3> but Bo C_ Bn so Bo [JJ N3>, and 
B B 

(b) as B ~ N~> and Bo _C N~> we have B (]J Bo so Bo U B, 
A A A 

hence (by (a)+ (b) as A C_ B) 

(c) " does not fork over A, 
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also 

(d) B ~ N ~ >  (as A C_ N<3> _C N~> and tp(B,N~>) does not fork over A); 
A 

putting (c) and (d) together we get 

(e) @{Bo, B, }, 
A 

hence the conclusion.] 

Hence B W Bo, s o B  U N4> (by 1.18(6))andso (as Y~o ) is Rs-primeover 

Ng) + dcl(a~ )) = Ng) + dcl(B)) we have N4> ~ N30> and by 1.21(1) we can 
N~> 

choose N 4 -~ M (for 7] E i2 \{<>}) ,  such that 

4 3 3 3 (N~, % : ~ E 12) _>di~t (N~, % :  ~ E Ie). 

So by 1.20(1) 4 a (N~,%: ~l E 12} is an Rcdecomposition of M above (~), hence 
3 4 a(o)/N ~ does not fork over A but A C Bo C_ N~), so a~ }/N~ dnf over B0, and 

4 3 by 1.22 it is enough to prove p E P((N~,an : ~ E I2),M). Now as said above 
B U N4<> and BUN~> , so together B~N4<>; also we have A C Bo C_ N4>, 

N~> A A 

hence B U N4> and B~ B, So+B --- Bo+a~o > -ka Bo (by (e) + above), but a3<> U N4<>, 
Bo Bo 

B ~ hence N~>+a~o>B~ is R~-isolated. Also, letting B~ = Bn\{d} we have 

is Re-isolated and ~ ,  ± Bo (by clause (~)), and clearly d U (Y~> U B~) so 
S~ 

5 : ~ E I5/, an Re-decomposition of M d ± N4<> Hence we can find (Nb,an B" 
above (A B) such that Nb> = N4<>, dcl(B) = dcl(abo>), Bn\{d} C Nbo> and 
d - a 5 (on d see clause (~) above), so d U Nb<o> • - -  < 0 , 0 >  

i5), M), which holds trivially By 1.23 it is enough to showp E P((Nb,an : ~ E 
as tp(d, Bn\{d}) witness. |L14(6) 

Proof of 1.14(5): By 1.8, with A,B, At,B1 here standing for A1,B1,A2, B2 
there, there are (B~ : $ _~ n),(ce : 1 _~ ~ < n) as there. By 1.18(9) we 
can choose NI<> such that Bo C_ N~>,N11> U Bn, N~> is R~-primary over 

Bo 
0. Then we choose 1 1 (Y~,% : ~ E { < > , <  0 > , <  0,0 > , . . . , < 0 , . . . , 0 > ) ) ,  

Y 

n 

1 : Ce and we 1 -~M,B~g C N  1 a n d ~ > 0 ~ a < 0 , . . . , 0  > where N< 0 , . . . , 0  > ~ - 
• • • J Y y 

n 

choose N~ by induction on gg(~) being R~-prime over N 1 U a~, hence a 1/N 1 
So does not fork over B'lg(n-}, hence N 1 is R~-prime also over N~ + Blg(n ). 

Sh:401



Vol. 140, 2004 

1 1 Bt (N¢,a n : ~ E {( ),...}} is an Re-decomposition inside M for (A~)" 
first 1.14(2) and then 1.14(6). 
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Now apply 

Proof of 1.14(7): Should be easy. Note that 

(*)1 for no (~;) do we have (~) _<b (~;); 
why? By the definition of depth zero; 

(*)2 if (B) <a (B;), then also (~;) satisfies the assumption. 

Hence 
B1 B2 (**) for no (A~), (~) do we have 

[Why? As also (AB:) satisfies the assumption.] 

Now we can prove the statement by induction on a for all pairs (B) satisfying 
the assumption. For a = 0 the statement is a tautology. For a limit ordinal reread 
clause (c) of Definition 1.10(1). For a = fl + 1, reread clause (b) of Definition 

v1,B 1.10(1): on tp~((AB),M) use the induction hypothesis also for computing, A,B,M 
(and reread the definition of tP0, in Definition 1.10(1), clause (a)). Lastly, v2'Z A,B,M 
is empty by (*) above. 

Proof of l.14(8) (9): Read Definition 1.10. III1.14(5),(7),(8),(9 ) 

DISCUSSION: In particular, the following Claim 1.26 implies that if 
(Nn,a n : ~ ff I) is an Re-decomposition of M above (B) and M -  is Re-prime 
over tJ{Nn : 7/E I}, then (~) has the same tpa in M and M - .  

1.24 CLAIM: (1) Assume that M1 -< M2 are Re-saturated, (A B) 6 F(M1). Then 

the following are equivalent: 

(a) ifp ~ P((~) ,  M1) (see 1.14(6) rot definition; sop e S(MI) is regular), then 

p is not realized in 1142; 

(b) there is an l%-decomposition of M1 above (~), which is also an R~-decom- 

position of M2 above (~); 

(c) every R~-decomposition of M1 above (B) is also an Re-decomposition of M2 

above (~). 
(2) I~ M is ~-satu~ated, (~) <* (~) are both in r ( M ) ,  then P((~) ,M) C 
P((B:),M)- 
(3) The conditions in 1.24(1) above imply 

(d) p e  P((AB),M2) ~ p ± M 1 .  
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Proof: (1) (c) =~ (b). By 1.14(1) there is an Re-decomposition of M1 above (~). 
By clause (c) it is also an R~-decomposition of M2 above (AB), just as needed for 

clause (b). 
(b) ~ (a). Let (Nv,a~ : ~ E I) be as said in clause (b). By 1.14(3)(b) we 

can find J l , I  C_ J1 and Nv,a~ (for ~ E J l \ I )  such that (N~,a, : ~ E J~) 

is an Re-decomposition of M1 and u E J l \ I  =~ v(0) > 0. Then we can find 
J~,J1 C_ J2 and N~,a~ (for ~ E J2\J1) such that (N~ : ~ E J2} is an Re- 

decomposition of M2 (by 1.14(2)). By 1.14(3)(b), u E J2\I  ~ v(0) > 0. So 

?~ • I \ { 0 }  ::~ SUCJ2(?']) = Suci(r]), hence 
(*) i fy  • I \ { 0 }  and q E S(N~) is regular orthogonal to N , - ,  then the station- 

arization of q in S(M1) is not realized in M2. 
Now if p • P((~) ,  M1), then p E S(M1) is regular and (see 1.14(1), 1.11(5)) for 

some ~ • I \ { 0 } , P  t N~-,p:t:N, ,  so there is a regular q • S(N~) not orthogonal 

to p. Now no c E M2 realizes the stationarization of q over M1 (by (*) above), 
hence this applies to p, too. 

(a) ~ (c). Let (Nv,a,  : ~ E I) be an Re-decomposition of M1 above (~). 
We can find {N,, a,  : ~ E J), an R~-decomposition of MI such that I C_ J and 
u • J \ I  =~ v(0) > 0 (by 1.14(3)(b)), so M is R~-prime over U{Nv :~ • J}. We 
should check that (N~ : a,  : ~ E I) is also an R~-decomposition of M2 above 
(B), i.e., Definition 1.11(1),(2). Now in 1.11(1), clauses (a)-(h) are immediate, 
so let us check clause (i) (in 1.11(2)). Let ~/E I \{0} ;  now is {ave(a) : ~^(a) E I} 
really maximal (among independent over N~ sets of elements of/1//2 realizing a 
type from P~ = {p • S(N~) : p orthogonal to N~- })? This should be clear from 
clause (a) (and basic properties of dependencies and regular types). 
(2) By 1.14(5). 

(3) Left to the reader. I1.24 

1.25 CONCLUSION: Assume M1 -~/1//2 are R~-saturated and (~:) _<* (S:) both 
in F(M1). If clause (a) (equivalently (b) or (c)) of 1.24 holds for ( ~ ) ,  M1,/1//2 

then they hold for (~:),M1, M2. 

Proo£" By 1.24(2), clause (a) for (B1),M1,M2 implies clause (a) for (B:),M1, 

M2. |1.25 

1.26 CLAIM: IIe (B:) E F(M) and ( N , , a ,  : ~ • I)  is an R~-decomposition of 

M above (~'1) ~ d  M -  C M is R~-saturated ~ d  U , ~  N,  c M -  and ~ is an 
ordinM, then 

E( =t o 
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Proo~ We prove this by induction on a (for all B, A, (N~, a~ : ~ E I), I, M and 

M -  as above). We can find an Rcdecomposition (N~, % : ~ E J) of M with 

I C_ J (by 1.13(4)+ 1.13(2)) such that ~ E J \ I  ¢* ~ # 0 and -~(0) < ~/and so M 

is Re-prime over UneJ Nn and also over M -  U {N~ : r/E J \ I}. 

CASE O: O~ m O. 

Trivial. 

CASE 1: oz is a limit ordinal. 

Trivial by induction hypothesis (and the definition of tp~). 

CASE 2: a =/3 + 1. 

We can find M* -~ M -  which is R~-prime over Unei Nn, so as equality is 

transitive it is enough to prove 

((Be) M*)=tp~((B') M-) 
tp~ A1 ' AI ' 

and 

By symmetry, this means that it is enough to prove the statement when M -  is 

RE-prime over U~e! N~. 
Looking at the definition of tp~+l and remembering the induction hypothesis 

our problems are as follows: 

First component of tp~: 

Given (AB1) <a (AB:),B2 C_ M, it suffices to find (s~) such that: 

(,) there is f E AUT(~) such that: f I B1 = idB1, f(A2) = A3, f(B2) = B3 
.and B3 C M -  and tpZ[(AB:),M] = tp~[(B~),M -] (pedantically we should 

replace Be, Ae by indexed sets). 

We can find J ' ,  M' such that: 

(i) I C_ J' c_ J, [J'\I I < R0, J '  closed under initial segments, 

(ii) M' -~ M is Re-prime over M -  U U{N n : y E J'\I}, 
(iii) B2 C M'. 

The induction hypothesis for/3 applies and gives 

tp~ ,M = tp~ A2 

By 1.14(4) there is g, an isomorphism from M ~ onto M -  such that g r B1 = id. 

So clearly g(B2) C_ M- ,  hence 

r(Bq., tP~ lk, A2]' ]=tPz[\g<A2) ] 
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So ( ~ )  =: g ( ~ )  is as required. 

Second component of tpa: 

So we are given T, a tp z type (and we assign the lower part as B), and we have 

to prove that the dimension in M and in M -  are the same, i.e., dim(I, M) = 

dim(I- ,  M), where 

,(c) ,(c) 
I = { c E M : T = t p z  B1 ' M ) } a n d I - = { c E M - : T = t p z  B1 ' M - ) } '  

Let p be such that: t p~ ( ( ; , ) ,M)  = T =~ p = ~7" Necessarily p J_ A1 and p is 
regular (and stationary). 

Clearly I -  C_ I, so without loss of generality I ~ O, hence p is really well 

defined. Now 

(,) for every c E I for some k < w, c~ E M -  realizing p for £ < k we have c 
t depends on {c~, c l , . . .  , c~. 1 } over B1. 

[Why? Clearly p _L N<> (as B1 [JJ N<> and p _L AI), hence 
A1 

tP . (Uvej \ iNv,N<> ) J_ p, hence tp . (Uvey \rNv ,  M -  ) _L p, but M is 

N~-prime over M -  U U~?Ej\ I grl, hence by [Sh:c, V, 3.2, p. 250] for no 

c E M \ M -  is tp(c, M - )  a stationarization of p, hence by [Sh:c, V, 1.16(3)] 
clearly (,) follows.] 

If the type p has depth zero, then (by 1.14(7)): 

I = { c E M : t p ( c , B ) = p }  and I -  = { c E M - : t p ( c , B )  =p}.  

Now we have to prove dim(I,A) = dim(I- ,A),  as A is e-finite and M , M -  are 

R~-saturated and I -  C_ I; clearly ~q0 <_ dim(I-,  A) <_ dim(I, A). Now the equality 
follows by (*) above. 

So we can assume "p has depth > zero", hence (by [Sh:c, X, 7.2]) that the type 

p is trivial; hence, see [Sh:c, X, 7.3], in (.) without loss of generality k = 1 and 

dependency is an equivalence relation, so for "same dimension" it suffices to prove 

that every equivalence class (in M, i.e., in I) is representable in M - ,  i.e., in I - .  

By the remark on (*) in the previous sentence (Vdl E I)(3d2 E I-)[--d1 ~ d2]. 
B1 

So it is enough to prove that: 

~) if dl, d2 E M realize the same type over B1, which is (stationary and) 
regular, and are dependent over B1 and dl E M - ,  then there is d~ E M -  

' . r l S l + d ~  M] = t  ~ r/Bl+d~ M-].  such that Bl-bdld$ __-- Bl+dld~ and~p~t( B1 ]' k'~tk B1 )' 
Let Mo = N O. There are Jr, M1, M + such that 

(*)1(i) J' C_ J is finite (and, of course, closed under initial segments), 
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(ii) 0 • a', (0) ¢ J',  
(iii) M1 -~ M is N~-prime over U{Nn : r / •  J'}, 
(iv) M + -~ M is ~-prime over M1 U M -  (and M1 U M-) ,  

Mo 

(v) • + 
Now the triple (B~+d2~ M1,M satisfies the demand on (A~:) M - , M  (because 

\ B1 ,'~ 
(AB:) _<* (B~B+d2), by 1.25). Hence by the induction hypothesis we know that 

tPnL\  B1 ) '  = t p n l \  B1 ) J  

By 1.14(4) there is an isomorphism f from M + onto M -  which is the identity 

on B1 + all; let d~ = f(d2), so 

M + ] rc., . ]  [ (B l+d2]  = tpz L\ B1 ' " tpz L\ B1 ' 

Together 

tp~ [(BIB1 , tp~ (B l+d t2 ) ,M-]  

As {dl, d2} is not independent over B1, also {f(dl), f(d~)} = {dl,/(d2)} is not 
independent over B1, hence, as p is regular, 

(*) {d2, f(d2)} is not independent over B2. 
Together we have proved (~, hence finishing to prove the equality of the second 

component. 
Third component: Trivial. 

So we have finished the induction step, hence the proof. 11.~6 

1.27 CLAIM: (1)Suppose M is ~-saturated, A C_ B C_ M,(~) E F, 
2 A _ he=if c Ae C M], A=ace(A),Ae are e-/inite, -~ = -~,B~JA1 and B~JA2. 

A A 
A IuB  M tp rCA2uB~ M] for any ordinal a. Thentp [( A, ), 1= ,, 

(2) Suppose M is R~-saturated, B C_ M, (~) e F,A~=I[A C de C M], 
d = ace(A), B = ace(B), At = ace(At), de is e-flnite, ~ = -~, B W ml, B U A2, 

A A 

f : Al°nt~A2 an elementary mapping, f [ A = idA,g _D f U idB,g elementary 
mapping from B1 = ace(B U A1) onto B2 = ace(B u A2). 

B1 B2 tp~[(A~), M ] any a. Then g(tpa[(A,),M]) = for ordinal 
(3) Assume that 

(a) Ae = acl(At) C_ Be = acl(Bt) C_ M e for e = 1, 2, 
(b) Ae C_ A + C acl(A +) C_ M e fo re=l ,2 ,  
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(c) B, U A+ f o r e = l , 2 ,  
At 

(d) ] is an dementary mapping from A1 onto A2, 

(e) g is an elementary mapping from A + onto A +, 

(f) f [ A I = g I A 1 ,  

(g) h is an elementary mapping from B + = acl(B1 U A +) onto B + 

acl(B2 U A +) extending f and g, 
(h) f(tpa[(S:),  M1]) B2 = tpa[(A2), M2 ]. 

B + 
Then h(tp~[(ASi), M , ] ) =  tpa[(A }), M2]. 

Proof." (1) Follows from part (2). 

(2) We can find A3 C M such that: 

(i) -~--- -~, 

(ii) A3 ~ ( B  U A1 U A2). 
A 

Hence without loss of generality A1 ~ A2 and even U{B, A1, A2}. Now we can 
B A 

find N<>, an Rcprime model over O,N<> -< M , A  C_ N<> and 

(B U A1 U A2) U N<> (e.g., choose {A~ U A~ U B ~ : c~ < w} C_ M indiscernible 
A 

over A,A~ = A1,A~ = A2,B ~ = B and let N<> -< M be R,-primary over 

On<,,,(A~ u A~' O B n U A)). 
Now find (A~,av : 7/E J>, an R,-decomposition of M with 

dcl(a<o>) -- dcl(B), dcl(a<l>) = dcl(A1), dcl(a<2>) = dcl(A2). 

Let I =  {yE J : 7 ] = < >  or < 0  > _ ~ }  and J '  = I U { <  1 > , <  2>} .  Let 
N~> -< M* be Rcprime over N<I> U N<2>. By 1.21 there is <N 2, av : ~ E I/, 

an R¢-decomposition of M above (B) such that (N~, av : q E I> _<direct 

2 I/. Let M t 2 M' (N~,a~ : ,] E -< M be R~-prime over U~eI N~ and M -  -< 

be R~-prime over U~clN~" So M -  -< M' -< M and M' is R~-prime over 

M -  U N<I> U N<2>. 

Nowby 1.26 we have tp~[(S),  M] = t B pa[(At), M'] for e = 1,2, hence it suffices 

to find an automorphism of M' extending g. Let B + = ace(N<> U B), A~ = 

ace(B U A~); let ~ list A~ be such that ~2 = g(al). Clearly t p ( ~ , B  +) does 

not fork over A C_ B and ace(B) = B, and so stp(~l,B +) = stp(~2,B+). Also 

tp.(A2, B + U A1) does not fork over A, hence tp(~2, B + U ~1) does not fork over 

A C B +, hence {a1,~2} is independent over B +, hence there is an elementary 

mapping g+ from ac~(B + U al) onto ace(B + U ~2),g + _D idB+ U g and even 
g' = g+ U (g+)-i is an elementary embedding. 
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Let ~ lists ac~(N<> UA1), so clearly ~ --: g+(~)  list acg(N<> UA2). Clearly 
g' [ ( ~  Ua~) is an elementary mapping from ~ t_J~ onto itself. Now N~> is Re- 
primary over N<> UA1 uA2 and N<> UA1UA2 C_ ~ U ~  C acg(N<> UA1 UAe), 
so by 1.18(10) N<2> is Re-primary over N( ) ~  U ~ ,  hence we can extend 
g' I (a~ U ~ )  to an automorphism h<> of N~>, so clearly h<> I N<> = idN<>. 
Let ~1 + list acg(B + U A1) and ~+ = g+(~+). So tp(~ +, N~>) does not fork over 
~(C_ N~>) and acg(~) = Rang(~) (= ac~(Y<>UAt)) and h<> I ~  = g+ I ~ ,  
hence h<> U g+ is an elementary embedding. Remember g+ is the identity 
on B + = acg(N<> U B), and tp.(N<0>,N2>) does not fork over N<>, hence 
tp.(N<o>, B + U N~>) does not fork over B +, so as acg(B +) = B + necessarily 
(h<> U g+) U idN<o> is an elementary embedding. But this mapping has do- 
main and range including N<o> U N<2> and included in N~0>, but the latter is 
Rcprimary and Re-minimal over the former. Hence (h<> U g+) U idg<> can be 
extended to an automorphism of N~0 > which we call h<o>. 

Now we define by induction on n E [2,w), for every ~/ E I of length n, an 
automorphism h, of N~ extending by- U idg,,, which exists as N~ is lq¢-primary 
over N 2 U N~ (and N 2 ~J N~). Now U~EI h~ is an elementary mapping r/- 7/- 

NTI - 

(as (N~ : 7/ E I) is a non-forking tree; i.e., 1.13(10)), with domain and range 
U,c¢ N~, hence can be extended to an automorphism h* of M t (we can demand 
h* [ M -  = idM- but not necessarily). So as h* extends g, the conclusion follows. 
(3) Similarly to (2). IL27 

1.28 CLAIM: (1) For every T = tph[(~) , M], and ~, b listing A, B respectively, 

there is ~ = ¢(2A, xB) E L:~,~ (q.d.) of depth 5 such that: 

tp5 [ ( A ) , M  ] =T~=~ M ~ ~[~.,1~]. 

(2) Assume ~ M, ,M2 0fl.4 holds as exemplified by the family 9 r and (~) E F(M1) 
and g E / ; ,  Dom(g) = B; and a an ordinal Then 

tpa ( ( B ) , M ) = t p a  ( (g(B)~ M2) 
\ g ( d ) ] '  " 

(3) Similarly for tp~ ([A], M), tpa [M]. 

Proof." Straightforward (remember we assume that every first order formula is 
equivalent to a predicate). |t.2s 

Sh:401



94 S. SHELAH Isr. J. Math. 

1.29 Proof of Theorem 1.2: [The proof does not require that  the M e are R~- 

saturated, but only that 1.27, 1.28 hold except in constructing ga(,) (see ®14, ®15 

in 1.30(E)); we could instead use NOTOP.] 

So suppose 

(*)0 M 1 ~L~,~(d.q.) M2 or (at least) @M1,M 2 from 1.4 holds. 

We shall prove M 1 = M 2. By 1.28 (i.e., by 1.28(1) if the first possibility in (*)0 

holds and by 1.28(2) if the second possibility in (*)o holds) 

(*)1 tPoo[M 1] = tp~[M2].  

So it suffices to prove: 

1.30 CLAIM: Assume that T is countable. I f  M 1, M 2 are R~-saturated models 

(ofT,  T as in 1.5), then: 
(*)1 ~ M1 ~ M2. 

Proof: Let (Wk, W~ : k < w) be a partition of w to infinite sets (so pairwise 

disjoint). 

1.31 EXPLANATION: (If it seems opaque, the reader may return to it after 

reading parts of the proof.) 

We shall now define an approximation to a decomposition. That  is, we are 

approximating a non-forking tree (N~,a,  : ~ E I*) of countable elementary 
submodels of M ~ for ~ -- 1, 2 and (f,~ : ~ C I*) such that f,~ is an isomorphism 

from N 1 onto N~ increasing with ~ such that M ~ is R~-prime over Uve,* N~. 

In the approximation Y we have: 

(a) I approximating I* 

[it will not be I* N n-> Ord but we may "discover" more immediate successors 

to each ~ E I; as the approximation to N ,  improves we have more regular 

types, but  some member of I will later be dropped], 

(fl) A~ approximates N~ and is ~-finite, 

e is the a~ (if U survives, i.e., will not be dropped), a, 
(6) Be, b~, m expresses commitments on constructing A~: we "promise" B~ C 

~ (so in the choice B~ C M ~ N~ and B~ is countable; b~, m for m < w list Bv 

there is some arbitrariness), 

(~) f~ approximate f~, 

(~) per, m also expresses commitments on the construction. 

Since there are infinitely many commitments that we must meet in a construction 

of length w and we would like many chances to meet each of them, the sets Wk, W~ 

are introduced as a further bookkeeping device. At stage n in the construction 
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we will deal, e.g., with the b~, m for ~ that are appropriate and for m E Wk for 

some k < n and analogously for P~,r~ and the W~.. 
Note that while the A~ satisfy the independence properties of a decomposition, 

the Be~ do not and may well intersect non-trivially. Nevertheless, a conflict arises 
e are supposed to represent independent if an an^<i > e  falls into B~, since the an^<i > 

elements realizing regular types over the model approximated by Aev but now 

an^<i>t is in that model. This problem is addressed by pruning ~^ < i > from 

the tree I. 

1.32 Definition: An approximation Y to an isomorphism consists of: 
(a) natural numbers n, k* and index set: I _C n>_ Ord (and n minimal), 
(b) (A~, e t Bn,an, b~, m : 77 E I and m E Uk<k*Wk) for g = 1,2 (this is an 

approximated decomposition), 

(c) (fn:  ~ E I), 
(d) (p~,m : r/E I and m E Uk<k* W~.), 

such that: 
(1) I is closed under initial segments, 

(2) <>E I, 
(3) A~ C_ B~ C_ Me, A~ is c-finite a d ( A ~ ) =  A~,Ben is countable, B~ = 

{b~,m : m E Uk<k* Wk}, 
(4) At~C_A~ifu~qEI, 

/ 

e E Aev; if, (5) if q E I \ { < > } ,  then ~ is a stationary) regular type and a n 
( , I - )  

in addition, gg(~) > 1, then ~ 3_ A e (note that we may decide ae<> A(_~ (n--) 
be not defined or E Ag<>), 

A~ A t i f ~ E I ,  gg(q)>0 ,  (6) ~ 3-a v- 
(7) if r~ E I, not <-maximal in I, then the set {a t : u E I and u-  = q} is a 

maximal family of elements realizing over Aev regular types 3- A~n_) (when 
- t g V is defined), independent over (An, Bn) (and we can add: if u I = u~- = q 

a~ t 

and --1A,, 4- ~a': then a,le/A n = ae /An) ,  
(8) fn is an elementary map from A~ onto A 2, 

(9) 1(7-) C Iv when ~/E I, g9(~/) > O, 
2 (10) fn(a 1) = an, 

(11) (a) fn(tpoo[(A A'I' ),M1]) = tpoo[(a A2" ) , M  2] when ~ E I \ { < > } ,  
0 7 -  ) ( n - )  

(8) f<>(tp**[A~>, M~]) = tp~[A~>, M2], 
(12) B~ -< Mr; moreover, B~ _Cna M t, i.e., if a C_ Nev,b E Mt\Bg and M e 

~(b,a), then for some b ~ E Bg, ~ ~(b',~) and b ~ acl(a) ~ b' ~ acl(A), 

Sh:401



96 S. SHELAH Isr. J. Math. 

(13) (pgv,m:m E Uk<k" W~) is a sequence of types over Agv (so Dom(pgv,m) may 
be a proper subset of Aev). 

1.33 Notation: We write n = ny  = n[Y],I = IF = I[Y],A~ = A~[Y], B~ = 

B~[Y],f ,  = f Y  = h[Y],a~ = a~[Y],b~ = b~[Y],k* = k~ = k*[Y] and pe~, m = 

t 

Remark: We may decide to demand: each ~ is strongly regular; also: if A ,  

two such types are not orthogonal then they are equal (or at least have the same 

witness ~o for (~, a,-<~> ~ regular). This is easy here as the models are R~-saturated 
A, 7 ] 

(so take p' + p, rk(p') minimal). 

1.34 OBSERVATION: (*)1 implies that there is an approximation (see 1.29). 

Proof' Let I = {<>},At<> = acg(O),k* = 1, and then choose countable Be<> 

to satisfy condition (12) and then choose fv, pek, b~, m (for k E W~ and rn E W0) 

as required. 

1.35 MAIN FACT: For any approximation Y, i E Uk<k~. (Wk U W~.) and m < ny  

and g(*) E {1,2}, we can find an approximation Z such that: 

( ~ ) ( a )  nz  = Max{m + 1 , n u } , I z  M m>_ Ord = Iy M "~-> Ord (we mean m not 

n r )  and k~ = k~. + 1; 

(/5) (a) if *7 E Iy ,  gg(q) < m, then 

A~[Z] = A~[Z], 

a{[Z] = a{[Z], 

B~[Z] = B~[Y], 

(b) if ~/E Iy  M Iz ,  k < ky* and j E W~, then p~,j[Z] = Pn,j[t y], 
(c) if~/E Iy M I z , k  < k~. and j E Wk, then b~,j[Z] = b~,j[Y]; 

(,~)1 if ~1 E Iy,gg(q) = m , k  < k~ and 2 i E Wk and the element b E M e(*) 

satisfies clauses (a), (b) below, then for some such b we have: A~ (*) [Z] = 

acg(A{ (*)[r] U {b}), where 
(a) e(.) b -La Ae,7(-*)[Y], by, i [Y] ¢ A~(*)[Y] and gg(q) > 0 ~ A~(.,[y] 

(b) one of the conditions (i), (ii) listed below holds for b: 
b _L.a Ae(_*)[Y] or (i) b = be,7(,~)[Y] and gg(,) > 0 ~ A~(.,[y------ 7 

(ii) for no b is (i) satisfied (so ggO?) > 0) and b E M e(*) , 
b _L~ A~(_*) [Y]; b~,i~JAf(.)[y ] b and £g(q) > 0 => At(.)[y ] 

2 Recall that i is part of the information given in the main fact, and, of course, 
k is uniquely determined by i. 
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(3,) 2 if we assume ~ E IF, gg(~l) = m, k < k~. and i E W~, then we have: 
• ~ e(,) 

(a) ~Pv,i is realized by some b E M e(*) such that  R k ( ~ , L ,  oo) 

.-,, e(,) b -La Aev(_*)[Y]], then = rt(pv, i ,L, cc) and [gg(~/) > 0 ~ A~(.)[y-------- ~ 

for some such b we have A~(*)[Z] = acg(A~(*)[Y] U {b}), 
• • J ( * )  (b) if the assumption of clause (a) fails bu~ Pv,i is realized by some 

b A-a A~(*)[Y]], b E Me(*)\A~ (*) such that  [gg(~) > 0 ~ A{(,)[y-------- ~ n-  ~ JJ 

then for some such b we have A~(*)[Z] = acg[A~(*)[Y] U {b}]; 

(6) if ~ E Iv  and gg(~l) = m, then Be[Z ] = {bemj[Y ] : j E U{Wk : k < 
k~}} is a countable subset of M e containing {Be[Z ] : u ~ ~ and u E 
Y} U Bve[Y ], with Be[Z ] ~ Me; moreover, Be~[Z] C_n a M e, i.e., if ~ C_ 

Be[Z],~(x, f )  is first order and (3x E Me\acg(a))~(x,5) then (3x e 

Be[z]\acg(a))~(2,a)) and {aev~<a>[Y ] : ~^(a) E IF and a~.<a>[Y] ¢ 
B e [Z]} is independent over (B e [Z], A~ [Y]); 

e y (e) i f~  E Iy,gg(~) > m, then ~ E I z  ~ avr(m+U [ ] it B~Im[Z]; 
(¢) if q E I y  ~ Iz,gg(q) > m, then Aev[Z] = acZ(A~[Y] U Aerm[Z]) and 

8 [z] = Be[V]; 
(~) if ~ E I z \ I v  then ~-  E Iv  and gg(~) = m + 1; 

(0) {pe~#[Z] : i E W~.~_I} is "rich enough", e.g., includes all finite types over 

(~) {bey#: i E Wk*-l}  list B~[Z], each appearing infinitely often. 

Proof." First we choose A~ (*)[Z] for ~ E I of length m according to condition 
(~/) = (~)1 + (~)2. (Note: One of the clauses (~/)1, (7)2 necessarily holds trivially 

as n Uk = 0.) 
Second, we choose (for such ~) an elementary mapping f z  extending f~Y and 

a set A3-e(*)[Z] C_ M3-e(*) satisfying , ,fz is from A~[Z] onto A3-e(*)[Z] '' such 

that  
z A,I,[zI "" Au[ Z] " 

(*)2 if m > 0, then f~ (tpo~((A~ - [v])' M~)) = tpoc[(A~" - [V]), M2), 

(*)3 if m = 0, then fZ(tpoo(A~[Z], M~)) = tp~(A~[Z],  M~). 

[Why is it possible? If we ask just  the equality of tp~ for an ordinal a,  this follows 
by the first component  oftpa+~. But  (overshooting) for a _> [([[M~ [[+[[M2[[)ITI] +, 
equality of tpa implies equality of tpc ¢.] 

Third, we choose Be[Z ] for ~ E I y ,  gg(~) = m according to condition (5) (here 
we use the countability of the language; you can do it by extending it w times) 
on both sides, i.e., for g = 1, 2. 

e y Fourth, let I '  = {~ E I :  if gg(y) > m then av[(m+l)[ ] it Bev[m[Z]} (this will 
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be Iv  M Iz ) .  
Fifth, we choose Ag~[Z] for r/E I ' :  if £g(r/) < m, let Agv[Z] = Agv[Y]; if gg(~) = 

m, this was done; lastly, if £g(~) > m, let A{[Z] = ac£(Ae~[Y] U A~rm[Z]). 
Sixth, by induction on k _< n r  we choose f z for ~ E I '  of length k: ifgg(~) < m, 

let f z = f~ ;  if £g(~) = m, this was done; lastly, if gg(~) > m, choose an elemen- 
Y 2 tary mapping from A 1 onto A~ extending f ~  U f~_ (possible as f~ U f~_ is an el- 

ementary mapping and Dom(f~)  M Dom(fZ_) = A e(*), Dom(fY) U Dom(f~ z-) r I - ~! 
A~(*) 

and Agv(_ *) = acg.(Agn(*))). Now fv z satisfies clause (11) of Definition 1.32 when 

£g(r~) > m by applying 1.27(3). 

Seventh, for r/E I ' ,  of length m < nz ,  let v v =: {a : r}^(a} E I}, and we choose 
1 {%^<~>[Z] : a E uv}, [a E u n ~ r/~(a) ~ I], a set of elements of M '  realizing 

(stationary) regular types over A~[Z], orthogonal to A n- [Y] when gg(r/) > O, 

such that it is independent over (U{a~^<a>[Y] : r}^(a) E I '} U BI[Z], AI[Z]) and 

maximal under those restrictions. Without loss of generality, sup(%) < min(un) 

and, for o~ 1 E V n O U n and a2 E u n, we have: 
1 Z 1 Z %,^<~1>[ ] %,-<on>[ ] (*)1 if (for the given a2 and ~) Og 1 is minimal such that A~,,[Z] + A~,,[Z] , 

~,~,̂ <,~ > [z] ~ z . __ a , , ' < , ~ a > [  ] 
then A~[Z] -- A~[Z] , 

(*)2 _if a l  < a2~ and ~n^(a,) t o 1  rZlldlj/n[ Z] = aln'(c~2) [Z]/A~[Z] and, for some b E M 1 
~,~,-<°a>[zl 

realizing A~[Z] , we have bUA},,[zla~-<~=> and tpoo[(Ab<b >) ,M]  = 
1 

tpoo[(Aii^<~)>>),M] and C~l is minimal (for the given ae and r/), then 
a I . a 1 . 

tpooI(;  ), M1 = tpooI(;!,Z' MI. 
~l^<a2> 

1 Z 1 % ^ < . > [  ] %'<I~>[ Y] 
Easily (as in [Sh:c, X]), if a E u v and ~/^(/~} E I '  then A~,,[Z] _1_ A,~,[Y] 

For a e u n let AI .<~>[Z]  = acg(Al[y] U {a~A<~>[Z]}). 
n 

Eighth, by the second component in the definition of tp~+l (see Definition 1.10) 

we can choose (for a E Un)a 2^<~>[Z],A~<~>[Z] and then f z < ~ >  as required 
n 

(see (7) of Definition 1.32). 

Ninth, and last, we let 

I z  = I '  U {~^ < a >: r/E I',gg(r}) = m < n z  and c~ E un} 

and we choose B~ e for 7/E I z \ I v  and the e e Pv,i, bv,j as required (also in the remain- 

ing case). 

I1.35 

1.36 Finishing the Proof  of 1.11: We define by induction on n < w an approxi- 
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marion Yn = Y(n). Let Y0 be the trivial one (as in observation 1.30(C)). 

Yn+l is obtained from Yn as in 1.35 for m~,i~ <_ n,g~(,)  E {1,2} defined 

by reasonable bookkeeping (so in E U~<k~(~l (Wk U W~.)) such that any triples 

appear infinitely often; without loss of generality: if nl < n2~:r~ E I~1 M Ien2 then 
n2 r~ E An=nl In. 

Let I* = I[*] = l im(I [  (n)) =: {~: for every large enough n , r /E  In}; for ~ E I* 

let Aen[,] = Un<~ Aev[Yn], fat[ *] = Un<~ f~(~) and Be[, ] = Un<~ Be[Yn]. Easily 
(~o < > E  I* and I* C_ ~> Ord is closed under initial segments, 

(~1 for r/ E I*, {Be[!v~ ] : n < w and r / E I[Y~]) is an increasing sequence of 
C na-elementary submodels of M e. 

[Why? By clause (12) of Definition 1.32, Main Fact 1.35, clauses (3)(a), (6), (4).] 
Hence 

(~2 for rj E I*, B e[,] C_n, M e. 
Also 

~ a  u<V E I* ~ Be[,l C Be[*]. 

[Why? Because for infinitely many n, rn~ = £g(r/) and clause ((f) of Main Fact 

1.35.] 
1~4 I f~  E I[1~;~] MI* ,~-  = u and nl _< n2, then 

[Why? Prove by induction on n2 (using the non-forking calculus); for ne = nl 

this is trivial, so assume n2 > nl.  If m(n2-1) > eg(u) we have Ae~[Y~2] 
= Ae[y~2_I] (see 1.35, clause (fl)(a) and we have nothing to prove). If m(n~-l) 
< f.g(u), then we note that A~[Y~] = acl(A~[Y~2_, ] U Ae, I,~¢.~_~,[Y~2] ) and 

A~[Yn._-I] U A,[,~(o2_, , [Y~:] (as u E I[Y~2], by 1.35 clause (6) last phrase) 
A ~ 

v (m(n2- -1  ) 

and now use clauses (5), (6) of Definition 1.35. Lastly, if m(~2_l) = fg(u) again 

use u E I[Y~] by 1.35, clause (5), last phrase.] 

(~s I f~  E I[Y~,] M I*,r~- = u and nl _< n~, then 

-l-a Ae~. 
A~[,] + ae[,] 

[Why? By clause (6) of Definition 1.32, and orthogonality calculus.] 

t~6 If r/E I*, then Aen[,] C_ Be[,  ] -~ Me; moreover, 

e Be[* ] C_na M e. @7 An(,)[*] C-na 
[Why? The second relation holds by @2" The first relation we prove by induction 

on eg(rl); clearly A~[,] = because Ag[Y l increases with n by 1.35 and 
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Ae~[Yn] = acl(Aev[Yn]) by clause (3) of Definition 1.32. We prove "A e r,1 Cna ~(,)t J - 
Bne[*]" by induction on m = g9(~), so suppose this is true for every m ~ < m, m = 

g907),~l • I*, let ~(x) be a formula with parameters in A~[*] realized in M e as 

above, say, by b • M e. As (Atn[Yn] : n < w,~? • Yn) is increasing with union 

A~[*], clearly for some n we have b U A~[,]. 
A~[Y.] 

So {7~(x)} = P~,i for some i and for some n' > n defining Yn,+l we have used 

1.35 with (g(,), i, m), there being (g, i, gg(~/)) here, hence we consider clause (.y)2 

of 1.35. So the case left is when the assumption of both clauses (a) and (b) of 

(.y)2 fail, in which case we have gg(~l) > 0 and 

b' • - -  Aev[]ln'], b' M e b, 
Atn[Y~, ] + Ae~-[Yn,]. 

We can now use the induction hypothesis (and [BeSh 307, 5.3, p. 292]).] 

~)8 If r / •  I* and g = 1,2, then {aen~<a>[,] : r]^(a) • I*} is a maximal subset 

of 

C c e {c E Me: ~ [ , ]  regular, c U Be[*] and gg(r]) > 0 =* ~ 3_ An_[,l} 
A;,[*I 

independent over (A~[,],Be[,]). 

[Why? Note clause (7) of Definition 1.32 and clause (6) of Main Fact 1.35.] 

®9 At<>[*] = Be<>[,]. 
[Why? By the bookkeeping every b E Be<> [*] is considered for addition to At<> [*], 

see 1.35, clause (301, subclause (b)(i), and for 0 there is nothing to stop us.] 

®10 If r/ E I* \ {( )} and p E S(Ae~[*]) is regular orthogonal to Atv_[*], then 

~ 3-p. 

[Why? If not, as Ae~[*] C_na Be[.] by [BeSh 307, Th. B, p. 277] there is c • 
t e c B,[*]\A~[*] such that: ~ is p. As c • B~[,] = U~<~o Be~[Yn], for every n < w 

large enough c • Be~[Y~], and p does not fork over Aev[Y~]. So for some such n 
e the triple (in, gn, ran) is such that gn = g, m n =  tg(q) and bmi,~ = c, so by clause 

(7)a(b)(ii) of 1.35 we have c • Ae~[Yn] C_ Ae[,].] 

@11 If q • I* , f  E {1,2}, then {a~<~> : ~^(a) • I*} is a maximal subset 
of {c • M e :  ~ regular, J_ Ae_[.] when meaningful} independent over 

[Why? If not, then for some c • M, {a~.(~) : ~^(a) E I*} U {c} is independent 

over A~[*] and tp(c, Ae[.]) is regular (and stationary). Hence by ®10 we have 

{a~[Yn] : rF(a) • I*} u {c} is independent over (Ae[,],Be[,]). Now for large 
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enough n we have c U Ae~[ *] and by ®10 we have c U B~[.], hence 
At[Yn] Af,[Y,,] 

c IJJ {c} u : e I[Yn]} is not  independent  over 
Af,[*] 

(dn[Yn],Bn[Yn]) , but {a~(a)[Yn]: q^(a) E I[Y~]} is independent over 
(d~[Yn], B~[Yn]). So there is a finite set w of ordinals such that a E w =~ ~ ' (a)  E 

e w} is not independent over (Atn[Yn],Bn[Yn]), I[Yn] and {c} U {an.(~)[Yn] : a E e 
and without loss of generality w is minimal. Let nl E In, w) be such that 
a E w&an-<~ > e  E B~[*] =~ a~ E Btn[Yn~]; these clearly exist as w is finite and 

¢ Bne[.]}; clearly a E u ~ 7 ̂  < a >E I*. Now let u = {a E w : an^<~ > 
{atn~(~)[*] : rl^(a} E I*}U Bne[, ] includes {a~.i~)[Yn]:a E w}; easy contradiction 
to the second sentence above.] 

~12 f~ = Um<~ fn[Yn] (for 7/ E I*) is an elementary map from A~[*] onto d~[*]. 

[Easy,] 
~13 ]* =: Un~l* f~ is an elementary mapping from UneI* A~[*] onto 

Un~,. A~[*] • 
[Clear using ®5 + ®6 + ®12 and non-forking calculus.] 

~14 We can find (dta : (~ < a(*) /such that: 

(a) d~ E Me,Z < a =~ d~ # d~, tp(d~,Une1[.]Atn[*]U{d~ : /~ < a} ) i s  
R~-isolated and F~0-isolated, and 

(b) ga = UneI* f~ u {((d~,d 2) : a  < a(*))} is an elementary mapping, 
(c) a(*) is maximal, i.e., we cannot find d 1 such that the demand in a(.) 

(a) holds for a( . )  + 1. 

[Why? We can try to choose, by induction on a, a member d~ of 

Ml\Uner[ . lU{d~ : fl < a} such that tp(d~,Une,[.] Atn[* ] U {d~ : ~ < a } ) i s  
R~-isolated and F~o-isolated. So for some a(*), d~ is well defined iff a < a(*) (as 
/~ < a ~ d~ # d~ E M1). Now choose, by induction on a < a(*),d~ E M 2 as 
required above, possible by "M{ being R~-saturated" (see [Sh:c, XII, 2.1, p. 591], 
[Sh:c, IV, 3.10, p. 179].] 
~)15 Dom(ga(.)), Rang(ga(.)) are universes of elementary submodels of M 1 , M 2, 

called M~, M~ respectively. 

[Why? See [Sh:c, XII, 1.2(2), p. 591] and the proof of ®~4. 

Alternatively, choose a formula ¢(x, ~) such that: 

(a) ~ C_ Dom(ga(.) ) and ~ 3x¢(x,a) but no b E Dom(ga(.)) satisfy ~(x,d); 

(b) under clause (a), Rk(¢(x, ~), LdTI, c~) is minimal (or just has no extension 
in S(Dom(g~(.))) forking over ~). 

Let {~(x ,  ~e) : t < w} list that Lr(T)-formula and we choose by induction on 
as formula ~b~(x, ~n) such that: 
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(i) g C Dom(ga(,)), 
(ii) p (3x)¢~(x, gn), 

(iii) ~)n+l(X, an+l) }- ~)n(X, an), 
(iv) ~0(x, ao) = ¢(x, 5), 
(v) for any formula ¢'(x, g') satisfying the demands on ¢n+1 (x, 5~+1) we have 

Rk(¢n+l(x, gn+l),{~n(x,~n)},2) < Rk(~b'(x,~),{~(x,~)},2) (on this 
rank see [Sh:c, II, §2]). 

So p = {~n(X, an) : n < co} has an extension in S(Dom(ga(,))); call it q. Now q is 
Re-isolated because ~b(x,5) E q E S(Dom(ga(,)). For every n ,~+l (X ,~n)  F- q [ 
{(pn(X, ?)n)} by clause (v) above, so as ¢n+l(x, an) E q and this holds for every n 
clearly q is Feo-isolated. 

d, @16 If M t  ¢ M~; then for some d E Me\M~, ~ is regular. 

[Why? By [BeSh 307, Th. 5.9, p. 298] as Nv e C_~a M ~ by @7"] 
@17 If M e ¢ M~, then for some r/E I*, there is d E Me\M~ such that ~ d  is 

A [,]], regular, d [.[J M~ and [eg(r]) > 0 =, ~ _1_ _ 
A~,[,] 

[Why? By [Sh:c, XII, 1.4, p. 529] every non-algebraic p E S(M~) is not orthogonal 
! d is to some Aev[,], so by ®16 we can choose r/E t* and d E M \ M  e such that 

regular ~=d~[*]. Without loss of generality gg(r/) is minimal; now Aev[,] C_na M e 
and by [BeSh 307, 4.5, p. 290] without loss of generality d U M~; the last clause 

A,~,[,I 
is by 'Yg(r/) minimal" .] 

Me = Me. 

[Why? By (~11 + t~17"] 
1~19 There is an isomorphism from M1 onto M2 extending Unel* f~" 
[Why? By (~14 + @15 we have M; ~ M~, so by ®is we are done.] 11.36 11.30 

1.37 LEMMA: Assume B U C, A = ac~(A) = B M C and A, B, C are e-finite, 
A 

A U B U C C_ M, M an R~-saturated model of T. For notational simplicity make 

A a set of individual constants. 

Then tpL~.~(d.q.)(B + C; M) = tPL~,,~(d.q.)(B; M) + tp~,~,~Ad.q.)[C; M] where 

1.38 Definition: (1) For any logic L and b a sequence from a model M, let 

tpL(b; M) = {~(~) :M ~ ?[B], ? a formula in the vocabulary of M, 

from the logic E (with free variables from 

2, where ~ = (xi: i < eg(b)))}. 
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(2) Replacing/~ by a set B means we use the variables (xb : b E B). 

(3) Saying pl = p2 + p3 in 1.37 means that  we can compute pl from P2 and P3 

(and knowledge as to how the variables fit and knowledge of T, of course). 

Proof of  the Lemma 1.37: It is enough to prove: 

1.39 CLAIM: Assume 

(a) M 1, M 2 are R~-saturated and 

(b) A~ (JJ A~ for i = 1, 2, 
A~ 

(c) A~) = ace(AS) and Aim is e-finite for i = 1, 2 and m < 3, 
1 ont 2 (d) for m = O, 1, 2 we have f m : Am ~ Am is an elementary mapping preserving 

t p ~  (in M 1 , M 2 respectively) and 

(e) fo c 5 ,  f2. 
Then there is an isomorphism from M 1 onto M 2 extending f l  U f2. 

Proof ofl .39: Repeat the proof of 1.5, but starting with Y0 such that A~<>[Yo] -- 
Aeo, A~<>[Yo] A~ Ae<l>[Yo] A~, f<Yo> fo, Yo Yo = , = = f<0> = f l ,  f<x> = f2 and that 
0,  (0), (1) belong to all/[)To]. During the construction we preserve (0)', (1) e I[Yn] 

and for helping to preserve this we add also the demand 

®2,m B~<>[Yn] U A~ (3 A~. 
A5 

During the proof, when we have to increase B~<>, we use 1.18(1) + 1.16(1). 

~1.39 

DISCUSSION: A natural version of 1.39 is the conclusion only that 

{A~ t3 A~'~ ,M1] _- tpa[/~A~ t3 A~'~ 
tp~[~ A1 ,] \ A2 ° ] , M  2] 

and to prove this by induction on a. The case a = 0 and a limit are obvious. If 

a = /3  + 1, for the condition of _<a, we use the induction hypothesis and claim 

1.27(1). The condition involving --<(b is similar but harder. |1.39 

2. Finer types 

We shall use here alternative types showing us probably a finer way to manipulate 

tp. 

2.1 CONVENTION: T is superstable, NDOP; M, N are R~-saturated ~ ~eq. 
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2.2 Definition: r3 = {(~a): 5 c_ b are e-finite}, 

rx = { ( P )  : 5 is e-finite, p e S(5) is regular (so stat ionary)},  

{(v) F2 = : 8 is e-finite, p is a regular type of depth > 0, 

p ± ~ (really only the equivalence class p~ :1= matters),  

r = r(x, Y) E S(5) is such that  for (c, b) realizing r, 

c/(~ + b) is regular = (r F ± p }  p, and a 

We may add (to Fx) superscripts: 
(a) f if a (or a^b) is finite, 

is stationary, for Fx if p is stationary which holds always, and (fl) s: for F3 if a 
for F2 if r is stationary and every automorphism of E over ~ fixes p/+,  

(3') c if ~ (or 6, b) are algebraically closed. 

2.3 CLAIM: I f  p is regular of  depth > 0 and p ~-5 and ~t is e-finite, then for some 
~t', ~t C_ ~t' C_ acg(6) and for some q we have (~q, ) E F~. 

Proof'. Use, e.g., [Sh:c, V, 4.11, p. 272]; assume ~ +p.  We can define inductively 
equivalence relations En, with parameters from ace(d) ,  

a e = ^ . . .  ^(biEr-l), 

such that  tp(b/Eu,acg(Sn)) is semi-regular. By superstability this stops for 
some n, hence b C_ acg(a~). For some first m, tp(b/Em, acg(a~)) is +p; by 
[Sh:c, X, 7.3(5), p. 552] the type is regular (because p is trivial having depth > 0; 
see [Sh:c, X, 7.2, p. 551]). 112.3 

2.4 Definition: We define by induction on an ordinal a the following (simulta- 
neously) [note - -  if a definition of something depends on another which is not 
well defined, neither is the something]: 

tp i(:) 

3 , ~ c b C M .  
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1 p M CASE A, a = 0: tpa[(~), ] is tp((c,~), 0) for any c realizing p. 

tp2[(P'r),M]is~ ~ tp((c, b, 8),0) for any (c, b) realizing r. 

tp3a [ ( ~ ) , M ] i s  tp((b, ~), 0) 

(i.e., the type and the division of the variables between the sequences). 

CASE B, a =/~ + 1: 
1 p (a) tpa[(a),M] is: 

SUBCASE El: I fp  has depth zero, it is wp(M/~) (the p-weight, equivalently, the 
dimension). 

SUBCASE a2: If p has depth > 0 (hence is trivial), then it is {<y,A~,p> : y} 
where 

A~,p = dim(I~,p[M], a) 

t "3  r tace(~+c)~  M ~ (t* where I~,p[M] = {c E M : c realizes p and y = -~L~ ace(a) J, j where lists 
acl(~t) and ~* lists acl(~t + c)}; an alternative probably more transparent and 
simpler in use is: 

= dim ~'c E M: A~,p [ c realizes p and 

- 3 . / a d ( a  + Y = JttP/s[~ act(a) ) , M ] :  c' E p(M) and c'Uc}, 

pedantically y = {tp~ -(< c' a^a * >  ̂a*^#*~], M], w h e r e  

a*lists acl(a) and 

#*lists acl(#t + c'),c' E p(M) and c'Uc } }. 
g~ 

2 p,r (b) tpa[( a ) ,M] is: 
1 c/~ + tp~[( ~+ ), M] for any (c, b) realizing r, b+ = acg(~t+b), i.e., b+ lists acl(~t+b) 

(so not well defined if we get at least two different cases; so remember 
c/b + E S(b+)). 

(c) 3 tpa[(a),M] is {<p, tp~[(P~r),M]} : (p~r) E F~. and p _1_ ~}. 

CASE C ,  o/ LIMIT: For any g E {1, 2, 3} and suitable object OB: 

tpt~[OB, M] = <tp~[OB, M] :  fl < a). 
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2.5 Definition: (1) For (P) E F1 where 5 E M, let (remembering 1.14(8)): 

V ~ ) =  (q E S(M):  q regular and :  q:kp or for some c E p(M) we have q E 79~)}. 

(2) For (P~r) E F2 let 

P(;£,.) = {q E S(M) :q regular and : q i p  or for some (c,/~) E r(M),q E 7' r,)}. 

(3) For a set 79 of (stationary) regular types not orthogonal to/141, let/141 < p  M2 
mean M1 -< M2 and for every p E 7 9 and ~ E M2, ~ ± p. 

M1 M1 (4) If (in (3)) 79 = 79(~) we may write (P) instead 79; similarly, if 7 ~ = 79(,,_~) we 

may write (p~r). 

2.6 CLAIM: 
t 1 p compute t p~[ (P) ,M]  i fDp(p)  < a. (1) From pal(a),  M] we can 

2 P,q 2 P,q (2) From tpa[(_a ) ,M]  we can compute tpoo[ ( a ) ,M]  i fDp(p)  < a. 
t 3 b (3) From pa[(a) ,M] we can compute tpL[(b) ,  M] i f D p ( b / a ) <  a. 

(4) In Definition 2.5(2) we can replace "some (c, [~) 6 r(M)" by "every (c, [~) 6 
r(M)". 

Proof: (1), (2), (3) We prove this by induction on a. By the definition. 
(4) Left to the reader. 

2.7 OBSERVATION: From tpea(OB, M) we can compute tpe~[OB, M], and 
tp~ fOB, M] is well defined if/3 _< a and the former is well defined. 

2.8 LEMMA: For every ordinal a the following holds: 
(1) tpla is well defined. 3 
(2) tp~ is well defined. 
(3) tp 3 is well defined. 

1 P 1 p (4) If~ e M1, (~) e F1,M1 <_(~) M2, then tp~[(a),M1 ] = tpa[(a),M2]. 

(5) If~ E M1, (~r) E F~,M1 <_(~) M2, then tp2a[(~r),M1] = tp~[(~r),  M2]. 

, t 3 b t 3 (6) I f ~ C b C M i  (~)EF~,Ml<_(~) M2, then pa [ ( a ) ,M1]=  pa[(a),M2]. 

Proo~ We prove it, by induction on a, simultaneously (for all clauses and 
parameters).  

If a is zero, they hold trivially by the definition. 
If a is limit, they hold trivially by the definition and induction hypothesis. So 

for the rest of the proof let a = /3  + 1. 

3 I.e., in all the cases we have tried to define it in Definition 2.9. 
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Proof of (1)~: If p has depth zero - -  check directly. 
If p has depth > 0 - -  by (3)Z (i.e., induction hypothesis) no problem. 

Proof of (2)~: Like 1.27 (and (4)~). 

Proof of (3)~: 

Proof of (4)~: 

Proof of (5)~: 

Proof of (6)~: 

Like (2)~. 

Like 1.26 (and (3)~,(6)~). 

By (2)~ we can look only at (c, b+) in 21//1, then use (4)~. 

By (5)~. ~.s  

2.9 LEMMA: For an ordinal ~, restricting ourselves to the cases (the types p, pl 

being) of depth < a: 

(A1) Assume (~) E r l ,  a C_ 51 C_ M, a l  is e-finite, ~ ± p and Pl is the station- 

arization of p over ~tl. 
t~l r lm~  M]. Then from tp~[(~),M] we can compute P~tta17, 

(A2) Under the assumption of (A1) also the inverse computations are O.K. 

(A3) Assume (7) e F1 for f = 1, 2, 5 C M and Pl =t= P2. 
1 pl Then from t p ~ [ ( a ) , M  ] (and tp((5, Cl,C2),O) where cl,c2 realizes Pl,P2 

respectively, of course) we can compute tp  1 [(pa~ M]. (~L\ ~ 1 '  

(B1) Assume (;e~r~) C P~ c f o r e =  1,2,5 E M a n d p l  4-p2. 

Then (from the/~rst order information on 5,pl,  P2, rl ,  r2, of course, and 

~ ,p l ,~  compute tp~[ (P~22), M]. tpM ~ ~ ), M]) we can 

(B2) Assume g C_ 51 C_ M, ~ ± p, (~r) • r ~ r  C_ rl • S (a l ) , r l  does not fork 

over ~, (so (P'~'~ e F2) 
~gl  / 

Then from tp~[(P'~') ,M] we can compute tp~[(P'~2), M]. 
(B3) Under the assumption of (B2), the inverse computation is O.K. 

(C1) Assume (~) • r~, 5 C b C M, ~t C_ 51, b U al,  bl z ace(~t I -Jr- b). 
g 

t a ~ 3 ~ Then from p~[(~),M] we can compute tp~[(a~),M]. 
(C2) Under the assumptions of (C1) the inverse computation is O.K. 

~* ~ ,=  (C3) Assume (~) • F3, b C_ b*, T ±~ ~, acf(b*). 

t 3 ~, -' Then from pa[(~),M] we can compute {tp3[(~) ,M] : b C_ b' C_ M and 

b b }" 

Proof." We prove it, simultaneously, for all clauses and parameters,  by induction 
on a and the order of the clauses. 

For a = 0: easy. 
For a limit: very easy. 
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So assume a = ~ + 1. 

__c which Proof of (A1)a: As p is stationary _L ~ ,  for every c E p(M), c F- ~ ,  

necessarily is Pl, hence p(M) = Pl (M). Also, the dependency relation on p(M) 
is the same over al,  hence dimension. So it suffices to show: 

t~3 rt~ce(al+ch M 1 W 3~ce(a+ch M] we can compute e~tt aceal )' J" (*) for c E p(M), from v~tt acea J' 
But this holds by (C1)~. 

Proof of (A2)~: Similar using (C2)z. 

Proof of (A3)~: If pl (equivalently/)2) has depth zero - -  the dimensions are 

equal. Assume they have depth > 0, hence are trivial, and dependency over ~ is 

an equivalence relation on Pl (M) U P2 (M). 
J"3rt~ce(a+cxh M] we can compute for Now for Cl E p l (M) ,  from ~v~Lt ace(a) 1, 

every complete type over ac~(g + Cl) not forking over ~, and d realizing r, 
t 3  ~ce(a+~+¢~h M] by then can compute for each such r, d, PEt[ ~ce(a+d) 1, - -  (C1)~; we 

[ (ac~(a+d+c2)~ ,M]  :c2ep2(M) and c2 
{ t P ~ k \  ace(~t+d) ] ace( i~+d+o)  -k~ (~t+d) 

(necessarily c~. U d )  } 

(this by (C3)z). 

Proofof(B1)a: As in earlier cases we can restrict ourselves to the case Dp(pe) > 

0. We can find (ce,be) e re(M),D1 []JD2,cl~)l [[Jt)2 (by [Sh:c, X, 7.3(6)]]. By 
a a 

2.8(2) (and the definition) from tn 2 [ ( m , ~  M ~ ~ L t  a /, I we can compute that it is equal 
t~l rCc~/~ce(a+~)~ M 1 to l ~ , a t \  ac~(a-l-bl) ] '  J" 

t_l rtc~/ace(a+~+~2h M], hence by (A3)a we can By (A1)a we can compute oP~tt ace(a+b~+~) }' 
~ r tc~/~ce(a+~+g~)~ M]. compute ~'a~t ace(a+~+~) ~' 

Now use (A2)a to compute tp~r(c~/ace(a+b~)~ M] and by 2.8(2), 2.4(2) it is L\ ac~(a.~.b2 ) 1,  J 

equal to MI- 

Proofof(B2)~: Choose (c,~) ~ r(M) such that cbU~. 
a 

From we can compute 1 Oust see and \ a ~ - +  

"~'~ rtc/(a+b+a~)~ M] (by (A1)~); from it Definition 2.4), from it we can compute ~ t t  (a+~+al) /, 
2 p,r2 we can compute tpa[(  a~ ), M] (see 2S(2) and Definition 2.4). 

Proofof(B3)a:  Let (e'r~ s x ~ /  ~ Fr, p _L al be given. So necessarily ~a + P  (this to 
t 2 p,r enable us to use (B2,3). It suffices to compute Pa[(~t ), M] and we can discard 

the case Dp(p) = 0. 
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So p is regular ±bl,_k al, hence p ±  b,p _1_ a, and as ~ C_ b,b = ac£(b) we 
p , r l  t 2 p , r l  can find r, ( ~ ) e F2, (see 2.3) and we know p~[( ~ ) ,M],  and we can find 

r2, a complete type over bl extending rl which does not fork over bl. From 
tp 2 [(P'~:) M] by (S2)a, and from it tp~[($~ ) M] " - ' a t \  ]:n2 [ /p , r l~  1 '  M] we can compute aL~  bl ! '  2 p , r  , 

by (B1)~. 

Proof of (C2)~: Similarly, use (B3)~ instead of (B2)~. 

Proofof(C3)~: Without loss of generality T is semi-regular; let p* be a regular 
type not orthogonal to it and, without loss of generality, Dp(p*) > 0 ~ ~- regular 
(as in 2.3). 

If p* has depth zero, then the only p appearing in the definition tp~([~-], M) L~J 

is p* (up to ±) and this is easy. Then tp 2 is just the dimension and we have no 
problem. 

2 pl ,q~ So assume p* has depth > 0. We can by (B1)~, (B2)a compute tp~[( ~. ), M] 
when ff ± b, p' ± p* (regardless of the choice of b*). Next assume p' ± p*; by (B 1) ~, 
without loss of generality, q' does not fork over b. As Dp(p*) > 0, it is trivial 

2 p,q' just (and we assume wp(b*, b) = 1), hence b*/b is regular, so in tp~[( ~. ), M] we 
lose a weight 1 for one specific tp~ type: the one b* realizes concerning which we 
have a free choice. We are left with the cases p' ± b,p' ± p*; well, we know tp~ 
but we have to add tp 3. Use Claim 2.6(3) (and (A1)~ as we add a parameter). 

12.9 

t 3 [, 2.10 CLAIM: p~[(a),M],tp3[~,M],tp~[M] are expressible by formulas in 
L~,a. (d.q.). 

By 2.9 we have 

2.11 CONCLUSION: If Dp(T) < oo then: 

(1) From tp3[(SA), M] we can compute tpoo[(~), M] (the type from §1). 

(2) Similarly, from tp~[A, M] we can compute tpcc[(A), M]. 

From 2.6, 2.10, 2.11 and 1.30 we get 

2.12 COROLLARY: / I t ' )  ' ~- Dp(T) and M, N are R~-saturated, then 

= N ~ t p  M = t p  N ~M----L~,~(d.q.)N. 
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Append ix  

The following clarifies several issues raised by Baldwin. A consequence of 

~) the existence of nice invariants for characterization up to isomorphism (or 

characterization of the models up to isomorphism by their E-theory for 

suitable logic E) 

naturally give absoluteness, e.g., extending the universe, say, by nice forcing 

preserves non-isomorphism. So negative results for 

(*) is non-isomorphism (of models of T) preserved by forcing by "nice forcing 

notions" ? 

implies that we cannot characterize models up to isomorphism by their E-theory 

when the logic E is "nice", i.e., when Thz~(M) is preserved by nice forcing notions. 

So coding a stationary set by the isomorphism type can be interpreted as strong 

evidence of "no nice invariants"; see [Sh 220]. Baldwin, Laskowski and Shelah 

[BLSh 464] show that not only for every unsuperstable, but also for some quite 

trivial superstable (with NDOP, NOTOP) countable T, there are non-isomorphic 

models which can be made isomorphic by some ccc (even a-centered) forcing 

notion. This shows that the lack of a really finite characterization is serious. 

Can we still get from the characterization in this paper an absoluteness result? 

Note that for preserving iq~-saturation (for simplicity, for models of countable T) 

we need to add no reals, 4 and in order not to erase distinction of dimensions we 
want not to collapse cardinals, so the following questions are natural, for a first 

order (countable) complete T: 

( .)1 Assume vl C_ v2 are transitive models of ZFC with the same cardinals and 

reals, the theory T E V1. If the models M1,M2 are from vi and they are 

models of T not isomorphic in vl, must they still be not isomorphic in V2? 5 

(*)3 Like (,)~, we assume in addition P([TI) vl = P([T[) v2. 

Of course, for countable T the answer is negative even for lq~-saturated models 

except for superstable, NDOP, NOTOP theories, so we restrict ourselves to these. 

It should be quite transparent that Loc,S~ (q.d.)-theory is preserved from v 1 to v 2 

(as well as the set of sentences in the logic), hence for the class of tq~-saturated 

models (of superstable NDOP, NOTOP theory T) the answer to ( .)2 is: yes. 

4 The set of {ace(a) : d E ~>M} is absolute but the set of their enumeration and 
of the {f f (ace(a)): f E AUT(E), f(a) -- ~} is not. 

5 Note we did not say they have the same w-sequences of ordinals; e.g., if V2 = 
Vi P, P Prikry forcing, then the assumption of (*)T holds though a new w-sequence 
of ordinals was added. So for V1 C_ V2 as in (*)T, the £oo,sl-theory is not 
necessarily preserved. 
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