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We point out a class of unstable theories which are simple, and develop for them an aqalog to 
the basic theorems on stable theories. 

0 . ~ u ~ o n  

in [4] the property "T is stable' was investigated in detail, the1'e were some 
theorems on classifying the unstable theories in I14 and 1II7. We proved that T is 
unstable iff it has the strict order property (i.e. some formula ~(x, y) is a 
quasi-order with infinite chains), or it has the independence property (i.e. for 
some model M of T, a,. e M and ~(x, y) any non trivial Boolean combination of 
the ~(x, a,) is satisfied in M). At earlier stage it seemed that unstable T without 
the independence property and unstable T without the strict order property are 
two incomparable cl~,sses of "simple" unstable theory. The investigation of 
K(A, T )=  sup {[S(A)I~:IA[<~A} prefer the second one, but some facts from [4] 
pointed out to a subclass of the first: 

Definition 0.1. T has the tree property if there are a formula q~(,L ~), k < t o  a 
model M of T, and sequences t~ ~ M ( n  ~ > t o )  such that for any "0 ~ > t o ,  
{~(~, ~,~ <~>): I <  to} is k-contradictory (i.e. no subset of cardinality k is satisfied in 
M) but for every *1 ~.'°oJ. {~(.~: a,l,,): n <to} is consistent. 

We shall call here theories without the tree property simple. In [4, III 7.7, 7.1 1] 
we proved: 

T h e o r e m  0.2. (1) T has the tree property if /one oi" the [ollowing holds: 
(i) there are if(x; ~), ~ ,  M as in definition 0.1, such that [or 7, v~ ~> to no 

one an initial segme~tt o[ the other ~(x;  ~ ) ,  ~(x;  tL) are contradictory; 
(ii) there are ~(x;ti~,) ( I , n< to )  such that F~={q~(x;d~,): n<to} is 2- 

contradictory, but [or any 71 ~'to, {q~(x: -t . a,~l~), l < to} is consistent. 

* 'l'he author would like to thank the NSF for partially supporting his research by NSF grant MCS 
76-08479 and NSF Grant  144-H747, and also the United States-Israel Binational Science Foundation 
by Grant  no. I l l 0 .  
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178 S. Shelah 

(2) The [ollowing conditions on T are equivalent: 
(i) T is nonsimple; 

(ii) for every A, K, such that k <~= X, there are k, ~ pairwise contradictory 
m-types of power K over a set A of cardinality A; 

(iii) there is a set A ,  and a set S o [  m-types over A each o[ power X such that 
IS1 > IA[ tvl** + 2 tTI+~ and no ~ ~ ~ realizes >X types [tom S. 

The example of a simple theory which we usually have in mind is "/~i~a, the 
model completion of the theory of one two-place symmetric irreflexive relation 
(see [4, Exercise ~ '7 p. 79]) (or another varient, T~*.d see [4, Definition 11 4,8, 
p. 71]). 

There were two cases in [4] in which investigating some property, we get a 
different answer for no,asimple theories and for Ti,,j. 

Case i. Let SPT(A, K) mean any model of T of power A can be extended to a 
K-saturated model of cardinality A. Assume for simplicity AITI = A ~> K. Then for T 
stable in A SP-r(A, •) hohls, and for non-simple T it is equivalent to A = A <". The 
author thinks this will hcid for any unstable T, and prove it under G.C.H., but by 
[4. VIII, Exercise 4.5] if ~ --- t~<K < A < 2~, SPT.:,(A, K) holds. (And remember  that 
it is consistent with ZFC (if ZFC consistent) that there are infinite cardinals t~, K, 
such that # = ~ < ~ < A < 2  ~' and A¢ A<~.) 

Case lI. Investigating Keisler order, we prove it is consistent with ZFC, that 
7,*a is strictly smaller than any non-simple T. (It is always a minimal unstable 
theory.) We prove it by showing that Martin axiom implies there is an altrafilter D 
over w, such that for any 2~o-saturated model M of "/~.d, M~/D is 2~,,-saturated (see 
[4, VI3.10]); but for any non-simple T. for any k*-universal M. and regular 
uhrafilter D over A, M~/D is not k ~*-saturated. 

The question was whether the simple unstable theories behave like "/;,*,,j, or we 
should weaken the tree property to get the right dividing line, or  there is no 
comprehensible answer. In another sense the question was whether we can build a 
theory on simple T's. 

What we succeed here to do is to show for Case 1 the consistency of "for any 
simple T for some A < A <~, SPT(A, K) holds'. We find the beginning of a theory on 
simple T which is the parallel of I1, Ill  in [4] (for stable T). There we analyze the 
Lindenbaum algebra of formulas over (S, by finding when there are few ultrafil- 
te~= Here we try to lind Boolean algebras with chain conditions. We use a kind of 
degree to prove facts on indiscernible, etc. 

Problem, i,= SPT(A, r )  equivalent to SP3;:.,(A, K) for any A = Alri~K, and simple 
unstable T? By the above a negative answer can only be a consistency proof. We 
have an approximation to it in [6]. 

We prove in [6] that there may be simple unstable theories which behave 
differently for the questions of Cases l, II if we relativize the problem to a 
predicate. 
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The author would like to thank fullheartedly John Baldwin, for many conversa- 
tions, and for writing notes which were very helpful in writing the paper. 

Notation. We use that of [4].. We let ~ be a g-saturated model, and deal only 
with elementary submodeis M, N of it of cardinality <ff : A, B, C c_ It~l, a, t~, e are 
finite sequences from ,($, 1, J orders. !, J sequences (t~: i ~ 1) of m -sequences from 

We assume weak familiarity with [4, Chapters 1.2, II.1, II.2, IlL 1]. 
Some of the assertions are presented without proofs. They are divided to two 

types. The first, those whi¢?~ are simple generalization of basic facts from [4] with 
almost the same proofs. The second, theorems which follow trivially from 
previous facts in this paper. 

1. On types which divides 

This section contains some results on the notion "p divides over A" which hold 
in an arbitrary theory. 

Definition 1.1. (1) The formula q~(~, ~) divides over A if there is a sequence 
(t~, I i < to) such that 

(a) t p ( & A ) = t p ( a .  A) for all i, 
(b) {q~(~. fi,): i <tu} is n-contradictory for some n. 

(2) p divides over A if p I- q: for some ~ which divides over A. 

More malleable is the notion of p "implicitly dividing" or forking over A. 

Definition 1.2. The type p forks 
qh~(.~o. ~.} . . . . .  q~.(.~,.. 0~) such that 

(a) p t- Vk~,, ~kt-~k, d~); 
(b) each 'Pk(-fk, ak) divides over A. 

over A if there are formulas 

[4, Chapter I11] provides a detailed discussion of these notions with stable 
theories in mind. Here we give some further characterizations and refinements 
with unstable theories in mind. 

Lemma 1.3. For a ]ixed type p and set A the [ollowing are equitralent 

(i) p divides over A ;  
(ii) there is a k < to such ihat ]'or every A there are p~ (i < A), automorphic images 

o f  p over A which are k-contradictory; 
(iii) there is a formula tk(-~,/~) which is a conjunction of  members of p an integer k 

and an infinite sequence !, indiscernible over A,  with b ~ 1 such that {~b(,~, ?): ~ ~ 1} 
is k-contradictory. 
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180 S. Shelah 

I[~roof. The equivalence of (i) and (iii) (which follows easily by Ramsey's theorem) 
is [4, III 1.1(3)]. For (i)--~(ii) choose (by compactness) {~0(x,a,): a~c:l} with 
[!1 = h., to be k-contradictory where all members of ! realize the same type over A 
and a ~ I. Let F~ be an automorphism of ($ over A which takes a to a~. Then 
{F~(p) I i<~.} is the required set of images of p. 

(ii)--~ (i) Let {p,: i < ~} be a set of k-contradictory automorphic images of p 
where ~ > 2  ...... and ~ >[pl+ ITI~ IAI, Suppose that the cl~sure of p under con 
junction is enumerated by {~: ./<IP[} and let E(P) be {~'~ =/~(4~): ]<IP[}. For 
each function f : k  "-~[Pl let C~c h I~1 be 

{{i. . . . . .  i~_~}: {4~,,,~ ,, . . . . .  4~ ,.¢¢~-~)} is contradictory, i . <  i~ . . . .  }. 

Since the I~, are k-contradictory Affix_ U~:~,I' Cr: whence by the Erdos-Rado 
theorem there is an infirfite set S ~_ A and f*~  ~ tP[ such that for io <" " • < i~. t e S, 
{4i,,.t*,,"'" 4i,...¢*~-~} is contradictory. Let 4~*=A,,,<~ 4i.t*~ ..... Then each ~ is 
the image under F, of 4 * =  A,,,<~ 4¢*o,,) and the 4~ are k-contradictory so 4* 
divides over A and p F 4* so p divides over A as required. 

Lemma 1.4. For at~y sequences a and  ff a~d  set A the fo l lowing are equivalent:  
(i) the tp(a, A LAb) does not divide' over A :  

(ii) i f  i is an infinite indiscernible sequence over A with f f~  !, then there is a~ 
automorphism F o f  fS fixi;~g A U b such that  $ = F(I )  is indiscernible over A U t~ ; 

(iii) i f  ! is a~ (infinite) indiscernible sequence ot'er A with I~¢ ! there is a~ 8'  
realizing tp(a, A Uff) such that ! is i~discenfible ot'er A U{t]'}. 

Proof. If (iii) holds (ii) follows by letting F be an automorphism taking a '  to 
~, F I A the identity and a similar argument shows (ii)---, (iii). To see that 
(iii)--~ (i) suppose that (i) fails. Then by the preceding lemma there are k <oJ and 
a formula 4(x, b, E) with c? ~ A and an infinite indiscernible sequence I containing 
6 such that {4(x, b,#): /7~!} is k-contradictory. Now if t~' is chosen by (iii), 
~4(a, /~ E) and a '  realizes tp(a, A U/~) so ~4(a ' ,  I~, E). Since ! is indiscernible 
Gver A U fi' we deduce t:-4(~]',/~',/?) for any 5',.~ I ;  but this violates the assertion, 
"[4tL/~', tT): I~' ~ !} is k -contradictory'. Thus (iii) --~ (i). 

Now, assume (iii) fails and choose i' witnessing that failure. Let p(2,/~) denote 
the type of ~ over A Ub'. Let q =  IJg,~p(2,5 ' ) ;  then q is inconsistent. If not, 
letting F0~) be the set of formulas which assert I is indiscernible over A U.~, we 
will show q(~) consistc.t implies q(,~)U F(,~) is consistent. But any a '  realizing 
q(,~) U F(~) would verify (iii) for ~ and we have assumed I is a counterexample to 
(iii). To show q(,~)Ul')~) is consistent note that for any finite F * ~  I \  if we can 
choose /: realizing q, then by Ramsey's theorem we can lind an infinite subsequ- 
ence of I indiscernible for I '* over A U6. Finally if q is inconsistent, then for 
some finite $___1/ and 4(x,/~)~ P(~, t~), {4(~,/~'): b '~d} is inconsistent. That is, 
since ! is a sequence of indiscernibles over A, {4(2, b): b a !} is Ill-inconsistent. 
But this shows p(~,/7)= tp(a, A U/~) divides over A. 
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Lemma 1.5.  I f  for each i <~ n t p (~ ,  A U I~U t~o U" • • U d~ ~) does not divide o~et 

A U ~ ,  - • • • - (l~_ t, then t p (~ ,  - a t  - • " " ~ t~,,, A U/~) doe'; not divide over A .  

Proof .  Fix ! on indiscernib le  s e q u e n c e  ove r  A w i t h / T e  !. By L e m m a  1.4 (iii) --~ (i) 
it suffices to find t~  . . . . .  t~, with 

tp(t~t, - • • • ~ t~,,, A U/7) = tp(d(~ - • .  " ~ , ,  A U/7) 

such  tha t  / is ind iscern ib le  ove r  A U ~  - • • • ~ a~,. W e  def ine  the  a~ by induct ion .  

S u p p o s e  ~ ,  . . . . .  6~, ~ have  been  appropr i a t e ly  chosen .  Now choose  ti~ so  tha t  

t p ( f i ~  fi[,_t - " " - f i ' ~ , A U b ' ) = t P ( f i k - a k - ~ - " ' - a ~ , , A U / 7 )  

a n d  h e n c e  tha t  

p = tp(fi~, A U / ~U fi~,_, - • • • - a~,) 

does  not  d ivide  ove r  A U ~[} - " • - a [ _  t. (C hoose  by the  induc t ion  hypo thes i s  an  

a u t o m o r p h i s m  F of  IS fixing A U t~" and  m a p p i n g  fi~ to t~'~ (i < k): by the  hypo thes i s  

of  the  L e m m a  F(t~k)= ~[  works . )  Bu t  now by ( i ) ~  (iii) of  L e m m a  1.4 we can 

choose  a~_ so tha t  ! is indiscernib le  ove r  A U t ] ~ ' , . . . f i ~ _ t U ~  ~. and  .t realizes 

tp (a~,  A Ua~', - • • • - a~ :  ~ u t~ ) .  

T h e  fol lowing c la im lists s o m e  trivial facts.  

C l a i m  1.6. (1) If p dit'ides over A, then p forks over A. 
(2) The m- type  p divides ot,er A iff for some finite q ~ p the formula A q divides 

over A : mid  {q~ (.~: 6 )} divides over A iff ¢ (Y, : ~ ) divides over A : and p forks over A 

iff some finite q c_ p larks over A .  

(3) i f  p =-q (i.e. for any a, ii realizes p iff 6 realizes q), then p forks over A iff q 
forks over A ,  

2. Degrees and types which weakly divide 

D e f i n i t i o n  2 .1 .  W e  def ine  D'"(p,..4, it. k)  (and  ordinal ,  - 1 ,  o r  ~)  (p a set of  

, , - f o r m u l a s .  3 a set  of  fo rmulas ,  it a cardinal ,  k a na tura l  n u m b e r )  by def in ing for 

every  ordi,~al u w h e n  D'"(p. ,A,  it, k)>~a by induc t ion  on a.  

( i )  D " ( p ,  3,,it, k ) ~ O  iff p is an  m - t y p e :  

(2) D'"  (p. A it, k)  ~ 8 (,5 a l imit ord ina l )  if[ D ' "  (p. ~,  it, k)  >//3 for  eve ry /3  < ,5; 

(3) D'"  (p, A it, k)  ~ a + 1 if for  eve ry  p < it and  finite q c_ p the re  are  q~ (.L 27) 

J .  and  s e q u e n c e s  ti, (i<~p.) s - c h  that :  

(i) D'"(q U{¢(~, &)}, A it, k)~>a 
(ii) {~(~,t~,): i~</z} is k - con t r ad i c to ry ,  i.e. for  every  w ~ _ ( p + l ) ,  Iw[=k ,  

I~ 7 ( = l . ~ ) A ~ w  ~(.~:  6,) 
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182 S, Shelah 

Claim 2.2. (1) l f p b q ,  then 

D"(p,  A, h, k ) ~ D " ( q ,  A A, k). 

(2) I f  Al c_ A2, /~1 ~/~2, kl <~ k2, then 

D"(p,  Ai, ~l, k~) ~ D"(p ,  A~, A2, k2). 

(3) For e~ery p, A h, k there is a tinite q ~ p, 

D"(p,  A, A, k)= D'"(q, A, h, k). 

(4) For every finite A, ~r,. k there is 0(~; Y) such that for every m-type p and 
infinite cardinal h. 

E,"(p, ~, h, k) = D'"(p, O(~. ~), h. k) 

(5) For infinite h 

Proof. Left to the reader (look at [4] for parallel claim). 

Claim 2.3. For every m, A, finite n~-type p, cardinal )t and k. n <(o Ihe following 
are equivalent: 

(1) D " ( p . A , h ~ , k ) ~ n ;  
(2) there are a~(~l ~ ""h)O~, ~ A(rl ~" "h) such that: 

(i) for every ~ ~ "h, I) U{0,~I,(-~, a . l . .  i~): 0 ~ i < n} is (:onsistent, 
(ii) for euery a~ ~ ">h, ~0. (;: ; a~ (~>): i < A} is k-contradictory : 

(3) 

U {p(~) :  n e"X}u {--n(3~).A 0~(~; ~ (,>): n ~">h. w c_ h, [wJ=k} 

U {0,,,(~,., ~ , , . . . ) :  ~ ~ "h, i < n} 

is c'.~nsistent ]:or some 0.. ~ a(~  c ' : ' h ) .  

Proof. We t)rove it by induction o~1 n (for all p's). 

Claim 2.4. (1) For a = t0}, Claim 2.3 holds for not necessarily finite p, and 8,, = O. 
(2) D '" (l), O, N., k ) >~ ~o i]~ D'" (p. O, n, k ) ~ n for e rery n < ~o if ' /D" ( p, O, ~, k ) = 

~. For finite A, k. D'"(p, O, A k )~ (o  if[ D'"(p, O, h, k)= "~. 
(3) For euery p, k. 0, nh fi,r all large em~ugh / < R .  

D'"(p, 0, No, k) = D"(p,  O, I, k). 

Proof. (1) By compactness. 
(2), (3) Easy, by Claim 2,3. 
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Simple urt~table theories 183 

Definition 2.$. For an m-type p = p(~), 0 =  0 ( ~  . . . . .  ~,; by ( l (~ )=  m)) let [p]* 
be 

,0, P(~) u{¢,(~, . . . . .  ~.; /~)}. 

Remark .  Note that [p n q]~ = [p]* ¢q [q]~, [p U q]* = [p]~' O [q]*. 

Claim 2.6. (i)  For any finite A , k , n , m  and finite A there is a formula ~k= 
@a.k.,,(-~t . . . . .  x~x"~) such that: [or any m-type p, D" (p ,A ,  A+ 1, k)>~n if[ [p]~ is 
consistent. 

(2) For any finite A, k, n, m there are formulas i _ i - @ - @a.k,,,(xl . . . . .  ,~) such that: 
[or any m-type p, D m (p, A, R., k)>t n if[ [p]'~' is consistent for every l<  to. 

Remark .  Note that 0 is constructed from formulas of A by logical operation. 

Proof.  (1) by Claim 2.3(3). More exactly, let 0 '(  . . . .  ~ . . . . .  ~) be the conjunction 
of the set letting A = {0} for notational simplicity. 

and @ = (::t~)@'. If [p]* is consistent there are ( . . . .  ?, . . . . .  )n~,,x realizing it, and 
there is/~ such that: t=0[ . . . .  ? . . . . .  /~], so the ? 's and/~ shows Claim 2.3(3) holds, 
hence D ' ( p ,  O, A, k)>~n. The other direction is easy too. 

(2) By the first part and Claim 2.4(2). 

Now we define the central notions: 

Definition 2.7. (1) T i~ simple if for every 0, k D'"  (~ = ~, 0, I~o, k) < to (or equival- 
ently, < ~) 

(2) For a set B and m-type r (not necessarily over B) we say the m-type p 
weakly divides over (r ,B) if for some / ~ B ,  and ~ = 0 ( x ~  . . . . .  ,~,,: b), Jr] * is 
consistent but [r U p]* is inconsistent. 

Remark.  The idea behind the last definition is that "p does not weakly divides 
over (r, B)" says that p is similar to r modulo formulas with parameters from B. 

Claim 2.8. (1) If  p F q, A c_ B, q weakly divides over (r, A), then p weakly divides 
over (r, B). Hence p ~ q  implies p weakly divides over (r, B) iff q weakly divides 
over (r, B). 

(2) For any m, ~o = ~o(,~l . . . . .  £~,1~; bl) (l(~l) = m) and 0 = O(x l . . . . .  .~,~2); 52) 
(l(,~ ~) = m • n(l))  there is a formula q~ * 0 that for any m-type p 

[[PF ]* = [P]~'*. 

(3) I f  [p],0 weakly divides over (Jr]*, B), then p weakly divides over (r, B) $ with 
parameters from B ). 
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Proof. Easy. 

Lemma 2.9. (1) For m-types r, p and formula d/ such that [ rUp]*  is defined and 
consistent p weakly divides over (r. B) if/[p]* weakly divides oeer ([r]", B) 

(2) The following are equivalent (p, r are m-types): 
(i) p weakly divides over (r. B); 

(ii) for some Ik=O(,~l . . . . .  ,~,,;/7)(1(~1)= m) over B. and ]inite A, k, h, let 
[ : I1| " I|  

D~([r] *. A, A, k ) >  D ~ (Jr U p]'~, A. A, k): 

(iii) as (ii) with ~ replaced by Sc~. 

Proof. (1) by Claim 2,8(2), (3). 
(2) (iii) ~ (ii) by Clair~ 2,4(3). If (ii) holds, by Claim 2.4(2) D"  ([r U p]~', A, A, k) 

is finite so by Claim 2.6(1) for some q~ over &, [[r]*] ¢ is consistent, but [[r U p]*]~ 
is inconsistent, so we get (i) by Claim 2.8(2). If (i) holds, then for some ~ over B, 
[r]* is consistent but [r U p],o is not, hence 

D([r] ~', A ?,, k ) ~ 0 > - I  = D( [ rUp ]  ~, A, A, k) 

so (iii) holds. 

Conclusion 2.9. (3) p, r are m-types, A, k finite~ 

D'"(r, d, A, k )>D ' " ( r Up .  A, ~, k), 

then p weakly divides over (r, B). 

Claim 2.10. ( I ) I f  p divides over A,  then for some fiuite k,,  A,,, for every J and finite 
k such that k~<~k,A~c_A, and any A: 

D"(p ,A ,A , k )<~c  implies D ' ~ ( P , A , A , k ) < D " ( I  ~ I A , A , , L k ) .  

(2) For infinite ,~ the saoze holds when p forks over A, 

Proof. (1) Easy. 
(2) (See Definition 1.2 and Claim 2.2(5)). 

Conclusion 2.11. Let 7" be sinzple. 
(1) I[ p forks over A, then p weakly divides over (p t A,  ~). 
(2) I]" p is over A, then p uoes not fork over A. 
(3) If p does not fork over A , p  is an m-type over B , A  ~ B, thus there is 

q ~ S'"(B), p c_ q, q does not fork over A. 

Proof. (1) By Claim 2.10(2), and 2.9(3). 
(2) By Claim 2.10(2). 
(3) By Claim 2.2(5). 
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Conclusion 2.12.  For any simple T axioms 11.4. VIII, X.I .  X.2, X I . 1 ,  X1.2  hold 
for FOx any X. Note that axioms L II.2-IL3, lIl. 1,111.2, IV, VIII and IX hold for F¢~ 
in any theory. 

Proof .  Left to the reader ;  this will not  be used. 

L e m m a  2.13. Suppose tp(d, A U / ~ )  does not weakly divide ouer (tp(d, At.  At.  
Then for any A '  there is b' such that: 

~ ' e  A ' ,  tp(d ' .  A )  = tp(~, A)  implies tp(/~' - ~', A )  = tp(/~ - a, At .  

Proof .  Let {a~: i < a }  be a list of the d ' ~ A '  realizing tp(8, A) ,  and w.l.o.g. 
A' = A U U,<:~ a,. Let  

p(.~) = tp(~. A U/7). 

F = {~o(.xi(o) . . . . .  -~.,,- I). ~5): n < co. ~: ~ A 

~0 [ai.)) . . . . .  a.,,_ I); (?]}. 

It suffices to prove l ' U  U~<.p(.~() is consistent.  For  if the assignment ~ ,--> (~[ 
satisfies it. let F be an au tomorphism of ~ .  F [ A the identity and F ( ( ~ ) =  (~. 
Then  let /~' = F(/~). 

If FU U~<~ p(x() is inconsistent,  there  is a finite inconsistent subset, so, by easy 
manipulat ion,  it is conta ined  in a set of  the form 

k0(~,,) . . . . . .  .~,,,, _~,: e())}u U p(.~,(,,) 
I .c t l  

where  4J = qJ(.~,(.) . . . . .  £. , , -  )); Co) ~ F. 
This means  [p(£)]'~ = [lp(fi, A U/~)] ° is inconsistent,  but clearly [tp(d, A t ]  '° is 

consistent (h.~), - • • • - ~.,,_ i) realizes it). so by Definit ion 2.7 tp(~, A U/7) weakly 
divides over  (tp(fi, A t .  A t ,  contradict ing the hypothesis.  

Lemma 2.14 (The Weak  Symmetry  lemma).  If tp(/3, A U a) dit~ides over A. then 
tp(& A U/7) weakly dirides over (tp(& A t ,  A t .  

Proof. As tp(/~. A U d) divides over  A. there  is an indiscernible sequence I =  
(~,, : n < oJ) over  A, a,, = a and ~(.~. ~) ~ tp(/~, A U ~) such that {q~(.~, ~,,): n < co} is 
k-contradic tory.  Lett ing A ' =  A U U, ,<~ 8,~ there cannot exist /7' as in the previ-  
ous letnma, hence necessarily the hypothesis  there fail. i.e. tp(& A U/7)) weakly 
divides over  (tp(a, At ,  A t .  as required.  

3. Boolean algebras, essentially of formulas 

Let  T be simple in this section. 

Sh:93



186 S. Shelah 

Definition 3.1. For any set B, and type r let W(r ,B)=(W(r ,B) ,  <~) be the 
following partially ordered set. The elements of W(r, B) are the formulas with 
parameters from f$ (identified up to logical equivalence) which do not weakly 
divide over (r,B). ~<~4~ if ¢l-~k. Thus W(r,B) is a partial subalgebra of the 
Lindenbaum algebra of f~. In particular it is easy to see that W(r, B) is closed 
under v and that if ~, ~, ~ ~ ~ are all in W(r, B), then ~ ^ ~ is the greatest lower 
bound of ~o and ~. Now, ~, ~k at *~, incompatible means there is no # ~ W(r, B) such 
that 0k¢  and 01-4~, But, since for any formulas ¢~, (~2 if ~t1-¢2 and ~¢~ ~ W(r, B), 
then ~2~ W(r, B), ,# aad ~ are incompatible just if ¢ ^ ~k¢ W(r, B). We define 
W,~(r, B) similarly, restdct;.ag ourselves to formulas ~ ( i :  t~), a ~ A. 

Remark. For mnti',ation of the above definition see the remark after Definition 
2.7 and think about Lemma 4.9 (which proves Theorem 4.10). 

Lemma 3.2. Fix r and B. Let ~ = (21BI+ITI) +. Then W(r, B) satisfies the ~,-chai, 
condition. 

Proof. If not, let (~0~: i<,~)  be a sequence of elements of W(r, B) such that for 
each i, j there is a formula ~k~j with parameters from B such that ,~ A ~ weakly 
divides over (r, B) by ~k~. By the Erdos-Rado theorem, we may assume that for 
i<j<oJ all the qJ~j are the same formula ik = Ik(£t . . . . .  £,~;/~), and all the ~, are 
of the form ~(£,ci,). Now, for each i<~o[rt_J{q~(£,~)}] ~ is consistent but 
[r Utq~(~, c~,). ~(~, ~)}]'~' is inconsistent if i~i, i. i<¢o. For any finite ~, 

D([r U {¢(~, c~,)}]*, A, ~,,, 2) ~ D([r]*, A, R,,, 2]) = I < oJ 

(by simplicity of T). Now let A=l..J~"=l{~(~,~)}. If for each i, D([rU 
{¢(x, a~)}]*,A, Ro, 2) were equal to l it would follow by Definition 2.l(3) that 
D([r] '~, A, No. 2) > l; thus for some i 

D([r U {q~(x, a,)}]*, Z, R,,, 2) < D([r]*, At. I%, 2). 

But then by Lemma 2.9(2) ~(x,a~) weakly divides over (r,B) contrary to 
hypothesis. 

Lemma 3.3. If p ~ Sm(Ci, then for some A ~ C, Im[ ~ ITI p does not weakly divide 
over (p I A, A ). 

Proof. We first show that for any set B there is a B' such that p 5oes no! weakly 
divide over (p t B', B), B ~ B', IB'[ ~-17'1 + IBI + R,,. Then setting A,} = ~, A,,~ i = 
(A,) ' ,  A = LJ,<~o A,  is as required. Now for each t~ = ~(.L/~)/~e B such that p* is 
inconsistent choose 0, ~ p such that [0,] ~ is inconsistent. Let B' be the set of 
parameters which occur in any 0¢ The number of tk is <~[TL+IBI+~.. 

Definition 3.4. For any partially ordered set (P, < )  there is a unique complete 
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Boolean algebra RO(P) and a homomorphism e of P into RO(P) such that 
(i) p, q are compatible in P iff e(p), e(q) are compatible (i.e. have a common 

lower bound) in RO(P).  
(it) e(P) is dense in RO(P) 

(iii) e commutes with A when defined, so (i) holds for finite sets. 
So chain conditions are preserved. We will call RO(W(r, B)), B~(r, B). (This is 

used e.g. in passing from forcing to Boolean-valued models.) 

Lemma 3.5. (i) If p does not weakly divide over (r, B), then the image of p in 
B~(r, B) has the finite intersection property. 

(it) If F is an ultrafilter on B~(r, B), then p = {q~ ~ W(r, B): e(¢) e F} is a type 
which does not weakly divide over (r, B). 

Proof. (i) Let at • • • ak be in the image of p. Then there exist ~o~ • •, ~¢k ~ P such 
e(¢,)= a, But then AL, ,~ e p  and e (ALt  ~ ) =  AL, a, so (i) holds. 

(it) Suppose qh"""  q~k e P. Then e ( ~ )  . . . . .  e(~k) are compatible in B~(r, B) so 
by the third condition on e qh . . . . .  q~k are compatible in W(B, r), that is, A ~  ¢~ 
does not weakly divide so p is as required. 

Notation 3.6. (i)  In the sequel, we will frequently drop the e and denote 
e( , (£ ,  i:)) by ~o(.~, 6). We denote elements of B'(r, B) by ~p. 

(2) Any automorphism F of ~, F I (B U Dom r) = id induce an automorphism 
of W(r, B )  B"(r, B) which we also denote by F. 

Definition 3.7. (1) A set A c_~ is a support of an element ~0 of B ~ (r, B) if for 
every automorphism F of ~, 

F I (A U B U D o t  r) = id =), F(~0) = ~. 

(2) A set A c_~ is a weak support of an element ~¢ of Be(r, B) if 

{F(~0): F an automorphism of ~, F t (A U B  U D o m  r) = id} 

has cardinality <11~11. 
(3) Let B'~(r, B) be the set of elements of B~(r, B) with finite weak support. 

Claim 3.8. (1) Aely element ~o of BCir, B) has a support of cardinality < (2JBI*LTI) +. 
(2) The set of elements ~o of B~(r, B) such that A is a support of ~ [A is a weak 

suppor~ of ~o] is a complete subalgebra. 
(3) BP(r, B) is a subalgebra of B~(r, B), including W(r, B). 

Proof. (1) Clearly every element of W(r,B) has finite support (the set of 
parameters, of any formula representing it.) Let A = (21BI+ITI) +, SO by Lemma 3.2 
and Definition 3.4 B~(r, B) satisfy the A-chain condition. As W(r, B) is dense, any 
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q~B~(r .B)  is sup{q~: i < i . ~ A }  ~p,~ W(r.B) .  so if A~ is a finite support of q~, 
[_J~<~, A, is a support of ~. 

(2) Easy. 
(3) If A~ is a support of ~l (1 =0 ,  1). then AotJA~ is a support of ~#~}A~#~. ~#ov 

~;l. and Ao is a support of -~o .  so there are no problems. 

4. Extending to quite ,,at~rated mode~s 

Definition 4.1. (1) Let ur¢,a,(r) be the first regular cardinal u, such that there are 
no A~ (i<~K) increasing w~th i, p ~ S " ( A , ) ,  p [ A , ~  fork over A~. 

(2) Let Kr~(T) be for simple T the first regular K, such that for every p ~ S" (A i, 
there is B g A, IB! -- K such that p does not weakly divide over (p I B. (h). For non 
simple t we stipulate Kr~(T)=oc. 

Claim 4.2. (1) Kraal(T) is the first K such that for every p6  S'"(A}, p does not fork 
t~ver some B c A, [BI < K. mzd K is regular; a similar assertiol~ holds for Krt(T}. 

(2) For simple T 

Kr.~,( T) <~ ~r~ ( T) <- I TI+. 

(3) In Defh=ition 4.1 (1) we can take m = 1. 

Theorem 4.3. (1) In Definition 4.1 (1) we can replare "forks" by "dirides" and for a 
]ix A, assume there is an indiscertdhle ! ~ A,,  ~ witnessing it. I![ ~ k (i.e. there are 
k <to, a ~ Ai, h~ l .  arid ~(.~; ~; ~) such that ¢(J?: [;; ~1~ p and {¢(Y:; ?: d): ?~ I} is 
k covltradictory; in fact we cap~ omit fi). 

(2) It is equicalent also to the definition of Krcd~(T) in [4, IlL Definitioll 7.2]. 
(31 If T is not simple Kr(T)= Kr~d,(T)=~, if T is stable it ix simple, for stable 

"I. Kr(T) = Kr~dt(T) = Krl(T). If  T is simple mlstable. T I.as the i~zdepep~dence prop- 
erty (see [4. IL Defi~litiol! 4.2.]) but m~t the strict order property. T is simple if[ it 
does not hat:e the tree property [4. 111 7.2]. 

Proof o|  Claim 4.2. (1) Immediate. 
(2) Clearly Conclusion 2.11(1) implies Krcd,(T}~Kr~(T) and Lemmas 2.9 and 

3.3 imply Kr~(T)<~ITI +. 
(3) Clearly Krl(T)<~ Kr'"(T) because we can add dummy variables. Assume that 

~:<Kr '''~l (T), then there are a sequence ¢3=(a,, . . . . .  a,,), and an increasing 
sequence of sets A~ ( i < ~ )  such that tp(& A,~)  divkles over A, (by Theorem 
4.3(1)). 

Now by the assumption and Lemma 1.5 it is impossible that 
tp((a~, . . . . .  a,,),A~+~) does not fork over A~ and tp(a,,, A , ~  U{a,, . . . . .  a,,, ~}) 
does not divide over A~ t3{a~ . . . . .  a,,,_~}. 
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For all i < K  tp((ao . . . . .  a,.) .A, . i)  divides o w ;  A~ or tp(a . .A~t3 
{ao . . . . .  a,._ ~}) divides over Ai U{a . . . . . . .  a., ~}. 

One of the cases happens K times: 

In the first case (ao . . . . .  a . , - i )  and a subscquence of {A~}~<. exemplifies 
K < Kr'"(T) (remember monotonicity of dividing). 

In the second case a,. and a subsequence of (A~ U~ao . . . . .  a,,, ~}: i<K exemp- 
lifies ~ < Kr~(T)). 

Proo! o|  Theorem 4.3. (1) If T is not simple, by Theorem 4.3(3) (proved below~ "/- 
has the tree property, and then it is easy to prove that in both variants of 
Definition 4.1(!1 we get :~. 

If p ~ A,. ~ divides over A~ clearly it forks over A~ (see Claim 2.2) hence one 
inequality is clear. For the other direction suppose A~(i<<-K) is increasing. 
p~S'"(A~), and p I A,,~ fork over A~. and for l < n  ~ !i-- (t~'~..: a < A )  is indiscer- 
nible over A, {¢~(x: el.k): a <.~} is m~rcontradictory and 

I 

w.l.o.g, el.,, = t ~ , .  We define elementary mappings F ~, FI ~,  such that: 
(i) Dora F'"  ~ = A, ~ i U ~,.~. Dom F~ = A~ (for limit ~), Dom FI ~ 1 = Ai~ ~ U If. 

(ii) F' I A, is increasing. 
0ill F'~* 1(ii~ is indiscernible over Bi = I .J /Range FI: j<~ i. I < ~z~}. 
We define by induction on i: [or i =0.  i limit there are no problems. For i+  l 

first define a sequence /~.,,=/~i.. (I <n~) such that: 
(a) tp(/~,.,,. E(A,))  = F,(tp(al,.t,, A,)); 
(b) tp.(B,. F"(A,)U I~.~) does not fork over F+(A,) (hence does not divide). 
This is possible by Conclusion 2.11(2). (3) so by Lemma 1.4 we can define ~+~. 

In the end let /: realize F+(p). then B+ (i<~K) is increasing, for each i ~+~(/i) is 
indescernible over  B, (and infinite). ? realizes p + l ( p  I A++~)+ hence satisfies 
V~¢'~(-~: dLr..) hence for some I(i), ,~i.~(x; fi}li~o)~tP(~?, B~+0. However. 
{¢i,,(:~. ill: d ~ F}.,(ll.0} is ml-contradictory, so tp(?, B~+I) divides over B~. and 
the indiscernible sequence witnessing it is c_B,+l, and has power ~>k so we finish. 

(2) Is left to the reader. 
(3) Start by proving that T is not simple if/ it has the tree property (see 

Definitions ILl. 2.1. 2.7(l)) and the rest also easy. 

Definition 4.4. (I) Let SP(T) (saturation pairs of T) be {(~,, K): ,~ ~> [TI, and every 
model of T of cardinality <~k, has a K-saturated elementary extension of cardinal- 
ity ~h}. 

(2) CP(T) (compactness pairs of T) is defined similarly, with r -compact  replac- 
ing K-saturated. 

(3) Let SP ' (T)= SP(T)N{(A. K): k t~rl = k I> K}, and CP'(T) is defined similarily. 
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Claim 4.5. (1) SP(T)~CP(T) .  
(2) The following are equivalent: 

(i) (k, K)~SP(T); 
(ii) for every T1, T ~ T1, !TI[ <~ h., and model M of Tj,  IIMll <~ ~ there is a model 

N of T,,  M <  N, IINII~<A, and the L-reduct of N is K-saturated; 
(iii) for every A,  I AI~ X, there is a set S ~ S(A) of cardinality ~ h. such that for 

every 1-type p over A.  [Dora Pl < K, there is q ~ S, p ~ q. 
(3) Like (2) replacing SP by CP in (i) and [Dom p[<n by Ip[<K in (iii). 
(4) (h, R,,) ~ CP(T) whenever )t > IT[, and (k, I%) ~ SP(T) i f /X ~ [D(T)I. 

Proof. Left to the reader. 

Conclusion 4.6. (1) If  A = h <~ ~IT[, then (~. K)~CP(T). 
(2) I f  h = h ~ 1>2 Irl or at least k = h ~ ~ID(T)I ,  then (h, K)~ SP(T). 

Proof. (1) Use Claim 4.5(3)(iii). 
(2) Use Claim 4.5(2)(iii). 

By [4]: 

Theorem 4.7. (1) I f  T is not simple, or K<Kr, d,(T), then (h ,K)6CP(T) if/ 
h = h <~ ~IT[ and (h. K)~ SP(T) iff h = h ~ ~>ID(T)[. 

(2) If T is stable, (h, K) ~ SP(TI iff A = h "~ ~ ID(T)I or T is stable in h. 
(3) If T is stable, ,~ID( 'F)[ ,  then ( ~ , n ) c C P ( T )  iff h = h ' ' " "  where K(0)= 

min{K, Krcd,(T)}, 
(4) If  T is unstable, h strong limit with cofinality <n or h < 2  <', then 

(h, K) ¢ CP(T). 
(5) Suppose K>ITI. The ,  CP(X, ~) iff sP(A, K). 

Proo|.  (I) The "if" parts follows by Conclusion 4.6, and the "only if" parts by [4. 
ViII 4.9, p. 456]. 

(2) The 'if' part follows from [4, VII14.7, p. 455] and the "only if" part by [4, 
VIII 4.9, p. 456]. 

(3) Left to the reader. 
(4) By the proof of [4, VIII 4.8, p. 456]. 
(5) Easy. 

Theorem 4.8. (l) (h, K)eSP(T~,,I) ifi/ 
(*1)7, h i> K, and lhere are h functions f, : ,~ ---, {0, 1}. such that erery partial 

function g from h to {0, 1}, IDom gl<K is included in some f,. 
(2) I f tx  = l x < " ~ A ~ 2  ", then cA,~)ESP(Ti,d)." * 
(3) If  T is simple unstable, then SP(T)c_ SP(Ti*,,o). 
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Proof. (1) Easy by Claim 4.5(2)(iii). 
(2) By part (1) and Engelking and Karlowicz [2] (see also [6]). 
(3) Easy. 

Remark. It is not clear whether (A, . ) ¢  SP(Tin d) implies that for some IX. IX<" = 
IX ~A~<2~'; this is a set theoretic question. In a counterexample necessarily for 
some strong limit Ix, tt <A <Ix<" = 2", so 0 # exists (and much more). We shall try, 
however, to reverse Theorem 4.8(3) with a partial success. 

Lemma 4.9. Suppose T is simple, K ~>K(1) = Krt(T), A = A< '~ '~ ITI+K.  
(1) For proving CA, K)~CP(T), it suffices to prove: 
(St. 1) For every A,  IAI<~A. and type r over A,  IDomr l<K( l ) ,  there are A 

ultra]liters D~(i<A) over B~(r,O), such that each [amily D of <K elements o] 
WA(r, 0) with the finite intersection property, is included in one of them. 

(2) In (1) we can replace CP(T) by SP(T), provided that we replace (st. 1) by 
(st. 1') by allowing D to have the form p = {~i (x, ill): i < io}, [ C.J i a~ [ < r,, p does not 
weakly divide over (r, fl). 

(3) I f  Ix = tt <~ ~<A<~2 ~, then the following implies (St. 1): 
(St. 2) For every A, IAi~<A, and type r over A,  [Domrl<K(1)  there are Ix 

ultralilters D~ ( i < t t )  over B" (r, O), such that [.J ~<, D~ = WA ( r, 6)-{0}.  
(4) I f  Ix = g<" ~<A ~<2", then the following implies (St. 1'): 
(St. 2') For every A, IAi<~A and type r over A. [Domrl<K(1)  there are Ix- 

ultrafilters D~ (i < tt) over BX(r, O) such that: every set D c WA(r, O) with the jinite 
intersection property of the fi)nn {~(x, t~): i < iv} is included in some D~. 

Remark. We could use RO(WA(r, B)) instead B~(r, B) and make other similar 
non-essential changes. 

Proof. (1). (2) Left to the reader. 
(3) Let A, r be as in (St. 1), we should find D~ ( i<A)  satisfying the demands of 

(St. 1). By (St. 2) there are ultrafilters D~ (/<Ix) of Be(r, dp) such that I J~<~, D~ = 
B¢(r. cb) - {0}. 

For every X < A let I~ = {t: t a finite subset of X}. As {{t ~ I~: a ~ t}: a <X} is a 
family of subsets of I,, with the finite intersection property there is an ultrafilter E), 
over Ix extending this family. 

For each function f: I~ --, IX let Df = {a E Be(r, 4~): {t ~ I~: o z Dr,~} ~ E~}. 
Now the following three facts finish the proof: 
Fact A: Each D t Cf: I x --, A, X < ~) is an ultrafilter of Be(r, 6). 
Fact B: D {Dt: / :  Ix ---, IX, X<K} is a set of Ix ultrafilters of BC(r,q,) (as its 

Fact C: If D is a family of <A elements of B~(r, 4'), then for some D o z D ,  Dc_ 
0 0 • 
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(For let D = {a~: i < X < K} and to t ~ I~ let a, = f ' l ,~, a, ,  so by the assumption 
on D, a, # 0. Define f(t) = min{i < Ix: a, ¢ D, } it is well-defined by the choice of the 
D~'s. It is easy to check that D c_ Dt, and obviously D¢c D. 

(4) Left to the reader. 

Remark. From Lemma 4.9 we have reduced the problem of proving CA, K)~ 
SP(T) (for simple T, and e.g. g < A < 2 "  IX<~ +/x m = IX) to showing that certain 
Boolean algebras of power A. satisfying ~he (2IrlF-chain condition is the union of 
Ix ~ -ultrafilters. 

Theorem 4.10. It is consistent with ZFC (provided that ZFC is consistent) that: 
( 1 ) for stable "l, SP'(T) = K!~- t =d~f{(A, K ): A ITt = h ~ K}; 
(2) for simple unstable T, 

SP'(T) = K~TI ='l~f{(A. K): }t l'rl= h ~>K. and X is not strong limit}. 

(3) for non-simple 7; SP'(T) = K~TI ="~r{(h. K): h <" = h}; 
(4) for every A the classes K~, K 3 are distinct. 

Remark. This theorem shows in some sense the distinction between simple and 
not simple theories is significant. 

Proot ot Theorem 4.10. Follows from Theorem 4.12(2). and Lemma 4.13 below, 
by Lemma 4.9 and Theorem 4.7(4). In Theorem 4.12(2) we choose (ix~. X,,) such 
that X,. >b~,,... to ensure part (~). 

Definition 4.11. Ax,,(A) for A regular is the following statement: Let P be a 
partial order, IP[ < 2 ~, and D, (i < io< 2 a ) dense subsets. There is a G ~_ P generic 
for {D~: i <  io} provided that: 

(1) P is A-complete, i.e. if c ~ P  ( i < i , , < A ) .  i < j ~ q < ~ c ~ ,  then form some 
c c P, ci <~c: 

(2) for any sequ2nce (q:  i < A +) of sequences of P. there is a closed unbounded 
S_c}t + and sets V~ ( i < ~ ' 3  increasing Iv, l~A. and a function [:A ~--, LI, V,, 
f ( i )~ V,, such that 

(i) c f i = A , i ~ S  implies V~= U~<~ V,. 
(ii) i, j ~ S, cfi = cfj = A, F(i) = F(I). implies c,. q has a least upper bound c~ v c,. 

Theorem 4.12. (1) Suppose V as model of ZFC salislies GCH, IX is regular 
X > Ix, X regular. Then in some generic' extension V' of V: 

(i) 2" =X, (VA<Ix)2'* =A ,(VA>~IX)2 ~ =A~+X,  so Ix=IX~"; 
(ii) (Axo) holds; 

(iii) Cardinality and co~inality are preserved by the extensions. 
(2) We can do the same simultaneously for {(IX,,, X,): ~ an ordinal} procided that 

all Ix~, X,~ are regular, ~x < 13 =:> X~ < Ixe. 
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Proof .  See [5]. 

L e m m a  4.13.  Suppose (Axo/x) , /x<"  = Ix, 11 a Booleat~ algebra, IB I < 2", B satisfies 
the ~x-chain condition. Then B - { 0 }  is the union of /x ultra~hers. (We identify B and 
it's universe). 

Proof.  Let us define the partial o rder  P. The  member s  of P are partial functions t 
f rom B - { 0 }  into /X such that [Range(.f) l</x and for every  ~p~ . . . . .  ~p,,c 
D o m  [, f ( ~ )  . . . . .  f(~,,) implies I'11'=1 q~i-~ 0. The  o rder  is inclusion. For  every 
~o~lBl-{lt} let D,~= {/: ~0~ Dora.f}, It is easy to see each D,~ is dense (for every 
t '~  P choose i <  IX id Range  f, and ex tend  f by ¢ ~ i), and if G c p is generic for 
{D.~: q ~  B -  {0}}, clearly f*  = I.J {.f: .f~ G}, give our  conclusion (for each i, ex tend 
{¢: f*(q~) = i} to an ultrafilter E, of B, (possibly as it has the finite intersection 
property) ,  and clearly U~<~, E~ = IBI-{0}). So we have to check condit ions (1), (2) 
f rom Definit ion 4.11. Now (1) is obvious.  Let  us prove (2). Let f ~  
P(a < 3. *), D o m  f,~ = {q~: i < i, </X}, f~ (~o7) = j~'. Now for every  o~. j and finite 
w ~ i,~, such that, i ~  w ::>/,,~(~0~') = j we define by induction on ¢ '< ix, an ordinal 
/3(a, w, ~ r )<a  such that 

(a) i~ ...... ~ ,= i . ,  f~ .. . . .  ~ , ( i )=]  for i e w :  
(b) I ["]i(-w ¢~ : /3  =/3(o~. w. ~). ~ ~< ~. or /3 = (~} is a family of pairwise disjoint 

(non-zero  by Ca)) e lements  of [B[: 
(c) /3(c~. w. ~¢) (.~<~r) is strictly increasing: and 
(d) /3((~. w. ~) is the first ordinal  for which (a). (b). (c) holds. As  B satisfies the 

/x-chain condit ion,  by (b) for some (first) ~r = r((~. w) </x/3(c~, w. ~') is not defined. 
We  let F((~) be the sequence  of the following: 

(e~) (/'~': i<i, ,);  
([~) ((w, ~./3(~, w, ~5)): ,~ < ZS(a, w~): 
(3') ((/3',', 3'Y): i<i, ,) ,  where  for i < i , ,  if for some /3<o~. j < i  e, ~ = ¢ ~ ' ,  then 

(/3y, 3'~) = (a  + 1, j + 1) otherwise /3~' = V'~' = 0. 
We let V, ={F(/3~: /3<~c~}, and left the checking to the reader.  

R e m a r k  4.14. We can decompose  Lemma 4.13 to two: 
(i) if ([B[-{0}, ~ )  satisfies condit ion (2) f rom Definit ion 4.11, then it is the 

union of /1 ultrafilters: 
(ii) if B satisfies the /x-chain condit ion,  then (B-{0} ,  1>) satisfies condit ion (2) 

f rom Definit ion 4. I 1. 

R e m a r k  4.15. By [7] if B satisfies the /X chain condit ion [Bi = A +. A ~-:" = 3., then 
B-,-{0} is the union of A ultrafilters. 

5. Indiscernible sequences  based on sets 

Definition 5.1. (1) Let  !o,!1 be infinite indiscernible sequences over  A of 
m-sequences .  Let da(Io, i l)  be the minimal natural number  n such that there  are 
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infinite indiscernib le  s equences  ove r  A of m - s e q u e n c e s ,  St = (fi,: t ~J t ) .  ( l ~ 2 n )  
( the J~ pairwise dis jo int  infinite,  o r d e r e d  sets, ca l led  the  wi tnesses  such tha t :  

(i) .lo ~_ lo, ,L,, ~_ i~; 
(ii) (a,: t ~ ; + J 2 ~ , ~ )  is an indiscernib le  s e q u e n c e  ove r  A for  l < n ,  and  

(a,: t ~ J2~+2 + J2~+ ~) is an indiscern ib le  s equence  ove r  A for  I + 1 ~< n. If t he re  is no  

such n. dA(lo, I t)  ~: ~. 
(2) dk(io. I~) is def ined  similarly,  except  tha t  we rep lace  (if) by 

(if)' J~ ~J~+t is infinite for  l < 2 n .  
(3) ! .  ~ I~ if !,,. I t  are  infini te  indiscernib le  s equences  of m - s e q u e n c e s  o v e r  A, 

and  d~(I., It) <~.  
(4) Ca(l) where  I is an inf.nite ind iscern ib le  sequ, ;nce  ove r  A. is 1.3 {J: $-~e. l} .  

and  C~(I)= [..J {$: dA($, ! ) ~  n}. (So C A ( l ) =  [..J . . . .  C~(I).) 

Def in i t ion  5.2.  (1) T h e  inf ini te  indiscernib le  s e q u e n c e  ! is weakly based over A if 
it is indiscernible  s equence  ove r  A, and  the  n u m b e r  of images  of  C,,(I) by 
a u t o m o r p h i s m s  of g fixing A is <11~[I. 

i(2) T h e  infinite indiscernib le  s equence  ! is based on A if t he re  are  no  
a u t o m o r p h i s m  F~ (i <llf$.ll) of ~ .  F~ I A = the  ident i ty ,  and  for  i¢  j, F~(i)@AF,(I). 

Claim 5.3. Let !~, It be infinite indiscernible sequences over A of mo-seque,ces. The 
following are equivalent: 

( I )  dA(I,,.lO<-n; 
(2) for every m < o~ and finite A ~ L and ~inite A ' c_ A and ~t ~ It (i < m)  increas- 

ing (i .  the order of the sequelwe) (I = 0, 1) there are b~ (k ~ 2 n, i < m ) such that: 
(i) I'~'/=d'/, b~"=~) ( i<tn) ,  

(if) (b~:  i <  m ) -  (/~t*~: i < m) is (A. m)-indiscernible over A '  and ( / ~ "  ~: i < 
m)  ~ (b'~'~' ~: i <  m)  is (A m t-i~discemil~le over A' .  [or I< n. 

Proof .  Left to  the  reader .  

Conclusion 5.4.  (1) For  any A, n, and m, t he re  is a type  

r ~ ' " =  r~"~(~,,, ~ . . . . . . .  ~k, ~ . . . . .  A )  (l(~k~ = l ( ~ k ) =  m) .  

such that  if I = ( f i ~ :  k < t o ) . J = ( / ~ :  k < o  J) are indiscern ib le  sequences  of m-  
~equences  over  A, then  dA( l ,$ )~  n if[ fi~l- g['," ' "° at ~ i'~k " "'" real izes  r~'~ L'', 

(2) For  any A. n, m ~here is a type 

such that  if l= ( /~k :  k <~o)  is an indiscernible  s equence  of m - s e q u e n c e s  ove r  
A, I ( f i )=  m. then  ~ ~ C ~ ( I )  iff fi - bo - b~ - • • • - /~k - " " " real izes r',~'". 

Claim 5.5. (1) d/~, d'A are distance ]i4,ctions and ~,~ is an equivalence relation. 
(2) Let I.. Ii be in]bfite indiscernible sequences over A,  then dA(l~,, l l ) <  ~ if] 

dk(I, , ,  l l )  < ~  
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(3) I[ lo~-.xl,, then for any increasing al . . . . . .  ~ t~ /~  (1 = 0, 1) 
tp(al~ - " "  - a',~, A )  = tp(a~, - " - '  - a),. A) .  

Proof. (1) Let  !~ (I = 0 .  1, 2) be infinite indisceri~ible sets over  A. 
(i) Reflexivity: d,~(l~,.lo) = d ~ ( I . . 1 . ) = 0  because we can choose So=do,  

n = 0. 

(ii) Symmetry :  d~(lo,  10  = d'A(l~, Io) because if (,I~ : l ~<2n) is a witness for 
d~(i~, i t )  = n, then (.I. _~: I ~< 2n) is a witness for dX(lo, 10 <~ n hence d'A(Io, I 0  <~ n 
implies d~(l~, Io) <~ n. By the symmetry,  equali ty follows; dA (lo, IO = d,~ (!~, Io) is 
p roved  similarly, 

(iii) The  triangle law: Suppose d ~ ( / t , / . ~  = n~ < ~  (I = 0, 1) and ($I: i~<2n~) is 
a witness for this. Without  loss of general i ty ~,,,, = I~ =,I~ (see Definit ion 5.1) attd 
let 

s, / 

| , ~ .... 2no<-i<~2no+2n~. 

Then  (./,: i~<2(n , ,+n0)  is a witness for dg ( / . ,  i_ , )~<n.+nt .  So 

d~ (I,,. Iz) <- d.x (!,,, i , )  + dA (!, ,  12). 

(if the r ight-hand side is finite by the previous arguments,  otherwise trivially.) The  
triangle law for d~, is proved similarly. 

(2), (3) Left to the reader .  

Claim 5.6. ( 1 ) If  ! is based on A.  then ! is weakly based on A. 
(2) If  De]inition 5.2( i )  we can replace <11~t1 by ~<2 I'~HTI. Similarly in DeCinition 

5.2(2) it is equicalent to demand there are no such F, for i <(21'~l÷~ri) ~. Also if we 
change in Definition 5.2(2) F,(I) ~,~F~(I) to d,~(F,(l). F~(I))> 1 the aboce me~i- 
timled assertion remain true. 

(3) The number of C.x(I). i weakly based on A is ~<2 IA~+l'rl. 

Proof .  (1) Trivial  
(2) Let us concent ra te  for example  on Definition 4.2(2): similar argument  

appear  in MeKenz ie  and Shelah [3]. Suppose F~ is an automorphism of 
(S. FI I A = the identity for i <  (21A~+Ft'I) +, ! i = ~ ( I )  and I, @alj  for i< j .  We can 
assume ! = (dk: k < w ) ,  and let d~ = F~(~k). By a variant of E r d o s - R a d o  theorem 
we can assume t p ( ~ , -  al, - " ' -  ak -~ - t ~ [ . . . . . A )  for i< j<( IAI+[TI )*  depends  

t I  ~ - -  , . : - -  - -  r t l l , t  I on i only. For i<i ,  and n < to as d ( [ , / j )  > n. there is ~.i(x~. Yo.. . xkYk, b)~ A 
(k = k(i.j ,  n). (b = b[i~) (see Conclusion 5.4(1) for its definition) such that ~-m 
~k..~(ao, al. . . . . .  a~, ak, b). By the above  ment ioned  assumption we can assume 

. . . .  b,.i-/~'i'. The  number  of possible (~b'/,/~;', k(i, n)) is kb,.,-~ 4~','. k( i ,  i, n ) =  k( i .  n).  - "  - 
I T I + I A I ,  hence we can choose by induction on n, #s",/~", k(n)  and S,, c _ ( I A I + I T I )  + 
(i.e. S,, is a set of ordinals) such that: 

(i) [S.I=(IAI+ITI)*,S,,+,c_S,,; 
(ii) for  every  i e  S,,. tkl '= ~", bl '= b". k(n. i ) =  k(n).  
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Now by compactness argument, there are fi~ (a<ll(~j]) such that 
(a )  tp(~? ,  - d~' + - . .  - " ' ,  A ) = t p ( t ] o -  ~ + " ' "  + ¢3~ ~ " ' ' .  A )  

and 
(b) 

hence 

for a< /3 ,  n<~0. ~ 6 . [ a ~ : . a o  a,. ao -,~ - 

da(J".Ju)~>n where J " = ( a ~ : k < ~ o ) .  

so by (a) for each a<l]~ll  there is an automorphism F', of %'. F', I A = the 
identity. E , ( i )=  J,,, and by (b) for a ~/3. d~(J,,. Jt~J =- ~. so we finish. 

For Definition 5.2(I) we use conclusion 5.4(2). 

Lemma 5. / .  For any  p ~ S'" (IMI) there is a ,  i , d i scemib le  sequence I o[ s eque , ces  

~ ealizing p which is based on [MI in fact J "~ A I iff dA (!. $) ~ 1 iff for any  increasing 

t p ( , ~ , , -  . - .  - a , , ,  I m l )  = t p ( L ; , ,  - . - .  - ~,,, Iml). 

Proof. This is essentially from [4. VII, §4]. Let Do be the filter over '"[M[ 
generated by the family {~(M.  hi: ~(£:  ~)e  p} (,~(M: ~ )=  {belMl:  M ~ ¢ ( [ b ;  a]}). 
Let D be an ultrafilter extending D,, and for every B. let AviD. B)=  
{,g(£: h): b~13, { ~ [ M I :  ~ [ ~ :  b]}~ D}. It is in S'"(B). Define induclively ~,,: fi,, 
realizes Av(D. IMI L) I..Jl.:. al). / = (~,, : . < m) is indiscernible over [MI. and if J is 
as in the lemma, define (,, to realize A v ( D .  I M I O I U J ) .  and then d~,=l. Jj = 
(~,, :n<co),  J~ = J  are witnesses for d A ( l . J ) ' ~ l .  For the last iff, ~pply Claim 
5.5(3). 

6 .  E x i s t e n c e  o f  i n d i s c e r n i b l e  s e q u e n c e s  b a s e d  o n  a s e t  

Definition 6.1. (1) An infinite indiscernible sequence i = (d,: t e I) is called based 
on (A,  B), where A c_ B, if 

(i) 1 is indiscernible over B: 
(if) for every t~ !, tp(fi,, B L.J U , . ,  '~) does not fork over A. 

Claim 6 . 2 .  1] ! is based on (A, B), A ~_ Aj  c_ B~ c_ B, then I is based tm (A~. B~L 
Al so  if ! = ! .+11 .  then iz is based on (A.  B U i ,  o. 

Rem,arL Note the difference between this definition and Definition 5.2(2). 

Lemma 6.3. If A G B. p c S'"(B), mid p d . e s  not lbrk over A,  then there are h,, 
realizil~g p such that (~,,: ~l <co) is based ,m (A,  B).  

Proof. Let A = 2  mL'lr~, and we define by induction on a < " ~ .  m-sequences 17o 
such that tp(b~, B t3 [,.J B~, /~3) extend p and does not fork over A. This is possible 
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by Conclus ion  2.11(3l.  Now by the  me~hod Mor ley  p roved  his omit t ing type 

t h e o r e m  (see [1, T h e o r e m  7.2.2]) there  are  m - s e q u e n c e s  ~,, (n < to )  such that:  
(i) for  every  n there  are a ( 0 ) < . -  . < ~ ( n )  for which 

tp(a<, - • • " - t~,,, B) = tp(/~,,<m - " • " - t7,,o,. B); 

(ii) (fi,,: n "<to) is indiscernible  over  B. 
By (i) each 4,, realizes p and tp(fi, ,  B U Uk<,, t~k) does  not  fork over  A, hence  

r e m e m b e r i n g  OiL ( d , , : n  < to) is as requi red .  

Conclus ion  6.4.  For simple T, p a S ' " ( A  ) there is an indiscernible sequence based 

on (A+ A )  o f  sequences  realiz ing p. 

P r o o f .  By Conclus ion  2.11(2) p does  not  fork over  A, so apply L e m m a  6 3 .  

L e m m a  6.5.  For simple 7+. every indiscernible set ! based on (A .  B)  is based on A.  

Proof .  Suppose  not.  let A = 2 lal+m, so by Claim 5.6(2) there  are au tomorph i sms  
F, of fS. F~ I A = t h e  identi ty.  ( i<2~+)  such that  d a ( I , . l a ) > l  for  a:p/3, where  
/,+ = E . ( I ) .  and w.l.o.g, let l= ( t~k :  k < t o ) ,  t~j,'= F,~(~k). 

Cla im 6.5.  { 1) "ihere are b'~, k <to,  a < to  such that  

(i) tp(/~; - . ' . -  - /~  - ' ' - ,  A )  = tpta, ,  - ' ' .  - ak - " ' ' ,  A)  
(ii) [or et'ery k. <h~; - • • • - 17'~': a < to) is a ,  i l ldiscer,  ible sequence over A .  

(iii) for every n < I < to there are a </3  < 2 x .  such that 

tp,(l~+i + 17~,- /~]' + G+~ - , .  • -  6 ~ . ' - / ~ - • . - , A )  

= t p , ( t ~  - d ~  - t ~ ?  - t~tL + - "" " - ~ '  - t 3 p -  "" ' ,  A ) .  

P r o o f  o!  C lahn  6.5.  (1) Def ine  by induct ion on n < t o  a type 19,, =P(~l , t  . . . . .  ), 
I(~,,,) = I(8.) such that :  

(A)P. ~- P.+t. 
{B) For each 7 < A+ there is an increasing sequence ~' = (~: i <2~) of ordinals 

less than  2x+ such that:  
( l * ) .  (d'~; . . . .  fi;i' i: i < 2 v )  is an indiscernible sequence  over  A. 
(2*).  if i j < i . < "  .<i , , .  then  tp(a',7;,/, m < n ) = p , , .  

We shall p rove  the exis tence by induct ion on n: 
For a = 0, p,, = ~. 
For n + I for each there is a sequence (a,: i<2~ ..... t) as mentioned above in 

(B) for n. Applying Erdos-Rado we get an appropriate sequence of length -~v for 

the  type p ~ , .  

Because  the re  are  only h types  the re  is p .+t  s.t. [{r: p~,+~ = p.+t}[ = h ÷. It is easy 

to verify all the  o t h e r  condi t ions .  U.<o, p.  is consis tent ,  hence  (b~: a < w, k < w) 
realize it. It is easy to  check that  they  are as required .  Now we define by induct ion 
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on I < to, m - s e q u e n c e s  (~ such that  

(i)~ tp(b~; - • • • - /~  - / : o  - " " " - /? t-I ,  A)  does  no t  d e p e n d  on a and  is equal  to  
• ' ' -  - -"  ,/7~+t, A)  (for every  k < t o ) ;  tp(/~:~ - br; bk+, . . . .  

(ii)l for every k ( /~  - • • • - b~: ~ < t o )  is an indiscernible  s equence  over  A U U 

n < l  Czpl" 

For  l = O ,  (i)t, (iih reduce  to (i), (ii) hence  holds,  So suppose  (i)t, (ii)t hold.  

¢¢. . . . . .  cr • J are defined,  and we shall def ine ci such that  (i)~+ i, (ii)l. i holds,  Note  
that  (i)t is equivalent  to: for every a <to ,  (hk. k < t o ) "  (L,: n < I) in an indiscerni-  
ble sequence  over  A. Let .  for a < t o  

P. = { ¢ ( - ~ , / : t - I ,  ~?1 -2  . . . . .  ~ . , / ~ - I  . . . . .  -~' bo. fi): (1 ~ A,  

Clearly t7 realizes Pa if( (b~: k <¢o} - (~2o, ?~ . . . . .  e l - t , / : )  is an indiscernible  sequ-  
ence  over  A. 

Let  F be a set of  formulas ,  with the  free var iable  in .~ only.  over  A U 
{t~~: a <to .  k <to}to{C-~, . . . . .  ?~_~}, such that t7 realizes F iff for every k 

(l~'d- " "  -/7~: a < to) is an indiscernible s equence  over  

A U U,,< #,, o?. 

Clearly such F exists. 
Now a sequence  ?t satisfies (ih ~ ~ iff ( realizes U , , - , .  p.,  and (ii)~, ~ iff it realizes 

I'. So it suffices to show U,,.:,,, p,, u !" is consis tent .  
First we show U . . . . .  p. is consis tent .  O the rwi se  there  are  a ( n l <  toO! < n(0)). 

¢ , , e P , , o .  such that  {,¢,,: n < n ( 0 ) }  is cont radic tory .  As  we can replace q~,, 
by any conjunct ion  of  formulas  f rom p . . .  in which it appears ,  and increase  
{a(n) :  n < n ( 0 ) } ,  we can assume ~x(n)= n for  n < n ( 0 )  and ~¢,, = 

- E- t-," , - "  q~(-Lgt-~ . . . . .  co, k, k - ~ , . ,  b . , f i ) , ~ 6 A ,  s o ~ . i s d e f i n e d n a t u r a l l y f o r c v e r y n ,  
By (iiJt, for every n o <  n~ < .  • .  < n,,m, ~ < to {~,,,,, ~¢,,,, . . . .  ~, ........ } is cont radic tory .  
and in fact. for every distinct u~ . . . . .  n , , . . < t o .  In o t h e r  words  {,¢,,: n<~a}  is 
n(0J-conlradictory.  Again  by (ii), (,2~_ ~ ~ . ' .  ~ 0,, " 171~ - /7~_ ~ - " "  - bo'--" - ~: n < w )  
is an indiscernible s equence  over  A, but  in the  n th  place appears  the  s equence  of 
pa ramete r s  of ~,,. H e n c e  by Defini t ion 1.1(1) q~, divides over  A. But  by (i)t this 
implies that  q~(~,/7~+t,.. ~ + ~ , - o  /~{, m ,  - . ,  bt,  ~._~ . . . . .  bo, a)  divides over  A. But b ~ . t , t  
satisfies it. So by (i), ~(.L a~, t  . . . . .  & ,  ~) divides over  A and ak,t~ t satisfies it, so 
t p ( ~ , t , t ,  AtO I j,~.~,t ti~) divides (hence fork) over  A, cont radic t ing  an 
hypothesis .  

So U,,<o,p,, is consistent .  Us ing  (lib and Ramsey  theo rem,  it is not  ha rd  to  
prove  that  I..J . . . .  p,, tO F is consis tent ,  and choose  ~ as any s equence  realizing it. 
So as said before ,  (i)~+~, (ii)~+~ holds,  hence  this comple t e s  the  induct ive definit ion 

of the  c?t's. Now Jo = (/~:  k < to), d~ = (C'~: k < to), $2 = (/~:  k < to) are wi tnesses  for  
da (Jo, J2) ~< 1 (as $o + J l ,  ,I2 + J~ are indiscernible s equences  over  A by (ih (1 < to). 
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So by (iii) (from the conditions on the b's) for some a#[3, dA( l , , I tO~ l  con- 
tradiction. 

In fact the proof shows (remembering the proof of Claim 5.6) e.g. 

Lemma 6.6. i[ !,~ = (ti~': t ~ !,,) is infinite indiscernible sequence based on (A, A J 
for a <t2t/~L+*rl) ". T simple, then for some a #  [3 dA(I,~, la) ~< 1. 

Conclusion 6.7. I f  T is simple, p ~ S"'( A ), then there is an inJinite indiscernible 
sequence based on A of sequences realizing p. 

Proof. Combine Lemmas 6,'~ and 6.6. 

7. Summing on an indiscenfible sequences 

In this section T is simple. 

Definition 7.1. For a Be(r, B) clear from the context, r an m-type, a formula 
(,~. ~). a set A and an infinite sequence ! indiscernible over A ~ = A U B U Dora r, 

/ ~ / ~  I(b) = I(~), let 

cn~,(l) = cnt/~¢, A)  = V {~0(.~. t~): ~ ~ CA,(I)}~ B~(r, B). 

If B'(r. B) is not clear in the content, we write cn(/, ~, A, r, B) or cn~x(i, B) where 
B = B~(r. B).  

Remark. Note cn,~(l) is well-defined because the disjunction v is taken in the 
complete Boolean algebra BC(r. B). 

Claim 7.2. If  B U D o m  r c_ A.  ! an infinite indiscenlible sequence older A, weakly 
based on A, then cn,~(t B) (B = Be(r, B)) is weakly supported by A.  

Proof, Trivial (see Definition 3.7). 

Theorem 7.3. I[ B U Dom re_ A, i infinite, indiscernible sequence ot~er A, [I[~> 
Kr~,jdT), then in B~'(r, B) 

cn~(I)-- V q~(-~; 6)- 
c e |  

The proof is decomposed to claims, B = B(r, B) is fixed, and A the first cardinal 
such that B satisfy the A-chain condition (exists by Lemma 3.2 and Definition 
3.4). 
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Fact 7.4. I f  ! = ((~, : ~ ~ !) is indiscernible over A ,  and infinite, then [or any ordered 
set 2, I ~_ 2, we can define (~, (t e J -  I) such that (t~: t ~ J) is indiscernible over A .  

Claim 7.5. /.f B U Dom r ~_ A,  ! = ((~, : ~ ~ I)  is an indiscernible sequence over A .  
and .; ~ L IJI >I It, then 

ProoL Trivially ~.~ ~ o  t. To prove the :onverse it suffices to prove ~¢(2, a~ .~)<~j  
for any s(O)~I.  Let us define for s ~ L  J~ = { t ~ J :  t<s} ,  ,I,. =(~,:  t~J~). Clearly 
J~.,~--=-{tEJ: t<s(O)} or { tEJ :  t>~s((J)} has cardinality It, by symmetry (we can 
invert the order) we can assume IJ~.~! ~ It. So for any 

(in 13~(r, B)), but clearly 

tp(fi~, A U.I~) = tp(a~.,,. A L:L). 

So ¢¢(.~;fi~)~V,~:j,q~(g:r2,). Let q,~=q~(~2:fi~)-V,,~j~q~(Yc:fi,), so ~o,¢B"(r ,B) .  
~ : k 0 ,  and clearly for s( l) :~s(2)  in J,~0~m,~%2 ~ are disjoint. So {~0,: s e J }  is a 
family of >~k non-zero, pairwise dis;~fint elements of B¢(r. B)  contradicting the 
choice of AA. 

Claim 7.6. ( 1 ) l.f B U Dora r ~ A,  !o a~d li  are indiscernible sequences over A such 

that, I , ,~AI~,  I!ol, I l l i c i t ,  thcn 

(2) Theorem 7.3 holds when II[~ It. 

ProoL (1) By Definition 5.1(3) there are infinite indiscernible sequences J~ 
(l < 2n, n < w), ! ,  = $,, Ii = $2,,, J21 + J21, i, J~,l, 2 + J:~, ~ are indiscernible over A. 
We can assume [IJ~[l~it (add predicates for the Jt is, extend to a It-saturated 
model and embedd in qg over A U loU !]). We now prove by induction on l that 
Va~,, ,~(x; a ) =  Va~,. ~(x;  t~). For I=  0 it is trivial, for I+  1 use Claim 7.5 twice, 
and for I = 2n we get the conclusion. 

(2) Easy by (1). 

Claim 7.7. I f  i is indiscernible over A = B U Dora r and ~b(.L b) is a [ormula such 
that [Gr some ?to~! {~(~, rio), ~(.L/~)} does not weakly  divide over (r, B),  while for 
some al ~1I {q~(.~, ill), ~0(2,/~)~ weakly divides over (r, B), then tp(b, A Ut~oUt]0 
divides over A hence tp(/~, A UI)  does. 

Sh:93



Simple unstable theories 201 

l~oof.  Without loss of generality we may assume ! is (g~: :<A~> with ao, t~ 
satisfying the hypotheses, )h ~)t.  Let F~ be an automorphism af qg fixing A while 
mapping t~o to a2~, fit to a~+t and let r~ be F~(tp(b, A U{h,,. ~})). For some k, the 
r~ are k-contradictory. Otherwise by the indiscernibility of ~,~ there is an element 
/~* which realizes all the r~. But to(~, I~*)A¢(~, t~a~+~)= tl in B~(r, B) for all i. But 
then ~0(~,/~*)A V~ ¢(x. t~2,)=0 and since by the previous lemma V~ q~(x. fi:~)= 
V, (.~, ~,) this implies to(x,/~*)A V~<~, ¢(.~, t~)=0.  In particular, t0(x, b*)A 
¢(.~, ¢~,) = 0 contrary to hypothesis. 

Clearly all the r~'s are automorphic images of r(, over A so by Lemma 1.3 r,, 
divides over A. 

Proof of Tboorem 7.3. Let i = (a,: t e I>, and remember [II >~ Kr~d,(T). Choose a 
(A+lll)~-saturated dense order 3, with no first or last element, I~_J, and 
(t, (re J - l )  such that $=(t~,: re J> is indiscernible over A. (exists by Fact 7.4). 

Trivially cn~( l )~>V,~¢( :~ ;a , ) ,  and for proving the converse inequality it 
suffices to prove for any /~e CA(l) = CA(,/) that ¢(x, b)~< V , ~  ¢(x; a,). By recal- 
ling the meaning of V ,~ .  this is equivalent to: no nonzero ~ c n ~ ( i )  is disjoint 
from all ¢(~; t~,) (t ~ I) (everything is in B¢(r. B)). As W(r, B) is dense in B~(r, B), 
it suffices to assume d~= 4J(x:/~). 

So we assume ~=qJ(~;b)eB~(r .d~)-{0}  is disjoint to every ¢(~;~,) ,  t e l ,  
~ <  cn~(l) and we shall get a contradiction. The first assumption means {to(~;/~). 
¢(g;  ~,)} weakly divides over (r,B) for every t~ l .  As O~<cn~,(I)=cn~,(.l), by 
Claim 7.6 for all but <A t e J ,  OA¢(~;t~,)y~-0 in B"(r,B) or equivalently, 
{to(.~, b). ¢(.~; t~,)} does not weakly divide over (r. B). Now by Claim 4.2(7) (and 
monotoniality of weak dividing, see Claim 2.8) for some I~,~_J.[Iol<~r~,(T), 
tp(/~, A U$) does not divide over A Ulo (io={t],: telo}). Choose t~le l - Io ,  let 
J,, = {t e J: for every s e Io. s < t --- s < to and t¢ I~ U I}. As J is (If! + A) ÷-saturated, 
J~, is ([ l l+A) '-saturated too. Hence IJol>~x, and clearly ,Io = (~,: t~Jo) is indiscer- 
nible over A Ul . .  We can choose t t6Jo such that {to(~./~), ¢(~; a,,)} does not 
weakly divide over (r. B) (see above-all but <A member of J ,  are suitable). So 
A Ulo,$. ,  to(.~;/~) and a,,,. fi,,, contradict Claim 7.7, hence we finish. 

lqheoren,, 7.8. Suppose p = tp(~, A tJ/~) does not fork over A, Dom r tO B c A. and 
¢1(.~. a).¢2(ff,/7) are contradictory in B¢(r,B). Then there is an element ~ i~ 
B~(r, B) such that d) is almost ot~er A and separates ¢~ and ¢2 (i.e. Ct<~to and 
¢ ~ ~ "nto ). 

Proof. By Theorem 6.3, there is an f with t~ e ! based on (A, A U 6) hence by 
Lemma 6.5, Claim 5.6 weakly based on A so CA(l) has few images under 
automorphisms fixing A. In particular Vz-~! q~l(x, c )=  Ve~cA~x)¢t(~, g) is almost 
over A. Since Ct(X, (0. ¢2(x, b) are contradictory and ! is a set of indiscernibles 
over A U/7 containing t~. Ct(.~, ?), ¢2(~,/~) are contradictory for all ? e I .  Thus 
d)= Vecc-AcJ, ¢~(~,/:) and ¢2(.~, b7 are disjoint and ~ is as required, by Claim 7.2. 
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Theorem 7.9. ff tp(ti,, ALI [._J~<~ d~) does not divide over A ~_ B tA Dom r and D is 
a ultrafilter in B~(r, B) (the subalgebra of B~(r, B) containing those elements 
weakly supported by A)  such that for each i < a D O{~,(.~. ti~)} is consistent, then 
D U{¢(~, ~): i < a }  is consistent (i.e. generate a (proper) filter, in B~(r, B)). 

Proof. Withou: loss of generality we may assume a is finite as the hypothesis 
holds if even we replace (a~: i < a )  by a finite subsequence, by monoticity of 
dividing (Claim 1 6) a,~cl the conclusion for all a follows from the conclusion for 
all finite subsequences ot (a~: i < a)  by the finite character of generating a filter 
and the argument above. 

Now we work by induction on a, Let t] = ti,,, I~'= rio ° • • ' - t1,,_1 and t~(x,/~)= 
/~<,,¢(.~,t1,). By the induction hypothesis 4J(x, iT) is consistent with D and by 
hypothesis tp(& A t3 b') does not divide over A and ~(~; ~) is consistent with. By 
Theorem 6.4, there is an indiscernible set r based on (A , A)  with /~el ' .  
Now t~y Lemma 1.4 (if) there is an automorphism F fixing A U t1 U I~" such that 
I = F ( / ' )  is indiscernible over A U{a}. If {~b(x, b), ¢(x, fi)}UD is inconsistent, 
then for every/~'e I {qJ(~,/~'), ¢ (.,/, a)} tA D is inconsistent. Thus for some 0 e D and 
every b ' e !  B~(B, r)1=(¢(.¢; d)/x0)/,.qj(.~,/7')=0 which implies B~(B, r)~ 
(~#(~;~/)A0) Vb,~b(.~; /~ ' )=0.  But Vb,~q~(~;/~') is almost over A so either 
~/~,,~ 4,(.~:/~')~ D or ~/~,~ tk(.~;/~)~ D. But V~,,~ ~(-~:/~')¢ D is impossible since 
each {¢(~, a')} U D is consistent. So (,4(~; fi) A 0) ̂  V',,~ ~ q4.~;/~') = 0 is impossible so 
D U{q~(.~, ~,): i <~a} is consistent as required. 

Added in proof 

Until now we established a theory for a class of first order theories which 
included in the class of the theories with the independence property. 

It is interesting to check what happens in the other side of the unstable theories. 
Therefore we added the following theorem which gives us some information on 
the theories without the independence property. 

The following is a slight improvement of a theorem of Poizat, using a model 
theoretic proof, and answers a question of his. 

(1) For an ultrafilter D over a set A we let 

Ava (D, B) = {q~(x, a): {b ~ A :~ .¢(b, a)}~ D, a ~ B, q~ ~ A}. 

If A = L we omit it; if .4 = {q~,--he} we write ¢. 
(2) Hypothesis. T does not have the independence property. 
(3) Main Lemma. Suppose D~, D2 are uitrafilters on a model M. Suppose 

a~(i <to) are defined by induction on i such that al realizes Av(DI, M L.Ila~: j < i}). 
Then 

(i) if tp ( (a~: i<e) ,M)=tp((a~: i<o~) ,M) ,  then for every B, Av(D1, B ) -  
Av(D2, B); 

(if) for every ¢(x, ~) there are finite ~,~ <to, .4~ c L (not depending on Dr, M) 
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such tha t  if tpao((a;:i<n~>,M)=tpa.((a~:i<rl~>,M), t hen  for every B, 
A v e ( D r ,  B)  = Av~(Dz,  B).  

Proo[. (i) Suppose  the  assumpt ions  hold,  but  not  t he  conclusion.  So there  are B, 
such that  

q~(x, 6") e A v ( D l ,  B) ,  --aq~(x, 6) e Av(D2, B ). 

It is known that  (al: i <to> is an indiscernible  s equence  over  M. Now for any 

finite A and n, we can def ine by d o w n w a l d  induct ion on m ~< n, an e l emen t  b,, e M 
such that :  

(*)(1)  tpa(b, , ,  {a~ , . .  t . ,  a , ,  _,, b , ,÷l  . . . . .  b,}) 
= t p a ( a ~ ,  {a~ . . . . .  a~,,_,, b,,+, . . . . .  b,}), 

(*){2) ~(b, , ,  6) holds  iff m is even.  

W h y  can we def ine  b,,,? First  suppose  m is even ;  then  p =  
Av(D~, M U{a,  I, . . . . .  a t~_,}U6)  include t p a ( a ~ . { a o  l . . . . .  a,l,,-t, b~+l . . . . .  b,}) and 

{,¢(x. 6)}. but  as bo th  sets are  finite and  p is finitely satisfiable in M (by definition) 
the re  is b,, as required .  If m is odd,  in (*)(1)  we can replace a~ by a~ as by an 
assumpt ion  tp(<ao l, a~ . . . .  ), M)  = tp((a 2, a~ . . . .  ). M) ,  and  we look for b,~ e M. 

N o w  use Dz. Clearly tpa ((a,: l < n), ¢) = tpa ((b~ : l < n>, ~). H e n c e  
{~¢la~. f)"~ . . . . .  ~: m < , o }  is cons is ten t  cont radic tory  to " T  does  not  have the  
i n d e p e n d e n c e  p rope r ty" .  

(ii) Same p roo f  essentially.  
(4) Conclusion. If M c_ B, then  
(j) for every  finite A. {peS~ ' IB) :P  finitely satisfiable in M}, has p o w e r  

<~DedAIMI). 
(ii) {p~ S " ( B ) :  p finitely satisfiable in M} has power  <~H., IS"'(M)I. 

Proof. The  change  f rom l - types  to  m types  is trivial. 
(j} Use  the  obvious  fact that  a 1-type p is in a set A iff for  some  ultrafilter D 

over  A, p c_ Av(D,  A) .  By (ii) of  the  Main  L e m m a  (3) the  averages  are  de t e rmined  
by types  of finite s equences  (of length  n . )  and  by a t h e o r e m  f rom Section 4 Ch. II 
f rom [4] the  n u m b e r  of  comple t e  n .  types  over  B is b o u n d e d  by Ded.( IMI) .  

Qjl A similar a rgument  using the result  of  (3)(i) that  types are de t e rmined  by 

~o-types over  M. 
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