ON MEASURE AND CATEGORY ${ }^{\dagger}$

BY
SAHARON SHELAH
Institute of Mathematics and Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel; and EECS and Mathematics Departments, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

We show that under $\mathrm{ZF}+\mathrm{DC}$, even if every set of reals is measurable, not necessarily every set of reals has the Baire property. This was somewhat surprising, as for the Σ_{2}^{1} set the implication holds.

Recently, following a proof in Raisonnier [1] which follows Shelah [3] §5, Raisonnier and Stern have proved: if the union of any к zero measure sets (of reals) has measure zero then the union of κ meager sets (in ${ }^{\omega} 2$) is meager; and if every $\boldsymbol{\Sigma}_{2}^{1}$ set of reals is (Lebesgue) measurable then any $\boldsymbol{\Sigma}_{2}^{1}$ set of reals has the Baire property, and M.U.P.-perfect set theorem. Those results were independently proved by Bartosynski. The following answers the question they have asked. I thank Magidor for a very helpful discussion.

Theorem. If in L there is an inaccessable cardinal, then in some forcing extension $L[G]$ of L the following holds: $Z F+D C+$ "Every set of reals is measurable" + "there is a set of reals without the Baire property" + "there is an uncountable set of reals with no perfect subset."

Proof.
(1) Scheme. We start with $V=L, \kappa$ an inaccessible (or just $V \models \mathrm{ZFC}+{ }^{\prime} \kappa$ strongly inaccessible"). We want to build a forcing notion B, which will be just the Levi collapse of κ to \boldsymbol{N}_{1} which Solovay used, and a special set P of B-names of reals. Later we force by B, let G be the generic set, $P[G]=\{\underset{\sim}{r}[G]: \underset{\sim}{r} \in P\}$

[^0]and the desired universe is the family of sets which hereditarily are definable in $V[G]=L[G]$, from a real, an ordinal and $P[G]$.
(2) Notation. Here a real is a function from ω to ω. We say r_{1} dominates r_{2} if for every large enough $n, r_{2}(n) \leqq r_{1}(n)$. Call $r \in{ }^{\omega} \omega$ quasi-generic over V, if no $\tau^{\prime} \in\left({ }^{\omega} \omega\right)^{v}$ dominates r. In forcing notions, bigger means giving more information; using a Boolean algebra we omit the zero and invert the order so 1 becomes the minimal element.
(3) Definition. We define what is an approximation: it is a pair (B, P) such that: B is a complete Boolean algebra of power $<\kappa$ (and $B \in H(\kappa)$ for simplicity), P a set of B-names of reals (here functions from ω to ω), more formally such a B-name r consists of ω maximal antichains of $B ;\left\langle b_{n, i}^{r}: i<\alpha_{n}\right\rangle$, and function f^{r} such that $b_{n, i}^{r} \|^{\prime \prime} r(n)=f_{\sim}^{\prime}(n, i)^{\prime}$. Let AP be the set of approximations.
(4) Definition. We define a partial order on (AP): $\left(B_{1}, P_{1}\right) \leqq\left(B_{2}, P_{2}\right)$ if: B_{1} ब B_{2}, i.e., B_{1} is a complete (Boolean) subalgebra of $B_{2}, P_{1} \subseteq P_{2}$, and if $\underset{\sim}{r} \in P_{2}-P_{1}$ then $\Vdash_{B_{2}} " r$ is quasi generic over $V^{B_{1} "}$.

Clearly:
$(4 \mathrm{~A}) \leqq$ is a partial order,
(4B) if $\left\langle\left(B_{i}, P_{i}\right): i<\alpha\right\rangle$ is increasing then it has a natural upper bound $\bigcup_{i<\alpha}\left(B_{i}, P_{i}\right) \stackrel{\text { def }}{=}\left(\left(\bigcup_{i<\alpha} B_{i}\right)^{c}, \bigcup_{i<\alpha} P_{i}\right)$ (where the c denotes completion).
(5) Let us force with AP, and get a generic set H; clearly no cardinal is collapsed or changes its cofinality, and no bounded subset of κ is added. Let

$$
B^{H}=\bigcup_{\{B:(\exists P)[(B, P) \in H]\}, \quad P^{H}=\bigcup\{P:(\exists B)[(B, P) \in H]\} . . . ~}^{U}
$$

Easily B^{H} is a complete Boolean algebra of power κ, collapsing any $\lambda<\kappa$ to $\boldsymbol{\kappa}_{0}$, satisfying the κ-chain condition, and P is a set of B-names, and $[(B, P) \in H \Rightarrow$ B is a complete subalgebra of B^{H} and for $\underset{\sim}{r} \in P, \mathbb{H}_{B^{H}}$ ' $\underset{\sim}{r}$ is a real"].
(6) Next, over $L[H]$ force by B^{H}, get a generic set G, and let $V^{*}=$ $\{a \in L[H, G]: a$ is hereditarily definable from a real, H, an ordinal and $\underset{\sim}{P}[H, G]\}$ where $\underset{\sim}{P}[H, G]=\left\{\underset{\sim}{r}[G]: \underset{\sim}{r} \in P^{H}\right\}$. By Solovay [4], $V^{*} \vDash " \mathrm{ZF}+\mathrm{DC}+$ κ is $\kappa_{1}{ }^{\prime}$.
(7) $V^{*} \vDash$ " $\underset{\sim}{P}[H, G]$ is an uncountable set of reals which contains no perfect set".

The first part is by the genericity of H. For the second part, suppose not, then
for some $p \in B^{H}$, and B^{H}-name T of a downward closed perfect subset of ${ }^{\omega>} \omega$, $L[H] \vDash$ " $p \Vdash_{B^{H}}$ every branch of T is in $\underset{\sim}{P}[H, G]$ ".

As B^{H} satisfies the κ-chain condition, for some $\left(B_{0}, P_{0}\right) \in H, T$ is a B_{0}-name, $p \in B_{0}$ (remember H is directed) so w.l.o.g. $\left(B_{0}, P_{4}\right) \Vdash_{A \mathrm{P}}$ "in $L[H], p \Vdash_{B^{H}}$ (every branch of $\underset{\sim}{T}$ is in $\underset{\sim}{P}[\underset{\sim}{H}, \underset{\sim}{G}]$)".

We find B_{1}, B_{0} ๔ $B_{1} \in H(\kappa)$, and a B_{1}-name r of a branch of T, which is not in $L[H]^{B_{0}}$. Then $\left(B_{0}, P_{0}\right) \leqq\left(B_{1}, P_{0}\right) \in A P$ and $\left(B_{1}, P_{0}\right) \Vdash_{A P}$ " $p \Vdash_{B^{\prime \prime}}(\underset{\sim}{r}$ is a branch of $\underset{\sim}{T}$ and $\underset{\sim}{r} \notin \underset{\sim}{P}[\underset{\sim}{H}, \underset{\sim}{G}]$)" (the $\underset{r}{r} \notin \underset{\sim}{P}[\underset{\sim}{H}, \underset{\sim}{G}]$ holds because, for any $\underset{\sim}{s} \in{\underset{\sim}{P}}^{H}$, either $\underset{\sim}{s}$ is a B_{0}-name and then cannot be forced to be equal to r by its choice, or $s \notin P_{0}$, hence, if $\left(B_{1}, P_{0}\right) \in \underset{H}{H}, \underline{s}$ is forced to be quasi-generic over $L[H]^{B_{1}}$ (equivalently over $L^{B_{i}}$), hence cannot be equal to any member of $V[H]^{B_{1}}$, in particular to $\underset{\sim}{r}$).
(8) $V^{*} \models{ }^{* \omega} \omega-\underset{\sim}{P}[H, G] "$ is of the second category in every $N_{s}=$ $\left\{r \in{ }^{\omega \prime} \omega: r \upharpoonright l(s)=s\right\}\left(s \in{ }^{\omega \geqslant} \omega\right)$.

The proof is similar to (7) for we could have chosen $\underset{\sim}{r}$ a B_{1}-name of a real in N_{s}, generic over $L^{B_{0}}$ equivalently over $L[H]^{B_{1 "}}$.
(9) Remember $G \subseteq B^{H}$ is generic over $L[H]$. Now $V^{*} \models$ " $P[H, G]$ is of the second category in every $N_{s}\left(s \in{ }^{\omega>} \omega\right)$ ". We proceed as in (8), the only difference is that we use $\left(B_{1}, P_{0}, \bigcup\{r\}\right)$ (instead of $\left(B_{1}, P_{(1)}\right)$) where $\underset{\sim}{r}$ is a B_{1}-name of a real generic over $V^{B_{0}}$. The point is that as r is generic (hence quasi-generic) over $V^{B_{0}}$, clearly $\left(B_{0}, P_{0}\right) \leqq\left(B_{1}, P_{0} \cup\{r\}\right)$.
(10) The main point: $V^{*} \|$ "every set of reals is measurable".

Let $A \in V^{*}, A \subseteq \mathbf{R}^{V^{*}}=\mathbb{R}^{L[H, G]}$, so there is a formula $\varphi(x,,$,$) and$ $\mathrm{AP} * B^{H}$-name $\underset{\sim}{r}$ of a real and ordinal α such that

$$
A=\{x \in \mathbf{R}: L[H, G] \vDash \psi \mid x, r[H, G], \alpha, P]\}
$$

As AP is κ-complete, $B \stackrel{H}{\sim}$ satisfies the κ-chain condition, clearly there is $\left(B_{0}, P_{0}\right) \in H$ such that $\left(B_{0}, P_{0}\right) \Vdash_{\text {AP }}$ " $\underset{\sim}{r}=\underset{\sim}{s}, \underset{\sim}{r}$ a B_{0}-name of a real". We know that almost all reals of V^{*} (in the measure sense) are random over $L[H]^{B_{0}}$ (as for any $(B, P) \in \mathrm{AP},(B *$ Amoeba, $P)$ is $\geqq(B, P)$ (and is in AP)). So as in Solovay [4], it is enough to prove:
(*) if $B_{0} ๔ B_{1}^{l} \lessdot B_{2}^{l},\left(B_{0}, P_{0}\right) \leqq\left(B_{2}^{l}, P_{2}^{l}\right), B_{1}^{l} / B_{0}$ is random real forcing, for $l=1,2$ and f is an isomorphism from B_{1}^{1} onto $B_{1}^{2}, f \mid B_{0}=$ the identity, then we can amalgamate in $\operatorname{AP}\left(B_{2}^{1}, P_{2}^{1}\right),\left(B_{2}^{2}, P_{2}^{2}\right)$ over f
[i.e., there is $(B, P) \in \mathrm{AP}$ and isomorphisms g_{l} from B_{2}^{l} onto B_{2}^{l+2} mapping P_{2}^{l} onto P_{2}^{l+2}, such that $\left(B_{2}^{l+2}, P_{2}^{l+2}\right) \leqq(B, P)$, and $g_{2} f=g_{1} \backslash B_{1}^{l}$]. [Note that where

Solovay uses actual automorphism of B^{H}, we use automorphism of names, i.e., its genericity; it doesn't matter.] For this we need
(11) Key Fact. If $\left(B_{1}, P_{1}\right) \leqq\left(B_{3}, P_{3}\right), B_{1} \ll B_{2}<B_{3}, B_{2} / B_{1}$ is random real forcing, then $\left(B_{1}, P_{1}\right) \leqq\left(B_{2}, P_{1}\right) \leqq\left(B_{3}, P_{3}\right)$.

Proof of Key Fact. The first inequality is trivial; for the second we have to prove: if $\underset{\sim}{r} \in P_{3}-P_{1}$ then $\Vdash_{B_{3}}$ " r_{3} is not dominated by any real in $L^{B_{2} \text { ". However }}$ it is well known that every $x \in\left({ }^{\omega} \omega\right)^{L_{2}}$ is dominated by some $x^{1} \in\left({ }^{\omega} \omega\right)^{L^{B_{1}}}$ [as B_{2} / B_{1} is random real forcing] and r is not dominated by x^{1} as $\left(B_{1}, P_{1}\right) \leqq\left(B_{3}, P_{3}\right)$.
(12) Proof of (*) of (10) from the Key Fact. We can find $B_{2}^{3}(\in H(\kappa))$ and g such that $B_{1}^{2} \ll B_{2}^{3}, g$ an isomorphism from B_{1}^{2} onto B_{2}^{3} extending f, and $B_{2}^{3} \cap B_{2}^{2}=B_{1}^{2}$.

Let

$$
\begin{aligned}
Q=\left\{\left(p_{2}, p_{3}\right):\right. & p_{2} \in B_{2}^{2}, p_{3} \in B_{2}^{3} \\
& \text { and for some } r \in B_{1}^{2}, \\
& \left(\forall q \in B_{1}^{2}\right)[r \leqq q \rightarrow \\
& \left(r, p_{2} \text { are compatible in } B_{2}^{2}\right. \text { and } \\
& \left.\left.\left.r, p_{3} \text { are compatible in } B_{2}^{3}\right)\right]\right\}
\end{aligned}
$$

with the order:

$$
\left(p_{2}, p_{3}\right) \leqq\left(p_{2}^{\prime}, p_{3}^{\prime}\right) \quad \text { iff } p_{2} \leqq p_{2}^{\prime}, p_{3} \leqq{ }_{3}^{\prime}
$$

We identify $\left(p_{2}, 1\right)$ with $p_{2},\left(1, p_{3}\right)$ with p_{3}. Now (as forcing notions) $B_{2} ๔ Q$, $B_{2}^{3} \measuredangle Q$, and let B be the completion of Q (to a Boolean algebra); now (see e.g. [3] §6) $B_{2}^{2} ๔ B, B_{2}^{3} \lessdot P$ (and elements of $B_{2}^{3}-B_{1}^{2}, B_{2}^{2}-B_{1}^{2}$ are not identified with elements of B_{2}^{2}, B_{2}^{3} resp.). Let P_{2}^{3} be the image under g of P_{2}^{1}, and $P=P_{2}^{2} \cup P_{2}^{3}$. We choose $g_{1}, g_{2}, B_{2}^{3}, P_{2}^{3}, B_{2}^{4}, P_{2}^{1}$ in (*) as id, $g, B_{2}^{3}, P_{2}^{3}, B_{2}^{2}, P_{2}^{2}$ here resp. What we want is $\left(B_{2}^{2}, P_{2}^{2}\right) \leqq(B, P),\left(B_{2}^{3}, P_{2}^{3}\right) \leqq(B, P)$. By the symmetry in the situation it is enough to prove:
(**) if $\underset{\sim}{r} \in P-P_{2}^{2}$, then in $L[H]^{B}, \underset{\sim}{r}$ is quasi-generic over $L[H]^{B_{2}^{3}}$.
By the Key Fact (11), r is quasi-generic over $L[H]^{B_{1}^{2}}$. Let $G_{1}^{2} \subseteq B_{1}^{2}$ be generic over $L[H]$. Now in $L\left[H, G_{1}^{2}\right], B / G_{1}^{2}$ is equivalent to $\left(B_{2}^{2} / G_{1}^{2}\right) \times\left(B_{2}^{3} / G_{1}^{2}\right)$, and $\underset{\sim}{r}$ is (essentially) a B_{2}^{2} / G_{1}^{2}-name of a real. Let s be a $\left(B_{2}^{3} / C_{1}^{2}\right)$-name of a real, and it suffices to prove
$(* * *)$ in $L\left[H, G_{i}^{2}\right], \mathbb{H}_{B / G_{i}^{2}} " \underset{\sim}{r}$ is not dominated by $\underset{\sim}{s} "$.
If not, then for some $\left(p_{2}, p_{3}\right) \in\left(B_{2}^{2} / G_{1}^{2}\right) \times\left(B_{2}^{3} / G_{1}^{2}\right)$, and $k<\omega$,

$$
\left.\left(p_{2}, p_{3}\right) \Vdash_{B / G \bar{i}} "(\forall n)(k \leqq n<\omega \rightarrow \underset{\sim}{r}(m) \leqq \underline{s}(n))\right) \text {. }
$$

For every $l<\omega$ there are $m_{l}<\omega$ and $p_{3}^{l}, p_{3} \leqq p_{3}^{l} \in B_{2}^{3} / G_{1}^{2}, p_{3}^{l} \Vdash_{B_{2}^{3} / G_{1}^{2}} " \underset{\sim}{s}(l)=m$ ". Clearly $\quad\left\langle m_{l}: l<\omega\right\rangle$ is in $L\left[H, G_{1}^{2}\right]$ hence $p_{2} \Vdash_{B_{2}^{2} / G_{1}^{2}}{ }^{\prime \prime}(\forall l)$ $\left(k \leqq l<\omega \rightarrow \underset{\sim}{r}(l) \leqq m_{l}\right)$ ". Hence for some $p_{2}^{1}, p_{2} \leqq p_{2}^{1} \in B_{2}^{2} / G_{1}^{2}$ and $l, k<l<\omega$, $p_{2} \Vdash$ " $\underset{\sim}{r}(l)>m_{1}$ ". Now $\left(p_{2}^{1}, p_{3}^{l}\right) \in\left(B_{2}^{2} / G_{1}^{2}\right) \times\left(B_{2}^{3} / G_{1}^{2}\right)$ contradicts the choice of $\left(p_{2}, p_{3}\right)$ and k. So we have proved $(* *)$ hence $(*)$ of (10).

Remark. What happens if, in the theorem, we change in the conclusion $V^{*}=$ "every set of reals has; the Baire property"?

It seems that a different method is necessary (non- κ-chain condition).

References

1. J. Raisonnier, A mathematical proof of S. Shelah's theorem on the measure problem and related results, Isr. J. Math. 48 (1984), 48-56.
2. J. Raisonnier and J. Stern, On the relationship between measure and category, to appear.
3. S. Shelah, Can you take Solovay's inaccessible away? Isr. J. Math. 48 (1984), 1-47.
4. R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. (2) 92 (1970), 1-56.

[^0]: ${ }^{\dagger}$ This research was partially supported by an NSF grant and the U.S.-Israel Binational Science Foundation.
 Received November 15, 1983 and in revised form January 17, 1985

