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ABSTRACT 

In those notes we prove in ZFC: (a) that the monadic theory of  linear order 
(syntactically) interprets and has the same Lowenheim number as second 
order logic (the interpretation is semantical hut not in the "classical" way), 
(b) a parallel (weaker) result for the monadic logic for completely metrizable 
spaces. The main results are in §§5, 6. 

§0. Introduction 

For a survey and history see Gurevich [Gu]. 

We continue here [Sh42], [GuSh123], [GuSh143] and, in particular, 

[GuSh 151 ], where we used weak instances of GCH (so that the proof does not 
work in ZFC) and quite saturated orders; topologically, those orders are very 

far from first countable spaces we use here. In [Sh205] we got the result for 

completely metrizable spaces - -  but again not in ZFC (essentially when V = L). 
Note that in such interpretations we have two problems: to find models in 

which we can interpret much (see §2, §3), and to show that we can determine 
when the interpretation is essentially what we want, here mainly that a relevant 

order is a well ordering (see 4.4). Here our interpretations are not standard, so 

we interpret second order logic in a universe after appropriate forcing. But as 

the forcing adds no new short sequences of ordinals (i.e. the topology is x- 

distributive for appropriate x) we can go back to our original universe. The 

paper is self-contained. 

t The author would like to thank the United States-Israel Binational Science Foundation for 
partially supporting this research, and Alice Leonhardt for the beautiful typing. Publication No. 
284b. 

Received October 7, 1988 and in revised form July 31, 1989 

94 

Sh:284b



Vol. 69, 1990 MONADIC LOGIC 95 

By [GuSh168] we cannot use classical interpretations for the real line. In 
general, we suggest using the following to get the same result for, e.g., the class 
of linear orders. 

You work in a universe of set theory such that: 
(*) for every regular 2 > ~0 and A i C_. 2 for i < 2, there is a pressing down 

function h such that: 
(a) for a, i < 2, ifAi is stationary then so is {~ EA,: h(~) = a}; 
(b) if ~ < 2 ,  cf(~)>R0 then there is a club Ca of ~ such that 

= h O ) ] .  

(This is quite easy to force.) Now combine [GuSh168] and [Sh42], §4. 

Problems on Monadic Logic 

Problems of group a 
(1) Is there a sentence in monadic logic, characterizing the real order up to 

isomorphism? Note, if this fails, then by Part A (i.e. [Sh284a]) the second order 
theory of the continuuum is necessarily the same in V e and VQ where 

Q = Levy(l~o, Rl), 

P = Levy(Ro, Ro) (i.e. Cohen forcing). 

(2) Is there a monadic formula ~(X) such that for X _C R 

(R, <)  ~ ~0[X] iffXis countable 

(see [Gul]). Now we know. 
(3) (MA) Is the monadic theory of all (A, <), '°>2 ___ A C_ ̀ 0>=2, such that for 

v~'°>2, I { q : v < q E A } [  =R~thesame? 
(4) What about the theory of topological spaces with a basis of clopen sets? 

(Under GCH, see [Sh205].) 
(5) Show that the Borel monadic theory of the real line is decidable. 

Problems of group fl 
(1) Show the consistency of: the monadic theory of well ordering is decid- 

able and has Lowenheim number R`0. 
(2) Show the consistency of: the monadic theory of {(°~>--2, <)  : 2} has a 

small Lowenheim number. 
(2)(A) Show that the monadic theory of (`0~2, <)  is bi-interpretable with 
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{¢t. q/a second order sentence, I I L ~ a )  "R0 ¢ ¢'"}. 

(3) Similar questions on (~'>2, < )  in L(Q ~) (see [Sh205]). 

§1. Preliminaries 

1.1. DEFINITION. (0)a~,  {: vary over regular open non-empty sets of the 
relevant topology. 

(1) For a topological space X and a formula ~o( u . . . .  ), let 

va l  •(u . . . .  ) = U (  u : ¢( u . . . .  ) is satisfied}. 

(2) A topological space X is x-weakly distributive i f  the union of < x 
nowhere dense subsets of X is nowhere dense in X. 

X is K-distributive i f  for every ( / ~ : a < a *  < x ) ,  where /~  is a maximal 
family of pairwise disjoint regular open non-empty subsets of X, there is an 
open u ~ ~ such that A, ( 3 u~ E l j  u c_ u~. 

(3) A topological space Y has [weak] distributivity K i f  for every regular open 
u, Y r u is ~c-[weak] distributive but not tc+-[weak] distributive. 

1. IA. FACT. A 1c-distributive topological space is ~c-weakly distributive. If  
the topology is induced by a dense linear order (on the points) then the inverse 
is true too. 

1.2. DEFINITION. For a topological space X, Mx is the model with universe 
~(X)  and relations __c_ (being a subset) and Op -- { ~ C_ X: t~ open}. This we 
call the monadic topology (of X). We sometimes use Mx instead of X or 
M = Mx instead of X. 

1.3. NOTATION. Let PsOr (short for Pseudo Ordinals) be 

{(a, q); a an ordinal, q E Q  (Q the rationals) such that: 

i f a  is a limit ordinal of cofinality R0 then q > 0) 

ordered lexicographicaUy. We identify (a, 0) with a. We use a, fl, etc. to denote 
members of PsOr. Let (a, q)tl]= a and (a, q)t2]= q. Let T denote a set of  
sequences of members of PsOr, closed under initial segments. T is a tree m by 
the order of being initial segments. For a sequence r /o f  length a successor 

ordinal let q(lt) de~ q(lg(q) - 1) [It stands for "last"]. Let r/<l v mean t/is an 
initial segment of v, and q <~ v means r/_~ v & t / ~  v. Let 

Rangiq(t/) = {t/(i)[t] : i < lg(q)}. 
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1.4. DEFINITION. (1) For a tree T 
(a) < 15ix is the lexicographic order: r/<~x v if r / <  v or r/t a = v t a, r/(a) < 

v(a) (where a < lg(r/), a < lg(v), lg(r/)). 
(b) (i) max(T) = { r /ET :  for no v E T ,  t? .q v}, 

(ii) nmax(T) = T \  max(T), 
(iii) lim(T) = {r/~ T: lg(r/) is a limit ordinal}, 
(iv) Mlim(T) = lim(T) N max(T), 
(v) Clim(T) = {r/Elim(T) : lg(r/) has cofinality N0}. 

(2) A tree T is called standard if: 
(a) for every r/~ T, and (a, ql)E PsOr, (a, qz) E PsOr, we have: 11 ^ ((a, q0) E 

T e=~ rl ^ ((a, q2)) E T , 
(b) if r/^ ( a ) ~ T a n d f l < a ,  then r/^ ( f l )~T .  

1.5. DEFINITION. Let Y be a topological space, D __ Y, P c_ Y, and E~, 

E2C_D. 
(1) We say P is (D, El, E2)-perfect if: P is closed, has no isolated point (in the 

induced topology), P n D __ El U E2, and P n El, P n E2 are dense in P. 
(2) We say P is a strongly (D, E~, E2)-perfect set i f  it is (D, E~, E2)-Perfect 

and P \ D is dense in P. 
(3) We say Pis  a hereditary strongly (D, E,, E2)-perfect set i f  it is (D, E~, E2)- 

perfect but for every (D, E~, E2)-perfect P '  c_ P we have P '  \ D ~ ~ .  

1.6. DEFINITION. In a topological space Y, for subsets X), X2 we let: 
(i) Xl-----X2 iff(X~ - X2) U (X2 - X,) is nowhere dense, 
(ii) Xl ___ * X2 iff X, - )(2 is nowhere dense. 

§2. Quite distributive linear order for which wonder sets exist 

2.1. DEFINITION. For T (as in 1.3, of course), Toplx(T) is the topology 
induced on T by the linear order <ix (i.e. the topology with the set of open 
intervals as a basis). 

In this section we use only the topology from 2.1. 
We now define the topologies we shall mainly use (main case: ( = x). 

2.2. DEFINITION. For cardinal 2, ordinal ( < 2 and non-empty sets of  limit 

ordinals S~ ___ 2, $2 _c 2, letting p = (2, ( ,  Sl, $2) we define T, D~ (i ~$2), D, Da 
(a c_ $2), Y(more exactly T = T(p), etc.) by 
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T = {q : q is a sequence of  elements x E PsOr, where x tq 

is smaller than 2 + 1, t /has length < ~ and is 

such that: 

(i) for no limit ordinals 5 < lg(q), 
sup{q(i)tq + 1 : i  < ~ ,  tl(i)t'<2}ES,, 

(ii) for no a + 1 < lg(r/), q(a) lq is in $2, 

(iii) i f~  < lg(q), cf(5) = R0 then 
/](t~)[ll = 0:=. q((~)[2l > 0, 

q ( g ) t u  = ;t ~ r / (5 )  t2] =< O, 

(iv) i f5  + 1 < lg(t/), cf(5) = R0 then 
r / (5 )  [~] = 2 ~ r / (~ )  [2] < O, 

(v) i f r / (a)[q~S2 then q(a) [2] = 0. 

Di de=f (r] E T" i = q(lt) u]} for i ES2 (so r /EDi ~ lg(q) is a successor ordinal), 

D def Ui~s2 Di, for a c_ $2, Da de=f Uiea D~ (no confusion will arise with D~), 

y d,j max(T)  U lim2(T) where lim2(T) = {q" lg(r/) has the form 3, c f5  = R0, 

r /$  Mlim(T)}, we identify it with the subspace induced by TOplx(T) on Y. 
For r /E T le t  ~(r/) = sup{q(i) u] + 1 : i < lg(~/), r/[l](i) < 2 } .  

2.2A. REMARK. (1) Note that: 

max(T) = Mlim~(T) U M2(T) U D (disjoint union) 

where 

Mlimt(T) = {r/E T: 3 = lg(q) is limit and sup{q(i) tq + 1 : i < 3, r/(i) ill < 2}ES~}, 

Mz(T) = {r/E T:  lg(~/) has the form 5 + 1, cf(5) = Ro 

and r/(3) is (2, 1)}. 

(2) We could have added in the definition of  T: 

(v) lg(q) = (~ + l, ( ~ e S 2 ~  q ( g ) = ( 0 ,  0). 

2.3. FACT. (1) T(p) is (by < t J  dense in itself (here we use the density 

of  Q), 

(2) if ~ is limit or the successor of  a limit ordinal then each D~ is a dense 

subset of  T(p) (hence D and Y are), 

(3) if (Vg ~ S t  u $2) c f g  = R0, then Y satisfies first countability axiom (here 
we use Q and the case " c f g  = R0" in the definition of  PsOr and (iii) and 
(iv) in the Definition of  T in 2.2), 
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(4) Y is dense in itself and Hausdorff, 

(5) in Y "almost" every monotonic o9-sequence (r/. : n < o9) has a limit 

the exception satisfies for some v and a, for some no for n _-> no, v < ~/., 

q.(lg(v)) = (a, q.) and (q. : no _-< n < 09) is monotonic; similarly in T, 

(6) i fP  __ Yis closed dense in itself, E~ __ Pdense in Pfor  n < o9, E0 _c y \  D 

then there is P' c_ p closed dense in itself, E~ f~ P' dense in P and P '  A D 

is countable and for some 6 < 2, 

cf6  = N0 [q E P '  \ D ~ lg(r/) = 6], 
[ q ~ P '  \ D ~ l g ( q )  = t~ + 1 & ~/(6) = (2, 0)], 

[q ~ P '  N D ~ lg(q) < 6]. 

(7) The P'  in (6) satisfies: for every perfect P" C P', p"  \ D is dense in P". 

2.4. CLAIM. (1) Suppose 2 > x + and 2 and x are regular cardinals. Then 

there is S~ __ {6 < 2 : cf(6) = R0} such that: 

(,) the set {6 < 2 : c f ( 3 ) = x ,  SI n 6 is not a stationary subset of  6} is 

stationary 
(if x = R0, this says nothing). 

(2) If 2, x, S~ are as in (1), $ 2 _ 2  is a set of  limit ordinals and 

(Va < ;t)[lal ~ < 2] then the distributivity of T = T[(2, x, Sl, $2)] and of Y is 
exactly r .  

(3) Suppose 2 = cf(2) > (, ( E {~, ~ + 1 }, ~ limit, x >= cf(~), 5'1 and $2 are 

sets of  limit ordinals < 2, the set {~ < 2 : c f~  = x, SL N ~ not stationary (in d)} 

is stationary, and T = T[0., (, S~, $2)]. If Va < 2 [ [ a [  ~ < 2 ]  then in the follow- 

ing game player I has no winning strategy: a play lasts cf(~) moves, in the ith 

move player I chooses an open ~2~ (in the topological space Topj,(T)), 

g~2i ~ (")j<2i ~j, UZi N Mlim(T) ~ ~ ,  and player II chooses open g~2i+l ~ g'~2i 

such that u2~+, n Mlim(T) ~ ~ .  Player I wins if for some i < el(C) he has no 
legal move. 

PROOF. (1) Look at [Sh237e] Lemma 4 (p. 278); we can rephrase it as 
follows. 

2.4A. LEMMA. Let 2 > Ko be regular, R be a set of  regular cardinals, 
(VxER)K + < 2 ,  and 

(S* : K E R )  besuch that S* ___ {~ < 2  :cf& = x} stationary. 

Then we have S~ (x ~ R) such that: 
(a)' S~ c_C_ S,* is stationary (as a subset of;O, 
(c)' if  6~S~, x E R  then 6 ~ ((3{Su: p ~ R  ~ x}) is not a stationary subset 

of~. 
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[The changes in the proof are minor. Choose S(x,  i) c_ S*, and define T¢ in (iv) 
(in [Sh237e], Lemma 4) as 

T¢ = { 5 " S e U {  s(x¢, i )  " i~{7~" <~}} and 

U{S~ ¢" x E R  O x¢} is not stationary in 5} 

(and in 2797-9 change x~ + , x~, x, x0 +, x + to x$, x~, x~+.] 

CONTINUATION OF THE PROOF OF 2.4. (2) Follows by 2.4(3) (which is 
s t ronger--  it suffices that player I does not win any such game of length a < x). 

(3) Left as an exercise. 

2.4B. REMARK. (1) In 2.4(2) instead of(2 is regular and ) , (Va<2) l a l  ~ < 
2, it suffices to assume (4 regular and): 

(a) 2 ~ = 2 or even, 
(b) there is a stationary S* ___ {5 < 4  : cf(5) = x} which is in I[2) (i.e. good, 

see [Shl08], or better, [Sh88], Appendix, and then use S~ ___ S*). 
(2) In 2.4(3) instead of ( V a < 2 ) [ l a l ~ < 2 ]  it is enough to assume 

{5 < 2  : S~ n 5 is not stationary, cf5 = x} contains a stationary good set. 
(3) Remember that i f2  =/z +, ~ regular, then {5 < 4 : c f 5  < / t } E I [ 2 ]  (see 

[Sh 300a] or [Sh 351, 4.1]). 

2.5. MAIN CONSTRUCTION LEMMA. Suppose 
(*) p = ( 2 + , x ,  S1, S2), x > R 0  is regular, 2 = 2  ~, $ 1 _ { 5 < 2 + : c f ( 5 ) =  

R0, 5 > x} is stationary, $2 = { i + to : i <2} .  
Then for every equivalence relation 8 on $2, there are W, W ÷ c_ Mlim(T) such 
that for any E c_ D and open ~o c_ Y the following are equivalent: 

(a) i f  ~t is an open subset of  ez o and Et, E2 C_ E are dense in Y[p] O ~ then: 
(al) for some strong (D, Et, E2)-perfect P, P \  D C__ W n ~l but 
(a2) for no strong (D, E, E)-perfect P, P \ D C_ W ÷; 

(b) val [V~es~E N ~C_ D~/8 O ~] is densein Y O ~0; 
(c) like (a) but we replace (a l) by the negation of: 

(al) '  for every strongly (D, El, E2)-perfect P, P C_ ~ there is PI c_ p 
which is strongly (D, E~, E2)-perfect and P1 \ D is disjoint from W 
(but not empty). 

2.5A. REMARK. (1) If 8 has < x equivalence classes then we can omit (a2) 
while retaining the equivalence. 

(2) We could, of course, restrict ourselves to E dense in ~0. 
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2.6. LEMMA. Let 2 > x + R0, x = cf(x) > R0, S~ C__ {J < ;t + : cf(J) = R0}, 

2 = 2 ~, St stationary, Sz = {i + 09: i < 2 } .  

Then the conclusion o f  2.5 holds also for T = T ( p )  when p =  
(2 +, x + 1, St, $2). 

REMARK. The main  addit ion is x = R0. 

PROOF. Like the proof  of  2.5. 

PROOF OF 2.5. Let {(N~: l < 09) : a < a * }  and the functions ~, h~.p be 

from the black box for 2, x, the stationary set S~ C_C_ 2 ÷ and A = 2 ÷ U T(see I of  

the Appendix), so h~.~ is the isomorphism from Ng onto N~ when ~(a) = ~(fl). 

Note that h~. p is the identity on Ngo tq N~ tq 2. For every ot we define P~, perfect 

or  empty. The definition is split into three cases. 

We let N ~ da N~. 

Case A.  There are fl, i, E~, E2 u and a such that: 

(i) ((fl) = ( (a)  and i = i¢¢~)ES2, the sets E~, E2 _c Dmr are dense in Y 
(g  is the equivalence relation on Sz), u is an open set of  Y, and 

aC_S2,1al  <=x, 
(ii) we have 

(.2 + U T, 2, i, <~ , < ,  <t~,Et, E2, Di, 
de___f 

g, {(a, t/, t/(a) : t /E  T, oe < lg(q)}, 

{ ( j , x )  " x ~ D s } , a , ~ , ,  Y, ~, U Dj) 
jEa /yEa U(r+ I)' 

(iii) [ t /~  T N N~ ==, {t/~ i: _-<_ lg(t/)} c_ Ni l .  
We choose the minimal  such/?, and any such M (but such that M etc. depend 

on ~ (a) only, rather than on a!). Let ?, E 2 + N N a, ;t < ?, < ;,, + ~, U ,  <,o ?, = 
sup(N p ¢3 2 +). We now define by induction on n, for every p ~ "co, a sequence 

t/p and ordinal jp such that: 

(i) t/p ~ T N N a and t/p ^ (j'p + co) E T N N a and L is a successor ordinal, 

(ii) t b ^ (/) + co ) is in E~ if  l is even and in E2 if  l is odd, 

(iii) i f  n = m + 1, then tbr,, ^ (jp + p(m))  is an initial segment oft/p, 

(iv) sup(RangVl(t/a)) >= ~,,_ L when n > 0, 

(v) { t/ E Y : t/ ~ ~ <~ t/ } ~ u . 
There is no problem to do this ( remembering that N p < M). Let t/~ = hp,,(t/p) 

for p ~ °'>to (so t/~ = t/p, and if ~(a) = ~(~,) = ~(~) then hr,¢(t/~)= t/~). Let for 
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def a 

p E  °'o9 and a, r/7, = Um<o~r /prm - -  SO it has limit length ~(a) (ES t )  so h ~  
Mlim T(p) c_ Y, and: 

P~={r/ ;  ^ Qp +02):pE(°>(.o} U {r/; :pE°'o2}. 

Check that P~ is as required. 

Case B. There are fl, i, E,  ~ and a such that: 

(i) ((fl) = ~(a) and E _C D is dense in D, ~ an open subset of  Yand  a ___ $2, 

la l  ___<x, 
(ii) for no ~'C_ ~, n <o9 ,  i t , . . . , i ~ E S 2  is E n ~ '  included in 

O i , / 8  U • • • U D i . / 8  , 

(iii) N~ < M d~f (2+ U T, 2 + , < , < l  ,<ix, E,  { ( x , j ) ' x E D j } ,  

g, { (ct, r/, r/(ct)) : r/E T, a < lga} a, e, Y, U j~aDj)eEa u(x+ t), 
so  

(iv) x + 1 ___ Ng, hence for n < w 

[r/E T n {r/r i:  i =< lg(r/)} ___ 

[Note: As N~, M have the same vocabulary, Cases A, B are disjoint.] 

We choose the minimal such fl (depending on ~(a) only) and any such M. 

Let 7nE2 + n N p, 2 < 7 ,  <Tn+l, Un<to~Jn : sup(N p h 2+). We now define by 
induction on n for every p E ">-- n a sequence r/p and ordinals jp, ip such that: 

(i) r/p E T n N p, r/p ^ ( jp + 09 ) E T h N p, jp is a successor ordinal, 
(ii) r/p ^ (jp + o9)E D,, h E,  
(iii) p v~ v=*ip/g ~ i J g  ^ r/p~ r/~, 
(iv) if m < lg(p) then r/ptm ^ ( Jp  " J i - p ( m ) )  is an initial segment of  r/p, 
(v) sup(Rangttl(r/p)) >___ 7~,) when lg(p) > 0, 

(vi) {r/EY:r/< ><~ r/}(: ~. 
We continue as in Case A. 

Case C. Neither Case A nor Case B. 

Let P= = Z~. 

So the P~'s are defined. 

Let t~ = { r/t 7 : r/E P~ O Mlim T, 7 < lg(r/) }; it is a tree, and if ~ (a) = ~ :=, P~ 

let s C = U{t~ : ~ ( a )=  ~}. Now each t~ is a tree, and [by (B)(c) of  Theorem I 

of  the Appendix] also s¢ is a tree. Also, by the same clause, if r/E t~ \ tp, 
vE tp \ t~ ,  ~(a)=~ff l ) ,  r / (~)¢v(~),  r / t ~ = v ~ ,  then r / t~  is not a splitting 

point of  t~ (i.e. does not belong to {r/~:p~°'>og}); it thus holds because 

E $2 _ 2. Note (we use the last sentence for ~ ( b )  below): 
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~ ( a )  if r/EP~ then sup rang(r/) _< ~(a), and equality holds when r /~D.  

(b) if ~ S l ,  11 4: v~U{P~ : ~(a) = ~}, r/t ~ = v ~ ~, r/(~) 4= v(~) then: q(~), 
v(~) > 2 or 
r/(~) + o~ = v(~) + co ~$2 c_ ,~, 
(r/t ~) ^ (r/(¢) + co) ED~ where i = i¢(~) in Case A, i = i,r~ in Case B. 

Now let W + = U {P~ : a < a(.), for a Case B occurs} \ D. 
Note: 
~)0 if for a Case A or B occurs then P~ is strongly (D, E~:, E~V~)-perfect, 
~ ) l  for open u___ Y and E __. D, E n u is dense in u, the following are 

equivalent: 
(ct) for every u'___ u, letting E ' =  E n u', there is a (D, E', E')-peffect 

P , P \  D C_ W +, 
(~) for no u '  __C n, n < 09, i~ . . . .  , i~ E $2 is E n n '  c__ D~,/8 U D~/8 U 

• • • U Did,r. 

We leave that to the reader and a similar argument is advanced below [(13)=~ (a) 
by (C) of Theorem 1 of the Appendix and our choice of P, in Case B; 7 (13)~ -l(a) 
as in the proof of"why is (*) enough"]. 

Let W = U {P~ : a < a(*), for a Case A occurs} \ D. Now in the lemma, 
(b) =~ (a) was taken care of (by the choice of the N~'s (i.e. part (C) of Theorem 1 
of the Appendix) and the PSs and ~ ) .  Now (a)=~ (c) is trivial. So assume Co) 
fail for the pair E, n0 and we shall prove that (c) fails. For this it suffices to 
assume that (a2) holds and show that (al)' fails. So there is an open subset u of 
Y N n0, ~ 4: ~ ,  and for no open non-empty ~' _c_ n, ( 3 i)[E n u' C_ D~:8]. 

(*) there is a non-empty open n~ __ u and dense disjoint E~, E2 ___ E n u~ such 
that for no i E $2, 
El n Di/~ 4: ~ A E~ N Di/,r ~ J~ . 

Why is (*) enough? 
We shall show that E~, E2, u~ exemplify the failure of (c) (as (c) for E, n0 

implies its version for E, n0. I.e. we prove that (al)' holds for E~, E2, u~. 
Suppose P is a strongly (D, E~, E~)-perfect set, P \  D C_ W n n~ or just contra- 
dicting (al)'. Let ~ (P)=  M i n { ( : P \  D __ U¢~)~cP~} and choose P with mini- 
mal ((P) (which is a strongly (D, Et, E2)-perfect set, contradicting (al)'). 
W.l.o.g. by 2.3(6) P n D is a countable dense subset of P, hence also P \  D has a 
countable dense subset. Trivially ( is a limit ordinal [each ((a) is a limit 
ordinal]. Also its cofinality is R0. [Otherwise, as A. ((P.) 4: ( and P \  D has a 
countable dense subset, for some ( ( , ) <  (, ( P \ D ) n  U¢(.)=~¢~,)P. is dense in 
P \ D .  Hence by ~)(a) for a dense subset of r /~PkD we have 
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sup(2 n RangUl(r/)) < ~(*), hence for every r /EP  \ D, we have 
sup(2 O Rangtll(r/)) < ~(*); as x <  ((*) (by ~)(a) ~(.) is in the closure 
of the range of the function ~ which is a subset of SI and in 2.5 we assume 
S~ N x = ~ ) .  Also for every r /EP,  we have sup(2 n RangW(r/)) < ~(*). How- 
ever, again by ~)(a) this implies P \  D C_ U¢t,)zcc. ) P~, contradicting ( ( . )  < 
and the minimality of ~]. W.l.o.g. P \  D _C U{P~ : ((a) = ~}. So Case A holds 
for a when ~(a)= ~ and let i(() be the i which appears there (it does not 
depend on a). W.l.o.g. D~Io/8 N E~ = ~Z : otherwise exchange E~, E2 (remember 
we are assuming (.)). 

Let ( -- U.<,o 7., 7,, < 7.+l- 
We define by induction on n < 09, r/p, jp for p E no9 such that: 

(i) r b ^ ( j p + w ) ~ E ~ n e ,  
(ii) i fn  = m + l,jp + p ( m ) <  t]p(lg(V]prm))<jp + 09, 

(iii) lg(~ b) > 7.. 
There is no problem [remembering that P O E~ is dense in P, and by the choice of 
~, for each n < w ,  A ,={~ l~P\D:supRang(r l )>y~}  is dense in P, and if 
t /~A, ,  fl < lg(~/) then there is v ~ P  n El, rl t fl <~ v and E~ __ D. 

Let, for p ~ °'o9, r /p- U r/pr,, so r/, ~ P, sup Rang(~/p)= (, hence r/p ~ P \  D, so 
rlp~U{P~:~(a) = ~}. Let Pl ~ P2~ '°09; assume r/p, and r/p, belongs to W; look 
when rb,, r/p~ split and get a contradiction to ~ ( b ) .  In fact we get { r/p: p ~ ' w  } O 
[U {P~ : ~(a) = (}] has at most one element; we can get rid of it easily by replacing 
P by some (D, El, E~)-perfect set P '  _ P. 

So (*) sut~ces. 

Why is (*) true? 
Suppose first for some ~l C _ ~, n <09, il . . . .  , i ,  ES2, E n ~1 c UtL t  D~,/8, 

then (by shrinking ~ further), w.l.o.g, for / = 1 . . . .  , n, D~,/~ n E o g~ is dense in 
~ .  If n = 1 we contradict the assumption "not (b)" (n = 0 - -  impossible); if 
n _>-- 2 let, for l = 1, 2, Et = E N ez~ n ~ a ;  they are as required. So suppose there 
are no such ~ ,  n, irES2 (l = 1, n). By t ~  we can show (a2) fails, hence (c) fails. 

2.7. CLAIM. In 2.5 we also get: 

For every S __ $2, S = Uies i /g  if El C_ Ds, E2 C_ Ds,\s, P is (D, El, E2)- perfect, 
then for some (D, E~, EE)-perfect P~ __ P, P~ is disjoint from W. 

PROOF. By the proof o f"Why is (*) enough" above. 
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§3. Interpretability in the special topologies 

3.1. ]..EMMA. For any vocabulary L = { Rl, F,, : l <np t, m < nf  ) (RI is an 
n(Ri)-place predicate symbol, Fm an n(Fm)-place function symbol), there are 
monadic formulas 

~ , (  u, X~, . . . ,  X,(RO, W, D, D*), 

q/~.( u, Xl,. . . ,X,(v.)+t, W,D,D*)  

such that: 
(,) if  T, D, Di (i ES2), Y = max(T) L) lim2(T) c_ D* C_C_ T satisfies the conclu- 

sion of Main Lemma 2.5, M -- Mrop~(~ t D*, S a subset of  $2 and N is an L-model 
with universe S, then for some sequence W u of subsets of  Y of length lg(W): 

(a) for every l < n~ and X~, . . . , X,~R~ c_ D*: 
M ~ ~t~,( ~, Xl, • • . ,  X,(R,), I~ N, D) iff 

n(R~ 
a_C*val [ v (  A Xk ~ a=D,,~ f3 a:a2, . . .  ,a,,~no~Sand 

k ~ l  

N ¢ R t [ a , , . . . ,  ",~R~]}], 

(b) for every m < n~ and XI . . . .  , X,~F.) C D*: 
M ~ q/~.( u, X~ . . . . .  X,~F.), 1/~u, D) iff 

n(F,,) + I 
u C _ * v a l [ v (  A XkN u=D,~N a:al . . . . .  a,,~F~+l~S, and 

k ~ l  

N ~ F,,[oq . . . .  , o~.~F,0] = a,<F.)+l}]. 

3.1A. NOTATION. (1) The relativization of  ~ , ,  ~F z. to a predicate D* is 

denoted similarly with the added D* at the end. We shall use only those variants. 
(2) We can replace S by any subset of  the same cardinality. 

PROOF. Straightforward by 2.5, like [Sh42], §7 t (or see [Gu] or [GuSh151] or 

[Sh284a], §1, §2). 

~4. The interpretation and recovering the well-ordered model 

4.1. NOTATION. (1) Let Na,~ = (2, or, < ,  or~, pa, pr~, pr2, 0, S, + ,  X) 

where (for cardinals 2, x) o r =  2, or~ = x, < is the well ordering of  the 

ordinals, pa is a Godel pairing function, prt, pr2 its projections (so that 

t I.e. we replace lhe combinatorics there by 2.5 here. 
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pa(prl(a), pr:(a)) = a, and pr~pa(a ~ a 2)) = a ), 0 is zero, S the successor function, 
+ ordinal addition, and × ordinal multiplication. 

Let L = {<,  pa, prl, pr2, S, + ,  ×} and denote 

~or = ~oLr, ~or, = ~'~,, ~'< = ~'~< etc. 
(2) Let ~ (  ez, X, W, W +, D, D*) say that in D*: 

(i) D ___ D*, D dense in D*, X n ~__ D is a dense subset of D n ~ and, 
for every strongly (D, X, X)-perfect set P, for some strongly (D, X, X)- 
perfect Pl C P, Pl \ D is disjoint to W +, 

(ii) for every dense disjoint El, E2 _c X and a_c ~ there is a strongly 
(D, El, E2)-perfect P C_ a, P n (D* \ D) is (non-empty and) __ W, 

but 

(iii) i fPis  strongly (D, D, D)-perfect, El ___ P n D \ X, E2 ___ P n D n X, El 
dense in P and P n (D*\  D) is dense in P then for some (D, El, E2)- 
perfect Pl - Pwe have: P l n  D* \ D is disjoint to W(and necessarily 
dense in P0. (We can omit W ÷.) 

(3) ~0( ~, X, W, W ÷, D, D*) says: for every ez' ___ ~ for some ~" ___ ~', 
~0~( u", X, W, D, D*). 

4.2. DEFINITION. We define a formula ~,* = ~,*(W, D) which is the conjunc- 
tion of sentences saying the properties listed below: 

(0) 1) = (D, D e, D*), D c_ D e c_ D*, D and D e are dense subsets of D*, 
Wt c_ D*, all formulas below (from 4.1 are made to) depend on the 
(Xt n e~)/---- only and are hereditarily in u and are relativized to D*. 
(Note: D, D e, D* correspond to D, U,<~Di, Y in 2.5, but see 3.1A(2).) 

(A)(a) ~Uor( e~, X, I~ , / ) )  implies X n ~ is a dense subset of D n ~, ~ open 
non-empty, and: ~'or,( ~, X, I4", 19 ) iff ~Uor( ~, X, if', D) ^ X C_ *D e. 

(b) Equality: 

~or(/~, Xl,  [ ' [ / , / ) )  ^ ~//or(/~, X2, l,~r,/~)==, 

----val [(X~N a = X 2 n  a) v X l n x 2 n  a = ~ ] .  
(c) Linear ordering: 

(i) ALl ~or(~,Xl, I~/ ,]0)  =° 
~ C *  val [~u<(a, Xl, X2, I~ , / ) )  vXl n 

I--~X2n g v ~ ' < ( a ,  X2, Xl, l~,/9)], 
(ii) ~--=val (~,< ( ~,Xl, Xl, 1~,19)), 
(iii) v a l ~ (  ~, Xl, X3, W, D) __ * 

va l ,~<(~ ,  Xl, X2, W, 19) OvaI ~u<( ~,X2, X3, W,D),  
(iv) ~u<(~, X~, X2, W, D) implies X~ n )(2 n ~----~.  

(d) All reasonable information on 0, S, + ,  × ,  pa, prl, pr2 (including their 
inductive definitions). 
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(e) ¢'or, is an initial segment. 
(f) If E,, E2 c_ D, P is a strongly (D, El, E/)-perfect set then there is a 

hereditarily strongly (D, E,, E2)-perfect set P, _c P. 
Coding: 
if ~uor( u, X,  W, 1) ) then for some a _c u there are Wx. ~, W£ ~ c_ a n D* 

such that ~ ~ (  a, X,  Wx. ~, W~ ~ , 19 ). 
(b) Well ordering: 

for the O's listed below: for any u and 2 ,  i f  
( 3 X)[~uor( u, X, if ' , /9) ^ 0( u, X, 2~)] then for some X and u '  c__ u: 

~Uo~( u',  X, W, / ) )  ^ 0( u',  X, Z) and: 
~Uor( u',  Y', W, / ) )  A 0( u',  Y', Z) implies 
u___* va!~[Y' n v =  X f~ a or ~u<( a, X, Y', W,/))] .  

The list of O's is: 
(i) O,(u,X, 2)  d e f ! U o r ( u , X , W , l ) ) ^ ( X n  u___*Zn u] SO 2 =  

W ^ B ^ <Z>, 

(ii) 02(~,X, 2 )  da ¥o~(u,X, I ~ , J g ) ^ Z  C_D*\D 

^(Vu' C_ ~)(VE) 

l i fE  c_ ~' f~ X is dense in u' then there is a strongly (D, E, E)-perfect 
P, D* tq (e  \ D) _ Z], 

(iii) 03( u, X, Z) = ¢~( u, X, W, W +, /59 ^ X _c X*. 
(c) If  q'o( u, X, I~,/)) '  then, for every u I C_ u, for some ~2 c_ u '  there is 

Z _c D* \ D such that: 
(i) for every E ___ u 2 n X dense in u 2 there is a strongly (D, E, E)- 

perfect P, D* n (P \ D) ___ Z, 
(ii) for every (D, (D \ X) n u2, (D \ X) f~ u2)-perfect P, there is a 

strongly (D, D \ X, D \ X)-perfect P '  _c P such that: 
D* n ( P ' \ D )  n Z = ~ .  

(d) Distributivity: 
if ~Uor,( u,, XI, W, D), then there is Y, ___ D n ~, such that: 
(i) assume a___ ~,, ~Uo~( a, X, W,/ ) ) ;  we have: 

~, <( a,X,X,, W , / ) ) i f f X ,  n a___* Y~, 
(ii) if Y C_ Y, and 

(V X)[~u<( e, X, Xl, I~,/)) ̂  a C_ * ~, = Y N X n a is nowhere dense] 

then Y is nowhere dense, 

(e) if ¥or( u,,  X,, W, / ) )  A n ~o~,( u,,  X,, W, / ) )  then for any Y~, (i) or (ii) of 
(d)(b) fails for u,, X,. 

(B)(a) 

4.3. FACT. I f N = N a ,  K (see 4.1) and 2, x, Sl, $2, T, D, Yas  in 2.5, 
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D* def y, the set {c~ < 2  + • S I f~ ~ is not stationary, cf(g) = x} is stationary, Z 

a subspace of  Top~x(T), D* ___ Z, and M = Mz, then for some W, 

M ~ g/*[W, D]. 

PROOF. Immedia te :  2.5 is tai lored for Defini t ion 4.2, and  note  that  x- 

distributivity by 2.4(3). 

4.4. MAIN INTERPRETATION LEMMA. Suppose t M ~ g*[W, D] and 
(*)t M (or at least some D', D CC_ D' CC_ D*, D' \ D dense) is a first countable 

(Hausdorff) space and D is the union o f  Ro scattered sets 
or 

(*)2 M is R,-distributive 
or 

(*)3 the topology on D* is induced by a dense linear order and is, on D , first 

countable. 

Then  for every ~o (open subset o f  D*, as usual) for some ~ c__ ~o the 
following holds. 

There are a, and Di (i < a) and 7(*) such that 

(a) ~ ~/or[ez, O,, W,O], 
(b) there are no a c_ ~ and D' such that 

~o~[ a, O',  I,(:,/3 ], 

~< [ a, D' ,  Di, W,D],  

~'< [ u, Di, D '  , W,D]  f o r j < i ,  

(c) Di C D d i f f i  < 7(*) iffDi fq D d ¢ ;~, 

(d) i f  ~/or( ~, D', W, D) then 
:z____*val (V/D 'A : = D i  N u), 

(e) for i < 7(*), there is Yi such that: 

(i) D j C _ * Y i f o r j < i ,  
(ii) Dj N Yi =-- ~ f o r j  > i, 

(iii) (V S C_ Yi)[Aj<iDj A X=--f~=* X = ~ ]  i f f i  < 7(*). 

(f) u I[-etM) "there are no new bounded subsets o f  T( . )"at  least if(*)3; 
really ~ [[-Q(M) "x (M)= 7(*)" (see Defini t ion 5.2(2) on  Q(M), 
.K(M)). 

* Mthe monadic topology of a topological space which we denote by M, too; see Definition 1.2. 
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4.4A. REMARK. Seemingly in (*)3 [x ~ D  =*x has confinality R0 from at 
least one side] suffice. 

PROOF. We shall first try to define Dr (i < a) satisfying (a), (b), (c), (d). 
So we let first ~ = u0, and start to choose D~ c D d satisfying (a), (b) and (c). 

So for some fl, (Dr : i < fl) is defined, but we cannot define Dp. If  for some 

(.) for every D': 

~Uo~(~*,D',W,D)~ ~*C_val ( V D ' n  c,=D,n ~) 
\ i < #  

then we could have chosen ~ = ez*, so we succeed (it is easy to choose ~,(.)). 
Next suppose there is no such ~*, but for every am __. ez there are a2 c_ a~ and 

D'  such that: 
g/or( c,:, D', IF,/9), 

~2 C__* val ~,<(la, Di, D', IF, D), 

and for every D": 

[ A ,  c'2 C--* val" ~<( ~a' D' '  D ' '  IF ' / ) )  ] i  

=* v__.* valw~,<(D" n e a = D ' n  wv~<(w,D' ,D",  IF, 19)) 

then we can contradict the choice of ft. 
So for some a~ ___ ~ for no v C al the statement above holds. 
We shall get a contradiction to the well ordering. Quite easily, we can build 

xn, 
M r  ~'or,[a~,Xn, W,D], 

M ~ g/<[a~,Di, Xn, IF, B] for i < f l ,  

M ~ ~,<[v,,Xn, X~+t, W,D]. 

We want to get a contradiction to the well-ordering requirement ((B)(b) of 4.2). 
The proof  of  this splits into three cases, according to which of  the alternative 

assumptions of 4.5 holds. 

Case 1. (*)1 holds. 

Remember that for any a ___ v~ and n for some a '  C_C_ a and Wx, C (D* - D) n a ': 

M t: q~6[ a', X~, Wx,, W ~ , / ) ]  (see (B)(a) of 4.2). 

Let {(la n, Wx,~, W+~):a<an} be such that { e a , n : a < a n }  is a maximal 
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family ofpairwise disjoint (regular open non-empty) subsets of v~, W~. _C_ v,, 
M ~ q)D[w~,X,, Wx.,,, W~,~,/5] (see 4.1(3), 4.1(2)). Let Wx. = U,<~. Wx.,, 
and W~. = U~<~. W~,~. Let W* = U ,  Wx. and W + ~ U,<o, Wx.. Clearly 

~o( a.,X,, W*, W+,/)] .  
[Why? Checking Definition 4.1(2), (i) is proved like (iii) below, (ii) holds 

easily as Wx. c_ W*; as for (iii): if P, Et, E2 are as there, by 2.3(6), (7) w.l.o.g. 
every perfect P '  _ P satisfies P '  \ D is dense in P'; we use repeatedly 4. l(2)(iii) 
for ~0~( ea~", X,, W,~., 19) and first countability of D, to find P '  c_ P a (D, El, Ez)- 
perfect set such that (P'  - D) n W,~, = Z~ for each m,  and it is as desired.] 

Now there is a Y' _ U ,  <,o x ,  n v c_ D n ~,, (dense) such that 

and 

~0~( ~1, Y', W*, W +, D, D*) ^ ~0or ( ul, Y', W, D) 

[~00( ~1, Z, W*, D) A ~or( al, Z, I'V, O)] 

=* vl c_ v a l [ Z  n ~a= Y n w or ~,<(~a, Y', Z,  W, D)] 

(see 4.2(B)(b), i.e. 03=~06 & Xc_U,X,) .  Note: Y ' n x ,  nvl=--;?5 (by 
(A)(c)(iv) of Definition 4.1). 

We can now define El, E2 such that: El, E2 are dense in U,<,o X, n at_ D r, 
disjoint, E1 U E2 _ Y' but for each n (El U E2) n (Ut<,  xt) is scattered (use 
first countability and "D is the union of Ro scattered sets" from (*)1). 

Let P be a strongly (D, E~, E~)-perfect subset of D* such that P n D* \ D _ 
W* (exists by 4.1(2)(ii)). 

Now by the first countability by successive approximations we can find 
P~ _ P, P~ n El C PI is dense in it, (Pt \ D) n Wx, = f0 for each l. 

Case 2. R~-distributivity. 
Easy. 

Case 3. (*)3 holds. 
Define {( ~v~"" L)  : a < a,}, Wx., W* as in Case 1. 
W.l.o.g. each w~" is an interval and 
(,) 

If for some (//," n < ca),/~, < a , ,  I n ,  u~" p. I > 1, then we get a contradiction 

as in Case 2. 
" "which are not in Otherwise choose, by induction on n, distinct a~, b~"E ~v, 

{a~', b~' : m < n, fl < am } (really we should consider only finitely many such 
elements by (*)3). Let 
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El=(a"~:n< ea, a < a . }  and E 2 = { b ~ : n <  uJ, a < a . } .  

Let P be a strongly (D, E~, E2)-perfect subset of D* such that P \ D __C W* and 
finish as in Case 1. 

§5. Conclusions: Monadic logic is hard 

5.1. FACT. In the class of monadic topologies we can define the following 
classes (each by one sentence): 

(a) Hausdorff, regular, normal. 
(b) TOPli,: the class of topologies defined by a complete dense linear order 

(and reconstruct the order up to inversion). 
(c) TOP~: the class of topologies in TOPIin such that the linear order 

densely contains monotonic wrchains. 
(d) TOP~%: the class of topologies in TOPIi . such that the linear order has a 

dense set each member of which has cofinality R0 (from both sides). 

5.2. DEFINITION. (1) Q(M) is the forcing notion of open subsets of a 
topological space M with inverse inclusion. 

(2) x(M) is the Q(M)-name expressing the distributivity of Q(M). Equiva- 
lently, x(M) is the first x such that [ ~'(x)] VQ(M) ~ [ ~(X)] e. 

5.3. THEOREM. (1) We have a recursive function 0 ~ 01tr for l = 1, 2, 3 

from the set sentences of monadic topologies to the set of sentences in monadic 
logic such that for 

M ~ K f l =  (M: ~ ( 3/) ,  I~)~/*[D, W] and M is first countable 

and M is induced by a linear order }. 

M ~ 0 tq iff I[-Q(M)'~(M) ~ 0"; 

(2) if  in 0 we quantify only on relations of power smaller than that of  the 
model's power, then for each regular Iz: there is M EKfl, K(M) =1~, M ~ 0 [2] 
iff# ~ O; 

(3) 0 has a model iff 0 ~21 has a model in Kfl, but i f  they have models 

Min{2 IIMn : M  ~ 0 [31} ~ Min{2:2 ~ 0}. 

PROOF. Straightforward by 2.4, 4.3, 4.4 with (*)3 (or see the proofs in 
Gurevich-Shelah [GuSh151] or [Sh205, §1]). Remember 1.1A(2). 

Note that we should be able to characterize a class of (M, W,/5) such that, 
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on the one hand, 4.4 apply to each and, on the other hand, it contains enough 
M's  (e.g. from 4.3, i.e. 2.5). 

5.3A. THEOREM. If  K* is a class o f  topologies, which include MroptL) where 
L is the completion o f  the linear order (T, <~x), T from 2.2, TOP(L) the 

topology on L with based open intervals, then in 5.3 we can vary M on all 
members o f  K*. 

PROOF. By 5.1(b),(d). 

5.3B. THEOREM. In 5.3, 5.3A we can let M vary over linear orders (i.e., 0 

vary on the sentence in monadic logic for linear orders). 

(Here we do not need completeness.) 

PROOF. Immediate from the proofs of 2.5, 4.3, 4.4, 5.3. 

5.4. THEOREM. Let 

K = {2" the consequences o f  2.6 hold (with 2 here standing 

for 2 + there)for x = Ro, e.g. ( 3/~)(2 = (~o) +)}. 

For I = 1, 3, there are recursive maps 0 ~-~ 0 ttl, such that: 

(0) For every sentence 0 in pure second order logic, 0 tt~ is in monadic 
topology. 

(1) For a metrizable topological space X with no isolated points 

I~- O.~Mx)"x. (M) = Ro " 
(2) "For a monadic topology with no isolated points 

M E Kcm = (Mx: X a completely metrizable space and locally the 
density o f  X is in x}: 

M ¢ 0 t'l i f f  I['-OcM)"x(M) ~ 0". 

(3) If  '2 iff for some completely metrizable space 

M, M ¢ 0 t31 where density (M ~ u) = 2 for every u 
(4) V M  ¢ 0t3]=*(32)[ 1 ~ 2  ¢ 0 ^ 2  _-<2 IIMII A2 

> Min{density o f M  t u: u}]. 

PROOF. We use §2(2.6), §3, §4 for x = R0. 
We lose our ability to say "the space is induced by a linear order (and is first 

countable)", but first countability and (.), of 4.5 are given. 
Note that we use: 
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- -  "Ro ~ 0"(so we can work as in [Sh205, §1]), (e) O" iff 
(13) i f M  is a dense completely metrizable space, then cellularity is equal to 

density. 

5.5. REMARK. (1) The interpretations are sematic, but not strictly in the 
classical sense; see Baldwin, Shelah [BISh 156] and Gurevich-Shelah [GuSh 168]. 

(2) We may interpret, say in the topologies like 2 °', second-order logic on the 
cardinal 2~0. For 2 = R0 this is done in detail in Part A; generally it probably 
works at least for 2 strong limit of cofinality R0, but I have not the time to try. 

(3) We can also deal with restricted classes of linear orders. 

5.6. REMARK. Generally for any class K of topologies, we can interpret 
{Th~[M)(x) • M E K ' ,  (M,/5 ' ,  W) ~ V} where K' = { M E K :  the analysis of§4 
apply}. So then our class has to contain complete linear order. 

5.7. REMARK. The "no isolated point" clause is added just to clarify. But 
this is serious if our interest is in topological spaces 0" >2 with the topology 

{~: ~___0"-->2 and r l ~ n o ' 2 = * V ( r l ~ m ' n < m < o g } C _  a~}. 
n 

We can handle them similarly. 

§6. Consequences related to [BIShI561 

See Baldwin, Shelah [BISh156] and [Sh284C]. 
Let ~ denote a first-order theory. 

6.1. THEOREM. (1) I f  some monadic expansion of  a model of  ~r is unstable, 
then the Lowenheim number of  (.~r, Mon) is at least that of  second-order logic. 

(2) Suppose ~- is not superstable, (~'-~, 2nd)£(J ' ,  Mon), o~- hadNDOP and 
a finite language. Then in the monadic theory of  the class of  models of  ~" we can 
interpret the theory of  the family of  topological spaces which are closed subsets of  
some °'2 (hence complete metric spaces). 

6.1A. REMARK. We can use different coding: essentially we ask for perfect 
subtrees (closed downward) such that the splitting points are only in El, E2 
and in each densely. It is not clear whether this has any extra application. 

Appendix: The black box 

The following theorem is a reformulation of [Sh300, second version], III, 
6.12 (and 6.12); generally on black boxes and references there. 
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W e  will use the case I L I = x, a = b~o, ~ = x +. 

A.I .  THEOREM. Suppose 2 ~ = 2, S c_ {~ < 2  + : c f ~  = Ro} is stationary, 
2 + c_ A, I a I = 2 +, f :  A ---, 2 +, L a vocabulary with < 2 predicate and function 
symbols, each with < a places , x <" = x. Then we can f ind ( ( N~ : i < 09) : a <  

2 + ), and functions ¢, h~,p(a, p < 2 +, 2(a)  = 2(/3)) such that: 
(A)(a) N~ is a model o f  cardinality < x, universe c_ A, and vocabulary L~ c_ L 

o f  cardinality < x; N? closed under f and f - l, 

(b) for i < j  < o9, L7 C_ L~, N~ C_ Nj~ (i.e. N7 C_ N 7 ~ L7 ) and i f  j < 09, 

N~ < N 7 (so a = No, j = 09 is O.K.), 

(c) N~, = U .  <,o NT,, 
(d) ~ is a function from 2 + to S(c_ 2+),  monotonically increasing (not 

strictly), ~(a) = sup(NTo n 2 +). 
(B)(a) I somorph i sm:  I f  ~(a) = ~(fl) then h~,p is an isomorphism from N~ onto 

NTo, which maps Na. onto N~ (for n < o9), commute with f ,  f -~, preserve 
the order o f  the ordinals and maps N~o n 2, NT~ n 2 + onto N~ n 2, 
N~n2 +. 

(b) C o m m u t a t i v i t y :  I f  ~ (a) = ~(fl) = if(7) then h.,r = h.,p o ha, r, hy,~ = h~,r ~ , 
h~,~ = id. 

(c) Treeness:  If~(a) = ~(fl) then  NT~ n 2 = N~ n 2, a n d i ~ 2  + N NTo n N~ 
implies N~o N i = N~ n i (and ha,. t (N~, n i) = id). 

(d) There are ( ~la : ~ E S)  such that: 
rl, is a strictly increasing function from o9 to ~, sup{q6(n)  : < o9} = 3, 

and ~(a) = ~ = ~q3) implies: 
for each n, N~o n q6(n)= N~ n tl~(n) and h~,p maps , for  each n, N~, n 
rln(n ) onto N~ n rl~(n) and {r/j(n) : n < 09} is disjoint N~,. 

(C) Densi ty :  In the following game, player H has no winning strategy: 
The play makes the last 09 move. 

On the nth move, player I chooses a set a, c_ A o f  cardinality < x, and then 

player H chooses a model iV., a. c_ IN. I, such that ( Nt : l <-_ n ) satisfies the 

relevant parts ofA(a) ,  A(b). 

Player I wins i f  the play for some a, A.  iV. = N L  
(D) For some 2* (not depending on 2)  we can require the following: 

(*)]. for each ~, no subset o f  {NTo" ~ ( a ) =  ~} is 2*-perfect (of  density 
character > 2")  with the natural topology: a neighbourhood o f  N2, is 

{N~ : ~ ( f l ) =  ~,NT~ n i = N ~  n i } f o r s o m e i < ~ .  
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A.2. REMARK. This (*)~. can be done for 2 = (2~o) +", 2* = R0 (by induc- 
tion on n). 

For this, it is enough to prove: 

(.)2. there is A c_ ,o 2 containing no 2*-perfect set, but not disjoint to any 
T_C°'~'2 if: ( )ET, [~lq~T n'~> 2=*(3~a)q ^ (a)~T] and 
[A,<o~ q t n ~ T ~ q E T ] .  

In the case 2 =/~o,/~ strong limit of cofinality w, (,)~. holds if  

(,)3 there is A C_ o~#, [A [ = p~0, A contains no 2*-perfect subset. 

Now while this paper was processed, [Sh355], 6.x shows that, for some 2", (,)~, 
holds (for every 2)? 
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