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Abstract. We show that some cardinal arithmetic configurations related to the negation of
the Shelah Weak Hypothesis and natural from the forcing point of view are impossible.

1. Introduction

The Shelah Weak Hypothesis(SWH), formulated in [ Sh:400A], statesthat for every
cardinal A the number of singular cardinals« < A with pp(x) > A isat most count-
able. The negation of SWH isone of the weakest statements on cardinal arithmetic
whose consistency is unknown. Clearly, SWH follows from GCH and even from
the Shelah Strong Hypothesis, which says that for every singular «, pp(k) = k™.
On the other hand, as we shall now see, and asisshown in [Sh-g, Vi1, 3.4 - Local-
ization Theorem], the existence of a set a of regular cardinals with min(a) > |a|
such that |pcf(a)| > |a| implies =SWH. Suppose that |pcf (a)| > |a| for some
such set a. Let (ky |a < |a|™) be an increasing enumeration of thefirst |a|* ele-
ments of pcf(a). Set A = [J{ky | @ < |a|T}. Clearly, for every B < |a|T we have
peflka | B < a < |a]t\A # @. Then, using the Localization Theorem, we define
by induction anincreasing sequence (8; | i < |a|™) of ordinalsbelow |a|™ and ase-
quence (p; |i < |a|™) of singular cardinalsbelow A with pp(p;) > A.Let o bethe
least suchthat pcf{kq | < Bo}\A # V. Set po = |y, g, k- Assumethat for each
Jj <i, Bjand p; are defined. We define now g; and p;. Set B = | _; B;. Using
the Localization Theorem, findleast 8; > B; sothat pcf ke | B; < a < Bi}\A # @.
Set pi = Ulke | B] < o < Bi}.

Theforcing construction of [Gi-Sh] and [Gi-Ma] show that it is consistent that
the order type of the set of «'swith pp(x) > A isany finite or countable ordinal.

The present paper grew from an attempt made by thefirst author to force -SWH
using a forcing of type of [Gi]. One of the features of this forcing is that it does
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not add new bounded subsets to a cardinal « while increasing 2¢. Here we show
(in ZFC) that some configurations which are very natural from the forcing point of
view are just impossible.

The first theorem, under stronger assumptions, was proved by the first author.
The second author was able to weaken the assumptions and find a more elegant
proof. Most of the generalizationsare dueto the second author. The second theorem
is due solely to the second author.

2. Main results

Theorem 1. The following (a)—(d) cannot hold together.

(@) k1 < K4, cfk1 = Ro, cfky > 20,

(b) for every large enough p < k1 of cofinality (2%0)+ we have pp () = u™.

(C) kv = SUP{ | 11 < Ky, cf = Vo and pp(u) > k;}}.

(d) there are a strictly increasing sequence (A | @ < cfk,) of regular cardinals
between «1 and «, unbounded in «,, a filter D on w containing all cofinite
subsets of w and a sequence of functions ( f3, |« < cfk,) such that
(@) fo, P @ — Reg Nig\(2%0)+.

(B) limp f3, = 1.

) ko = tef ([1< fro )/ D).

) fr, <D fxﬁ fora < B < cfkx.

(e) ifa < B < cfkxandr € Reg N Ag\A} thenthereisafunction f : w —
RegNi1\(2%)* suchthat f;, <p fo. <p frgandr=tcf([1,-,fo.(n)/D).

Discussion

(1) Theassumption (c) isaform of =SWH which claimsthat there are more than
2%0 singular cardinals of cofinality 8o with pp above their supremum.

(2) Theassumption (d) holds naturally in forcing constructionswith D = thefilter
of cofinite subsets of w, but it seemsto be problematic in ZFC. In [Sh-g,1181]
the proof of aweak related statement isamajor result.

(3) See[Sh-g, VI] for aversion of (c) which handles also w’s with uncountable
cofindlities.

Proof. Suppose otherwise. Wlog we can assume that cfx, = (2%)*. Just take
(2%0)* A,’s such that between any two of them thereis a u of cofinality g with
pp(n) > k. Also, replacing (A, | < (2%0)T) by itsrestriction to an unbounded
subset and by restricting the domains of thefunctions f; , in (d) to some D—positive
set, we can assume that the following holds:

(*) forevery n < w, (fi, (n) | < (2%0)F) isdtrictly increasing and, if fi.(n) =
Ua<(2No)+ fka (n) then fem) < on(n +1).

(x) follows from [Sh-g, 11, 1.2, 1.2A(3)]; we present here the argument.

Claim 1.1. Let I beafilter onw containingall finitesubsetsof w, ( f, | < (2¥0)*)
be an <;-increasing sequence of members of Y On. Then thereare § < (2%0)+,
|S|=2%and A C w, A ¢ I sothatfor everya, € Sandn € A

a<f— fa(n) < fpn).
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Proof. Let D be an ultrdfilter digoint from 7. Clearly, (f, | < (2%)%) is
<p-increasing. By [Sh-g, 11, 1.2 and 1.2 A(3)] thereisan f € 0 On for which the
following (i)—iii) hold.

(i) forevery a < (2%)*, £, <p f.
(i) if g € ®O0n, g <p f thenfor someaw, g <p fa.
(iii) ¢f (f(n)) > Rg forevery n < w.

subclaim 1.1.1. A = {n < w|cf(f(n)) = (2%)*} € D.

Proof. Suppose otherwise. Let B = w\A € D.Forn € B let §, be cf(f(n)).
Let (8, |i < 8,) be asequence cofina in f(n)). Consider [[,.58,/D.Lets =
cf([18./D). Then, § # (2%)*, since either {n € B35, > (2%)F} € D or
{n € B|8, < 2%} e D. In the first case, clearly, § > (28%)* (if {g;|i <
(2%)T} € [1,cpn thenh € [1,cp 8, where h(n) = U, _ o)+ €i(n)). In the
second case, note that | [, 8x] < (2¥0)N0 = 2%,

Let (gi |i < &) beasequencewitnessing cf ([ [,,cp 8»/D) = . Wemove g;’s
to[[,cp f(n). Forevery i < § defineh; € [[,.5 f(n) by hi(n) = 8, 4,(n). Clear-
ly, (hi |i < §8) isa <p-increasing sequence unbounded in [[,.z f(n). But also
(fu = Bla < (2%)*) issuch asequence. Thisisimpossible unless § = (2%0)+,
O of subclaim.

Now, for n € A we pick (8, |i < (2¥0)T) to be a sequence cofinal in f (n).
Define h;(n) = 8,; forevery i < (2%)* andn € A. Thenforevery i < j <
(2%)* andn € A we have hi(n) < hj(n). Also (h; |i < (2%)T) is unbound-
edin [],c4 fi(n)/D. Define now by an easy induction two increasing sequences
(iy v < (2%)T)and (o, | v < (2X) %) sothat h;, <p fa, < hi,,, holdsfor every
v < (2%)T, Find a stationary S € (2%)* and B € D so that for every o € S
andn € B, hj,(n) < fo, (). Then for every vi,v2 € S,n € B, v1 < vy implies

hi, (n) < favl (n) < hi, ;1 (n) < hiy, () < fa,, (). 0, (fo, = B|v € S)isan
increasing sequence on B. Clearly, B ¢ 1. So, we are done. O

Now for every o < (2%)* and A € Reg N Ay11\ Ay We Use (¢) and find a
function f; : @ — Reg Nk1\(2%)* suchthat A = rcf([],_,, fo.(n)/D) and for
everyn <o, fi,(n) < fi(n) < fi,. ().

Clearly, (fx(n) |n < w) is strictly increasing with limit k1 and ¢f (f(n)) =
(2%t for every n < w. Using (b), we can assume removing finitely many »’s,
if necessary, that pp(fi(n)) = (fu(n))™ for every n < w. Let D, by an ul-
trefilter on o extending D. Let . = rcf [,_,((f«(n)T/Dy). 1t is well de-
fined since D, is an ultrafilter. By (c), w.l. of g., for every « < (2%0)* there
IS Koy, ha < K¢ < Aatls Cfke = Ro and pp(ky) > k. Hence, there are

12, € Regﬂka\)»++ (n < w) and afilter D, ona)continuingall cofinite subsets of
a)suchthatllmDa 12, = kgandiS T =tef([1,-, 12,/ Da)-By[Sh-g, 11, 1.3], we
canthenfindtl, € RegNtZ,\A} suchthat k" = rcf ([],-,, 72,/ Do) (notethat
we are doing thlsseparatelyfor eacha < (2“0)+) Letal ¢ {frz (m)|n < w}
foreverym < wand ¢ € {1,2}). Seta” = a?tUa?? " = Ua<(2><0)+aa
anda = a™. All these sets consist of regular cardinals above (2%0)*, the

n<w

m<w
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a™'s are countable, the a™’s and a have cardinality of at most (2%0)*. Also a C
[ foy (M), fi,,1(m)).Clearly,a™ (m < w) isanunbounded subset of f.(m) N Reg
of order type (2%0)*, since (f3,, (m) |a < (2%)T) isincreasing with limit £, (m).
Then, (fu(m)t € pcf(a™) S pef(a), @ pp(fi(m)) = (fiu(m)*, for every
m < w. Again, by [Sh-g, |, 1.12], pcf({(fx(m)T |m < w}) € pcf(a). But
s = le(Hn<w(f*(}’l))+/D*), hence w. € pcfa. Let (bs |0 € pcfa) bea
generating sequence for a (see [Sh-g, |, 83] or [Sh:506]). Wlog, if . # «;}* for
¢ e(1,2),thenby, Nb e = 0. Let£* € {1,2) besuchthat . # it

Claim 1.2. Theset A = {m < w| for somea < (2%0)7, Uﬁe[a,(z*‘O)Jr) agl C by}
isin D,.

Proof. Otherwise w\A € D, and for m € w\A, fi.(m) = sup(a”™\b,,). Hence
(fx(m)T € pcf(a\by,). SO, pef ({(fu(m)t |m € w\A}) C pcf(a\b,,). But
w\A € Dy and p, = tef ([, (f(m))T/Dy). Hence . € pcf(a\b,,). Con-
tradicting the choice of b,,,. [ of Clam 1.2

Form € Aleta,, betheminimal o suchthat gy, 2%+ @5 S by, Setay =
UmeA Olm. Clearlyv a* < (ZNO)J’_ Let Cl/ = U{agl |m € A9/3 € [a*s (2N0)+)}'
Thenda’ C by, and hence «k;*" ¢ pcfa’. However,m € A andn < o imply that
foer (m) € ag”*’[* Ca) C a’. So, for eachn < w we have

{forr (m)|m € A} € a .

Hence pcf{f,e« (m)|m € A} C pcfa’.ButasA € Dy, vt , = tef ([Tpen forr
(m)/D).So,foreveryn < ,7f. , € pcfa’. Thenby[Sh-g,1,1.12], pef{zl. , In<

w} C pefa’.But it = tef(],-, r(f:’n/Da*). So, k¢ e pefa’. Contradic-
tion. O

Remark 1.3

(1) We can replace in the statement (a) of Theorem 1 “cfi, > 280" by “cfk, >
Ro" provided that (d) of the theorem is strengthened by adding the condition
(%) introduced in the beginning of the proof and (2%)* is replaced by &1 in
(b).

(2) Itispossibletoweaken“pp(u) > ;" in(c) of thetheoremto“ pp(n) > ",
replacing (2%0)* in (b) by R1. Just after (x) isobtained using cf«s > (280)*,
wecanreplacex,, k7, k;t by thelimit of thefirst R1 A, s, its successor and its
double successor, provided that for every o < wj thereisky, Ay < ko < Ag+1
with pp(ig) > AT, where A, = |, _,, 2o The condition “ pp(u) > "
can be easily used to construct such (Ay | < w1).

(3) Itispossibleto replacein (8) “cfis > 2807 by “Va < cfky (Ja|¥0 < ky)”.
For thisuse c¢f k. instead of (2%0)* in the proof.

The following is paralel to Solovay’s result that SCH holds above a strongly
compact cardinal.
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Corollary 1.4. Suppose that the following holds: « isa cardinal such that

(@) for any given cardinal A it is possible to force 2 > A by a kT +-c.c. forc-
ing which does not add new bounded subsets to « and adds 1 w-sequences
(fo | < M) to x such that
(Yo < B = fou < fp (modfinite), (i) for every A C A of cardinality 8 there
is B C A of the same cardinality and ng < w such that for everya < gin B,
n € w\no, fo(n) < fg(n), and (iii) § € («, A] regular cardinal implies that
fs(n) isregular cardinal for everyn < w and § = ref ([ f5(n)/finite).

(b) pp(u) = ut for every large enough v < « of cofinality ;.

Then above « the following version of SWH holds:
for every cardinal A > « theset {u|x < u < A, cfu = Ro, pp(n) > AT} isat
most countable.

Remark. Theforcing notion of [Gi-Ma] and [Gi] satisfy (a).

Proof. Suppose otherwise. Let «, be the first cardinal such that the set {u |« <
W < ks, cf = Ro, pp(r) > Kk} isuncountable. Clearly, cf ik, = R1. Now we
force with the forcing of (a) and make 2 > «,. The w-sequences produced by
such forcing will satisfy (x) of the proof of Theorem 1 with D equal to thefilter of
cofinite sets. The chain condition of the forcing insures that the cardinal arithmetic
does not change above «. No new bounded subsets are added to «, hence (b) of
the statement of the corollary still holds. Now Theorem 1 (actually using 1.3(2))
provides a contradiction. O
Repeating the proof of Theorem 1 we can show the following generalization:

Theorem 1.5. The following (&) — (d) cannot hold together.

(@) k1 < ks, cfk1 = Ro, cfky > 2¥0,

(b) thereis?, 1 < ¢ < w such that for every i < «1 of cofinality (2%0)* we have
pp(w) < putt.

(©) e = SUp{p | pt < ku, cf = Ro and pp(p) > 7).

(d) AsinTheorem 1.

If we allow infinite gaps between u and pp(w) in (b) of 1.5, we the following
theorem.

Theorem 1.6. Assume that

(@) k1 < Ky, cf k1 = Ro, cf ke = 0 > Ro, o™ < k1, cfa* > Ro.

(b) for every large enough 1 < k1 of cofinality 6 we have pp (i) < ute".
(c) for some B*, i, = SUp{pe | 1t < iew cf = Ro and pp(p) > i .
(d) the condition (d) of Theorem 1 and (x) of its proof.

Then B* < o™ for someo < a*.
Sketch of the proof. Suppose otherwise. We define fi (n)'sasin Theorem 1. Now

cffx(n) = 6 and 0 pp(fi(n)) < (fu(n))™ forevery n < w. Findo < o
suchthat for every n < w, pp(f*(n)) < (f«(n))*°. Hereweusethat cfa* > Ro.
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Instead of one . in the proof of Theorem 1 (or finitely many cardinalsin 1.6) we
consider pcf{(fe(m) 1 |n < w,6" < o} N (ky, K:ﬁ*]. By the assumption we
made, g* > o 4. Then there should be k¢ & pef{(fx ()T |n < w, 0’ < o}
for some ¢*, 1 < ¢* < g*. Thisfollows by results of [Sh:g, 1X], see also [Sh:g,
Analytical Guide, 4.18 (b)]. The rest of the proof is as those of Theorem 1, only
we use [Shig, I, 3.2(5)] to include pcf{(f«(n)*® |n < w, o’ < o} into aunion
of finitely many pcf-generators. O

Now we turn to another theorem which provides a different proof of Theorem
1 and some of its generalizations.

Theorem 2. Suppose that

(@ ko < k1 <ki, 1 <n* <w,n* <y* <6 andy* isasuccessor ordinal
() 6 = cfRo < 6 < ko and for every e < 6, |a|™ < 0

(©) cf k1 = Ro and pp(cy) = k.7

(d) if 1 € (ko, k1) and cf u = 6 then pp(p) < p*"".

Then the following holds

(1) For every nonprincipal ultrafilter D on w and a sequence o™ = (o, | £ < w)
withx1 = limp o™ and o/ (¢ < ) alimit cardinal of cofinality > 6 in the
interval (ko, k1) thereareaset w C y* + 1 consisting of at most n* elements
and asequence o™ = (0, | £ < w), ko < 0" < o, (£ < w) such that

(x)1ifa € [Rp 7+ 7%, B < y* and K:ﬁ € pcfathen g € w,
where Rp 5+ 5+ = {tcf(Ilo/D)|o = (on|n < w), 0, < 0, = cfo, <
o) (n < w)}N[k1, k).

(2) Therearea™ < § andasequence(R, | o < a*)with| J, _,+ Re = RegNi\k1
so that
(x)2 for every o < a* thereisw C y* 4+ 1 consisting of at most n* elements
such that
ifa € [Re]™, B < y* andk;” € pefathen p e w.

(3) Let D be a nonprincipal ultrafilter on w. There is a partition (I, | p < p*),
p* < 6 of Reg N k1\ko into closed open intervals (i.e. of the form[x, y)) with
(mini, | p < p*) strictly increasing such that
()3 for every sequence (p, | n < w) of ordinals below p* with limp(minI,, |
n<w)=«K1

{tcf(l_[ on/D) |0y, € 1, forn < w} N[k, ky)

n<w

isincluded inone of R,'s (@ < «*) froma sequence (R, | < o*)(a* < 0)
satisfying (x)2.

Remark 2.1. Part (1) iscloseto[Sh:g, IX 1.x].
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Proof of (2) and (3) from (1). As K: v < pp(x1) there are a countable unbound-
eda C k1 N Reg\ko and an ultrafilter Do on a containing all cobounded sub-
sets of a with K:_V* = tcf(Ila/Dg). Leta = {Ay|n < w}and D = {A C
o|{ y|n € A} € Do}. Now, by [Sh:g, Il], for every regular t € K:y*\K]_ we
canfindo = (0, |n < w), 0, € Reg Nk1\ko (n < w), limp o = k1 such that
t =tcf(Ila /D).

Fix x tobealargeenough cardinal. Let M < (H(x), €) besuchthat |[M| < 6,
“M C M,{ko, k1,0, D, k.} € MandMNO € 6. Thereissuch M sinceweassumed
(b). Consider thefollowingset ® = {o* | 6" = (0," |n < w),limpc™* = «kq andfor
everyn < o, 0, € Mﬂ[/ca“, k1) isalimit cardinal of cofinaity > 6}. Clearly, ® C
M since®M < M.Now, by (1), applied with D defined abovefor eachc™ € @ there
isag™* for which (x)1 holds. By elementarity, thereissucha** in M. Denoteit by
o**[0*]. Define (R, | o < o) tobean enumeration of theset {Rp 5+ 5[5+ |7 €
YU {{ref ([ 1,20, 0n/D)}lon € M N k1 N Reg\ko and n|<i£)nDUn = k1}. Then

a* < 0 since M| < 6. Clearly here (x); implies (x)2. So, in order to com-
plete the proof of (2) it remains to show that Reg N ki \k1 = (Jy o+ Ra- LE
T € Reg Nky\k1. Thenfor somes = (0, |n < w), 0, € Reg Nk1\ko(n < w),
limpo =«k1, 7 =tcf(Ilo/D).Let A = {n < w| o, € M}.
Casel. AeD.

Then, wlog we can assumethat A = w (if 0, & M replaceit by K(—)i-)_ But then
7 appearsin the second part of the union defining (R, | o < a™).

Case2. A¢D.

Clearly k1 > /care, since otherwise k1 N Reg € M and Case 2 cannot occur. So
wlog we canassumethat A = ¢. Letforn < w, 0,7 = min(M Nk1\o,). Sucho, is
well defined sincex1 € M, cfx1 = 8o and hence k1 = sup(x1 N M). Also, o, has
to be alimit cardinal of cofinality > 6 asM N6 € 0.Soc™ = (0, |n < w) € D.
Leto™* = o**[c*]. Now, forevery n < o, kj < 0, < o, ando;* € M. Hence,
o <o, <o) foreveryn < w. Thentcf(Ilo/D) = t € Rp 5+ 7+ by (¥)1 and

we are done.
This completes the proof of (2) from (1).

Let us turn now to (3). Here we are given a nonprincipal ultrafilter D. Define
M and (R, |« < o*) asabove using this D. For every v € M N k1\ko Whichisa
limit cardinal of cofinality > 6 denote sup(M N v) by v(M). Let (I, | p < p*) be
the increasing enumeration of the following digoint intervals:

{Reg N[v(M),v] |v € M Nkq isalimit cardinal of cofinality > 6} U {{v}|v €
M, cfv =v}.

Clearly, p* < 0,since|M| < 6.Letuscheck that (x)3 holds. Solet (o, | n < w)
be a sequence of ordinas below p* with limp(mini, |n < o) = k1 and let
on € I, forn < w. Consider t = t¢f ([],,., 0n/D). L&t A ={n < wlo, € M}.
As above we can concentrate on the situation when A = ¢ (i.e. Case 2). Define
o* and o** asin Case 2. Then for every n < w, 0, < o, and 0,7 € M. But
o = min(M N k1\o,) isalimit cardinal of cofinality > 6 in M. Let 5, denote
the left side of theinterval 1,,. Then o} = p,, since o, € M isalimit cardinal of
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cofinality > 0 and g, € 1,, = (SUP(M N pp), pr) N Reg. Also the last equality
impliesthat o, > 0,*. Thent = tcf ([ ],,_,, on/D) € Rp 7 7 and wearedone.

n<w

Proof of (1). Suppose otherwise. Let D be a nonprincipal ultrafilter on » and
0" = (0 |n < w) asegquence of limit cardinals of cofinality > 6 in the interval
(ko, k1) With k1 = limp o™ witnessing the failure of (1). We choose by induction
oné¢ < 6 cardinasog ,, tsk, crsk’n (n, k < w) sothat

() KJ < 0g, <O,

B) E<¥ implieSUk,n < 0%/ .

) Té‘ € Reg Nk \Kk1.

8) k7 N pef ({zf |k < w})\k, hasat least n* + 1 members,
(€) o, < agk,n < o) and agk,n isregular.

&) tef([y< 0t /D) = ¢
(n) & <& impliesthat oz , < o’ .

Inorder to carry out the construction we choosefirst at stage ¢, aoe , satisfying
(@), (B). Thisispossible, since o," isalimit cardinal > «g of cofinality > 6. Sec-
ond, as {0z » | n < w) cannot serveaso ™ in ()1 by our assumption, thereare rgk
Rp.5* (0. In<w) TOF k < @ such that pef ({zf [k < w}) N (i, Ky "] has at least
n* +1 members. Soclaus&(y) (8) hold. Bythedehnltlonof RD(7 U“|,,<w> we
canfindforeachk < w, 0& € RegNo\og,, suchthat tef ([, -, oF g D) = r
So clauses (¢) and (&) hold. The clause (1) isimplied by the previous ones. So, we
have finished the inductive construction.

Now, for every n < w, as {0z, | & < 0) is strictly increasing, its limit o, =
U5<0 og,n 1sasingular cardinal of cofinality 6. Also, clearly, o, € [KJ, x1). Hence,
by the assumption (d) of the theorem, pp(an) < a+"* Fore =1,...,n* let
re=tef (1=, 00 /D) Set w* = {a < y* |« —)\.[fOI'S()meﬁ 1<E <n*}.
Then w* isaset of < n* ordinasbelow y* + 1. Leta, = {ag’n |k < w, & <0}
anda = Un<wanu{aje In <w,1<{¢<n*}).S0,aisasetof <0 < kg < mina
regular cardinals. By [Sh:g, VIII 82] or [Sh:506, §82] a has a generating sequence
(b: |t € pcfa). For each &€ < 6 we can find a successor ordina yz < y* so
that I(;H/E € pcf({té‘ |k < wP)\{r¢ |1 < € < n*}. So, for some successor ordinal
y** < y* there is an unbounded in 6 set Y consisting of &'s such that £ < 6
and yg = y**. Clearly, Ay € pcfaforé =1,...,n* and ke pcfa. Then,
Wlog, we can assume that b e is dlS]omtfrom emh by, for£ =1,...,n* Set

=n<wl|b e Noy, |sunbounded ino,}.

Claim 2.2. A € D.

Proof. If this does not hold, then thereis £(x) < 6 such that for every n € w\A
b sy N[0k, 0n) = V. WIOG & () € Y. AlS0,n € w\ A impliesthat {0k |k <

o}N bK+y** = {J, sincefor every k < w, og(x) < ask < oy.

(x),n
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(x),n
pcf({osk(/*),n |k' < w,n € w\A}). Here we use the assumption that A ¢ D and

Hence {a§ |k < @,n € w\A} isdigoint from b ,--. Now, each rgk(*) €

0w\A € D.i”" € pef{tf, |k < o). Hence k" € pef({of, , 1k <
w,n € w\A}) C pcf(a\bkw**), which isimpossible by the choice of generators.
O of the claim. ’

Letn € A. Then bK+y** Nao, isunboundeding;,. Hmcepcf(bk+y** Nop)\on #

@. But pp(c,) < o™, hence for some £(n) € {1....,n*} we have o, "

pCf(bK+y** Noy) C pCf(bK+y**). Then for some £(x) € {1, ...,n*} theset A*

{n € Alt(n) = £(x)} belongs to D. S0, gy € pef(fon ™ |n € A%}
pCf(bK+y**). But bﬁV** N by, = V. Contradiction.

I m

aimn

Using (3) of Theorem 2 we shall now give another proof of Theorem 1.

2.3. Second proof of Theorem 1

Wilog cfiky = (2%)F. Let § = (2%)* and kg = 67. Assume also, wlog, that
D isanonprincipal ultrafilter on w. For every f : @ — Reg N x1\ko We define
g5 w— p* <0 asfollows:

grmy=p ifft fmyel,.

Then, f1 >p foimpliesgy, >p gy, Sincethesequence(mini, | p < p*)isstrictly
increasing. Consider (f, |« < 0) of (d) of Theorem 1. Thisisastrictly increasing
sequence modulo D. Now, the total number of g/'sis (p*)*0 < (28%0)%o = 2%,
Hencethereareg* : w — p* andao™ < 6 suchthat forevery o, 0 > o > a*, every
fio— RegNki\kosuchthat fi, <p f <p fienr

f(n) € Igx, foramosteachn < w mod D .

Apply (x)3to (g*(n) |n < w) with y* = 2. Then for some ¢* € {1, 2} the follow-
ing holds:

ifa € [{tcf ([T,=p 0n/D) |0y € Igxm) forn < w}N[k, k)]0 thenlcﬂ* g pcfa.
Leta,0 > o > a*. Pickky, Ay < kg < Ag+1, Cf kg = Noand pp(ky) > k1 (by
(c) of Theorem 1 we can assume, wlog, that it exists). Then, by [Sh-g], there are
Tan € RegNig\A} T (n < w) and afilter D, on w containing all cofinite setssuch
that i = tef ([1,-,, Ta.n/Da)- Consider (fr, ,(m)|m < o) for every n < w.
It is a sequence of regular cardinals such that 7., = tef ([1new fran(m)/D)
and f)w <D fTa‘n <D f}wwrl' Then {m < w| ffaﬂ(m) € Ig*(m)} e D. Hence
Tan € {tcf([Lnew Om/D) lom € Igxum),m < w} for every n < w. Tekea =
{tun |n < @). Then k" & pefa, but k" = tef ([1, ., Ta.n/Dn). Contradic-
tion. O

Thefollowing is parallel to 1.6.
Theorem 2.4. Suppose that

(8 ko < K1 < Ky
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(b) 61,62 < ko aresuchthat cf61 > Ro, 62 = 6,7 or 62 isregular > 6,7 and for
every a < 6 cf ([a] <%, D) < 6,.

(©) cfr1=Roand pp(ky) = ki ?

(d) 63 isaregular cardinal between 6> and .

(e) 64 iscardinal between 03 and «g of cofinality > 63.

(f) 65 € [04, ko) isacardinal such that cf ([#s]=N0, C) = 6.

(9 Disan®j-completefilter on64 + 1
(Notice that we allow D to be principal. For example, generated by {04}).

(h) if (ue | @ < 64) isastrictly increasing continuous sequence of singular cardi-
nals between kg and «1, then

{o < Oalalimit, cf g > 62 and pp(ua) < pf™} € D .

(Thus, if {44} € D then the condition means pp(u) < % for every limit
cardinal u € (ko, k1) of cofinality 64.)
Then

(1) For every sequencec* = (o, |n < w) of limit cardinals of cofinality > 64
between x4 and 1 there are 8 < 6, and a sequence 7 = (0, |n < w),
kg <07 <o) (n < w) such that

(#)1ifa € [Ry+ 5N then pef (@) N[k, k%) = 0, where Ry 5 = {r €
(KS', k1) | thereisa sequence (o, |n < w), With o, € Reg N[0, o,Y) such
that T € pcfio, |n < w}}.

(2) Thereare o™ < 65 and a sequence (Ry | < o) with |
ks \kc1 SO that

R, = Reg N

a<a*

(%), for every o < o* thereis B < 6, such that for every a € [R,]%° we have
pef(@) N’ %) = 0.

(3) Thereare p* < 9; and a partition (I, | p < p*) of Reg N k1\ko into closed
openintervals(i.e. of theform[x, y)) with(mini, | p < p*) strictlyincreasing
such that

(¥)3 for every sequence of ordinals (o, |n_< w) below p* thereis B_< 6>
such that for every a € {tcf(]_[n<w0n/D)|0n € I, forn < w, Disa
nonprincipal ultrafilter on o with lim, <, p(Mmini,,) = I(]_}]NO

pef(a@) N[ %) =0

Proof of (2) and (3) from (1). Let x be a large enough cardinal. Pick M <
(H(x), €)sothat|M| = s, ko, k1,05 € M, MN0g € 6 and (VX e [M]M)@3Y €
M)(X CY A Y] = Ro).

Thisis possible since by (f) ¢f ([65]=%°, C) = 65. Define the set ® now to be
{o" e M|o* = (0, |n < w) isasequence of limit cardinals between «o and «1
withcfof > 04 (n < w)}.

For each * € @ we choose o** = &**[c*] in M satisfying (%)1. De-
fine (Ry | < a*) to be an enumeration of the set {Rg+ s[5+ |0* € @} U
{pcf{ou|n <w})|{on|n <w) e dandforeveryn < w cfo, = o,}.

Now we proceed as in Theorem 2.
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Proof of (1). Assume toward contradiction that for some & there is no o** sat-
isfying (1). We choose by induction on & < 64 cardinas o ., rg , gn (k,n <
w, 1 < 07) such that

() /co+ <ogn <Oy

(B) & <& impliesthat Ot < Ot
() 7" € Reg Nicy\ey

®) pcf({ré’k |k < oh) N[ k) =
©) 7" € pefolyIn <))

(&) ogp < as,k = cfol Koo
() {(oen|& < Oa) |san mcreasmg continuous sequence of singular cardinals.

Such a construction is possible as seen in the proof of (1) of Theorem 2.

Leto, = o040, = Ué<94 ot foreachn < w. Applying the condition (h) of the
statement of the theorem to (o , | § < 64) wefind for everyn < w aset¥, € D
suchthat £ € Y, impliesthat pp(os ») < o, . By Ri-completeness of D, the set
Y =, Y» € D. Choose some §* € Y. Let pp(05%.n) = (035+,,) TP for some
Bn <61 (n < w).

Consider setsa,, = {0k |& < 8*.i < 6.k < w}anda = (U, -, ) Ua*,
where a* = {(o,g*,”)”’ ln < w, B < B, isasuccessor ordinal }. Then a is a set
of regular cardinals of cardinality < 64 + 62 < ko < mina. Let (b; |t € pcfa)
be a generating sequence. Aseach 8, < 61 and cf61 > Ro, |a*| < 61. By [Shig,
IX] or [Sh:g, Analytical Guide, 4.18(b)] ¢ = pcf (a*) N [k, K;H’Z) is bounded in
k7% since 6, > 9f3 > |a*| 4. Also pef(¢) = c. For each & < 8* for some i (£)
we have pcf({rg@)’k|k < o)) N [ks, k2 2) is not bounded by supc. So, choose
O e pef (M [k < 0 0 ke k5 %)\ sUpe. Clearly, p(€) < 62 isasuc-
cessor ordinal. As, 62 < 63 = cff3, and §* € Y implies either (cf8* = 63)
or (8* = 04 and then also c¢f$] > 63), necessary, for some p* < 6, the set

= {§ < 8% | p(§) = p*} isunbounded in §*. Let J, = J2?. So J, isanideal on
a, and, clearly, for every ¢, € J, (n < w) we have/c“’ € pef (Uy—p(@n\cn)).

By pcf theory (see [Sh:g, VIII, 1.5] or [Sh:g, Analytical Guide]) there are fi—
nitesetse, € N{pcf(a,\cn) | cn € Ju} (n < w) suchthat «y e pef(Uy<pen
But N{pcf(an\cn)|cn € Ju} C {agf | B < B, isasuccessor ordinal} for every

n<wSoU,.,en C U{oa*ﬁn | B < B isasuccessor ordinal andn < w} = a*

Hence, K+p € pcf(a*). But then K+'O € pef @) N [ks, ki) = ¢, which is
impossible by the choice of p*. Contradiction. O

Let us conclude with a question which is most natural, taking into account the
results above.
Question. Isthe following situation possible:

(@) k1 < Ky, cf k1 = R0, cf Ky = N1.
(b) for every singular u < «1, pp(u) = wt (or if one likes only for u's of
countable cofinality).
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(€) ks =SUp{pe | pt < K, cf = No and pp(u) = k7).
(d) the same as (d) of Theorem 1 or even add (x) of the proof of Theorem 1.

Acknowledgement. We would like to thank the referee of the paper for his remarks and
suggestions. A specia debt we owe to Azriel Levy for considerable help in preparing the
final version of the paper.

References

[Gi] Gitik, M.: Blowing-up power of a singular cardinal-wider gaps, To appear in
Annals of Pure and Applied Logic

[Gi-Ma  Gitik, M., Magidor, M.: Extender based forcings, JSL 59, 450460 (1994)

[Gi-Sh] Gitik, M., Shelah, S.: On certain indestructibiltiy of strong cardinals and aques-
tion of Hainal, Arch. Math. Logic., 28 35-42 (1989)

[Sh:400A] Shelah, S.: Cardinal arithmetic for skeptics, Bulletin of the AMS 26 197-210
(1992)

[Sh:g] Shelah, S.: Cardinal arithmetic. Oxford Science Publ., Oxford Logic Guides 29.
CVlarendon Press, Oxford (1994)

[Sh:506]  Shelah, S.: Thepcf-theoremrevisited. In The Mathematics of Paul Erdos|| (R.L.
Graham and J. Neetfil, editors), Springer Verlag, 420459 (1997)



