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ABSTRACT 

We give a combinatorial equivalent to the existence of a non-free heredi- 

tarily separable group of cardinality R1. This can be used, together with 

a known combinatorial equivalent of the existence of a non-free White- 

head group, to prove that  it is consistent that  every Whitehead group is 

free but  not every hereditarily separable group is free. We also show that  

the fact that  Z is a p.i.d, with infinitely many primes is essential for this 

result. 
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Introduct ion  

An abelian group G is said to be s e p a r a b l e  if every finite rank pure subgroup is 

a free direct summand of G; G is h e r e d i t a r i l y  s e p a r a b l e  if every subgroup of G 

is separable. It is well-known that a Whitehead group is hereditarily separable. 

In fact, we have the following implications: 

free ==~ W-group ==~ hereditarily separable. 

Whitehead's Problem asks if the first arrow is reversible. For each of the two 

arrows, it has been proved by the third author that it is independent of ordinary 

set theory whether the arrow reverses. (See [7], [9] and [10], or the account in 

[3].) 
Now if we consider the- two arrows together, there are four possible cases, three 

of which have already been shown to be consistent: 

1. 

2. 

3. 

4. 

Both  arrows reverse. That  is, every hereditarily separable group is free. 

This is true in a model of V = L. (See [3, VII.4.9].) 

Neither arrow reverses. That  is, there are Whitehead groups which are 

not free, and hereditarily separable groups which are not Whitehead. This 

is true in a model of MA + ~CH. (See [3, VII.4.5, VII.4.6 and XII .I . l l ] . )  

The second arrow reverses but not  the first. That  is, every hereditarily 

separable group is Whitehead and there are Whitehead groups which are 

not free. This is true in a model of Ax(S) + ~*(wl \ S) plus ~ ( E )  for 

every regular ~ > R1 and every stationary subset E of n. (See [3, Exer. 

XII.16].) 

The first arrow reverses but not  the second. That,  is every Whitehead 

group is free, but there are non-free hereditarily separable groups. It is an 

application of the main theorem of this paper that this case is consistent. 

(See Section 3.) 

We also give additional information about the circumstances under which Cases 

2 and 3 can occur. (See Section 4.) Finally, we show that Case 4 is impossible 

for modules over a p.i.d, with only finitely many (but at least two) primes. (See 

Section 5.) 
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Our methods involve the use of notions of uniformization, which have played an 

important role in this subject since [8]. (See, for example, [3] and the recent [4].) 

It has been proved that  there exists a non-free Whitehead group of cardinality R1 

if and only if there is a ladder system on a stationary subset of wl which satisfies 

2-uniformization. (Definitions are given in detail in the next section.) Our main 

theorem here is the following: 

THEOREM 1: A necessary and sufficient condition for the existence of a non-free 

hereditarily separable group of cardinality R1 is the existence of  a ladder system 

on a stationary subset of wl which satisfies monochromatic uniformization for 

colours. 

A ladder system ~ -- {~?~: ~ C S} on S is said to satisfy monochromatic 

uniformization for w colours if for every function c: S -~ a~, there is a function 

f :  wl -~ w such that  for every 6 c S, f(~6(n)) = c(~) for all but finitely many 

nEoJ .  

We believe the main theorem is of independent interest aside from its use in 

Case 4. We will prove sufficiency in Section 1 and necessity in Section 2. We will 

then derive the consistency of Case 4 by standard forcing techniques like those 

used in [10]. (Actually, we need only the sufficiency part of the main theorem for 

this.) A knowledge of forcing is required only for Sections 3 and 4. 

ACKNOWLEDGEMENT: We would like to thank Bill Wickless for his help in 

answering a question about finite rank torsion-free groups. 

Preliminaries 

We will always be dealing with abelian groups or Z-modules; we shall simply say 

"group". A group G is said to be Rl-free if every countable subgroup of G is free, 

or equivalently, every finite rank subgroup is free. (See [3, IV.2.3]; throughout 

the paper we will usually cite [3] for results we need, rather than the original 

source.) An Rl-free group G is separable if and only if every pure subgroup H 

of finite rank is a direct summand of G, i.e., there is a projection h:.G ~ H 

(a homomorphism such that  h[H is the identity on H).  The following are two 

useful facts (cf. [3, IV.2.7 and VII.4.2]): 

LEMMA 2: 

(i) An Rl-free group G is separable i f  every pure cyclic subgroup of G is a 

direct summand of G. 
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(ii) An Rl-free group G is hereditarily separable i[ B is separable whenever B 

is a subgroup of G such that G / B is isomorphic to a subgroup of Q/Z  and 

there is a finite set P o[ primes such that the order o[ every element o[ G/ B 

is divisible only by primes in P. 

A group G is said to be a W h i t e h e a d  g r o u p  if Ex t (G,  Z) = 0. Every  White-  

head group is separable  ([3, XII.1.3]). Since a subgroup of a Whi tehead  group is 

also a Whi tehead  group, every Whi tehead  group is hereditar i ly separable.  

A group is said to be a A h e l a h  g r o u p  if it has cardinal i ty R1, is Rl-ffee, 

and for every countable  subgroup B there is a countable  subgroup B I _D B such 

tha t  for every countable  subgroup C satisfying C N B ~ = B, C / B  is free. In  

tha t  case, we say t ha t  B '  has the A h e l a h  p r o p e r t y  over B. In [7] and [9] it is 

proved a consequence of Mar t in ' s  Axiom plus -~CH tha t  the Whi tehead  groups 

of cardinal i ty  R1 are precisely the Shelah groups. 

Notions of uniformizat ion (in our sense) were first defined in [2] and [8]. Let 

S be a subset  of lira(o;1). If  6 E S, a l a d d e r  o n  6 is a function ~/~: 0; --+ 6 which 

is s t r ict ly increasing and has range cofinal in 6. A l a d d e r  s y s t e m  o n  S is an 

indexed family ~ /=  {7/~: 6 C S} such tha t  each 7/~ is a ladder on 6. The  ladder 

sys tem ~/is t r e e - l i k e  if whenever ~/6(n) = ~/~(m), then  n = m and r/~(k) = ~/~(k) 

for all k < n. 

For a cardinal  A > 2, a A-co lo r ing  of a ladder sys tem 7/on S is an indexed 

family c = {c~: 6 E S} such tha t  c6: 0; --+ A. A u n i f o r m i z a t i o n  of a coloring 

c of a ladder sys tem ~/on S is a pair  (9,9*) where g: o;1 --+ A, g*: S --+ 0; and 

for all 6 E S and all n > 9*(6), g(~l~(n)) = c~(n). If  such a pair  exists, we say 

tha t  c can be uniformized. We say tha t  (~/, A ) - u n i f o r m i z a t i o n  h o l d s  or tha t  7/ 

s a t i s f i e s  A - u n i f o r m i z a t i o n  if every A-coloring of r / c an  be uniformized. 

A m o n o c h r o m a t i c  colouring c of a ladder sys tem 7/is one such tha t  for each 

6 E S, c~ is a constant  function. We shall, f rom now on, consider a monochromat ic  

colouring with  A colours to be a function c: S --~ A (which gives the constant  

value, c(6), of the colouring of ~ ) .  Then  a uniformizat ion of a monochromat ic  

colouring c is a pair  (f ,  f*)  where for all 6 E S and all n > f*(6) ,  f(o~(n)) = c(6). 

If  every monochromat ic  A-colouring of ~ can be uniformized we say r / s a t i s f i e s  

m o n o c h r o m a t i c  u n i f o r m i z a t i o n  fo r  A co lou r s .  

Define a l a d d e r  s y s t e m  b a s e d  o n  a c o u n t a b l e  s e t  to be an indexed family 

= { ~ :  6 E S} such tha t  each O~ is a function f rom 0; to a fixed countable  set I .  

We can define notions of colouring and uniformizat ion analogous to those above. 
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(See [3, pp. 367-369].) The  following two results, though s ta ted  and proved 

for ladder sys tems on a s ta t ionary  subset  of Wl, are t rue  also for ladder sys tems 

based on a countable  set. 

For ease of reference, we include the following result (compare  [3, XII.3.3]). 

LEMMA 3: I f  there is a ladder system on a stationary subset of  wl which 

satisfies A-uniformization (resp. monochromatic uniformization for A colours), 

then there is a tree-like ladder system on a stationary subset ofT1 which satisfies 

A-unfformization (resp. monochromatic uniformization for A colours). 

Proof: Suppose {~/6:5 E S} satisfies A-uniformization (resp. monochromat ic  

uniformizat ion for A colours). Choose a one-one m a p  0 f rom <~Wl to Wl, such 

tha t  0(a)  < O(a') if a' is a sequence extending a and such tha t  for any T E <~Wl, 

0(~') > T(n) for all n E dom(T).  Let C be a closed unbounded subset  of wl 

consisting of limit ordinals such tha t  for every a E C, 0[<~a] C_ a .  Let S' = SMC. 

For a �9 S ' ,  define ~ ( n )  = 0((~/~(0), . . . ,  ~/~(n))). Then  { ~ :  a �9 S '} is tree- 

like and satisfies A-uniformization (resp. monochromat ic  uniformizat ion for A 

colours). I 

Remark: With  a little more  care we can prove tha t  if there is a ladder sys tem 

on S which satisfies A-uniformization, then there is a tree-like ladder sys tem on 

the same set S which satisfies A-uniformization. (Compare  [3, Exer. XII.17].) 

The  third au thor  has proved tha t  there is a non-free Whi tehead  group of cardi- 

nali ty lql if and only if there is a ladder sys tem on a s t a t ionary  subset  of wl which 

satisfies 2-uniformization.  (See [3, w The  main  theorem of this pape r  is 

an analogous necessary and sufficient condit ion for the existence of a non-free 

hereditar i ly separable  group. Since every Whi tehead  group is hereditar i ly sepa- 

rable, we can conclude tha t  if there is a ladder sys tem on a s t a t ionary  subset  of 

Wl which satisfies 2-uniformization,  then  there is a ladder sys tem on a s t a t ionary  

subset  of wl which satisfies monochromat ic  uniformizat ion for w colours. I t  is 

perhaps  reassuring to know tha t  there is a simple direct proof  of this consequence: 

PROPOSITION 4: I f  there is a ladder system ~ on a stationary subset ofT1 which 

satisfies 2-uniformization, then there is a ladder system on a stationary subset of 

031 which satisfies monochromatic uniformization for w colours. 

Proof: By L e m m a  3, we can assume tha t  ~/ = {~/~: 5 �9 S} is tree-like. Fix  a 

monochromat ic  colouring c of 7/with w colours. Let c' be a 2-colouring of ~/such 
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that  for 6 �9 S, and k �9 w such that  2 k > c(6), 

c~(2 k + 1),c~(2 k + 2) , . . . , c~(2  k+l) 

Isr. J. Math. 

is the sequence 

0 c(~), 1, 1, 1 , . . . ,  1, 

i.e., c(6) zeroes followed by 2 k - c(6) ones. Let (g, g*) be a uniformization of c'. 

To define (f ,  f*),  let f*(5) be the least n so that  n = 2 k+l where 2 k > max{c(5), 

g*(6)}. We define f so that  for all 6 �9 S and m >_ f*(6), f(~l~(m)) = c(6). 

To see that  f is well-defined, consider the case when yr (m)  = 7/~(m) and m _> 

f* ( r ) , f* (5) .  Since y is tree-like, ~/6(j) = ~?r(j) for all j _< m. By definition of 

f*,  there is a k such that  2 k+l _< m, and 2 k > max{c(5),C(T),g*(6),g*(T)}. But 

then the values of gQl~(J)) for j = 2 k + 1 , . . . ,  2 k+l code c(5) and also C(T), SO 

c ( 6 )  = m 

Remark: The proof actually shows that  if ~/is tree-like and satisfies 2-uniformi- 

zation, then 7/ satisfies monochromatic uniformization for w colours. 

1. Suf f ic iency  

THEOREM 5: I f  there is a ladder system on a stationary subset of ~d 1 which 

satisfies monochromatic uniformization for w colours, then there is a non-free 

group of cardinality R1 which is hereditarily separable. 

Proof: By hypothesis there is a stationary subset S of Wl and a ladder system 

~/= {~/~: 6 E S} such that  every monochromatic colouring with w colours can be 

uniformized. By Lemma 3, without loss of generality we can assume that  ~/ is 

tree-like. 

We begin by defining the group. Let pn (n < w) be an enumeration of the 

primes. The group G will be generated by {x~: a < wx} u {y~,n: 6 E S ,n  < w}, 

subject to the relations 

P~Y~,,~+I = Y~,~ + x~(n). 

For any a ,  we let G~ denote the subgroup of G generated by (xz,y~n: 

13 < a,  6 E S N a}. It  is standard that  G is Rl-free (in fact Rl-separable) but 

not free. The rest of the proof will be devoted to proving that  G is hereditarily 

separable. 
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Assume B is a subgroup of G such that  G / B  is isomorphic to a subgroup of 

Q/Z  and there is a finite set P of primes such that  the order of every element 

of G / B  is divisible only by primes in P; we need to prove that  if Z is a rank 

1 pure subgroup of B, then there is a projection of B onto Z. (See Lemma 2.) 

Since G / B  is countable there is a so that  Go + B = G and Z C G~. Fix 

such an a and call it a*. Next, choose in Go* a system of representatives for 

G / B  and let g: G --* Go* be the function which assigns to an element of G its 

coset representative. Finally choose n* so that  for all n >_ n*, G / B  is uniquely 

pn-divisible. 

Let hi be a projection of B N Go* onto Z. Such a projection exists since 

B A Go* is free. We will extend hi to a projection h from B to Z by defining 

h on {xz - g ( x z ) ,  Y~,n - g ( Y ~ , n ) :  /3 >_ a*,  n E w, 5 C S, 6 >_ a*}. Such a 

definition suffices (provided it works), since B is generated by this set together 

with B A Go*. 

Define the colouring c: ( S " . a * )  ~ Go .  so that  c(6) = g(Y~,n*). (Since the 

values are taken in Go*, which is a countable set, this is an allowable colouring.) 

Let the pair ( f ,  f * )  uniformize c. We can assume that  f*(6) _> n* and that  

zl~(f*(6))  >_ a* for all 6 E S \ a*. We define the function h in three stages. First 

for each 6 > a* and n > f * (6 ) ,  h(y~,n - g(y~,n)) = 0 and 

- = - g(y ,n) - 

There are two potential problems with the second definition: namely, why is 

the right-hand side of the equation defined; and why is the definition independent 

of 6? (Note that  xn,(~ ) may equal xn~(n ) for some v). For the first problem, note 

Png(Ys,n+l)  - g(Y6,n) - g(xn~(n )) = PnY~,n+l -- Y6,n -- Xn6(n ) = 0 (mod B), 

hence png(y~,n+l)  -- g(Y6,n) -- g(xn , (n  )) E B N Go*. The independence of the 

definition from 6 is a consequence of the following lemma, after noting that  

n >_ f * ( 6 )  implies g(Y~,n')  = g(yr when r/~(n) = ~r 

LEMMA 6: L e t  n >_ n*. S u p p o s e  tha t  T, 6 C S,  ~l~(n) = ~ ( n )  and  g(Yh,n*) -= 

T h e n  = 

P r o o ~  The proof is by induction on n _> n*. Since the ladder system is tree-like, 

we can assume by induction that  g(Y~,n) = g(Y~,n). Now 

P.g(Y,5,n+l) -- g(Y~,,~) + g(xn6(. )) = g(Y~- ,n)+g(xn~(n )) -- Png (Yr , .+ l )  (mod B). 
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Since G / B  is uniquely p,~-divisible (by choice of n*), g(YS,n+l) -- g(yr,n+l) 

(mod B) and hence g(Y~,n+l) = g(Yr,,,+l) by definition of g. I 

To complete the definition, the second step is to define h(xz  - g ( x z ) )  arbitrarily 

(say 0) for any ~ not covered in the first step (i.e., ~ > a* and f~ ~ ~?~(n) for any 

5 and any n >_ f*(5)) .  Finally, for all 5 and n < f*(5)  define h(y~,n - g(y~,n)) as 

required by the equation 

(Y~,n - g(Y~,n)) § (X,l~(n)--g(x,~(n))) -- Pn(Y~,n§ -- g(Y$,n§ 

-{-g(Ys,n) "Jr-g(x*q6(n)) -  p n g ( y l f , n §  : O. 

(Do this by "downward induction".) 

It remains to see that h induces a homomorphism. Consider the free group 

F = L @ (B N G~.) where L is the group freely generated by (u/3,w~,n: ~ E S, 

n E ~ , ~  > a * , ~ ( n )  > a*}. There is a surjective map ~: F -~ B which is the 

identity on B M G , .  and such that ~(u~)  = x ~ - g ( x ~ )  and ~(w~,,~) = y~,~-g(y~,n). 

The kernel K of ~ is generated by elements of the form (w~,~ +urn(n)--pnw~,n+l) 

+(g(y6,~)+g(xv~(~))--Png(Y~,~+l)). Let h: F --* Z be defined so that  h I B N G ~ .  = 

hi,  h (uz )  = h (xz  - g(x~))  and ]~(w~,n) = h(y~,n - g(y~,~)). Since h is constantly 

0 on K,  it induces a homomorphism from B to Z which agrees with h on the 

generators of B. I 

Remark:  The same proof works with any tree-like ladder system based on a 

countable set. (The assumption that the ladder system is tree-like is necessary, 

as witnessed by Hausdorff gaps). In particular, if there is a set of ~1 branches 

through the binary tree of height w which satisfies monochromatic uniformization 

for w colours, then the group built from these branches is hereditarily separable. 

This group is just the group constructed in [3, VII.4.3]; there it is shown that  MA 

+ --CH implies this group is hereditarily separable. Given these comments, one 

might expect that it is possible to show that MA + -~CH implies that any system 

of l~1 branches through the binary tree satisfies monochromatic uniformization 

for w colours. Indeed, this is the case: given a set of 1~1 branches and a monochro- 

matic colouring c by w colours, let the poset, ~, consist of pairs (s, B) where s 

is a function from "2 ~ w and B is a finite subset of the branches such that  for 

all b E B,  s(brn) = c(b). If (t ,c)  E ~ and dom(t) -- m2, we define ( t ,C)  > ( s , B )  

iff s C_ t, B C_ C and for all b E B and n < k <_ m,  t(brk) -- s(brn) = c(b). 

The proof that  for each n, ((s, B): n2 C_ dom(s)} is dense uses the fact that the 
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colouring is monochromat ic .  On the other  hand the poset is c.c.c., since any two 

conditions with the same first element are compatible.  

2. N e c e s s i t y  

The following lemma can be derived as a consequence of the fact tha t  the Richman 

type of a finite rank torsion free group is well-defined (see [6] or [5]); but  for the 

convenience of the reader we give a self-contained proof. 

LEMMA 7: Suppose A is a torsion free group of rank r + 1 and every rank r 

subgroup is free. I f  B and C are pure rank r subgroups, then the type of A / B  is 

the same as the type of A /C .  

Proof: The proof  is by induction on r. We can assume tha t  r >_ 1 and B ~ C. 

Consider first the case r = 1; then B M C  = 0. If  b E B and c C C are 

generating elements, then A c_ Qb | Qc and it is enough to prove that  m divides 

b (mod C) if and only if m divides c (mod B).  Now if m divides b (mod C),  

then b = ma + nc for some a E A and n C Z. Since B = (b) is pure in A, m and 

n must  be relatively prime. Hence there exist s, t E Z such tha t  ns + m t  = 1. 

But then c = m(tc - sa) + sb, so m divides c (mod B).  

Now suppose r > 1. Consider B M C ;  since r + l  = r k ( B + C )  = r k ( B ) +  

rk(C) - rk(B N C) and 2r > r + 1, we have tha t  rk(B M C) > 1. Since B M C is 

a pure free subgroup of A we can find (x / C_ B M C which is a pure subgroup of 

A. Note tha t  A/ (x )  has the proper ty  tha t  every subgroup of rank r - 1 is free. 

Now apply the induct ion hypothesis to A/ (x ) ,  B / ( x )  and C/(x) .  I 

THEOREM 8: / f  there is a non-free hereditarily separable group G of cardinality 

R1, then there is a ladder system on a stationary subset of Wl which satisfies 

monochromatic uniformization for w colours. 

Proof: We can write G = U~<~I G~, a union of a continuous chain of countable 

free pure subgroups where, wi thout  loss of generality, we can assume tha t  there 

is a s ta t ionary  subset S of Wl, consisting of limit ordinals, and an integer r _> 0 

such tha t  for all 5 C S, G~+I/G$ is non-free of rank r + 1 and every subgroup 

of G6+I/G~ of rank r is free. (We use the fact tha t  if a s ta t ionary  subset of 

Wl is par t i t ioned into countably  many  pieces, then one of the pieces must  be 

s tat ionary:  cf. [3, II.4.5].) Thus  for each 5 E S there is a pure free subgroup 

F~/G~ of G~+I/G~ of rank r such tha t  M ~ f G ~ + I / F ~  is rank 1 and non-free. 
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Moreover either Me is divisible or there is a prime pe and an element ye -F Fe 

of Me which is not divisible by pe. Without loss of generality (again using [3, 

II.4.5]), we can assume that  there is a prime p such that Pe = P for all 5 E S such 

that M~ is not divisible. 

For each 5 E S, let {y~: 0 < ~ < r} C Ge+l be such that {y~+Ge: 0 < ~ < r - l }  

is a basis of Fe/Ge, y~ ~ Fe and y~ + Fe is not divisible by p in Me if Me is not 

r} U n divisible. Then Ge+l is generated by Ge U ( e: / < E w}, where the 

z~ satisfy equations 
e e +g~ rnZn E e,n e = s e Y~ 

e en where g~ E Ge and r~, s~' E Z. 

Define functions ~e on w for each 5 E S by: 

~e(n) (g~, e,m e g~_r ,m_<n) .  8~ ~ rm: 

Notice that  ~e(n) determines the isomorphism type of the finitely generated 

subgroup of Ge+l/Ge generated by (the coset~ of) {y~: g < r} U {z~: m < n}. 

As in [3, XII.3] - -  see especially Theorem XII.3.3 and the beginning of the proof 

of XII.3.1 (p. 381) - -  if we show that r = ~ 6 :  ~ E S} satisfies monochromatic 

uniformization for w colours, then there is a ladder system on a stationary subset 

of Wl with the same property. 

So fix a monochromatic colouring c: S --* w of r We are going to use c to 

define a subgroup B of G with a pure cyclic subgroup Z. By the hypothesis on 

G, there will be a projection h: B --~ Z. Because of the way we define B we will 

be able to use h to define f :  {~e(n): ~ E S, n E w} --* w such that for each ~ E S, 

f (~e(n))  = c(~) for all but finitely many n E w. 

We will define a continuous chain of subgroups B~ of G~ by induction on a 

and let B = U~e~IB~" To begin, let {xn: n E w} be abas i s  of Go, and let 

B0 be the subgroup of Go generated by {pxo} U {pxn+l - xn: n E w}. Thus 

Go/Bo ~- Z(p r and z ~ f Z p x o  is a pure subgroup of B0. 

Let A = {tn: n E w} C_ Go be a complete set of representatives of Go/Bo such 

that  to = 0. For each pair (d, a) where d > 0 and a E A, fix an element [d, a] E w 

such that  dt[d,a ] -F Bo -- a -I- Bo. 

We will define the B~ so that for all a 

1. B~ -F Go = G~ and 
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2. for a l l 3 < a ,  B e M G z = B ~ .  

Notice then that  G~/B~ -~ Go/Bo, and Z is pure in each B~. 

The crucial case is when we have defined B~ already and 6 E S. We will define 

B~,m by induction on m and then let B~+I -- U m ~  B~,m. Let 

B~,0 = (B~ U {yt~: e < r} U {y~ - tc(~)}). 

Then B6,o M G~ = B~ since {y~: g _< r} is independent mod G~. Suppose B6,m 

has been defined so that B~,,~ ~ G6 = B6. Thus (B~,m + G~)/Bs,m ~- Go/Bo. 

Let dm> 0 be minimal such that dmz~ E B~,m + G6. If dmz~ - a,~ E A (rood 

B~,m), let 

B a , m + l  : B6 ,m  ~- Z(Z6m -- t [d~ ,a~]) .  

Then we will have Ba,,~+l A Ga = Ba. So, in the end, Ba+l A Ga = Ba. Moreover, 

Ba+l + Go = G6+~, because, by construction, every generator of Ga+l belongs 

to B6+1 + Go. 

If 6 ~ S, the construction of B~+I is essentially the same, except that the 

colouring c plays no role; we begin with a set Y C G6+l which is maximal 

independent rood G~ and let B~,0 = (B~ U Y); then define B~,m by induction as 

before (using a well-ordering of type w of a set of generators of G6+l mod G~). 

This completes the description of the construction of B. 

Now fix a projection h: B -~ Z and fix a well-ordering, -% of Z r+l • w of order 

type w. We are going to define the uniformizing function f .  We must define 

f (v )  for each v of the form qo~(n). (Note that there may be many 5 such that 

v ---- ~6(n).) Suppose 

v =  < g m ,  s m _ _ ,rm: ~ < r , m  < n>. 

Let a = a(v) be minimal such that g,~ E Go for all m _< n. For each k E ~ we 

can construct a group B (k) just as in the construction of B~+I, which is generated 

by Bo U {y~: ~ < r} U {Yr - tk} together with elements of the form z,~ - t[d . . . .  ] 

(m _< n) where the Zm satisfy the relations 

8 m (*) rraZm = Z ~ y~ + gm. 
~<_r 

This is an abstract group, which can be regarded as a subgroup of the free 

group on G~ U {y~: g < r} U {zm: m < n} modulo the relations in G~ and the 
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relations given by v (i.e., the equations (.)).  If 5 is such that ~ ( n )  = v and 

c(5) = k, then there is an embedding of B (k) into B~,n+l which fixes B~ (and 

is an isomorphism if a = 5). As before, Z = (pxo) is a pure subgroup of B (k). 

Since B (k) is isomorphic to a subgroup of G, it is separable. 

Since h exists, there is a -~-least tuple (we: ~ _< r)P.(k)  in Z ~+1 • w for which 

there is a projection h': B (a) -~ Z with h' rB~ = hrBo, h'(ye) = we for g < r and 

h'(y~ - tk) = w~. Note that this tuple determines h' on B (k). Define f(~)  = k. 

We have to show that this definition works, that  is, for each 5 E S, f ( ~ ( n ) )  

equals c(5) for sufficiently large n E w. Fix 5 E S. With respect to the well- 

ordering -~, there are only finitely many "wrong guesses" which come before the 

"right answer" (h(y~): ~ < r).-~(h(y~ - t~(~)))~-.(c(5)). So we just have to show 

that no wrong guess can work for all n if it involves a k ~ c(5). If there were 

a wrong guess that worked for all n for some k ~ c(5), then there would be a 

projection h' onto Z whose domain, B',  contains {y~: ~ < r} U {y~-  tk}, elements 
5 of the form z~ - a~,n for all n E w (with a6,~ E A), and B~ where a is minimal 

such that  g~ E Go for all n E w. 

Let G denote 

Go + B'  = G~ + ({ye~: ~ < r} U {z~: n E w}/. 

Notice that  for each g E Go, there is a j such that pig E B0 C B~, which 

is a subset of dom(h) and dom(h'). Hence we can extend h and h' uniquely to 

homomorphisms from G into Q(P) | Z. (Here Q(p) is the group of rationals whose 

denominators are powers of p.) Denote the extension by h (resp. h'). We claim 

that h -- h'. 

Assume for the moment that this is true. Then h(y~) = tt'(y~). Now 

h(y~ - t~(~)) e Z and h'(y~ - tk) E Z. So 

h ( t c ( 6 )  - = - - - e z .  

Since k r c(5), there is an s E Z so that s ( t c ( e ) - t k )  =- Xo (modB0) ,  so 

h(x0) E Z. But p(h(xo)) = [t(pxo) = pxo; this contradicts the fact that pxo 

generates Z. 

It remains to prove the claim. Let H = G/Ga,  which is isomorphic to Ge+I/G~. 

Now h - tt' induces a homomorphism from H into Q(P) since h and ~1 agree 

on B~, hence on Go (since Go/Bo ~ Z(p~176 and so on G~. So it suffices to 

prove that  Horn(H, Q(P)) = 0. Assume, to the contrary, that there is a non-zero 
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r H -* Q(P). Let K = ker(r then the rank of K is r. Now H / K  is isomorphic 

to a subgroup of Q(B) and hence is not divisible. By Lemma 7, H / K  is isomorphic 

to M6 = G~+I/F~. So by the choice of S and p, H / K  is not p-divisible; since 

H / K  is isomorphic to a subgroup of Q(P), this implies H / K  is free. But this is 

impossible, since H is not free and K is a subgroup of rank r, and hence free. 

| 

COROLLARY 9: I[ there is an hereditarily separable group of cardinality R1 which 

is not free, then there exist 2 ~1 different Rl-separable groups of cardinality R1 

which are hereditarily separable. 

Proof: By the theorem, the given hypothesis implies that  there is a ladder system 

on a stat ionary subset of Wl which satisfies monochromatic uniformization for 

colours. Using this ladder system, we can construct an Rl-separable group 

which is hereditarily separable as in the proof of Theorem 5. By a standard trick 

we can, in fact, construct such groups with 2 al different F-invariants. (Compare 

[3, VII.1.5].) | 

Similarly to the proof of Theorem 8 we can prove the following: 

THEOREM 10: I f  there is an hereditarily separable group G of cardinality R1 

which is not a Shelah group, then there is a ladder system based on a countable 

set which satisfies monochromatic uniformization for aJ colours. 

3. C o n s i s t e n c y  o f  C a s e  4 

The consistency of Case 4 in the Introduction will now follow from Theorem 5 

and the following set-theoretic result. 

THEOREM 11: 

It  is consistent with ZFC q- GCH that the following all hold: 

(i) there is a ladder system on a stationary subset of u;1 which satisfies mono- 

chromatic uniformization for w colours; 

(ii) there is no ladder system on a stationary subset of ~d I which satisfies 2- 

uniformization; 

(iii) ~ ( E )  holds for every stationary subset, E,  of every regular cardinal n > 

Sh:442



226 P . C .  E K L O F  E T  AL. Isr. J. Math .  

Proof: We assume familiarity with the methods of [10]. For simplicity let our 

ground model be L; fix a stationary, co-stationary subset S of wl and a ladder 

system ~ on S. Our forcing P will be an iterated forcing with countable support  

using two types of posets: R, which adds a Cohen subset of Wl, and Q(c) which is 

'-he poset uniformizing a monochromatic colouring c: S ~ w of ~l with countable 

onditions, i.e., 

Q(c) = {f: f :  a --* oJ for some successor a < Wl and for all 5 E S M a,  

f ( ~ ( n ) )  = c(5) for almost all n E w}. 

In the iteration P we force with/~ at successors of even ordinal stages and force 

Jith (~(~) at the successors of odd ordinal stages, where, as usual, the names 

,re chosen so that  all possibilities occur. The posets R and Q(e) are proper, so 

stat ionary sets are preserved by P. Also, IP is (wl \ S)-closed and of cardinality 

R2, so GCH holds in the generic extension as well as {}~(E) for every stat ionary 

subset of every regular cardinal a > R1. 

I t  remains to show that  in the generic extension 2-uniformization fails for every 

stat ionary subset E of wl and every ladder system ~ = {46: ~i E E}. By doing 

an initial segment of the forcing we can assume that  E and { are both  in the 

ground model. Let X be the generic set for the first copy of R in the iteration of 

IP. Consider the 2-eolouring {c~: ~ C E} of ( defined as follows: c6(n) = 0 if and 

only if 5 + n E X. The proof that  this colouring is not uniformized now follows 

along the same lines as that  in [10]. I 

COROLLARY 12: It is consistent with ZFC q- GCH that there is an hereditarily 

separable group of cardinality ~1 which is not free, and every Whitehead group 

(of arbitrary cardinality) is free. 

Proof: We use the model of ZFC + GCH constructed in Theorem 11. Clause (i) 

in Theorem 11 together with Theorem 5 imply that  there is a non-free hereditarily 

separable group of cardinality R1. Clause (ii) implies that  there is no non-free 

Whitehead group of cardinality i~1. (See [3, XII.3.1(i)].) Finally clause (iii) 

enables one to do an inductive proof that  there is no non-free Whitehead group 

of any cardinality (as, for example, in [3, XII.1.6]). I 
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4.  C a s e s  2 a n d  3 

In Cases 2 and 3 of the In t roduct ion  we are in the si tuat ion where there is a 

Whi tehead  group which is not free; here we shall consider two hypotheses which 

are stronger than  this hypothesis: first, tha t  there is a Whi tehead  group which is 

not a Shelah group; and, second, tha t  every Shelah group is a Whi tehead  group. 

The following theorem says tha t  the hypothesis  tha t  there is a Whi tehead  

group which is not  a Shelah group is not consistent with Case 3. It  also gives 

another  consistency proof  for Case 2 since it is known tha t  it is consistent tha t  

there are Whi tehead  groups which are not Shelah groups (see [3, XII.3.11]). 

THEOREM 13: I[  there is a Whi tehead  group o[ cardinality R1 which is not  

a Shelah group, then there is an hereditari ly separable group which is not  a 

Whi tehead  group. 

Proo~ By [3, XII.3.19] there is a ladder system r/ = {r/~: 5 E wl} based on a 

countable set I which satisfies 2-uniformization. Wi thou t  loss of generality we 

can assume tha t  I = w and each r/~: w --* w is str ict ly increasing. Moreover, as 

in the proof  of Lemma 3, we can assume tha t  7] is tree-like, and hence, as in the 

proof  of Lemma 4, y satisfies monochromat ic  uniformization for w colours. 

For each 5 E wl and n E ~v let 

k ~ , n = ( y ~ ( n ) + l ) !  

and 

k~, n = r/~(n)!. 

Let G be the group generated by {xn: n < w} U {Y~,n: 5 E wl, n < w}, subject  to 

the relations 

(1) k~,n+ly~,~+l = Y~,n + xn~(n). 

As in the proof  of Theorem 5, G is hereditari ly separable. 

It  remains to show tha t  G is not  a Whi tehead  group. For this we shall define 

an epimorphism 7r: H ~ G with kernel Z which does not split. Let H be the 

i . 03} U group generated by {x~: n < w} U {y~,~. 5 E wl, n < {z}, subject  to  the 

relations 

( 2 )  ' ' ' k6,n+lY~,n+l = Y~,n + xn~(,) + klh,n+l z. 

! There is an epimorphism ~r taking y~,~ to y~,~, xm to xm, and z to O; the kernel of 

is the pure subgroup of H generated by z. Aiming for a contradict ion,  assume 
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there is a spl i t t ing of 7r, i.e., a h o m o m o r p h i s m  ~o: G ~ H such tha t  l ro~ = l a .  So 

~o(ya,.)-y~,~ e ker(~r) for all 6 < wl, n E oJ. Since a countable  union of countable  

sets is countable,  there exists 5 r ~- such tha t  r/~(0) = ~/~(0), r/~(1) = ~/T(1) and 

' ' (>  2) be min imal  such tha t  ~/~(m) r ~ ( m ) .  ~(Y~,0)-Y6,0 = ~(Y~,o)-Y~,0. Let m 

We claim tha t  ~ ( y ~ , n ) - y ' ~ , , ~  = ~o(y~ , ,~ ) - y ' , , ~  i f n  < m. The  proof  is by induct ion 

on n < m; the initial case n = 0 is by choice of 5 and T. So supposing the result  

is t rue  for n < m - 1, we will prove it for n + 1. Applying the h o m o m o r p h i s m  ~o 

to equat ion (1) for T as well as ~ and subt rac t ing  we get tha t  (in H )  

(3) 

since xn~(,~ ) = x ,7 , (n  ) because n < m. But  then  by induction 

(4) ke,n+l~(ye,n+l) - kT,,~+l~o(y~,n+l) = Ya,n' -- Y~,n.' 

Now by equat ion (2), since xn6(n ) = xn~(~ ) and k'~,~+l = kS,n+ 1 (the la t ter  

because n < m - 1), we have 

( 5 )  ' ' ' ' k,5,n+lY,5,n+l - k r , n + l Y r , n + l  = Ys ,n  --  Yr ,n ,  

SO by equat ions (4) and (5) we have 

( 6 )  k 6 , , . + l ( ~ ( y ~ , , , + l )  - y ; , ~ + l )  = k . , n + l ( ~ ( y T , n + ~ )  --  y ' . , n + ~ ) .  

Since n < m -  1, ke,,~+l = k~,n+l, so cancelling ke,n+l f rom equat ion (6), we 

obta in  the desired result, and the claim is proved. 

Now equat ion (4) holds for n = m - 1 so 

( 7 )  k 6 , m ~ ( y ~ , m )  - k ~ , m ~ ( U ~ , m )  = ' ' Y 6 , m -  1 - -  Y ' r , m -  1" 

In this case, instead of (5) we have 

( 8 )  ' ' ' ' ' k~ ,mY6 ,m - k~ ,my~. ,m - ( k6 ,m  - k ~ , m ) z  = Y,~,m-1 - Y~',m-l,I 

so combining (7) and (S) we have 

(9) k ~ , m ~ ( Y ~ , m )  - k~,mCP(y~-,m) = k6,my'~,m - k ~ , m Y ~ , m  - (k'6,m - k ~ , m ) z .  

Say r/~(m) < r/T(m). Then  k6,m, k~,m and k,,m are all divisible by k~ ,m = 

(r/~(m) + 1)! so equat ion (9) implies t ha t  (r/~(m) + 1)! divides k '~ ,mz = r l ~ ( m ) I z  in 

H which is a contradict ion,  since z generates  a pure  subgroup of H .  | 
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Now we consider the hypothesis that  every Shelah group is a Whitehead group. 

This is true in a model of Martin 's  Axiom, in which case there are hereditarily 

separable groups which are not Whitehead groups, i.e., Case 2 holds. Here we 

show that  it is consistent that  every Shelah group is a Whitehead group but every 

hereditarily separable group is a Whitehead group, i.e., there is a model for Case 

3 in which every Shelah group is a Whitehead group. For this purpose we use 

the notion of stable forcing. A poset, P, is s t a b l e  if for every countable subset 

P0 there is a countable subset P1 so that  for every p E P there is an extension p~ 

of p and an element p* E P1 so that  p~ and p* are compatible with exactly the 

same elements of P0. In [1] the basic facts about c.c.c, stable forcings are proved. 

There are a few basic facts that  we will use: 

PROPOSITION 14: 

I. [I] Any iteration of c.c.c, stable forcings with finite support is c.c.c, and 

stable. 

2. The forcing adding any number of Cohen reals is stable. 

3. I f  A is a Shelah group and 

0 --* Z---*B ~ ~A --* 0 

is a short exact sequence, then the finite forcing, Q(r) ,  constructing the 

splitting of ~r is (c.c.c. and) stable. 

Proofi We will prove only the last of the statements. Write A as U~<~ As (an 

wl-filtration) where each Am is pure in A and A~+I has the Shelah property over 

Am. The forcing Q(~r) is the set of partial splittings of ~r whose domains are 

finite rank pure subgroups of A. (This forcing is c.c.c. - -  see, e.g., [3, XI I . I . l l ] . )  

Given P0, choose a so that  every element of P0 has domain contained in Am. Let 

P1 be the set of elements of Q(~r) whose domains are contained in A~+~. Given 

p E Q(Ir), let G be the pure subgroup of A generated by Am U dom(p). There 

exists n E w such that  G N A~+~ -- G N Aa+~ (since G has finite rank over Am). 

Then 

e = (G n A~+,)  �9 {y0, . . . ,ym)  

for some y0 , . . . ,  ym since G n A~+~+I = G n A~+n and A~+n+l has the Shelah 

property over A~+n. Extend p to p'  E Q(~r) such that  

dom(p')  = M • (Y0 . . . .  , Ym/ 
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where M C_ G M A~+n is a finite rank pure subgroup of G M A~+n such that  

dom(p) C M @ (Yo, . . . ,Ym}.  Let p* = p ' I M  E P1. 

It  suffices to prove that  if q C P0 is compatible with p*, then q is compatible 

with ft.  So suppose that  r C Q(~r) such that  r >_ q,p*. Without loss of generality 

dom(r)  C G N Ac~+n. Define r p with 

dom(r  r) = dom(r)  | (Y0,-.. ,  ym} 

by: r ' [ dom(r )  = r and r ' r ( yo , . . . , ym)  = p ' r ( yo , . . . , ym) .  Clearly r '  > q,p'.  

Moreover, dom(r  r) is pure in A since G is pure in A and dom(r)  is pure in 

G ;3 As+ , ;  so r '  E Q(Tr). | 

THEOREM 15: It is consistent that every Shelah group is a Whitehead group 

and every hereditarily separable group is a Whitehead group. 

Proof." We do our forcing over L by iteratively adding subsets of wl by finite 

conditions and adding splittings for Shelah groups. More precisely, our forcing 

will be an iterated forcing with finite support  and of length w2 using two types of 

posets: R, the finite functions from wl to 2, and Q(Tr) which is the finite forcing 

splitting 7r as in Proposition 14(3). If we choose the iterants correctly, then in the 

generic extension every Shelah group of cardinality R1 will be a Whitehead group 

and 0 ( E )  will hold for every stat ionary subset of every regular cardinal greater 

than R1. It  will suffice then to show that  every hereditarily separable group of 

cardinality R1 is a Shelah group (because we have all instances of diamond above 

RI: cf. [3, Exer. XII.16(ii)]). 

By Theorem 10 it is enough to show that,  in the generic extension, if if) = 

{ ~ :  a < Wl} is a ladder system based on w, then if) does not satisfy monochrome 

uniformization for w colours. In fact, we will show that  �9 does not satisfy 

monochrome uniformization for 2 colours. By absorbing an initial segment of 

the forcing into the ground model we can assume that  ~ is in the ground model 

and the forcing ]P is first R, the finite functions from wl to 2, followed by a name 

T for a c.c.c, stable forcing. We define the colouring c: wl --* 2 to be the generic 

set for R; let ~ be a name for c. 

In order to obtain a contradiction, assume that  this colouring can be uni- 

formized. Then there is a pair (] ,  ]*) of names for functions and there is a p' C 

such that  p~ IF "(f ,  f*) uniformizes ~". Now let P0 be a countable subset of P 

containing p '  as well as for every n < w, a maximal  antichain which determines 
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the value of ](n) .  Let P1 be as given by the definition of a stable poset for this 

Po. For each a E Wl choose Po _> p~ so that  Po determines the values of ]* (a )  

and 5(a) and there exists p* E P1 so that  p~ and p* are compatible with exactly 

the same elements of P0. Say 

,F ] * ( . )  = m o  ^ e ( . )  = eo. 

By the pigeon-hole principle, there exists an uncountable set E C_ Wl and p* E P1 

so that  for all a E E,  p* = p*. Since p* is compatible with p~, there exists 

ql >_ P*,P'. By the definition of R, there exists ao E E and q2 C P such that  

ql -< q2 and q2 IF C(ao) r co0. So q2 IF "3k > moo s.t. ](~o(k) )  ~ e,~o". Thus 

there exists qa _> q2 and ko > moo such that  q3 IF ](r ~ e,~ o. But there is a 

maximal  antichain in Po of conditions forcing the value of ](~,~(ko)). Hence there 

exists r E Po and q4 such that  r _< q4, q3 -< q4 and r IF ]((po(ko)) = 1 -e,~ o. Then 

r is compatible with p* = P*o and hence with Po0. But this is a contradiction 

since P~o IF ~(a) = Coo A ](~,~(ko)) = ~(a) since ko > m~ o. | 

5. F i n i t e l y  m a n y  p r i m e s  

The proof of Theorem 5 uses infinitely many primes. Otherwise said, the type 

of the (torsion-free rank one) non-free quotients G~+I/G6 in that  construction 

is (1, 1, 1 , . . . ) .  We may ask what happens if we are allowed only finitely many 

primes. For example, we may consider modules over Z(p) (where P is a set of 

primes and Z(p) denotes the rationals whose denominators in reduced form are 

not divisible by an element of P)  and ask whether the main theorem, Theorem 1, 

holds. If P is infinite, i.e., Z(p) has infinitely many primes, then our proofs apply 

and there is a non-free hereditarily separable Z(p)-module of cardinality ~1 if and 

only if there is a ladder system on Wl which satisfies monochrome uniformization 

for w colours. On the other hand if the cardinality of P is finite but at least two, 

we can show that  Theorem 1 does not hold, and Case 4 in the Introduction is 

impossible. In fact, this section is devoted to proving the following result: 

THEOREM 16: Suppose R is a countable p.i.d, with only finitely many but at 

/east 2 primes. I f  there is an hereditarily separable R-module of cardinality ~1 

which is not free, then there is a Whitehead R-module of cardinality R1 which is 

not free. 
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Proof'. The method of proof is to show that  if there is an hereditarily separable 

R-module of cardinality ~1 which is not free, then there is a ladder system on a 

stat ionary subset of wl which satisfies 2-uniformization. We first prove that  

there is a tree-like ladder system y = {Y6:5 E S} on a 
stat ionary subset S of lim(wl) such that  for every 2-colouring 

(f) c = {c~: 6 E S} of ~, there is a function f :  wl •  
2 such that  for all 6 E S there exists m~ E w such that  
f(we(n), me) = ce(n) for all n �9 w. 

Let N be an hereditarily separable R-module of cardinality R1. As in the proof of 

Theorem 8, we write N -- U~<~ 1N~ as a union of a continuous chain of countable 

free pure submodules where there is a stat ionary subset S of Wl, consisting of 

limit ordinals, and an integer r > 0 such that  for all 6 �9 S, Ne+l/Ne is non-free 

of rank r + 1 and every subgroup of Ne+l/Ne of rank r is free. There is a pure free 

subgroup Fe/Ne of Ne+l/Ne of rank r such that  Ne+l/Fe is rank 1 and non-free. 

It  follows from the fact that  there are only finitely many primes that  the type 

of N,+I/Fe is (tl , t2,. . . , tn) where each ti is either 0 or oc and at least one 

ti = co. Thus without loss of generality we may assume that  there is a fixed 

prime p �9 R such that  for all 6 �9 S there exists {y~: 0 < g < r} C_ Ne+l such 

that  {y$+Ne:  0 < g < r - 1 }  is a basis of Fe/Ne, y: • Fe and y:+Fe is p-divisible 
6 e (n �9 w), where z0 ~ - y: and the z n in Ne+l/Fe. Then Ne+l contains elements z n 

(n > 1) satisfy equations 

8e,n~ 5 e n 6 (An) pz~ = E~<~ ~ ~, + g~. + E j < .  ~j' z~ 

e~n e,n where g.~ �9 Ne, r~ , ~ �9 R, and no element of N~+~/(Fe U { ~ :  n �9 ~})  has 

order p. 

Define functions ~o6 on w for each 6 �9 S by: 

= s t ' ,rj' : g < r , m < n , j < m ) .  

Let c be a 2-eolouring of (I) = {~e: 6 �9 S}. Following the pat tern  of the proof 

of Theorem 8, we will use c to define a subgroup B of N. We begin by letting 

{xn: n �9 w} be a basis of No, and letting B0 be the subgroup of No generated by 

{pxo} U {pxn+l - x , :  n �9 w}. Also, let A = {t , :  n �9 w) C No be a complete set 

of representatives of No/Bo such that  to = 0 and for each a �9 A, fix an element 

~v, a] �9 w such that  pt[p,~] + Bo = a + Bo. 

Assume we have defined Be so that  Be + No = Ne and for all/3 < 6, Be M 
e NZ = B~. We now define Be,m inductively so that  z m �9 Be,m + No. Let 
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Be,0 be generated by Be U {yo~,...,y~}. If Be,m-1 has been defined, we have 
e e (mod Be m - l )  for some a m E A. Let pZhm e Be,m-1 -~- No, so pz~  =- a m 

Be,m = B6,m-1 -t- R(z~m - t[p,a~] -- ce(m)xo). 

Having defined Be,m for all m, we can extend Ume~ Be,m to Be+l such that  

Be+l + No = Ne+l and Be+l N Ne -- Be. 

Finally, let B = U~<~I B~ and fix a projection h: B --~ Rpxo and a well- 

ordering, -<, of R r+l of order type w. Extend h to a homomorphism, also denoted 

h, from N into Qpxo, where Q is the quotient field of R. Given v of the form 

~e(n) and m E w, we are going to define f (v ,  m). Let (w~: ~ _< r> be the mth  

tuple in R r+l according to -<. We shall suppose that  

(#m) h(y ) = w px0 

for g _< r for some 6 such that  v = ~e(n), and show that  under this supposition 

(and with the information given by u) we can compute ce(n); we will then define 

this value of ce(n) to be f (v ,  m). Since one of our suppositions (#m)  about the 

values of h(y~) must be right, it) will be proved. 

The proof is by induction on k _< n that  we can compute h(z~), a~, and ce(k). 

In fact, for 0 < k < n we have an equation 

e,k e e e,k e (Ak) pz~ = ~ < ~  s e Ye + gk + ~-~j<k rj zj 

satisfied by z~. Since by induction and our supposition we know the value of 

h(zk). Since by h for all the elements on the right-hand side, we can compute 

induction we also know ce Ik, we know B~,k-1, so we can calculate a~ (=- pz~ 

(mod B6,k-1)). Finally, we know that  

h(zhk - t[p,a~] - ce(k)xo) = h(z~ - t[p,~]) - ce(k)xo 

belongs to Rpxo, and we know h(z~ - t[p,~]) by induction (because we know 

h[No). Now h(z~ - t[p,~] ) - Xo and h(z~ - t[p,~]) cannot both  belong to Rpxo. 

If h(z~ - t [p ,~])  belongs to Rpxo, ce(k) must equal 0; otherwise let ce(k) = 1. (If 

the latter value does not make h(z~ - t[p,~l - ce(k)xo) belong to Rpxo, then our 

supposition must have been wrong, and we can let f (v ,  m) be arbitrary.) 

This completes the proof of it).  At this point we use the assumption that  

there are at least two primes. Then the proof of necessity, i.e. of Theorem 8, 
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is still valid. (Referring to the last paragraph of that  proof, we use the fact 

that  there are two primes when we assert that  H / K  is not divisible.) Moreover, 

there is a single ladder system 7/ which satisfies the property of (t) as well as 

monochromatic uniformization for w colours. (Indeed, by reducing to a smaller 

set we can assume that  the same set S is used in both the proof of (t) and the 

proof of Theorem 8; then we can let 7/be a ladder system derived from functions 

~5 which give combined information about the equations used in the proof of (t) 

and the equations used in the proof of Theorem 8.) 

Given a 2-colouring c of ~, let f be as in (t). Define a monochromatic colouring 

c' of 7/by: c'(5) = m~ where m~ is such that  f ( ~ ( n ) ,  m~) = c~(n) for all n E w. 

There is a uniformization (g, g*) of c'. Define h: wl ~ 2 by: h(v) = f (v ,  g(v)). 

Then for all 5 E S for sufficiently large n, 

h ( ~ ( n ) )  = f ( y 6 ( n ) , g ( ~ ( n ) ) )  = f ( ~ ( n ) , m ~ )  = c~(n). 1 

The third author, in [9, Thm. 3.6], claimed to prove that  if the non-freeness of 

G involves only finitely many primes, then G is hereditarily separable if and only 

if G is Whitehead. However, the proof given seems to be irredeemably defective. 

We do not know if the result claimed is true. Thus we still have the following 

open questions: 

If R is a countable p.i.d, with exactly one prime, does Theorem 16 

hold? If R has finitely many primes, is every hereditarily separable 

R-module of cardinality R1 a Whitehead module? If not, find a com- 

binatorial equivalent, analogous to Theorem 1, to the existence of a 

hereritarily-separable R-module which is not a Whitehead module. 
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