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O. Introduction 

Tile basic motivation for the study of abstract model theory is the 
search for languages ("abstract logics") which have a stronger expressive 
power than ordinary first-order logic Lw~ and yet have a workable mod- 
el theory. Previous work in tile subject has been devoted mainly to char- 
acterizalions of known logics (L,,,, by Lindstrom [33,34], L~,to and its 
sublogics in Barwise [3,4]) as maximal with respect to some of their 
mc !el theoretic properties. A general discussion of desirable properties 
of (model-theoretic)languages can be found in Feferman [10-12]  and 
Kreisel [ 311. 

During the years in which this abstract point of view has evolved there 
have also been intensive studies of p~:rticular languages, notably the lan- 
guage L~t.,[O l ] obtained from L ~ ,  by adding the quantifier "there exist 
uncountably many" (cf. Fuhrken [ 17 ] and Keisler [ 29 ]) and other lan- 
guages based upon generalized quantifiers. Some of them are treated in 
Bell and Slomson [7] and the present work will give an up-to-date survey 
in the examples. In [53, {}4] (see [47]) Shelah proved the compactness 
of the languages Lw, o [O c] obtained from Lt.,, o by adding to Lw,,, a quan- 
tifier saying that an ordering has cofinality co. L.,~o[Q1], L,~to[O c] and 
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various related logics are countably or fully ~ompact and satisfy, as will 
be shown in the present work, a downward l~owenheim-Skolenl  Theo- 
rem to b~ 1 and are axiomatizable (i.e., have a recursivety enumerable 
set of valid sentences). But Craig's interpolat ion theorem fails for them 
as was noted for L,~,,,[O1 l by Keisler (ci'. Fe L-rman [ 10, p. 216~ footnote 
(3)1). 

This paper grew out of thc search (suggested and motivated by Fefcrman 
in [ 10 -12 ]  and in private conversations, but conceived independently by 
other people, in particular Barwise, Friedman and Keisler) for a manage- 
able extension of L,~w [O 1] which will satisfy the interpolation theorem 
in addition to having the above-mentioned nice properties. At present no 
such extension is known but the search for it has led to a wide cla,'~s of  
compact arid axiomatizable logics based on quantifiers, which are studied 
in Section 3 of  this paper as well as in Shelah [47] or Hutchinson [241. 

It was realized by the people mentioned above a~:d others that with 
every logic L one can associate a smallest extension A(L)h~ivl~g a weak- 
ened interpolation property known as Sodslin Klccne interpolation. 
The operator A preserves compactness and other, but not all, nice model 
theoretic p "operties of logics. The systematic study of properties pre- 
served by the A-operation in Section 2 is largely taken |'tom Makowsky 
[37], though the simpler facts proved there are not el:timed to be new 
(cf. also Pauk~s [44-46] ) .  It provides a basis for the further study of 
the quantifiert introduced in Section 3. This approach dcmo,~stratcs the 
fruitftdness of  the abstract point of view in discovering alltt proving pr.)p- 
erties of "concrete"  generalized qtmntil'iers. 

But the A-closure is more than just a :ethnical tool to construct logics. 
It is a closure operator motivated by Beth's Theorem (or variations of ~t~. 
which adds to a logic L everything which is, in some sense, implicit in it. 
The A-closure also provides a means of evaluating the choice of  ge~)eralized 
quantifiers, a problem which seems even more delicate than the "'choice of 
infinitary languages" (cf. Kreisel [31]) since we seem to lack not only a 
programme h la Kreisel but also experience and intuition. But one may say 
that the expressive power of a quantifier Ois better shown by the A-clo- 
sure of the logic generated by it. For instance, the difficulties of finding a 
reasonable description of  A(Lw,~ [O11)might i~adicate that pure cardinalicy 
quantifiers are not the right choice. 

In Section 4 we study sublogics of Lw~,~. Our main task J~ to identify 
A(L) for certain logics L (containing generalized quantifiers) with admis- 
sible fragments L A of Lw~ w. The simplest case was lreated by Barwise [4] 
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in which X is interpreted may be of  arbitrary type though the induced 
structure c'tt is automatically of type r. For example, if r = ( ) ,  
K = {{A)I A is infinite} then a quantifier 13 of  type r binds one variable 
and (lxso(x, i~,) is interpreted as " there  exist infinitely many x such that 

Note the role of the formula ¢0 (in the above X) - it serves to de"ine 
the domain A of the structure which is claimed in X to belong to K. 
Thus "relativization" is built in the formation of formulas involving the 
quantifier (in this we deviate from Lindstrom [33] and follow Barwise 
[41). 

There is no difficulty in introducing quantifiers of certain many sorted 
types. Call a type r = (I0, li ,  I2, 13, Pl, 02, P3 ) semi-simple when for some 
It, k,l>~ 0: 

I0 = { l  . . . .  , h ) , l ~ = { 1  . . . .  , k ) , l ~ = ~ , 1 3 = { I , . . . , t )  

(when h - 1 r is a simple type). A quantif ier  of type r (where r is semi- 
simple as above) would produce formulas X of the form 

O x l  ... x h x i l  ... xlnz ... Xkl ... Xk, k[~Ol, "", ~Oh, ~1, ..., ~k, tj, .... t l l  

where ~1, ---, ~h take the role of ~o 0 above so that °d will be an (h-sorted) 
structure of type r. The definition of satisfaction of the formula X is left 
to the reader. When h = 0 (hence l = 0 and each relation is 0-ary) struc- 
tures of type r consist simply of a sequence of k truth-values and a quan- 
tifier of type r is just a propositional connective. 

11 is also possible to consider infinitary connectives (see Friedman [ 16] 
and Harrington [541) and more generally quantifiers which bind infinitely 
many variables and/or opt.rate or~ infinitely many formulas and terms, but 
we shall not do this here. 

1.4. Logics (model theoretic languages): Instead of defining abstract 
logics axiomatically as in Barwise [3,4] we introduce them in a concrete 
restricted way. A logic L is given by a family {Qil i E I) of quantifier sym- 
bols, a family { r i l i E  I}  of semi-simple types and a family { K i l i E  I), K i 
closed under isomorphisms and included in S ( r  i) for each i. I may be a 
proper class. K i will serve as the interpretation of(1/. For an arbitrary 
type r we construct atomic formulas of L(r) as in the ordinary language 
k w w ( r )  (using infinitely many variables of each sort). Arbitrary formulas 
of L(r) are now obtained from atomic formulas by the usual logical 
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operations of Lw,.o(--,A, ¥, etc.) and the quantifiersO i. We shall write 
L = L t o  w [Qi]i~ I though L really depends (for its semantics)also on the 
family {Kili  E I~. The precise definitions of  the basic syntactical and 
semantical notions for a logic L are left to the reader. A logic t. is called 
finitely generated when it is of  the Ibrm L = L,.o~[O 1 .... .  O"] for some 
n <  6o. 

Although this notion of a logic is narrower thal~ the abstract notions 
considered in Barwise [3] or 14], any abstract lo~c which sa*.isfies some 
reasonable closure conditions and in which only finitely many non-logi- 
cal symbols "occur"  (cf. Barwise [4, I, § 7 ] ) i n  each sentence can be put 
in this form: Assigning a quantifier ~K (i.e., a quantifier El interpreted by 
the class K) to each class K of  structures {of anysemi-simple type) which 
is elementary (EC) in the giver:, abstract logic. Thus. for example, the 
part of  L=,~, consisting of  sentences in which only finitely many non- 
logical symbols occur is equiv;dent (in expressive power) to some logic in 
our sense, though the definition of  satisfaction for that logic w'ouhl pre- 
suppose the ordinary semantics of 1_~,. o. 

Examples. (1) K I o f  type { ) with K 1 = {<A)IA ~ 0}:O x'' can be iden- 
tiffed with 3. 

(2) K~ of  type ( ) with K g = {(A)I .~ > ~,~}: O h'~ can be identified 
with Q,~ ( ' t he re  exist at least S~"). 

(3) K 3 of  type ~2} with K 3 = {~/1 I V( = {A.R) and R is a well-ordering 
of A}; Qh'~ ~vill be dentoed by QWO. 

(4) K,~ 'c' of type (n) with K~ ''~ = { Pl I Pl = {A, R) such that there is an 
S C A  with S nC_ R and ~/> ~ } :  OK~ ~'~ will be denoted by O~t~t(,n and was 
first discussed by Magidor and Malitz [36]. For c~ = 0 this quantifier is 
sor~etimes called the Ramsey quantifier_ 

(5) K 5 of  type ~1) with K s = {~A, R )1 R = A }. if we rest i c t  ourselves to 
s~ngle-sorted structures and put for so0 inOt;s .v0::x0 the i the resulting 
logic corresoonds to Chang's quantifier in Belb Slomson 17, Ch. 13 I. 
Chang's quantifier will be denoted Qccc- The more general form was in- 
troduced by H~irtig [221. 

Given a logic L and a class of structures K of  a type r we ~ly K is L- 
elementary (K ~ EC[) if there is a sentence so ~ L(r) such that K = Mod(so). 
K is a L-projective class (K E PC~.) if there is a type r' ~ r  and a sentence 
~0 m L(r') with K = Mod(so)I'~. 

If L l and L2 are two logics, tile logic L] ~'~ L2 is defined by L l n L 2 = 
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and similar work was done by Makowsky 139]. However, in some cases 
this leads to k A with A a non-transitive set. Therefore we also introduce 
a new closure operation z~ on sublogics of Lw~oa which is, in some cases, 
at least for identifications of that type, better behaved than A. Related 
work was done recently by Paulos [45,46] and Swett [49]. 

Each section contains numerous examples, and open problems are stated 
at the end of Sections 2, 3 and 4. We consider these examples (and cout  er- 
examples) as an important part of this paper. Abstract model theory gives 
us only an approach to general questions; the intuition and experience for 
it can only be found by dealing with concrete problems. Several of the 
basic ideas of Section 2 have b~en essentially known to Keisler, Barwise, 
Friedman, Shelah, Paulos and possibly others. The detailed study has been 
done by Makowsky (cf. [37,39]) .  Section 3 is mainly due to Shelah ad 
Stavi and Section 4 to Makowsky and Stavi. We wish to thank S. Feferman 
for many chailenging questions and helpful discussions which greatly en- 
couraged us to pursue the subject. 

1. Preliminaries 

1.1. Unexplained notation is standard. For model theory the books of 
Chang--Keisler [81, Keisler [28],  Shoenfield [48] or Bel l -Slomson [7] will 
do. For admissible s.'ts wer refer to Barwise [5] although admissible sets 
are only used in Section 4. 

1.2. A many sorted similarity type is a 7-tuple r = (lo,11,12,I3,Pl,P2,P3) 
where 10 is a set indexing ~he sorts, 11 fi~:lexes the relations, 12 the opera- 
tions and 13 the distinguished elements (of any structure of type r). P l ,  P2, 
P3 arc functions defined on I l, 12, 13, respectively, and showing the num- 
ber of places and sorts of arguments and value for each relation, operation 
and distinguished element. A simple tyFe is a type r for which I 0 = { 1), 
I; = {, . . . . .  k} for some k, 12 = 0, I3 = ( ,  ..., l} for some l (k, l >  0). 
Structures of type r are then single-sorted, with finitely many relations 
and distinguished elements (no operations). We denote such a type r by 
< n l, ..., nk; 1) where n i is the number of places of the ith relation (given 
by pi(i)). When l = 0 we simply write r = (n I , ..., nk>. For any type r, S(r) 
(S(r) K, S K) is the class of all structures of this type (of cardinality k:). 

A set of relation symbols, operation symbols and constants is called a 
vocabulary. With each type r we associate in some standard way a voca. 
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bulary, which is used to construct (atomic) formulas of  L,~,o(r). For de- 
finiteness let us agree that equations t = t' are allowed as atomic formulas 
(for any r ) j u s t  in case t and t' are terms of the same sort. 

1.3. Generalized quantifiers have been introduced by Mostowski [52] 
and in greater generality by Lindstrom [33] (see also Kalish-Montague 
[27]). 

Let r be a simple type. A quantifier O of  type 1" is a variable-binding 
operator that makes a formula out of  formulas and terms, If ¢ = (n l, ..., 
nk; l) then a typical formula ×(~,) beginning with O (here ~, = (w 1, w 2, ...) 
is a list containing the free variables of  ×) has the form 

OXO, ~Xii)l<i<k, l<.i<nj[~Oo(Xo, ~V), 4 | ( X l l ,  ..., Xln ~, ~), .... 

4k(Xkl . . . .  , Xknk, W), t l(~') . . . .  , tl(f-v)], 

where the free variables of each formula or term are among those dis- 
played, the variables x 0, xii, w z, w 2 ..... are distinct and all these variables 
and the terms tl ,  .... t I are of  the same sort. 

Now let ( be a class of structrues of type r, closed under isomorphism: 
K gives rise to an interpretation of  Owhich we describe below in the spe- 
cial case 7 ~= < 1,2; 1) to simplify notation. The formula ×(~,) is now of 
the form 

O-xy2122 [t00(X, ~), 41(Y, W), 42(21 , Z2, ~'), t(~,)]. 

Let ~ be a structure of any type and let b be elements of  ~ assigned as 
values to the variables ~,. Let B 0 be the basic domain of ~ corresponding 
to the (common)  sort of  the variables x, y, z 1, z 2. We define: ~ 1= x[b]  iff 
(A, R 1, R~, c) is a structure in K, where 

A = {a ~ BoI~  t = to0Ia, b]}, 

R 1 = {a ~ B01~3 ~ 41 [a, b]}, 

R 2 = ( ( a l , a 2 ) ~ B ~ l ~  ~ 42[al ,a2,  b ] ) ,  

c = t[b] (evaluated in ~ ) .  

Thus 23 ~ ×[b] iff(A 4: ¢ ) R  1 C_A, R 2 C_A2, c ~ A  and the structured 
91 = ( A , R 1 , R 2 ,  c) is in K. A short suggestive notat ion is: A = to0(23,/5), 
RI = 41( ~'~, b), R2 = 42( ~2, b), c = t(b). We emphasize that tile structure 
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= Ltow[OKIK~ECL n ECL2- L I is a sublogic of L2, L l ~< L2, if EC[~ c EC[,, 
for all r. L! is a tF~-s'ublogic of L 2, L 1 ~ PC L 2 , if P('[,~ c pc[, 2 for all r. 
L I is equivalent to L 2 L t ~ L 2, if EC[~ = EC~2 and L 1 " p c  L2 if PC[~ = PC[,: 
(for all r). ThE( 91 ) = (~0 G L(r)l ~)1 I ~0} with 7- = 7"( ql ). ~1 ~L 25 if 
ThL( '15 ) = ThE( ~ ) ;  91 and 25 are then called L-elementarily equivulent. 
If L is a logic, L = L,~a,[Oa]~eA we write L[Oa]ae~ for L,~co[O'~],~Au/~. 

Examples. (6) L ~ L [ O] for any quantifier O. 
(7) L--- L[(I] i f f K ° G  EC L. 

(8) L,o,o[O 01 ~< L,o~, ~. 
(9) L~o~[O w°] ~< Lo~ ~ o~. 

(10) Lto~G is the logic obtained from Lw~ w by adding the following for- 
mation rule: If ~0i(x I, .,., x,,., Yl, .... vk) (i < w) are formulas having only 

• , ! / ~ 1  * 

the d~splayed free variables then 

3Xl  V x 2 3 x 3 V X 4  "" [ ~ i  and 

3x 1 gx 2 ... W ~0 i are formulas 

of L,~G. The semantics of Lw~ G may be explained via two-person games. 
L~o~,o~ ,f.: L ~  G and L,,~G g L~,= (see Barwise [3] and references there). 
Strictly speaking, L~o~c as described here is not a logic in our sense but 
see remarks preceding (1). 

( I 1 ) Lw, ~ [O E] with c:efining class K of  wpe (2) K,~ = { ~( ! ~l = ( A, R ) 
and R is an equivalence relation with at least S,~-many equivalence classes}. 
One easily verifies that K and its complement are PC L with L = L,ow[O,~] 
but not EC L. Furthermore L,ow[O~l ~ L~o,~[oEI and hence 
L~,~[O,~] ~PC L~o~o[(lEl - This logic was considered by Feferman [ 121. 

1.5. Let L be a logic, '~1 a structure of  type r and ~ a substructure of 
~1 • ~ <L '~1, ~ is an L-elementary substructure of  91, if T h L ( ~ , b )  = 
ThL( ~(, b) for every finite sequence b in '13 . 

A logic L satisfies the LOwenheim-Skolem Theorem for ~, ~: a car- 
dinal, if every sentence ~ of L, which has a model, has a model of  car- 
dinality <~ (<)~. We denete this property by LS(~:) (LS(<~:)). A logic L 
satisfies the LOwenheim-Skolem-Tarski Theorem for K if every r-struc- 
ture ~ has a L-elementary substructure of  cardinality ~< ~(<t¢), provic~ed 
~- ~< K (~ < t¢ respectively). We denote this property by LST(~) (LST(<~)). 
A logic is (t~, X)-compaet, for infinite cardinals x, X, ~__~> X, if for every set 
of sentences Z of L, ~; ~ ~:, such that every ~0 c_ Z, ~0 < X, has a model, 
Z has a model. 
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A logic L isaxiomatizable if L = L,.o,,j[Q l, ..., On! (n < 03) and the set 
of valid sentences of  L i~ recursively enumerable. 

A logic L has the Tarski property for K, K a regular ,:ardinal, if the 
union of an L-elementary proper chain of  cofinality ~, ~ is an L-elemen- 
tary extension of all the members of the chain. We denote this prop- 
erty T(K). L has the Tarski property if it satisfies T(03). 

The LOwenheim number of  a logic L is the smalle:;t cardinal ~: stich 
that LS(K) holds for L. The ltan.l'nt,mber of a logic L is the smallest 
cardinal K such that whenever a sentence of  L has a model of  cardinality 
K then it has arbitrarily large models. Both numbers exist if L = Lwt~[Qi]i~l 
where I is a set. 

We say that an ordinal a is L-accessible if there is a class K of  t~Jpe ~2) 
which is PCL, all its members are well ordered and there is a ~?( ~ K such 
that (o~, < )  is embeddable in '21. The well-ordering mtmber of L is the 
least ordinal which is not L-accessible (if it exists). We shall abbreviate it 
by wo-number. 

A logic L is bounded if and only if the class of  welt-ordcrings is not 
PC L This is equivalent to Barwise's defi~aition 13,41.) 

A logic has the Karp property if  for all '21, ~ ~)( ~p ~ (cf. 141) implies 
~1 =L ~ . Various definability properties (Craig, Bzth) will be studied in 
Section 2. 

1.6. Logics n,ay be characterized in terms of  their model-theoretic 
properties. As an illustration we give two theorems. 

Theorem 1.1 (Lindstrom [ 34,35 ] ) . / f  L satisfies one o]" the jblh)wing 
( i)-( iv)  then L ~ Lo~ ~ 

(i) LS(w)and  (w, w)-compact; 
(ii) LS(w) and the I lanf  mtmber o f  L is co; 

(iii) LS(w) and L is axiomatizable; 
(iv) L is (v,, w)-compact and satiffies T(~:) and LST(<~:) (for some 

K >  03). 

Theorem 1.2 (Barwise [41). 
( i ) / f L  satisfies LS(w) then L has the Karp property. 

(ii) I f  L satisfies Craig's Theorem and has the Karp property then L 
satisfies LS(w). 

(iii) Let t~ = .~ ~ or ~ = w. I f  L has the Karp property and the well-or- 
dering number o f  L is <~K then L ~ L~t o, 
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Since t¢ - ~ is allowed in (iii) parts (i), (ii) of  1. I follow easily. There 
are also theorems characterizing certain logics as the minimal logic with 
respect to certain properties. ExaIaples of this sort will be discussed in 
Section 4. 

2. l'he A-closure 

Consider the following interpolation and definability properties of a 
logic L, for a given similarity type r. c~ varies over structures of type r. 
R is the complement of K. 
(l)L,r: Whene,'er K 1, K 2 are disjoint PCL(r ) classes there is some 
K 3 E ECL(r) such that K 1 c K3 ' K2 c_ K3" 
(A)L.,: i f  K , / ( 'E  PCt.(r ) then K• ECL(r). 
(B~L,,.: l f K ~  ECL(r'), where r '  is obtained from r by adding (an index 
for) one n-ary relations, and Vc~ 3 ~l R(< ~ ,  R> ~ K( then 
{<ql, a~, ..., an)13R((qt., R} ~ K and (a l, ..., a n } ~ R} E EC L. 
(WB)L,,: As (B)L, v with "V°d 3 ~ R "  replaced by "V c'd 3! R".  
(D)L, ~: Same as(WB)L, , except that only K ~ PCL(r) is assumed (rather 
than K E ECL(r)). 

When (I)L, ~ holds for all types r we write (1) c and say that L has the 
intervolation property (or the Craig property).  Define (-A,)L , (B)L, (WB)L, 
(D) L similarly. (A)L iS called the A-interpolation (sometimes Sous l in -  
Kleene interpolation) property,  (B) L - the Beth property,  (WB) L - the weak 
Beth propert)'. (D) L is equivalent to (A)L (by Feferman [10]). When (A)L 
holds we sometimes say that L is A-closed. 

It is easy to see that (1) L holds iff (I)L, r holds for all semi-simple types 
r, and similarly for the other properties. [It is, apparently, not enough 
that (l)L, , holds for all single-sorted r. ] 

Theorem 2.1. 

( D h  / 

~>~a (WB) L 
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For proofs of  the implications see Feferman [ 10] and Jensen [26!;  
for the counterexamples see Proposition 2.21 (A ~ !), Corollary 2.23 
(WB 4~ A) and Makowsky-Shelah [401. 

For L = L,,,~, (I) L and (B) L are the well-known theorems of Craig 
and Beth respectively. 

Examples. (1) If L is L a,  A a countable admissmle set, then (I) L holds 
and hence also (A) L and (B) L and (WB) L (Barwise 121). 

(2) If L is L A and A is a union of  countable admissible sets, then (1) L 
holds. In particular, for Lw~ w. In Section 4 a converse of  this is proved 
(Theorem 4.15). 

(3) l f L  is L,,w[O l] (A) L does not hold (cf. Feferman [101, p. 216. 
footnote 3) nor does (B)t. (cf. Friedman [ 131 and Makowsky Shelah 
[40]). 

(4) If L is L,~,w[Q) tM{n)] (A)L does not hold (Magidor and Makowskyj. 
since the irrationals and wt-many copies of  lhem are L-elementarily 
equivalent as dense orderings yet by Theorem 2.15 tl~cy can be distin- 
guished by complementary PCL-classes. Badger 111 showed that ~'B) L 
does not hold either. 

(5) L~,~G satisfies the foilowing approximation theorem due to Harnik 
[21 ]. Le~R, Q be disjoint sequences of relation symbols, so(R, Q ibe a 
L,o~c , sentmce. Then there is a L,,~G sentence ¢*(Q) such that for any 
sentence 6t~9) in Lwl G we have: (a) If 6(Q) ~ ~0(R, Q) is valid so is 
6(Q) =, ~o*(Q) and (b) if so(R, Q) ~ 8(Q) is valid so is ¢*(Q) --- 8(Q). 
Barwise [3] showed that (l)Lw GdOes not hold, and J, Burgess showed 

• . ~ . 1 

that even A-mterpolatmn lads. In fact he proved a more general result 
about absolute logics as defined in [3]. An absolute logic is a logic L 
(in the sense of [4], say) such that the relations 

{(so, r) l so is a sentence of L(r)}, 

{-"/t, ~o, r)l 9 / is  a structure of type r, ~ a sentence of L(r) 

and -5/J=::l. ~P}" 

are respectively £I, and Al-definable over the universe. In the next proof 
the first relation is also assumed to be A I ; we could even assume it to bc 
A 0 with no loss of generality. 

Theorem 2.2 (Burgess): Let L be an absolute logic and assume that the 
class o f  well-jbunded binary relations is PC L. Then L is not ,5-closed, 
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Proof. Let K be the following class of structures of type (2). K =  { ~ = ( A , E ) I  
fl)r some sentence so of L((2)), .¢/is isomorphic to (T('{so}, e) and 

D: L , so}. Using ~1 formulas of the language of set theory which ex- 
press: "x  is (is not) a sentence of L(2)", "x is a sentence of L(2) and is 
tree (false) in the structure (3', e)", it is easy to see that both K and R 
are PC L. (One uses an extra sort of elements and an extra predicate e to 
embed all objects involved in a well founded model of ZFC- . )  However 
K is not EC L, for suppose K = Mod(x) and let ~ = (TC{x}, e). Then 
s,/t= X ¢' ~ ¢ Ko s~ 1 = 'X, contradiction. [] 

Remark. If one defines PC L allcwing only extra predicates, not extra 
sorts of elements, the definition of K must be modified to ensure all 
structures in K are infinite. In this case the theorem still goes through 
if we add the hypothesis that k contains the quantifier "there exist in- 
finitely many"  

Corollary 2.3. k ~ t ;  is ~1¢~t A-closed. 

Proof. l..w~(; is absolule (of. 131)and can express well foundedness. [] 

Lindstrom showed the following general result. (cf. [341) 

Theorem 2.4. ~(/L = L,~:,~[O 1 ... . .  O'~], L > L , ~  and L satisfies LS(N 0) 
then L does not  sati.~l)' (WB) L. 

The proof uses the fact that (WB) L and LS(8 0) (together with G6del's 
incompleteness theorem) are sufficient to show the existence of pon- 
standard mcd~: ls~ , ' o f  a r i t h m e t i c .  

~,6) Lt~w[Ool does not have the weak Beth property. 
(7) Malitz had shown that L,.,,, ~ does not have the weak Beth property 

(of. Makowsky Shelah t401 or analyze the proof of 142, Theorem 4.21). 
(8) Second-order logic: (A)I. fails, as is not hard to see, but (I) L is true 

for the single-sorted part of second-order logic. 
(9) L ~  is not A-closed (cf. the proof  of Proposition 2.19) nor does it 

have the Beth property (cf. Gregory [201 and Makowsky--Shelah |401). 
Shelah [cf. 401 showed thai even weak Beth fails for L ,~ .  Malitz [421 
furthermore showed that [-Kw has interpolants in Lu~ with/a = (2'~) ~ and 
~ regular. For a semantical proof of this see Green [19]. 
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Feferman [10, p. 211] has characterized logics satisfying (&)t in terms 
of truth maximality and truth adequacy, The definitions are quite con> 
plicated, so we omit  them. 

If now a logic does not satisfy one of  these properties (I)L, (&)t ,  (D)t., 
(B) t or (WB) L one might ask if any extension1 L' of  L does. All the prop- 
erties but (I) L speak of a uniquely defined class which must be in ECI. 
If it is not, one might add it t o  L using additional quan~it'iers. In the fol- 
lowing, we investigate this possibility for (-AIL, (WB)L and { B) L, the lat- 
ter two only in outline. 

Definition. Let. L be a logic and let {Ka}~,eA be a list of all classes K such 
that K, R ~  EC~_ for some semi-simple type r. Now pu~ di(L) = L,~w[Q"]u< A 
where the generalized quantifier 0 ~ has K" as its defining class. 

A is in facl a closure operator on logics. To prove this. ax:d other nice 
properties of A, we need a crucial lemma. 

Lemma 2.5. Let L be a h)gic and L' = L[ 0"]~,~: A where ¢'aciz generalized 
quantifier 0 e' corresponds to a PC L class K~ whose comt~lemnct is PCI. 
too. 7hen L' <t;c L. 

Remark. The proof  will implicitly give an effective way of  associating 
with each type r and sentence ~ of L' a sentence ,~ of L such that 
(qd f r i l l  I=¢ ,} = { ~ Irt ~ I == ~),  assuming that the syntax of I., L' and the 
type r are recursively presented and we can find, ;is a rccursivc function of 
c~ e A, sentences of L defining K,~ and K~. as projective classes. 

Proof. Let K be a class in PC[." K = {q/rriqll::  ~) where ~s is a sentence 
of L'(r ')  (r' _~ r). For each subfl)rmula ¢: ot'~s introduce a new predicate 
P~, whose arity corresponds to the number and sorts of the free w~riables 
of ~ (in particular P~ is a propositional constant). Define the sentence 
% (~ = ~(.~) a subformula of ~o) as follows: 

If ¢, is atomic, o~, is VS'(P¢ (X')~ ¢,(.x:)); 

if ¢~ i s  - ,  V~l, % is v.~0:'~,fX) ,+ , P ~ , ( x ) )  

a~,d similarly for oilier connectives: 

If ~ is Vy ¢'1, o¢, is V.x:('~)(.',:) "" "v'.vP~(.f. y))  
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and similarly for 3;  

if tk(x) is (say)OuvwI 0(u, k), w, x)l then % is 

V Yc (P~ (:~) ,~, O u ow ! P,~o( u, ~ ), P ~,~' ( v, w, .2 ) ] ); 

similarly lk)r generalized quant i f ier  of  L' of  any type.  
l.el ~1 . . . . .  ~/~ be a list of  all subtk)rmulas of g,, and iet 

sq = t'~o ̂  o~,~^ ... ^ o~, k. It is clear that K = {'8 F r l ~ o  I } (in fact 

¢ ~ 3 Pgq ... Pok ~l  ). 
Thus  it will suffice tc prove t imt the class of  models  of  0¢ is in PCL 

for each subformula  ~ o f  V; (since PC L is closed under  finite intersect ions 
and pmiect ions) .  The only  case in which o~, is not  a sentence of  L is 
when ~ begins with O '~ for some a e A. For  defini teness  say that  Qc~ is o f  
type (2) so that  o~, is of the form: 

vX(P(X) ,-, O%ww[P(}(u, x), PI(V, w, 2)]  ), 

which is equivalent  to the conjunc t ion  of 

Vx(P(X } -* O ~ uwv[Po(u, £" ), Pl(v, w, x)] ) (1) 

and 

vX(-, P(.v) + ~ CP'uvwIP0(u, X), P3(v, w, .9)1 ). (2) 

(;iven that Ko ¢-z PC L it is easy to see that  the class of  models  of (1) is in 

PC l . Similarly the fact that  K,, c- PC L implies the same for (2). We leave 
lhe details t{~' the reader. [] 

Corollary 2.6. K ~ PCa{L)( [ /K c PC L (i.{'. L ---pc A(L)). 

l his is immediate  from 2.5. 

Lemma 2.;', (i) A(E) sati&fies'A-interpolagion. 
(ii) L :;atisf~es A-interlm, lation iJf L "" A(L). 

(iii) ,5(L) is the large~'t extension L' o f  L st4clt that L' "pc. L. 

Proof. (i) First suppose K. R ¢ PC~x(L ) where r is, a semi-simple. By 2.6 
K,/ (  ¢ PC~. hence, by def in i t ion  of  LX(L), K E EC2(L). Next note  tha t  if 
a logic satisfies &-interpolat ion for semi-simple types  then it satisfies A-in- 
terpola t ion for a]t types  (p roof  easy). 

{ii) By 2.6 and (i). 
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(iii) By 2.6 A(L) "t'c L. If k' "-- 
/ (  ~- PC L =~ K E EC,a(L ) . 
Thus L ' <  A(L). [] 

Pc L then K ~ ECt, K, K ~ P£'L' ~ K, 

Theorem 2.8. A is a closure operator, i.e., - 

(i) L ~< A(L); 
(ii) A(A(L))  --~ z~(L); 

(iii) L 1 < k2~" A(lq)-~ A(L2). 

Proof. (i) is obvious by the def ini t ion of  A. (ii) fol lows from 2.7 (iL (ii). To 
prove (iii) note that  K 6 EC,~oq ) ~ K , / ~  ~ PCL~ ~ K, /( ~ PCL: = K 6 ECaa_2 

Remark.  The proof  o f  2.7 (i) explains  why in the def in i t ion of,.A(L) we con- 
sider classes K such that  K , / ~  ~ PC[ lk)r some s~.mi-simple (not  only simple) 
type r. 

Example. (10) L.,~[ O1] < A ( L , ~ ) .  

Proof. It is enough to show that  K 3 = ((A)l~i  ~ ~ l )  and Kz are P('t.,~,~., 
which s left to rlae reader (or see p reof  of  2.1 9). L~ 

For tl e sake of  compar ison we now define two other  closure opera t ions  
for logics, connected with (B) L and (WB) L. The way (B) L and (WBh, are 
formulate, d, the class K which is supposed to be e lementary  in L is a class 
involving a simple type (~t 1 . . . . .  n,t; l), I > 0, i~e.. involving dis t inguished 
elements.  

Definit ions.  Let K s,/3 ~ B be a list of  the count  erexamples  to (WB) t ( (B) L)- 
Then WBI(L)(BI(L))  is the logic L[ h~ ]~,~:l~. Now wc proceed by indue-" 
tion: 

WBn+l(L) = WB 1 (WBn(L)L B 'z+l (L) = Bl(B'~(L)).  

Finally let WB(L) = LI,, < ,~ WBn(L). B(L) = LI,, < ~ B'Z(L). 

Proposi t ion 2.9. WB(L) (B(L)) is the smallest extension o f  L having the 
weak Beth (resp. Beth) property. 

Proof. That  WB(L) satisfies (WB) follows direct ly  from the def ini t ion.  
Now assume k'  satisfies (WB) and L < L'. We proceed to show that 
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WB(L) <-. k'. WBI(L) <~ l.' since k' satisfies (WB). N o w  WB':+I(L) = 
WBI(WB'IL)) hence WBn(L) <~ L' for a l l , .  Similarly for B(L). [] 

Corollary 2.10. WB(L) and B(L) are closure operatio,s. [] 

Remark. By Theorem 2.4 WB(L) is not finitely generated if L satisfic< 
LS(w) and extends properly L,~,~. The ,;ame is true for B(L) and A(LI. 

For WB(L) we also have an analogue of Lemma 2.5 since the condi- 
tion of  (WB)t. says that every structure has a required expansion. 

Lemma 2.11. For eveo, sentence Obrmula) ~p o f  WB(L) there is a sen- 
tem'e (jbrmula) ~o o f  L having additional predicates such that for all 
structures ~l, ~l ~ so i/j" there is an expansion '~1 ~ i f f  '~l with ~1 * ~ ~o. 
ht particular WB(L) <~ A(L). 

Proof. For every quantifier in SO which is not a quantifier of L we add a 
qew predicate T v, hich is interpreted by the implicitly definable relation, 
where it comes from. The details are analogous to the proof of Lemma 
2.5. ~=q 

In the case of B(L) we run into' troubles since not every structure need 
have an expansion of the required type. 

Definition. Let ~21 be a structure. We define, analogously to Bell and 
Slomson 17, Ch. I0, §4] ,  the L-full expansion of '~t by adding for every 
formula ¢(X) a ~lew predicate Re(X) with the obvious interpretation. Let 
the resulting structure be denoted by ~a * 

Lemnm 2.1 2. For each logic L and similariO, type r, denoting by 7"* the 
type o1 tlt(" WB( Ll-full expansio,s  o f  models o.f type r, there is a set F 
~I" L(7"* ) setttences such that the followin~ holds: 

! f  9I is any structure o f  type 7" and cg.  is its WB(L)-j'id/expansion, 
then -9/*t ~= F and ~d* is the u , ique  expansion o f  cg to t),pe r* which 
satiafies P. 

Proof. If SO is a formula of WB(L)(r)  and fro, f l ,  -.- are its immediate :;ub- 
formulas then F wilt contain an axiom describing how R e is related to 
R *°, R ¢'~ . . . . .  The only interesting case is when SO begins with a quantifier 
O of WB(L) which is not in L. Then the corresponding axiom will essen- 
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tially say that R ~° satisfies the implicit definition which gave rise to the 
quantifier Q in the structure defined by R ~o' R ~ ,  .... Actually we are 
oversimplifying a bit but the details can be left to the reader, who qould 
notice that the proof  applies to WB(L) but not to B(L). [] 

The operators A a:id WB preserve some of the "'nice" model-theoretic 
properties of  a logic L, while to prove simikir restitts for B seems more d i f  
ficult. 

Theorem 2.13. (i) IJ'L is (K, XYcompac t  so are A(Li and WB(L). 
(ii) I f  L is bounded,  so are A(L) and WB(L). hi .fact, L, ex(l_) and WB(L) 

have the same wo-number.  
(iii) L, A ( L ) a n d  WB(L) have the "¢ame l tanf-  and LO u'eH/zeim-flttmbers. 

Proof. L, WB(L) and A(L) have the same projective classes. The pr,,pv~ l~.," 
of compactness, boundedness, well-ordering number, I owci~i~ciin n u l n -  

ber and Hanf number can all be defined by rei'crcncc to projcclivc cl:isscs 
only, he:ice the theorem holds. D 

A p p l i ~  f ions .  

(1) Fe 'erman's  quantifierQ t:'~, (of. ex. 11. Section t). The logic L ~ I Q ~ }  
is (w, w)-compact (for many a.'s) aqd satisfies i_S(w~,) since it is inclu.tcd 
ha Z~(L,,,~l Q I ) .  

(2) Lindstrom's Theorem gives t~ew proofs for the fact that l,,,~<,, salis- 
ties (WB) t and (A)L: Lw~ is maximal with respect to compactness and 
LS(o0) or with respect to Hanf-number = Lowenheim-number = co. :ill 
properties preserved under the A-operation. Thus A ( L , ~ I  ~ L~.,~,. 

(3) Another application of Lindstrom's Theorem ,.:iws us inforniation 
about Lw~o[Ol] and its A-closure: {This st;,tlelr~¢lll fl)r t_ww I Qc~-cl only 
makes sense for unrelativized logics: here Qccc is ( 'hang's quantifier § i. 
ex. 5.) 

P r o p o s i t i o n  2 . 1 4 .  A(L,~,.,, [ O~ ] ) n 1_~,, , .  = L<o,~/br a : t .  or  aH v c,, su( h 

that Lw~ o [ 0~] is cozmtabh'  compact.  Also, tT' l.ww [ O~c,. ] is ( v0. co )-c~Jm- 
pact  then A(L,~o[Qccc]) n L,~,~, = ko,~. 

.g~vte: The GCH implies (o0. co)-compactness of [-,o,.~[Occc ! and of L,~,.:[ O,:,t 
for most a. (See Bell and Slomson 17 ].) 
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Proof. L~,w[Occ c] and L,.,~[(I¢,] (e = 1, say), are both (w, co)-compact 
and we assume l.w~,, .~tisfies LS(oo). Both these proaer t ies  are preserved 
under  the fo rmat ion  of  sublogics. Hence in both  cases the intersect ion 
satisfies LS(co) and is (o2, w)-compact .  But by  Linds t rom's  Theorem 
(Theorem 0.1 ) this must  be L,,, w. Note that  we are applying Linds t rom's  
thc,.,rem to a logic which does not  a!low relativization.  12 

14"1 Consider  the quant i f ier  (.1t) wi th  .goD= {,al  ~l of  type (2> and 
is a dense linear ordering with , countable  dense sut" ~et) (= K o). 

2 

Theorem 2.I5. Lww[O D] < A f L ~ w [ O l ] ) a m ! , h e n c e  L~o~o[oDl is (w, co)- 
c o m p a c t  arid satisfies LS(col). 

Proof. Wc show that K D and (/(I)) are P('Lw,~lO fl, For  K D this is straight- 
ii~rward. For I K l) ) we observe that if a dense linear order  (A. <> has no 
countable  dense subset then there are at least co I many disjoint  rectangles 
(= cartesian products  of  intervals) in A 2. For as.~ame there is a maximal  
countable  set of disioint  rectangles avoiding tl 'e diagonal,  then the projec- 
th:m of their cndpohl t s  into A is a dense sebset o f A .  With this observat ion 
x~e easily see that (KD} - is PCL~wlc2z I. This idea goes back to Kurepa [5 1 ] .121 

~5) Theorem 1.2 (iii} as proven in Barwise [4] gives slightly more:  

Theorem 2.16. L e t  K = ~ ,, t ,r  ~. = ¢o a t t d  L be  a logic wi,,h wo-number ~. 
I/ K is closed ul:dcr partial isomou~hisms and K E EC L then K E ECL~, .  

Since dX preserves wo-ntu~.bers we obta in  the fol lowing in terpola t ion  
t tworem for I . ~ .  Note that ~be wo-number  of  L~ois  ~¢ if t¢ = co or K = ~K 
(this fc~tlows easi!y from [6 t ). 

Theorem 2.1 7. I l K  is closed utzder partial isomorphism and K is 
t (a~l  ,,,~) (~: = ~ (,:" ~: = w then K is E ( ' L ~ .  

Corollary 2.18. IJ K is c:oscd under partial isomorphism and K and R 
arc P('L~ w :!tell K is ECLat, 2. 

Noi all[ model- theore t ic  propert ies  are preserved by A. 

Proposi t ion 2,19. A does not preserve the Karp-l;roperO'. 
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Proof. Let L be L~2,.,. ,. L has the Karp property.  "Ihere are sentences 4~0 
and c) 1 in L,.o2 ~ characterizing the structures ,~ co. <,'. and (~o I. < ). respec- 
tively. Now put K 1 = { ~,)l I 9l = (A) and A can be mapped 1 I into w} 
and K 2 = { ~l I~)l = (A)  and ')1 can be expanded  to ~1' = (A|, , . I  2, .I'i < )  
where ( A 2 , < }  ~ (co l ,< )  and . / is  an injection o f A  ~, into AI).  Obviously.  
K 1, K 2 are PC L and K 2 is the c o m p l e m e n t  of  K 1. Jtcnce K~ and K 2 are 
ECa(L). But K 1 contains only coup]table strt~ctt~rcs, K 2 only tlllcotll]labl¢ 
structures. In view of the facl that all infinite sets are partially isomorphic,  
it follows that A(L) does not have the Karp property.  E3 

Remarks.  ( i ) A  similar argument  shows that in A(L,,,.,)all the quanlif iers  
O.,, for s,, < K are definable.  In particular, for J¢ > w I 1.,~,,, is not A-closed. 

(ii) If L has LS(co) then it has. by a result o f  Barwise [41. the Kart~ 
proper ty  and so has A(L). 

(iii) Kueker [501 studies logics with LS(w) in a gencr'al contex t  and 
found that the logic generated by his closed and co-closed classes is 
A-closed. 

Proposi: ion 2.20. A does m)l / p~ ,s~ I ~c the Tar.~ki/~ruper/y. 

Proof. A~;ain let L = Lw~,., ,. I, has the Tarski proper ty  (in fact. all L,, w 
have it). i'~ow let { ?li)i<,,o~ be countal  lc structures with equal t iy only 

is an e lementary  where eve, y ')1,+1 is a l.:roper extension of  Pl i. ( ?1 i ;i-:~,~ 
chain of  A(Lw=,, ,) since for every finite subset .-i o f : | i .  (./t i, a ,~i) ~: 

(Ai+ 1, a E e l l  But Ui<:w ~ ~1 i canllot bc :.in A{l.+)-elc~t~cl]lary c×lensiol] c~l" 
any of  the Pli's since O i < ~  Pl i is tzncoul]tatqe and t . ~ l O ~  I ~ A(Lw2~. o) 
by ex. 10. [] 

A(L,.,,2,.,.,) also gives an example  of  a A-chased logic which does uot satis- 
fy (I}L. In fact, Fr iedman ( t )npubt i shcd)proved  ilic l oll,.)wing th.:orcm. 
The proof  below is essentially due Io th) tch inson (of. [241): 

Proposit ion 2.21. Let  L be suclz tha, L ~ o [ O i l <  L-<. A{I_,~:~. TheH 
there' are di,s]oint PCI -c/asses K 1 , K 2 which cam~,t  h~' .sc/sarated iH 

A(L~:¢o). 

Proof. Let K l = {')1 I~l = (A. < '  where < is an ordering of  A of  cofinaii ty 
co} and K 2 = { ?t I ~t = (A, < )  where < is an ordering of  cofinali ty col). 
Clearly, K I, K 2 are disjoint F'('-classes in g~,,olQll (using b~ I -like orderil~gs). 
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Now assume, for contradiction, that 0 is a formula of ~(Lw2w) which 
separates K 1 from K 2. Using Lemma 2.5 q~ is eqt'ivalent, using additional 
sorts and predicates, to some formula ~ of Loa+w. Assume further that 
<.ca 2, < )  = '8  and ',~ t == q5 (if not take -, 0). Expand '~+ to a model ~ of  
0. Using the L6w&fl+eim- Skolem Theorem for Lw2~o we can find a 
~';oc '~5 such that '/:~ 0t= ~ and I(~)=1 < o01 . Let b ¢  I ~ 1 -  1'/301 and 
lk)rall!~0c t ~01. ' , 8 ~ b >  b 0. Let '~1 bc such ihat ~;0 C g~l c ~ ,  
~{~ I ~ 0 ,  b ~ i ~{';ll and that l( ~1)~-I -¢-< ~ ]  (such a '~31 exists using the 
LOwenheim Skolem Theorem once more). Now iterating ttn~ process 
o>many times gives us a ~ sucl~ that (IN,of,<} = Nw has cofinality oo, 
iterating o.~:-many times gives us ~wL of  cofinality co~, which, contradicts 
our assumptions (as ~3 w ~ }, ~;w~ D so hence ~ oaD so, ~o~ D SO, yet SO 
separates K! and K2).E] 

Io. contrast to this we have: 

Theorem 2 . 2 2 . / / I .  has Hu' 7i, rski ln'operO', so /#as  (WB(L). 

Proof. t.c! -g~, a < 6 be a WB{L)-elementary chain of  structures of type 
r and ~/ =- O~,<~, q/a. ( 'onsider the WB(L)-full expansions ~ *  of each 
~.:~ and '2g* of r// (let r* be their similarity type). For a </3, ere <wutL) 'g~ 

" * wutL~ctg} since every WB(E)(r*) formula hence "q/o <L ~ :  (in fact -~/~' < *" 
can be "translated" to a WB(L)(r) formula). Let c-//, = Oc~<ac//,. Since L 
has tlw Tarski property e 'd* :  off' for each. a. Let 1-' be tile set of sentences 

• c/Z, iu l.emma 2.1 2. J hen q / 0 D  F hence D P. and since ~ '  is an expansion 

• <L q/* and so of /g il lk)llows from Lenm~a ~ 12 that "-g' = cg, .  ThusCga 
:g~, <wmL~cg for each Q. (We are using the trivial fact that if L' is any logic 
and oaf*. 93" are the L'-full expansions of cg, ,~ and ca'* c_ ~*  then 

Corollary 2.23. (WBh. 4, (zXh_. 

Proof. A { L ~ , )  does not have the Tarski property {by 2.20) bm WB(L~=,.o) 
does, by "~ ""~ 

Example. (1 1) WB does not preserve the Karp property. To see this we use 
Shelan s theorenl (cf. ex. 9 above) tha t  WB(L~o~o)> L=~. By Theorem 
2.13 (ii)WB(L~.~,)is a bounded logic. By [4, Corollary 3.31 every bounded 
logic having tile Karp property is ~< Lotto. ttence Wl;L~o~) does |lot have 
lhc Karp properly. 
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If  L is axiomatizable, one would like to know if z~(L) also is axiomari- 
zable. The construction of A does not indicate any solution to this prob- 
lem, but the following is true: 

Theorem 2.24. Le t  L be an axiomat izable  logic. Le t  L '= L[Q l . . . . .  O"] be 

such that the defining classes K 1 . . . .  , K,~ o f  QI . . . . .  O*'~ respectively,  are in 
EC/,~t.). Then L' is axiomatizable.  

~roof. We have to show that the set of valid sentences V' of L' is recur- 
sively enumerable. By our assumption, the set of  valid sentences I/" of L 
is r.e. Now let q~ be a sentence Of L', hence of A(L). By the remark fol- 
lowing Lemma 2.5 there is an effective translation of ~ into a sentence 

of L. The effectivity of  the translation is guaranteed by restriction to 
fiv.itely many quanfifiers in L'. Now ~o ~ V' iff -'1~0 has no model iff (-'l~o)- 
has no model iff -I((q~0)')~ V, hence the result. [] 

Corollary 2.25. The same is" true ( f  we replace E(',~(L) h.v E('wB~I ). 

Applications. 
E (1) L~.o~O ~] is axiomatizable for ~ = 1 (and many a.>> l). This solvesa 

problem posed by Feferman [10]. Stavi had given an explicit axiomati- 
zation (by schemes) for L~o[Qt::l. 

(=) L,~ w O D] is axiomatizable. Both these results follow from the fact 
that L~o~o[g.~] for a = 1 and many other ~ is axiomatizable. 

(3) If Lww[ 13i . . . . .  f3"] satisfies LS(oa) and properly extends L then 
A(L~w[131 ... . .  On]) and WB(L~,~[Q l, On), cannot be obtained by adding 
only finitely many new generalized quantifiers, by Theorem 2.4. 

(4) Theorem 2.24 gives a new proof  for (A) L in L , ~ ,  since L,~,., is 
maximal with respect to axiomatizabili ty and LS(w). 

Problems. 
We concentrated mainly on the A-closure and the WB-closure, both 

being very smoot.h operations on logics. 

Problem 2.1. Does the B-closure have similar features? 

Problem 2.2. Is there a way of defining reasonable an l-closure? 

"!rivially, one could add all P('L-Classes to a logic L extending it in co- 
many steps to L' such that EC L, = PC L, but this seems to strong. For L~,,w 
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for example, this construction gives a~l the classes of structures definable 
in set theory, i.e., goes beyond second-order logic. 

We were operating on logics defining intersections and closures. Unions 
can be defined similarly. 

Prob!em 2.3. Investigate the model-theoretic properties of logics and their 
beha~ iour under these constructions. 

3. Cofinally invariant classes of structures and A{ L<.o+ [ Ol ] 

Malitz and Magidor in 1361 asked whether one can characterize L , ,~ [Ql l  
in model-theoretic terms such as axiomatizability,  compactness or LOwen- 
helm- and lianf-numbers. With the exception of axiomatizabiii ty the pre- 
servation Theorem 2.13 tells us that this is not the case. The modified 
question of course would be to characterize A(L,,;~[Q 1 ]). This chapter is 
a result of at tempts to do so, but does not give a solution to this problem. 

Now Theorem 2.24 gives us even axiomatizable extensions of  L~5~,[Q~ ]. 
In this chapter we shall construct more logics which are (w, co)-compact, 
satisfy I , S ( ~  ) or t:ven LS'I '(~ l ) and are axiomatizable. Otu starting point 
is the following observation: 

Theorem 3.1. Let L be a &gic, K a class o f  structures closed under  i s u m o f  
phism such that j,)r s~;me K, K and its c o m i d e m e n t  are both "PC L on slruc- 
tttrcs ~),1" (ardinality ~ K" (i. e. , K c~ S~ = K 1 c~ S~,/~" n S~ = K 2 r~ S.~ Jbr 
s<)me K l, K 2 ca P('L )- Let L' :: I,[Q*:] (or, more generally, let L' be ob- 
tained.t)'om L b v addin,:,, fi/ti:elv man 1" quaut~fiers o f  this kind).  

( 1 ) / [  L' sati,~fies the Lo w('rtheim--- Sko lem t iworem ./~r ~: for  single sen- 
ten('es (LS(K) ) and L is axiomatizable  theH L' is axiomatizable.  

( 2 ) 1I L' satisfies the Li)wel#wim Sko lem the,)rem yor K..~or sets o.f 
sentences ,~c cardillalitv <Z ~. {and. iH imrtictdar. ~l" L' sati,sj~es LST(~)),#zd 
L is (?v, la)-('rmqmct, la <~ k <~ K. then L' is (k, la)-c'o,~,l;act. 

[This generalizes results of } 2 oil preser~'ation of axiomatizability and 
compactness by the A-operation.] 

Proof. (1) As in the proof of Lernma 2,5 we can effectively associate with 
each sentence ~ of L' a sentence ~ of L such that a structure eg ~ S~ is a 
model of~p i f f ~  hasan  expansion to a model of~b. Since L' (hence ~,) 
~ltisfies I~S~) it is clear that ~p has a model i f f~  has a model. Thus ti~e set 
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of  valid sentences o f  L' is effectively reducible to the set o f  valid sentences  
o f  L. 

(2) Similarly, with each set ~ o f  sentences  of  L' we can associate a set 
of  sentences o f  L such that for g E S,¢ "qt I = ,~ iff c,g can be expanded  

to a model  of  @. • stands in a 1 -1 cor respondence  with cl~ and the state- 
men t  o f  (~., #) col)~pactness appliec to ¢1~(~ < ~,) easily reduces to the state- 
ment  applied to ¢b, bearing in mind that X ~ t¢ so LS is applicable to (I~ and 
 ,.C3 

Examples.  (1) The quant i f ier  O (" def ined by/x  <" = { 'a I VI = <A, <> where 
< is a linear ordering of  cofi~lality ¢o}. Shelah [47,53.  §41 ) proved 
that L~ow[O('l is 0c, ¢o)-compact for every ~. It will follow | t o m  the re- 
suits in this chapter  that L~o~[ O c] satisfies l.STl'co I). Taking L in Theorem 
3.1 to be L~o,,,[O. 1] we see that L ~ , [ O  ('] is axiontat izable ( to verify the 
hypothesis  with t¢ = N1 one uses )q-like (:)rderings) and {o.x ~}-compact .  

The main difficulty in tile applications of  Theorem 3. I is to verify llKtt 
LIQ] has the same L6wenhe im-nmnbe r  as L. 

Tile following work developed of course from the special to tile general:  
Examp',e (3) was suggested by S. Feferman [ 101. ex. (4) was studied pre- 
viously hy Shelah [47] who also first defined ex. (5) and ex. (6). 

The cufinally invariant (c.i.) quantif iers  we are going to s tudy in this 
chapter a,ose on the way of  trying to find a broad class of  appl icat ions 
for Theol~'m 3.1 using, as in ex. (1), the nice propert ies  of  L ~ [ O ~ ]  a.,, a 
poi~;t of  departure.  

Let us point  out,  though,  that recently J, }tt~tchinson 123l 1241 has 
found ano the r  approach to construct  extens ions  of  LwwIO1] using, fol- 
lowing an idea due to H. Fr iedman.  nons tandard  models  of  set theory.  

Let r be a similarity type. The syntax of  the (monadic)  second order  
language (2) L,.oo0(r) can be described as follows: we add a new sort o f  vari- 
ablesX, Y, ... (called set variables) and a new predicate symbol  ¢ for 
each sort of  r, and then. build formulas of  L ~ o j r  ~2}) in the usual way. 
where r (2) is the type obta ined from r by the above addi t ions  (if r is 
single sorted, r (2) is two sorted). For each structure c-g of  type r let c~ 
be .he structure of  type ,/-(21 obta ined by letting the set variables range 
over countab!e  sets of  e lements  (of  tim correspondi,~g sort) and ¢ de- 
no,e  membership.  Thus it" ~g :- <A .... , is single sorted. ~ = ( ~ . P < s ~ ( A ) , E >  
where P<s~{A) is the set of  countable  subsets of  c'zg. l f ~  is a sentence  o f  
" '2) r~(=Lw,.. ,(r(2)) we let ¢g l==(2)s.o mean ~ F = so. Thus p:~2) is tile ordinary *-'oo to~, 1 ~ 

satisfaction relation of  " w e a k "  second order  logic. 
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For any logic L and type r let Lt2)(7) be the set o f  formulas o f  L(r  (2)) 
in which the quantif iers  of  L (o ther  than V, 3)  bind only " individual  
variables" not "~set variables". Naturally we def ine:  ql  ~ L(2)SO iff c~ ~ cso" 

Incidental ly,  L (2) o r  even L ~  is an abstract logic in the  sense of  [3] ,  
141, say, but not  a logic in the technical  sense of  this paper.)  

Returning now to L~,.~(r~2)). suppose r is single sorted. We shall be in- 
terested in structure q / s  = ( ~ ,  S, e) of  type r ~2~ ( Cgof type r), in which 
S is a ~ubset o f  P<s, (A) which is cofinai in the partial ordering c_ of  
P<,~(A) .  Thus the set variables, r;~ther than ranging over all countable  
sets ~as in 9 / j  range only over a co, final col lect ion S of  such sets. Suck, 
stru :t'ares ~ s  will be called cofi;~al s t ruc tures  over ~ while c~ itself is 
the . l i d / s t ruc ture  over Pal. 

A tbrmula s0{x, y ,  ...; X, Y, ...) of  Lww(r (2)) will be called cof inal ly  in- 
varhmt (c.i .)  if for every 9/ of  type r and cofinal structure °d s over qt 
and e l emen t sa ,  b .... ~ l rg! ,  s, t . . . .  ~ S  we have 

cg~ I= SO[a, b . . . .  : s , t  . . . .  ] iff 91[= ~o(a, b, . . . ; s , t ,  . . .). 

By a c.i. clas~ of  type r in the wider sense we mean the class of  models  
of  some c.i. sentence so 6 L,~,,(r ~2~). In order  to take care of  the relativi- 
zation built into our  quantff iers  we shall define a c.i. class o f  type r (in 
the strict sense) as a class K of  models  of  type r for which there exists 
a c.i. sentence SO in Lw,~,([r, 1 1~2~) ([r ,  1 ] is obta ined from r by adding 
one unary predicate)  such that for every structure qg of  type r and set 
B Z) ,~!:  

ql .~ K iff (B, cg ) 1 = SO. 

If r is a simple type and K a c.i. class of  type r then the quant i t ie r  O K 
will be called a c.i. quautiJh,  r. A c.i. logic is a logic L = kv0oa[O.~]i~ 1 

where each Qi is a c.i. quant i f ier  (of some simple type ri). Note  that  a 
c.i. logic has only countably  many quantifiers.  

Examples (ill each example  the sentence SO shows the def ining class of  
the quant i f ier  to be c.i.: P is the unary predicate added  in p a ~ m g  from r 
to lr .  11). 

(2) Cl I oaf example  (2), Sect. I is c.i. with 

SO = --I:~XVy 3x(P(x)  =, x ~ X). 

(3) Cl k from example  (1 1), Sect. 1 is c.i. with 

SO = q 3 X  YYIP(3") ~ Bx(x E X A x E y ) ]  ^ (E is an equivalent  relation).  
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(4) O c from example (1) is c.i. with 

so = 3X Vy [ .3 x ( y  < x)  -+ ~x(x ~ X ^ v < :,~) ] ^ (< is ^linear ordering; 

(5) O D from Th. 2.15 is c.i. with 

so = 3 X  Vy Vz[)" <z  ~ ~x(x ~ .g  ^ y < x  42 z ~ ̂  (< is a !inear o rde r ing  

(6) O B is of  type ~2) with 

K t~ = { ~1 [ ~I = (A, R) s.t. ~'here is a ,:ot~ntable Y c 1~)1 I ~ i th  

Vx[  3 y R ( x y )  --* ( 3 ) , ~  Y) R (xy)]  O u is c.i.} 

( the reader will easily find the sentence  ~; showing this). 

Remark.  L~o~o[O B] might  have applications to separable metr ic  spaces and 
similar structures where separability is needed  "s a basic cono:p t .  (cf. 
Makowsky [56]).  

Remark.  O l:- can be generalized by looking :it an equivalence relat ion be- 
tween n-tuples. This gives a quant i f ier  O b, of  type (2n). Similarly one can 
define O cn, O °n by looking at an ordering ofn-tupic: ; ,  apd oB,n. j~ (of  type 
(m + n)) by considering a relat ion be tween m-tuples  and ,t-tuples. These 
quantif iers would be c.i. if we made  the natural general izat ion of  allow- 

(2) ing variables wer  countable  n-ary relations (for all n)  in L~,~ thus replac- 
ing the monastic second order language by the full language. We could then 
generalize the not ion  of  cofinal structure,  c.i. formula etc. and exte, ld all 
the re~:ults of  this section oo the wider class of  c.i. logic, thus defin,:'.t. 

(7) Monotone  classes: A class of  sm~ctures K of  type r is monotoJw if 
there exists a first-crdei formula with one addit ional  unary predicate 
P SO(P) such that whenever  ( ~l, P) i = SO(P) and P c R c_ i ~l I then 
( ~l, R) t = SO(R ) and K = { ~21 I there exists a countable  P with ( '~l. 1-') t = so(P)}. 
Monotone  classes are, by similar a rguments  as above, c.i. at least in the 
wider  sense. Fur thermore ,  all the examples  ( 1 ) - ( 6 )  are m o n o t o n e .  

Theorem 3.2. Let  L be a t.i, logic, ra to '  single sorted type. Ever3' formula  
SO o f  L(2)(r) can be translated into a formula  ~p o f  (2) • L~w(r  ) with tit(" same 
free variab!es such t/tat for  all cofinal structztres °g s, e lements  8 o f  t°g I and 
ele'metzts i? o r s  we have: 

• QI s I = so[a, B ] iff ~ s  I = @ [2L B I. 
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Proof, We define t~ by induc t ion  on ~. If SO is a tomic  ~ is so. ~ commutes  

with 7 , A ,  V, V, 3.  Ifso is OiX03,: 1 ... ;i:k[ ~0(.~=0), ~II 'Xl)  . . . .  ffk(3?~), t I . . . .  , t t] 
and the defining class K i of  Oi is seen t ° be c.i. b y t h e  sentence 
X,.(P, R l . . . .  , R k ,  c I . . . . .  c t) then  ~0 is ×i(~0,  } 1 , . - ,  fie, t l ,  ..., It). The veri- 
f ication o f *  is s t ra ightforward using the absoluteness  of  Xi between 9/S 
and 9/.  [] 

It follows from Theorem 3.2 that  if SO is a c.i. formula of  L(2)(r) (where 
cofinal invariance is def ined h:~r L(2)(r) formulas just  as for (2) L~o~o(r) for- 
mulas) the ~ is c.i. too. From this it ia easy to deduce:  

Corollary 3.3. I l K  E EC k fi)r some  c.i. logic L then K is a c.i. class. 

The nag, in results for c.i. logic are: 

Theorem 3.4. I f  K is a c.i. class in the wider sense then there are PC-classes 

K~. K 2 i ,  L,,~[Cll]  such that K n S ~  = K ] n  S ~  and K 2 n S ~  = ~2 n S ~  
-allt! 

T h eo : em  3o5 . / f  L is a c.i. logic then L satisfies LST(co~). 

Cormlary  3.6. Let  L be a f ini te ly  generated c.i. logic. Then L satisfies 
I . . . .  ( w  1 ), is (w ,  w) -compac t  and axiomatizable.  

Proof. This follows from Theorem 3.5 and Theorem 3. !. [] 

Proof  of  Theorem 3.4. I" suffices to show that  for each c.i. sentence ~0 
there is a cla~;s K l ~ PCL~owlQ d such tha t  K 1 n S ~  = K n S ~  where  K is 
the class of  models  of  so. So let so be a c.i. sentence and ICE I = < b:l. 

9t ~ K iff ei ther ~l is countable  and ~ so t = so, wi th  S o = {I ~1 I}, or there  
is an wl- l ike ord,.rmg < of  I PI I and ~J-s I = so where S is the  set o f  initial 
segments  o f < .  Clearly,  this can be t ranslated into  L,ow[O1] using addi- 
t ional predicates.  [] 

To prove Theorem 3.5 we prove someth ing  a little bit stronger:  

Defini t ion.  Let t¢ be a cardinal.  P(t¢) hoMs if the set o f  countab le  subsets 
of  ~. P<s~(~:), part ial ly ordered under  inclusion,  has a cofinal  subset o f  
power <~ ~. 
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Theorem 3.7. l fP(t~) l_toMs and t~ >~ ~ and ~ ~ t~ then for  every r-struc- 
tttre ~)l and C C I '21 1, C <<.re there is an L-e/c'mentao, s t tbstrm tttre ')1 o o]' 
~l with C _c [ ')t 0l and I ~l o l ~ ~. 

Proof. Let ',)l and C be given. Look at ')1 as a m a n y  sorted first-order 
s t ructure  and select a family o f  Skolem funct ions  for ')t (~ince & < K 
there are ~ such functions).  Now i f B  c_ i,)ll and T <  P < ~ (  )1 ) let el(B, T) 
be the smallest set (B', T ' )  D_ (B, T)  which is closed under the Skolem 
funct ions  and is transitive (i.e., to T' c_ A') .  This can be obta ined  in c~- 
many  steps; hence,  if (B u T) = < ~: then (B' to T ' )  = < K. 

We now define by induc t ion  on a ~< oo 1 

(A 0, S 0) = cl(C, O) 

(Aa, S , )  = 0 (A~, S,~) for 6 a limit ordinal  

(A~+ 1, S,~+I) = cl(A~, So,) and 

ff~+l = Sa+l u "a cofinal subset of  Pst ( / t~+ l) of  power  -_-K 

Let ~ , ,~  = ~ I A ~ .  Clearly the s t ructure  (~,., ,t .  S~o,. e) is an L,~,~-ele- 
men ta ry  sobstructure  of  9/ .  Also, every countable  subset of  A,.,. is in- 
cluded in s nne  A~+l(oe < co l)  hence in some member  o f  S,~+ 1 c_ ~' . 
Thus ( q / , ~  Sw~,e)  is a cofinal s tructure.  For any formula ~o of  Lfr)  
with parameters  from Aw~ we have @ bei,lg the t ranslat ion given in 
Theorem 3.2): 

od I= ,p iff 9 / I = ~  iff ( q / , ~ .  S~oi. ¢ ) I=~b iff q/w, I = ~P- 

Thus 9/,.o i <L 9/ .  Clearly-4,o~ ~< t¢ so 9/t,~ has all the required properties.  [] 

Remark.  It is easily verified that  P(K) ~ P(t¢+), in part icular  P(~ , )  n < co. 
Hence Theorem 3.5 follows. But Theorem 3.7 gives us also in fo rmat ion  
about  the possible o ther  cardinali t ies of  e lementary  submodels  for c.i. 
logic L. To explo i t  this even more we investigate the p roper ty  P(t~) fur- 
ther: 

Theorem 3.8. ( i ) / f P ( K )  and g > ~I then cffg) > co. 
(ii) ~ > 2 s° iml)lies P(g) o KSo = ~:. 

Proof. (i) Let S be cofinal in (P<~(m), g), ,~ ~< Kand  assnme, for contra- 
dict ion,  that  cf(~) = w. Then S = Ut~<wS n with S~ = X,~ < t~ for suitable 
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Sn's. Since (ts S,~)= ~< 3,,,. ~o < t¢ there is some 3n < ~c such that  there is no 
A with ~3,, ~ A ~ S, .  Let B = {/~nl n ~ w}. Then for all n and aI1A(A eS, , )  
=, B g A. Thus S is not  cofinal, a cor~tradiction. 

(ii_)~ So = K ~ P(~:) is clear. So let g > 2 s° and S c_ p< s~(~), S cofinal 
and ,f ¢ re. Let T be a family of  t~ s° almost disjoint countable  subsets of  
~. For s ¢ S let T s = {t E TI t c_ s}_By the cofinali ty o r S  we have 
T = I J s e s T  s t h u s u  so'-: T~< Z,s~_sTs<~ S "  2 ~ o <  ~" 2 s° = ~. [] 

Theorem 3.6 is besl possible even for the quant i f ier  f2 ~ as shows: 

Theorem 3.9. There is a sen tence  ~o o f  L,,,.o[O B] such that,  f o r  all ~, ~; 
has a m o d e l  o f  p o w e r  t~ i f f  g. >I ~I and  P(t~). 

Proof. Let ?1 be V x 3  ~ S ° y R ( y , x )  and SO2 be-IOUx,  y ( - l R ( y , x ) ) ,  where  
R is a binary predicate.  < A, R ) I = SO2 iff there is no countable  Y c_ A with 
Vx[ 3 y - ] R ( y ,  x )  ~ (3), E Y) (--tR(y, x)) l  iff for every , .ountable 
y c_ A 3 x [ 3 y - 1  R( 3', x) ,', (Vy c Y ) R ( y ,  x))] .  Letso be SOLA SO2z Now 
<A. R> ! = so and S = {{yl R(.r,  x)}lx ~ A} implies A -t> S~o e <~ )I, S is co- 
final in P<s~(A).  Thus iI'.~ = ~: then g > ~1 and P(~:). Conversely,  if 

1> St and P(~:) let A = { a i l i  < t~} a i =/: a S for i 4= / and S = { b s I / <  ~:}, 
S cofinal in P<s~(A). Then <~:,R> I = so with R ( i , / )  i f fa  i E b/. [] 

For L = L,~,,[Q 1 , O c] we have a bet ter  result: 

Theorem 3.10. I . -  L~,~o[01, O c ] satisfies LST(t~)3'br every  K >! ~1. 

ProoL Let ~ be a structure of  type r ~: > o0 0 and ~ ~< h:, C c_ IN I and 
C = t~. Define <'21ol c~ <~.=¢o 1 > such that" 

( i l l  ? la l  c. l').3 1, I ')lag = ~. 
(ii) C c_ I ')101, i 9t61 = U~<6] 9t~1 for a 6 limit ordinal  and 

I '~l~l c t '-)(~+I 1. 
(iii} ~l~ is a subs t ruc ture 'of  '23. 
(iv) Let cx < co 1 and g/E I '~l,~l. Then  for every SO~ L:(a) lf'k~ I = :t,¢so(x,a) 

then for some b E I 9(,~+iI '~ I = ~(b,  at). (b) l f ~  1 = QIxso(x, a) then  there 
exist at least b; 1 many  e lements  b E I #1.,~+iI with '23 I = SO(b, a ). (c) If  
'~3 t = Cxyso(x, y, a)  then  there exist b O, b 1, b 2 , ... E I~( ,~+11 such that  
{b,, tn e w} is cofinal in {(x,  j ' ) l ~  I = SO(x, y ,  a)}. (d) If {(x,y)l  ~ )= so(x ,y ,a)  
is an ordering o f  cofinali ty > co (call it <~0,a and let D~o,a be its field) and 
i ~1 ~1 n D~,,a is not  cofinat in <~,a then  there is some b ~ I ~21~+11 which is 
greater in <,~,a" than every e lement  o f  1'~t ~1 n D~. a. Clearly, 9l ~+1 can 
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be ob t a ined f l ' om ~,~ by adding ¢ ~ elements,  so the cons t ruc t ion  is 
possible and I ~1~o~i : ~ since ~: > ~ l .  Also, each ')l a, 8 a limit ordinal ,  is 
closed tinder the opera t ions  of  q~ and ')l ~ < t  '.~tby the Tarski  Vaught  
Theorem for L , ~ ) .  In fact, ~1~ <l.w,,olOil 'Bas°oWne easily verifies. 

We now show that '.)1 = ?1 ~ <L '~t)y proving that  ( ')1 ,a)  D: ~(a)  iff 
{~,  a )  ~ ~,(a) for a l i a  c I'a I, by induct ion  on C-quantif ier  rank of  ~. 
The only  non-trivial case is ~(a)  of  the form CLvl'~p{a, x.l'). By induct ion  
hypothes is  ~o(x, .1',//) l inearly orders ~l iff it does it for ,r~, Thus  we may 

< ~ 8 "  , " assume that  . .  is ,i linear ordering of  D ~  and that  < ~!a = < ~a n I?l 12 V.,,u ~,a w, ¢, 
and D~{la = D,~a n A (again by induct ion  hypothesis) .  If < : ~  is o f  co- 
f inali ty co then 01 ~+l and hence ~! conta ins  a countable  sequence for 

I ~ % t , ;  , . . 

< ~ a  and hence lor  <~).1 a. If < ~ a  has co l inah ty  bigger than ~ then ei ther  
0I n D : ~  is cofmal in < ~ and then the cof lnah ty  ot < ~. is the same 

as ot <d~." o r A  n D~' a is not  colmal  m <~,8 a and then lo t  each/J ~< o ?la+ l 
contains an e lement  bigger than all ol  19t ~1 n I ) ~  a ao the co l inah ty  ot 
<g l  a is o0,. [] 

Problems. Ebbinghaus  [9] recent ly proved that  L ~ [ Q  l~] does not satisfy 
in terpola t ior .  

Problem 3.1. t i) Is A ( L ~ , , [ O  B] f ini tely generated? 
(ii) Is A(Lw,~[Q i j) f ini tely generated? 

P~:obleln 3.2. (1 eferman)  Is there an extension L of  L,.o,.o[O 1 } which is 
(~o, co)-compact, axiomat izable  and satisfies (l)L or (A) l  '? 

Problem 3.3. Are the c.1. logics A-closed? Do they satisfy (B)L? Find 
(lqatural) examples  of  c.i. logics which require n o n - m o n o t o n e  quanti-  
fiers (see ex. (7)). 

Modifying a quest ion by H. Fr iedman [15] one might ask: 

Problem 3.4. (i) ls there any L proper ly  ex tend ing  L~o~., which satisfies 
(B) L, (Ii L or {WB) L, and is axiomat izable?  

(ii) Is there any L proper ly  extending  L, ,~  which satisfies (B) l  or 
(WB) L and is (~, co)-compact for some ~c > co? 

4 .  A-sublogics of  L~, z ~o and Scot t  sentences  

l_et ?1 be a s t ructure of semi-simple similari ty type.  We define 

I ( '~l ) = { ',!1' 1 '~1 ~- ~1 '} 
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and 

If ')' is countable PI( *~l ) = Mod(o t~) where o ~ is the canonical Scott 
sentence of ~ in L,,~j ~. If ~1 is a term model then I(~1 ) = PI(~i ). 

, o ~1 ) (See [4, i, §101 for definitions of ~p . 
In this chapter we study the 3,-clsoure of logics obtained by adding 

1( ')~ ) or PI(~)I ) for some fixed ~,~l (or a family of ~1 's) as a quantifier to 
L,~,~. We shall mainly concentrate on sublogics of L ~  ~o, but our con- 
siderations go a little bit further. 

There are two ways of looking at sublogics of L~,~ ~ (or L~x in gen- 
eral): Either we look at logics of the form L,.o~[O'~]~_,4 or at logics 
k A = k,~ ~o n A .for some transitive set A closed under some set-theoretic 
operations. We shall consider both approaches here. We assume general 
acquaintance with ad,~.fissible sets (cf. [ 5 ] ) but unlike [ 5 ] consider only 
sets without urelements in this section. 

The basic relation between the two approaches was discovered by 
Barwise, who showed (cf. [4, !!, 4.1 ] ), that the A-closure of w.-logic or 
of the logic L~,~IO0], is the logic L A where A = co + the least admissible 
set containing ~ .  This was generalised by Barwise [4, II, 4.4] and Ma- 
kowsky [37,39] to get the following theorem (see [4] for the proof or 
compare tLe proof  of 4.4 below). 

Theorem 4.1. Let  p ¢_ c~ and let L be a A-closed k)gic in which the struc- 
ture c11 = {co, <, p) is characterizable ( that  is l (9 / ) (=Pl(q/ ) )  E ECL). 
T/tell L(,~.p). ~< L where (co, p)+ is the smallest admissible set containing 
co and p as elements.  In l~articular ,~t 'L~lOleU)l  ) --- L(~o,v)~. 

[Note that by regarding 1.,:~ (admissible A) as a logic in the sense of Section 1 
we are effectively restricting at tent ion to the sentences of  L A in which 
only finitely many non-logical sylnbols occur. 1 

Corollary 4.2. I J L  is" a A-closed logic in which eacl, structJtre (w ,  <, p)  

(p ¢_ ca is characterizable then L~I ~ <-< L. 

Thus L,~ ~ is the least logic which is A-closed and satisfies Scott 's 
theorem (every countable structure is characterizable). 

The main aim of this section is to try to characterizeA(L,,,~l O~t~) 
where O 'e abbreviates O el~ ~') and 9/ is not of the form (w, <,  ...). It was 
conjectured by H. Friedman !141 and announced by Makowsky [39] 
that: 
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S t a t e m e m  4~3. If ~ is an arbitrary countable  structure o f  finite similarity 
type and o ~ is its canonical  Scot t  Sentence  then A(Lw,~[Q qt} = L A with 
O qt defined by Pl(cg) and A = (oU) +. 

It turns out  that S ta tement  4.3 is false. To see this we first consider  
the case cg = (a, < )  where a is an ordinal and the quant i f ier  O ° of  type 
{2} def ined by I ( ~ )  = PI(Q/)). 

Defini t ion.  Let  a be a set. Then the Z yde /h tab le  part  oj' the m,.vt admis-  
sib& set a + is the set S a = {b E a+l there is S l - t b rmu la  ¢(.v, ) ' ) s u c h  that 
<a +, E) I  = =l!yso(a,y) ^qg(a, b)}. That  is to say. b C S a i f fb  is Z l -def inab le  
in a + from the parameter  a. 

Theorem 4.4. L,~,~i O'q ~PC Ls,  = k ~  n So. t.)trthermc~re. L,~,~[O °~1 

~<l!C Ls a. 

Proof. We first show k,~,~[ O '~] <l.x' Lso. Since a ¢ S,~. lc~. c )  can bc 
characterized up to isomorphism in Ls~, hence O ~ is defin,tble ill L S .  

It remains to show that every K,z  ECLs is P('L tao~. Let ~,~ So be 
a sentence and. let o¢ be a £ l - fo rmu la  that defines ¢ in o + using a as the 
only parameten  Consider  the conjunc t ion  ff of  the fol lowing scnteaces  
in L , ~ [ Q  '~] (fro a two-sorted structure).  For the first sort we h a v e  

(i) the axion ~ for K P o r  a strong enough finite set o f  them.  
(ii) c I (a constant)  is an ordinal and <c I. ~> ~ <c~, <> (using O '~ and 

sentences in Lw~,), 
(iii) 3!xo~(c  z,`,+) A %(('1, ('2), (This insures that the constant  c 2 "'is" 

¢.) 

(iv) c 3 (another  constant)  is a structure satisfying c 2 (which is t.x| ics- 
sible in L~,~). 

For the second sort we have" 
(v) The unive2se o f  the second sort is isomorphic  to c 3 (which is 

again expressible in L,~ w, due to the fact th '" ""- o has a finite similarity 
type). 

The El -def in i t ion  o f c  2 and its uniqueness  guarantee that the models  
of  ~,, do not admit  nons tandard  e lements  for c2' so, clearly, all the models  
of  4, restricted to the seco~d sort are models  of ~o and vice -,ersa. D 

Cor~Jilary 4.5. A(L,~[O '~] )  - A(Ls~). D 

For countable  ordinals a, we get more:  
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Theorem 4.6. l j a  ~ i tC then Ls~ satisfies iHletT)olatiolt. 

Proof. Let SO and g/be sentences  of  L& such that so =~ ft. Since a E HC, 
+ • 

Is a countable  admtssible set and L,~. satisfies (I) L. Hence  there is an 
in terpolant  0, i.e., 0 c a + and SO ~ 0 and 0 ~ ff where the in terpolant  
conta ins  only extralogical  symhols  occurr ing in ~0 and ~,. All we have 
to show is that we can find a 0 which is in S,,. Let Rq{,,o, if, x)  be an ab- 
breviation for: x is a triple (0 o, 171, rr2} where 00 is a sentence conta in ing  
only symbols  occurring in both SO and ~,  lr 1 is a derivat ion of  SO ~ 0 0 and 
172 is a derivat ion of 0 0 ~ ff (within L~.). Let R'(SO, 0,  % )  be an abbrevia- 
tion for: a o is an ordinal  and (3c  c L~,o{SO, ,~}) R(~,  ~ , x )  ^ (Vfl < % )  -1 
t3.v ¢ L~ {so, ¢})  (R(~p, 4', x ) )  where L~{a. b} is the ~-th stage of  sets rela- 
tiw:ly const ruct ib le  (over {a, b}). 

Finally,  let R"(SO, ~, %, y)  be an abbreviat ion for: R'(SO, ~, % )  and 
v = ~ (0l l ~,{SO. ~} conta ins  a triple x = (0,rr3,172 ) s.t.R(SO, if ,x)}. N o t e  
float R. R'  alld R" are primitive recursive relations and that  a in R'  and a 
',rod y in R" are uniquely  de te rmined  by so x and ft. Note,  further ,  tha t  if 
R"(~y, ~, %, y)  then y is a non-empty  con junc t ion  of  in terpolants  for 
and ~.  I~cncc, y itself is an in terpolant  for so and ~,. Since tp and ff are in 
S~ there exist E l - fo rmulas  o l ( x . y )  and 02 (x ,y )  such that  

(cd, ~ ) t  = 3!yol(~,) ' )  ^ 3!YOx(a.) '~ ^ %(~,~0) ^ 02(a, ~). 

[_et Oo(a, v)  bc the Z Fformula  expressing 3u, v. ao|o~(c~, u) ^ o2(~, o) 
^R"(u,  v. %.  v i i .  Clearly,  (a +,~} I = o 0 ~ , y )  holds  for a u n i q u e y ,  say 0; 
hence, 0 c= S. ,  and 0 is an in terpolant  for ~p and ~. [] 

Corollary 4 . 7 . . ( l a  < co~, A ( L ~ . , I O ° I ) ~  I-s .  [] 

"fhc p roof  of lhc next result is easy and left to the reader. 

Theorem 4.8. I f~  is an ordotal, (3 < O(ct+). The~ I({/3, < >) ~ E(" in Ls~ 
ij,/sq < s~,. 

Thus  for countable  a we h a v e  

Corollary 4 . 9 . / / ' a  < w 1 their 1({~. < ) ) i s  F.C in A(L~,~ lO~I) ( f t '~  ~ S,~.. 

Proof. For ,6 < O(a+t this  follow.s from 4.7 and 4.8. For/3 > 0(a +) this 
follows from a re.suit duc to Barwise and Kuncn 161 to the effect  that  
cannot  be character ized in L,~, even as a projectNe class. [] 
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There are also general izat ions of  Coroll~ry 4.7 if we replace the ordinal  
by an arbi t rary hereditar'ily countable  set a and collsider ed tbr the struc- 
ture od = {TC{Za), e,a) ,  a E HC. 

Fur thermore ,  if c// is an arbi t rary  countable  s tructure (of  semi-simple 
type)  whose universe is a set of  ure lements  and o e is its canonical  Scott  
sentence,  the~ we have: 

Theorem 4.10. I ra  ~ lqt)  ~, then A(L,.,,~IO~t I ~ Ls,,~ 

Which looks very much like s ta tement  4.3, oidy that there i~ an addi- 
tional hypothes is  o + in the conclusion is replaced by S, ,e .  

We now proceed to show ~hat s ta tement  4.3 is false, the main reason 
being that  S o in general is not transitive. It is enough by 4.9 to show that  
fbr some countable  ordin~d a, S,~ ~ 01a+). 

Example.  Let L,~(7 < w l) be a model  o f  (enough axi,.~ms of) ZF a~d let 
o~ = w ~ .  Thus a is uncountab le  in L')'. The definitioz~s o f a  + a~tt S .  ~11"¢ 
absolute;  hence,  Sc~ of  L,~ is the real S,~. But, by defilliliol~ t)lt'S, we havc 
!~ I = "So, is countable  and o~ is uncoun tab le" :  hence, a ~_ S,~. 

Remark.  Tile quan t i f i e rQ  '~  is quite strong: in A(L~,~oIQ w~ l t [Qt  is de- 
finable and also) tile quant i f ier  of  wei l foundedncss  on countable  domains.  
It follows from "1 rest~lt of  Stavi (unpubl ished)  that the set of  valid sen- 
tences o f  L ~ [ t ' ) .  ~, ] is ex t remely  complicated,  in faci not  Z t over the 
u~fiverse us, ing only  the parameter  co I. 

S ta tement  4.3 fails mainly because A(L, , ,~[O~])need  i~ol t;e ¢~1" the form 
L A with A transitive. For the rest of  this section we shall s tudy fragme~:ts 
o f  Lw~,~ with A transitive and primitive tecursively closed. Anothe r  way 
to look at A-logics is the following: ,6(L) was defined to be the sm,lllest 
logic o f  the form Lww[CliJi,~:. I which is A-closed and has all the L-elemen- 
tary classes as quant i f iers  ir~ it, i.e. A(L) has a special syIttactical form. This 
suggests for L ~< l . ,~w to replace A(L) by ,~(L). which is the sturdiest logic 
of  the form L A , where A is primitive recursiveIy closed and transit ive.  A- 
closed and conta ins  L. 1"o discuss the opera t ion A we need a theorem due to 
Fr iedman [14] and independen t ly  proved by Stavi. 

Theorem 4.1 1. Let A be a trunsitire primitire recursit'elv ~'h~s¢'d set. I f  L.,I 
is A-chased then A is the ttnion ¢~f admissibl~' sets. 

Proof. We fiJ'st recall a fact about  the next  admissible set (of. Barwise 15, 
Ch. l ! l ) .  
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L e m m a  4. ! 2. l.f b E a + then  there  ('.vis/s a Z 1 f formula  O and  e l e m e n t s  

a I . . . . .  a ,  C T('{a} Slt(']! that  whet terer  ~J~ =- ( I l l ,  ~ > i.s' a m o d e l  o f  KP and  an 

end  ex t ens ion  o1" (a +, e > tlt(,tt ~l ! = :l !xo(a 1 . . . . .  a n, x )  A o(a 1 . . . . .  a n, b). 

We n o w  wan t  to show that  unde r  the  h y p o t h e s i s  o f  T h e o r e m  4.1 1 

A = Oa~_4 a+. By a result  in 1 5 ] a  + = Uo< O(a*,DLo{a} so it suff ices  to  show 
that  i r a  c A and a < 0(a +) then  a C A sin~'e A is pr imi t ive  recursive 
closed. Without loss o f  genera l i ty  {since A is t ransi t ive)  we can a s sume  
that a = ~ ,  and that  0(a +) > ¢o. 

L e m m a  4 ,13.  H a  E A,  a < O(a+~ then l (<a ,< ) )  is EC in L A. 

Proof .  (a) l(<a, <>) is P(" in I_,1. Let ~2 be tile c o n j u n c t i o n  o f  the  fol low- 
ing sen tences  in a two-sor ted  langm,ge.  ~, a b inary  re la t ion over  the  first 
sort ,  < a binary re la t ion over the  second  sort and I a binary re la t ion 
over bo th  sorts,  u n p r i m e d  variables for the  first and p r i m e d  variab!es for  

the second  sort.  
(i) The  universe V I o f  the  first sort t o g e t h e r  wi th  E satisfies KP (or  

a s t rong  e n o u g h  f ini te  subset  o f  KP), 

(ii) ?A {V.v(.v e b I ~- W c~<.q x = i,2)}c I ¢ T('{a}} where  e"l, c2 are names  
of  e l e m e n t s  in V I, 

(iii) V x ' 3 ! x  l(x, x ' ) ,  
(iv) Vxy.v 'y ' [  l(.v, x '  ) A l(y,  y ' )  ~ (,V' < y '  ~" .V E y )], 

(v) 3:lo(~i l . . . . .  h,,=) ^ V . v 3 x ' [ l ( x , x ' ) ' ~ , . v  ~ z ] ,  

where  o is the  Z~-l 'ormula f rom L e m m a  4 .12  and ,O l . . . . .  ~5,; are names  for  
the p a r a m e t e r s  in L e m m a  4 .12  des igning e l e m e n t s  o f  V 1. Clearly,  when-  
ever ~ 1 :  ~ !he res t r ic t ion  o f  ~ to  the  second  sort  is i s o m o r p h i c  to  

c (n s t s t cn t ,  hence  l(<c~, <})  is PC in L 4 .  (Note  on ly  clause < c ~ . < ) a n d ~ i s  "~ " • 
(ii) is inf in i tary .  ) 

(b) 1(<~, < ) )  is PC in L A. "31"o see that  we no te  that  <J3, < )  ~ <~. < )  iff 
e i ther  <B, <> i:~ not  well f o u n d e d  (wh ich  is P(" in L~w)  or <B, < )  is iso- 
m o r p h i c  to :m initial segment  o f ( a ,  < ) ( w h i c h  is PC in L A using ( a ) ) o r  
~a,<> is i somorph i c  to  an initial s egmen t  o f  (B,  < ) ( w h i c h  is PC in L A 
again by (a)). So by ou r  a s s u m p t i o n  on  L A I (<~,<))  is E(" in L A. [] 

C o n t i n u a l i o n  o f  p r o o f  o f  T h e o r e m  4 .11 ,  By L e m m a  4 .13  there is a sen- 
tence ~; ill L A characteriz ing <c~, < > up to i~omorphism.  ~, is also a sen- 
tence of  L , , , ,  so, by a result  due  to  C. Karp [551 the  quan t i f i e r  rank 
q r ( ~ )  is bigger o~ equal  to  c~ i f~  = co '2. The re fo re .  since ~ is in L A 
c~< q r { ~ ) <  0 ( A ) a q d a c A .  G 
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Remarks.  Clause (ii) in Lemma  4.13 contains  possibly countab ly  many  
constants  ~3 (for every c ~ TC(a)). Now we only  work with finite simi- 
larity type. But this diff iculty can easily be overcome.  We replace the 
constants  for c by a formula 7re(x) which defines c using its Z-structure:  

rrc(x) is (Vu e v) W rrb(u) +', ,~ ( 3u  e v)lrb(U). 
b~:e b ~ c  

Clause (ii) then reads 3xTra(x ) and in clause (v) we replaces all the ai's 
by their def ining formulas ~rai(.,'i) and bind x i by an existential  quanti-  
tier. 

The p roof  also shows the following" 

Theorem 4.14. Let  a be a set anJ  B any transitive primitive recursive 
closed set cop~taining a, Then er:ry  K which is PC in La+ is ah'eadv PC 
in L B. 

• A converse of  Theorem 4.1 1 is the following: 

Theorem 4.1 5 Let  A be transitive and primitil,e recttrsive closed. Then 
L A sati~;[~es ipterpolation i f f A  is a union o fadmiss ib le  sets and A G 11('. 

Proof. l fA  c_ I-IC and satisfies the hypothes is  then L A satisfies (l)l_ by 
Barwise [2]. If=t c_ HC and L A satisfies (I) L then L A satisfies (A) L and 
hence A is a unk  n of  admissible sets by Theorem 4.1 1. So suppose I_.~ t 
satisfies (I) L and A is transitive and primitive recursive closed. It remains 
to show that  A ~ HC. If not,  there is a ~ A .... ttC. Let a be in A 1 tC of  
minimal  rank. T h e n a  ~ HC and since a ~ HC,~ ~ 1 -  Also w ~ el since 
we assume_A has no ureiements .  Now K t = {'?1 11 P{ I ~< ~0) and 
K 2 = (91 l l ~ l  ~> ~) are easily seen to be PC in L A and are disjoint.  But 
since L A satisfies the Karp proper ty  K I and K 2 cannot  be separated by 
an EC class in L A . [] 

Remark.  The set a in the proof  of  Theorem 4.1 5 has cardinali ty ~< 2 ~o 
s incea ~ HC. Now if ~1 = 2s° K1 and K 2 are disjoint and complemen ta ry  
and we have: 

Theorem 4.1 6 . / f  ~;1 = 2¢° and A is primitive recursive closed and  transi- 
tive then L A is" A-closed i f f  A is a union o f  admissible sets amt  A ~ HC. 

We can now give a precise def ini t ion of  z~(L). 
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Definit ion.  Let L < L ~ .  ~ ( L ) =  L A w i t ,  A = o {BI L < L~. LB is A- 
closed and B transitive and primitive rectlrsive closed). 

Note that  it is not  obvious that  L ~< ~(L). 

Proposi t ion 4.17. ,~(L)is A-closed. 

Proof. Let ~ (L)  = L A . Since A c It(" it is enough to show that  A is a 
union of  admissible sets. We shall first show that tor  every a ~ A, a + c_ A. 
I ra  ~ A t h e n a  ~ B for some B which by Theorem 4.1 1 isa  union o f  ad- 
missible sets C i (by the def in i t ion  of  A ). S o a  ~ C]. for some C i. But. then  
a + C C i a n d a  + C A . N o w A  = u a e A { a ) " = u  + - - a~Aa which proves the 
proposi t ion.  [] 

To conclude  this section we want to prove an analogue of  Conjecture  
4.3 tbr .~(L). For this we need a theorem due to Nadel [431. 

Let 91 be a countable  structure,  o ?lits canonical Scott  sentence.  We 
call a sentence ~ a Scott  sentence of  "~l if ~p is logically eq~fivalent to o ~)1. 

Theorem 4.18. Let  A be a countable admiss'ible set, w E A. and ~p a 

Scot!  s.,ntence in A. Then the cam)nical Sc¢:tt sentem'e o equivalent to 

is a/.~o in A. (Proof  in [431. ) 

Theorem 4.19. Let  -91 be a countable  structure (o.f f in i te  (semi-simple) 

similariO' ,'otTw) and let 0 '~ be the quantijTer de]Tried by  PI(q/) ,  L = L ~ [ , q ~ t ] .  

,{i)[/Pl('~d)¢ EC L then ,~(L)'-- k~(~z~(L)), 
(2) ! I  l>lf:g .) ¢ ECI. ~ t h e n  ,~I L) "-" L~,~ ~,)÷ wl,ere o ~ is the canonical 

t~Ot.O 

S c o t  t S¢'1l I¢'IIC'U Of  :~. 

ht h~)dt cases,~(L) I>. AIL) > L. 

Proof. ( i )  If PIt 'k' ) ~ E('i then L < L¢,o~ = Lu[: and the restllt follows 
imincdiately t'rom the deI lnlt ion of  A. 

~2) Suppose Pl(C~/} ¢ ECLw ~. Suppose L < L B where L n is as in the 
def ini t ion of  A. Then B is a union of  admissibte sets (by Theorem 4.1 1) 
and P l (~g )~  EC L c ECL8 Thus L n cor~ains a Scott  sentence fo rg l  and 
I_~3 ~: L,~,  hence  ~ E B. By Titeorem 4.18 o ~ E B. Taking the intersec- 
tion over all B we get o ~'E A where ~ ( L )  = L4. There lbre  A ~_ (oe)  +. 
On the o ther  hand the admissible set B = (o~) + clearly satisfies L ~< L e.  
Therefore  A ~ B, hence A = B. D 

By Theorem 4.10 ~ ( L )  and z3fL) coincide for L = L , ~ [ Q  '~ ] i f S  o = o + 
and o ~ ('7I)+. By Theorem 4. ! this is the case tbr "2/ = (w,  < ,  P>. In 
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Makowsky [38] a family of  generalized quantifiers, the co-securable quan- 
tifiers, is studied and it is shown that for logics L = Lw~[O 1 with 0 w- 
securable ,~,(L) and A(L) coincide, too. But obviotisly &(L) was introduced 
only to make precise how statement 4.3 fails and no preservation theorems 
of the type discussed in Section 2 were discussed Ibr ~(L)  mainly because 
~(L) only applies to sublogics of  Lto ~ ,~. 

Problems 

Problem 4.1. Characterize zX(L,~,.o[ O ]) tor arbitrary countable structures 

Problem 4.2. Let: L ~< L~o ~ ~. Is ~(L) > L? A simpler auxiliary question: 
Let A, B be countable admissible sets and let K ~ ECtA n [-CLa. Does 
K ~ ECL A c~ B ? If this is not always true then Lw,,lOXt will be an example 
o f  a logic L(~ L A) such that A(L) > L. 

Problem 4.3. Characterize Lo, t.,  or fragments of  it (other than L,o,o)as 
maximal logics for some mode! theoretic properties. 

Barwise [~5, {}31 gives such a characterization using the notion of  an 
absolute logic which is not purely model theoretic. For some time we 
thoguht that ]-,.or,.,, might be the maximum of logic satisfying LS(co) and 
having well-or~,ering number ~< col (similar characterization:: could be 
proposed for certain fragments). This conjecture was rejected in a very 
strong sense by Harrington [ 541 and, independent ly. bv Ku~wn [ 571. 

Added in proof 

Let L p be the fragment of weak second-order logic allowing existen- 
tial quantification over courltable sets and relations provided ihe~ do no 
lzot occur Jwgatively ilt the scope o j  tile existelttial qualtt~Oc'r. L p was 
introduced by Makowsky and further studied ira 140.561. L p is (equiva- 
lent to) a c.i. logic and contains L(OR): it is countably compact and. as 
well as a c.i. logic, has a completeness theorem with a natural t'inite list 
of  axioms and schemata provided by Stavi (cf. [401). 

We do not know whether L p is the str(mgcst c.i. logic. 

Sh:47



190 J.A. Mako wsky et al. / A-logics atrd generalized quantifier~ 

Makowsky [38] a family of  generalized quantifiers, the oa-securable quan. 
riflers, is studied and it is shown that for logics L = L ~ [ O }  withO ~-  
securable ~t(L) and A(L) coincide, too. But obviously A(L) was introduce 
only to make precise how statement 4.3 fails and no preservation theorem 
of the type discussed in Section 2 were discussed for A(L) mainly because 
~l(L) only applies to sublogics of  [-to~ ~,. 

Problems 

Problem 4.1. Characterize A(L,,,,.,[O ]) for arbitrary countable structures 

Problem 4.2. Let L ~< L,.,~,~. ls A(L) > L'? A simpler auxiliary question: 
Let A,B be countable admissible sets and let K E ECt n ECI . .  Does 

KA B 
K ~  ECLAc~B? I f th i s  is not always true then Lww[O ] will be an example 
of a logic L(~ L A) such that A(L) > L. 

Problem 4.3. Characterize Lo,~ w or fragments of it (other than L,~,o) as 
maximal logics for some mode! theoretic properties. 

Barwise [5:, §3] gives such a characterit.ation using the notion of  an 
absolute logic which is not purely model theoretic. For some time we 
thoguht that ]_ ~,t ~, might be the maximum of logic satisfying LS(co) and 
having well-or~,ering number ~< co 1 (similar characterization:; coukt be 
proposed for certain fragments). This conjecture was rejected in a very 
strong sense by Harrington 154] and, independently,  by Ku~wn [ 57 I. 

Added in proof 

Let k p be the fragment of weak second-order logic allowing existen- 
tial quantification over c(m;ttable sets and relations provided :he~ d:~ it:: 
no: occur negatively i,t the scope o f  the exisle/ttial qmmtffier. U ~ was 
introduced by Makowsky and further studied in [40.561. L p is ~cquiva- 
lent to) a c.i. logic and contains L(Q B): it is countably compact and. as 
well as a c.i. logic, has a completeness theorem with a natural finite list 
of  axioms and schemata provided by Stavi Ccf. [401). 

We do not know whether L p is the strongest c.i. logic. 
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