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Abstract.
§1. Consistent inequality

[We prove the consistency of irr(
∏

i<κ

Bi/D) <
∏

i<κ

irr(Bi)/D where D is an ultrafilter on

κ and each Bi is a Boolean algebra and irr(B) is the maximal size of irredundant subsets
of a Boolean algebra B, see full definition in the text. This solves the last problem, 35,
of this form from Monk’s list of problems in [M2]. The solution applies to many other
properties, e.g. Souslinity.]

§2. Consistency for small cardinals
[We get similar results with κ = ℵ1 (easily we cannot have it for κ = ℵ0) and Boolean
algebras Bi (i < κ) of cardinality < �ω1 .]
This article continues Magidor Shelah [MgSh 433] and Shelah Spinas [ShSi 677], but
does not rely on them: see [M2] for the background.

§1. Consistent inequality

Definition 1.1. Assume µ < λ, λ is strongly inaccessible Mahlo. Let B∗ = Bλ be
the Boolean algebra freely generated by {xα : α < λ} and for u ⊆ λ let Bu be the
subalgebra of B∗ generated by {xα : α ∈ u}.
1) We define a forcing notion Q = Q1

µ,λ as follows:
p ∈ Q iff: p has the form (wp, Bp), we may write (w[p], B[p]) for typograph-

ical reasons, satisfying:

(i) wp = w[p] ⊆ λ

(ii) Bp = B[p] is a Boolean algebra of the form Bw[p]/I
p where Ip = I [p] is

an ideal of Bw[p], so Bp is generated by {xα/Ip : α ∈ wp}
(iii) xα/Ip /∈ 〈{xβ/Ip : β ∈ wp ∩ α}〉B[p], equivalently xα /∈ 〈{xβ : β ∈ wp ∩

α} ∪ Ip〉Bw[p]

(iv) for every strongly inaccessible χ ∈ (µ, λ] we have |wp ∩ χ | < χ .

The order is given by p ≤ q iff wp ⊆ wq and Ip = I q ∩ Bw[q], so, abusing nota-
tion, we pretend that Bp ⊆ Bq , not distinguishing sometimes xα from xα/Ip ∈ Bp

or (see below) from xα/I˜ in B˜ .
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570 S. Shelah

2) We define I˜ = ∪{Ip : p ∈ G˜ Q1
µ,κ

} and B˜ is defined as Bλ/I˜ .

Claim 1.2. For µ < λ as in Definition 1.1, the forcing notion Q1
µ,λ is µ+-complete

(hence, adds no new subsets to µ), has cardinality λ, satisfies the λ-c.c., collapse no
cardinal, changes no cofinality, so cardinal arithmetic which holds after the forcing
is clear.

Proof. Like the proof of the same facts for Easton forcing.

Claim 1.3. For the forcing Q = Q1
µ,λ with µ, λ as in Definition 1.1 we have

1) �Q “B˜ is a Boolean Algebra generated by {xα : α < λ} such that α < λ ⇒
xα /∈ 〈{xβ : β < α}〉B˜ , so |B˜ | = λ and λ = ∪{wp : p ∈ GQ

˜
}”.

2) �Q “irr+(B˜ ) = λ = irr(B˜ )”, see Definition 1.4 below.
3) �Q “if yβ ∈ B˜ for β < λ then for some β0 < β1 < β2 < λ we have B˜ |=

yβ1 ∩ yβ2 = yβ0 ”.
4) Let B∗ be a finite Boolean algebra generated by {a∗, b∗, y∗

0 , . . . , y∗
n(∗)} such

that y∗
m /∈ 〈{y∗

� : � < m} ∪ {a∗, b∗}〉B∗ and 0 < a∗ < y∗
m < b∗ < 1 for

m ∈ {0, . . . , n(∗)}.
Then it is forced, (�Q1

µ,λ
) that:

�λ,n(∗)
B˜

if yβ ∈ B˜ for β < λ and β �= γ ⇒ yβ �= yγ then we can find
a, b in B˜ satisfying 0 < a < b < 1 and
β0 < . . . < βn(∗) < λ such that
(α) B˜ |= “a < yβ�

< b”
(β) there is an embedding f of B∗ into B˜ mapping a∗ to a, b∗ to b and y� to y∗

β�

for � = 0, . . . , n(∗).

Recalling

Definition 1.4. For a Boolean algebra B let:

1) X ⊆ B is called irredundant, if no x ∈ X belongs to the subalgebra 〈X\{x}〉B
of B generated by X\{x}.

2) irr+(B) = ∪{|X|+ : X ⊆ B is irredundent}.
3) irr(B) = ∪{|X| : X ⊆ B is irredundent} so irr(B) is irr+(B) if the latter is

a limit cardinal and is the predecessor of irr+(B) if the later is a successor
cardinal.

Remark. Concerning 1.3, for the case κ = ℵ1 see Rubin [Ru83], generally see
[Sh 128], [Sh:e].

Proof of 1.3. 1) Should be clear.
2) Clearly for every χ < λ and p ∈ Q1

µ,λ we can find an α < λ such that

α > χ and wp ∩ [α, α + χ) = ∅, hence we can find a q such that p ≤ q ∈ Q1
µ,λ

and wq = wp ∪ [α, α +χ) and in Bq the set {xβ : β ∈ [α, α +χ)} is independent,
hence q � “irr+(B˜ ) > χ”. So we get � “irr+(B) ≥ λ. To prove equality use part
(3).

3) Assume toward contradiction that p � “〈yβ

˜
: β < λ〉 is a counterexample”.

We can find for each β < λ a quadruple (pβ, nβ, 〈αβ,� : � < nβ〉, σβ) such that:
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On ultraproducts of Boolean algebras and irr 571

(i) p ≤ pβ ∈ Q1
µ,λ

(ii) nβ < ω

(iii) αβ,� ∈ wpβ increasing with �

(iv) σβ(x0, . . . , xnβ−1) is a Boolean term
(v) pβ � “in B˜ we have yβ

˜
= σβ(xαβ,0 , xαβ,1 , . . . , xαβ,nβ−1)”. Call the righthand

side yβ , so by part (1), without loss of generality, {αβ,� : � < nβ} ⊆ wpβ

hence yβ is a member of Bw[pβ ].

So we can choose a stationary S ⊆ {χ : χ strongly inaccessible, µ < χ < λ} and
n, σ, m, 〈α� : � < m〉, w, r such that for every β ∈ S we have: nβ = n, σβ =
σ, � < m ⇒ αβ,� = α�, � ∈ [m, n) ⇒ αβ,� ≥ β and wpβ ∩ β = w. Without loss
of generality also α < β ∈ S ⇒ wpα ⊆ β. Without loss of generality

� for β0, β1 in S the mapping Fβ0,β1 = idw ∪ {〈(αβ0,�, αβ1,�) : � < n〉}
induces an isomorphism gβ1,β0 from the Boolean algebra 〈{xγ : γ ∈
w} ∪ {xβ0,� : � < n}〉B[pβ0] onto the Boolean algebra 〈{xγ : γ ∈ w} ∪
{xβ1,� : � < n}〉B[pβ1 ] that is gβ1,β0 maps xγ to xγ for γ ∈ w and maps
xβ0,� to xβ1,� for � < n.

Choose in S three ordinals β0 < β1 < β2 and we define q ∈ Q1
µ,λ such that

wq = w[pβ0 ] ∪ w[pβ1 ] ∪ w[pβ2 ] and Bq is the Boolean algebra generated by
{xα : α ∈ w[pβ0 ] ∪ w[pβ1 ] ∪ w[pβ2 ]} freely except the equations which hold in
pβ�

for each � = 0, 1, 2 and the equation yβ1 ∩ yβ2 = yβ0 , in other words I q is the
ideal of Bwq generated by I [pβ0 ]∪I [pβ1 ]∪I [pβ2 ]∪{yβ1∩yβ2 −yβ0 , yβ0 −yβ1∩yβ2}.
We should prove that q ∈ Q1

µ,λ and I [q] ∩ Bw[pβ�
] = I [pβ�

] for � = 0, 1, 2 (the
rest: pβ�

≤ q hence p ≤ q and q � “ yβ�˜
= yβ�

for � = 0, 1, 2 and yβ1 ∩yβ2 = yβ0 ”
should be clear).

Let B0 be the trivial Boolean algebra {0, 1}.
For w ⊆ λ and f ∈ w2 let f̂ be the unique homomorphism from the Bool-

ean algebra Bw freely generated by {xα : α ∈ w} to {0, 1} such that α ∈ w ⇒
f̂ (xα) = f (α). For p∗ ∈ Q1

µ,λ let F[p∗] = {f : f ∈ (wp∗
)2 and {xα : f (α) =

1} ∪ {−xα : f (α) = 0} generates an ultrafilter of B[p∗]}. For each f ∈ F[p∗]
let f [p∗] be the homomorphism from B[p∗] to B0 induced by f , i.e., f [p∗](xα) =
f (α) for every α ∈ wp∗

. Clearly F[p∗] gives all the information on p∗. Define
u = wpβ0

⋃
wpβ1

⋃
wpβ2 and let

F = {
f : f ∈ u2, and � ≤ 2 ⇒ f �w[pβ�

] ∈ F[pβ�
] and

B0 |= “f̂ (σ (〈xβ1,� : � < n〉)) ∩ f̂ (σ (〈xβ2,� : � < n〉))
= f̂ (σ (〈xβ0,� : � < n〉))”}.

We need to show that F is rich enough, clearly ⊗1 + ⊗2 below suffice.

⊗
1 if � ∈ {0, 1, 2} and f� ∈ F[pβ�

] then there is an f ∈ F extending f�.

[Why? For m = 0, 1, 2 let p′
βm

be such that B[p′
βm

] is the subalgebra of B[pβm ]
generated by {xγ : γ ∈ w[pβm ] and γ < βm ∨ γ ∈ {αβm,0, . . . , αβm,n−1}}.
We define for m = 0, 1, 2 a homomorphism gm from B[p′

βm
] to B0 such that:
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572 S. Shelah

γ ∈ w ⇒ gm(xγ ) = f�(γ ) and γ = βm,k ⇒ gm(xγ ) = f�(β�,k). This is possible

by � and let hm be chosen as follows: it is f
[pβ�

]
� if � = m and it is chosen as any

homomorphism from B[pβm ] to B0 extending gm if m ∈ {0, 1, 2}\{�}, as B[p′
βm

]

is a subalgebra of B[pβm ] this clearly exists. Let fm ∈ w[pβ�
]2 for m = 0, 1, 2 be

fm(γ ) = hm(xγ ); for m = � the definitions are compatible; i.e., the definition of
f� we have just given and the old one. Finally, let f = f0 ∪ f1 ∪ f2. This is clearly
a well defined function; now of the three conditions in the definition of F , the first
holds by the definition of u, the second by the choice of the hm’s and the third by
the choice of the gm’s, it is easy to see f� ⊆ f ∈ F .]
⊗

2 if � ∈ {0, 1, 2}, α ∈ w[pβ�
] then there are f ′, f ′′ ∈ F such that f ′(α) �=

f ′′(α) but f ′�(α ∩ u) = f ′′�(α ∩ u).

[Why? As pβ�
∈ Q1

µ,λ we can find f ′
�, f

′′
� ∈ F[pβ�

] such that f ′
�(α) �= f ′′

� (α)

but f ′
��(α ∩ w[pβ�

]) = f ′′�(α ∩ w[pβ�
]). Now for m ∈ {0, 1, 2, }\{�} recalling �

above there are f ′
m ∈ F[pβm ] which extends f ′

� ◦ Fβ�,βm and f ′′
m ∈ F[pβm ] which

extends f ′′
m ◦ Fβ�,βm in both cases this is shown as in the proof of ⊗1. If � = 0, let

f ′ = f ′
0 ∪ f ′

1 ∪ f ′
2 ∈ F and let f ′′ = f ′′

0 ∪ f ′′
1 ∪ f ′′

2 ∈ F ; both memberships hold

as in the proof of ⊗1 and we are done. Also if α < β� (so α ∈ w =
⋂

m≤2

w[pβm ])

the same proof works. So assume � �= 0, α /∈ w =
⋂

m≤2

w[pβm ]. If (f ′
�)

[pβ�
](yβ�

) =

(f ′′
� )[pβ�

](yβ�
) let f ′ = f ′

0 ∪f ′
1 ∪f ′

2, f
′′ = f ′′

� ∪ (f ′ � (w[pβ0 ]∪w[pβ3−�
])), clear-

ly O.K. So without loss of generality assume (f ′
�)

[pβ�
](yβ�

) = 0, (f ′′
� )[pβ�

](yβ�
) =

1, � ∈ {1, 2} and α ∈ w[pβ�
]\w[pβ0 ]; and then choose f ′ = f ′

0 ∪ f ′
1 ∪ f ′

2 as
above and f ′′ = f ′′

� ∪ (f ′�(w[pβ0 ] ∪ w[ββ3−�
])). Now check; the main point is

that as f̂ ′
3−�(yβ3−�

) = f̂ ′
0(yβ0) we have B0 |= “f̂ ′′(yβ1) ∩ f̂ ′′(yβ2) = f̂ ′′(yβ�

) ∩
f̂ ′′(yβ3−�

) = f̂ ′′
� (yβ�

)∩f̂ ′(yβ3−�
) = 1B0∩f̂ ′

3−�(yβ3−�
) = f̂ ′

3−�(yβ3−�
) = f̂ ′

0(yβ0) =
f̂ ′′(yβ0)”.
4) The proof is similar to that of the previous part (with a, b now in
pβ�

�β�!). ��1.3

Claim 1.5. 1) If Q = Q1
µ,λ ∗ Q2

˜
and �Q1

µ,λ
“Q2

˜
satisfies the (λ, 3)-Knaster condi-

tion (see below)”, then �Q
˜

“irr+(B˜ ) = λ”.

2) If in V the condition �λ,n(∗)
B from 1.3(4) holds and the forcing notion Q satis-

fies the (λ, n∗ + 1)-Knaster condition then also in VQ the condition �λ,n(∗)
B holds.

Hence if Q = Q1
µ,λ ∗ Q2

˜
and �Qλ,µ

“�λ,n(∗)
B˜

holds (see 1.3(4))” and �Q1
λ,µ

“Q2

˜
satisfies the (λ, n(∗) + 1)-Knaster condition” then �Q1

λ,µ∗Q2

˜
“�λ,n(∗)

B˜
”.

3) In part (1) we even get the conclusion of Claim 1.3(3).

Definition 1.6. 1) The λ-Knaster condition says that among any λ members there
is a set of λ members which are pairwise compatible. Recall that it is preserved by
composition.
2) For n∗ ≤ ω, the (λ, n∗)-Knaster condition says that among any λ member there
is a set of λ such that any < 1 + n∗ of them have a common upper bound.
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Proof of 1.5. 1), 3) Clearly it suffices to prove (3).
This follows immediately by 1.3(3), in fact, just such Q2 preserves the properties

mentioned there.
2) Similarly using 1.3(4). ��1.5

Theorem 1.7. Suppose

(a) V satisfies GCH above µ (for simplicity)
(b) κ is measurable, κ < χ < µ

(c) µ is supercompact, Laver indestructible, more explicitly,
(*) for some h� : µ → H(µ), (for � = 0, 1) we have for every (< µ)-directed

complete forcing Q, cardinal θ ≥ µ and Q-name x˜ of a subset of θ , there is
in V[GQ] a normal ultrafilter D on [θ ]<µ such that∏

a∈[θ ]<µ

(h1(a ∩ µ), h2(a ∩ µ))/D ∼= (θ, x˜ [GQ])

(d) λ > µ is strongly inaccessible, Mahlo and λ∗ is such that λ∗ = (λ∗)µ ≥ λ

(e) D∗ is a normal ultrafilter on κ .

Then for some forcing notion P we have, in VP:

(α) forcing with P collapse no cardinal of V except those in the interval (µ+, λ)

(β) forcing with P adds no subsets to χ , preserves “µ is strong limit” and makes
2µ = λ∗

(γ ) µ is strong limit of cofinality κ and 〈µi : i < κ〉 is an increasing continuous
sequence of strong limit cardinals with limit µ

(δ) for each i < κ, µi < λi ≤ λ∗
i = (λ∗

i )
µi = 2µi and we let µκ = µ, λκ =

λ, λ∗
κ = λ∗

(ε) for each i ≤ κ we have: Bi is a Boolean algebra of cardinality λi and
irr+(Bi) = λi

(ζ ) for i < κ, λi is a Mahlo cardinal which is weakly inaccessible, but
(η) λ = λκ is µ++ (this in VP)
(θ) B = Bκ is isomorphic to

∏

i<κ

Bi/D
∗, hence

� irr+(B) = λ = µ++ so irr(B) = µ+ whereas irr(Bi) = irr+(Bi) = λi

and
∏

i<κ

λi/D
∗ = λ, so irr(

∏

i<κ

Bi/D
∗) <

∏

i<κ

irr(Bi)/D
∗.

Proof. Let Q1 = Q1
µ,λ and B˜ be from 1.2, let and for Z ⊆ λ∗ let Q2,Z be {f : f

a partial function from Z to {0, 1} with domain of cardinality < µ} ordered by
inclusion, let Q2 = Q2,λ∗ and let Q = Q1 ×Q2. Let G = G1 ×G2 ⊆ Q be generic
over V and let V0 = V, V1 = V[G1] and V2 = V[G] = V1[G2].

�0 In V2, B˜ [G1] is a Boolean algebra of cardinality λ with irr+(B) = λ and,
for notational simplicity, with a set of elements λ.
[Why? In V1, B˜ [G1] is like that by 1.3. Now as in V1, Q2 satisfies the
(λ, n)-Knaster for every n hence clearly by 1.5 we are done.]

In V2 we have 2µ = λ∗ and the cardinal µ is still supercompact, hence it is well
known that
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574 S. Shelah

�1 for every Y ⊆ 2µ for some normal ultrafilter D on µ and Ȳ = 〈Yi : i <

µ〉, Yi ⊆ 2|i| we have Ȳ /D is Y (i.e. Ȳ /D ∈ Vµ
2 /D and in the Mostowski

Collapse of Vµ
2 /D the element Ȳ /D is mapped to Y ), hence (2µ, Y, µ, <)

is isomorphic to
∏

i<µ

(2|i|, Yi, i, <)/D.

Again it is well known and follows from �1 that there is a sequence D̄0 = 〈D0
ζ :

ζ < (2µ))+〉 of normal (fine) ultrafilters on µ satisfying: for each ζ < (2µ)+ the
sequence D̄0�ζ belongs to (the Mostowski collapse of) Vµ

2 /D0
ζ . In V2 we can code

B˜ = B˜ [G1] and P(µ) and D̄0�κ as a subset Y of 2µ = λ∗ and get D, Ȳ as in
�1 hence for some set A ∈ D of strongly inaccessible cardinals > χ there is a
sequence 〈(µi, λi, Bi, λ

∗
i ) : i ∈ A〉 such that:

(∗)1 for i ∈ A we have i = µi < λi ≤ λ∗
i = (λ∗

i )
µi < µ, λi is weakly inac-

cessible, Mahlo, Bi is a Boolean algebra generated by {xα : α < λi}, xα /∈
〈{xβ : β < α}〉Bi

, irr+(Bi) = λi and, for notational simplicity, its sets of
elements is λi

(∗)2 B is isomorphic to
∏

i∈A

Bi/D and (λ∗, <) ∼=
∏

i∈A

(λ∗
i , <)/D.

For i ∈ µ\A choose µi, λi, λ
∗
i , Bi such that (∗)1 holds such that µi ≥ i; why are

there such λi, Bi? Just e.g. use λMin(A\i), BMin(A\i).
Let Di = D0

i for i < κ and Dκ be the D as above. So Di (for i ≤ κ) is a normal
ultrafilter on µ and we have i < j ≤ κ ⇒ Di ∈ Vµ

2 /Dj , that is, there is a sequence
ḡ = 〈gi,j : i < j ≤ κ〉 satisfying gi,j ∈ µ(H(µ)) such that Di is (the Mostowski
collapse of) gi,j /Dj ∈ Vµ

2 /Dj .
All this was in V2 = V[G]. So we have Q-names ḡ

˜
= 〈gi,j

˜
: i < j ≤ κ〉, D̃̄ =

〈Di˜
: i ≤ κ〉 and 〈(µi˜

, λi˜
, Bi˜

, λ∗
i˜
) : i < µ〉. As Q = Q1 × Q2, Q2 satisfies the µ+-

c.c. and Q1 is µ+-complete without loss of generality ḡ
˜

is a Q2-name and ḡ is from
V[G2]. Hence without loss of generality ḡ and similarly 〈(µi, λi, Bi, λ

∗
i ) : i < µ〉

belong to V[G2,Z] where G2,Z = G2 ∩ Q2,Z , for some Z ∈ [λ∗]≤µ; wlogZ = ∅
as we could have forced first with {f ∈ Q2 : Dom(f ) ⊆ Z}. Let P(D̃̄, ḡ

˜
) be (the

Q-name of the) Magidor forcing for (D̃̄, ḡ
˜
) (see [Mg4]). Let 〈µi˜

: i < κ〉 be the
P(D̃̄, ḡ

˜
)-name of the increasing continuous κ-sequence converging to µ which

the forcing adds and we can restrict ourselves to the case µ0 > χ . Clearly clauses
(α) − (ζ ) in the conclusion hold for P = Q ∗ P(D̃̄, ḡ

˜
). Now

�2 in V2, if p ∈ P(D̄, ḡ) and p � “f
˜

∈
∏

i<κ

λµi

˜
” then there are q, an extension

of p in P(D̄, ḡ) and f ∈
∏

i∈A∗
λi such that

q �P(D̄,ḡ) “{i < κ : f
˜
(i) = f (µi˜

)} ∈ D∗”.

[Why? By the properties of P(D̄, ḡ) there are a pure extension q0 of p in P(D̄, ḡ)

and/or sequence 〈ui : i < κ〉 such that above q0 we have: f
˜
(i) depends just on

〈µj

˜
: j ∈ ui ∪ {i}〉 where ui ⊆ i is finite. As D∗ is a normal ultrafilter on κ , for
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some a∗ ∈ D∗ and a finite u ⊆ κ we have i ∈ a∗ ⇒ ui = u. So there is a q such
that P(D̄, ḡ) |= q0 ≤ q and q � “µj

˜
= µ∗

j ” for j ∈ u, and so f is well defined.]

Let G3 ⊆ P(D̄, ḡ) be generic over V2 and V3 = V2[G3] and let µi = µi˜
[G3]

so really 〈µi : i < κ〉 is generic for P(D̄, ḡ). Now we shall show that:

�3 in V3 = V2[G3] we have

B ∼=
∏

i<κ

Bµi
/D∗.

[Why? In V2, by (∗)2 above there is an isomorphism F from B onto∏

i<µ

Bi/D =
∏

i∈A∗
Bi/Dκ , so let F(x) = fx/Dκ with fx ∈

∏

i∈A∗
λi for

x ∈ B, i.e. x ∈ λ.
In V3 let f ′

x ∈
∏

i<κ

λµi
be defined by f ′

x(i) = fx(µi) and we define a

function F ′ from B, i.e. from λ to
∏

i<κ

Bµi
/D∗ by F ′(x) = f ′

x/D
∗. Now

Y ∈ D ⇒ {i < κ : µi ∈ Y } = κ mod J bd
κ by the definition of P(D̄, ḡ), so

as F is one to one also F ′ is, and F ′ commute with the Boolean operations
as F does; lastly F ′ is onto by �2.]

�4 if i < κ then H(µi+1)
V3 is the same as H(µi+1)

V
Pi
0 , for some µi-centered

forcing notion from H(µi+1) (hence this forcing notion is λµi
-Knaster).

[Why? Note that H(µj )
V2 = H(µj )

V0 for j ≤ κ . Also for each i < κ in V0 there
are Di

j , a normal ultrafilter on µi such that (D̄i , ḡi ) = (〈Di
j : j ≤ i〉, 〈gj1,j2�µi :

j1 < j2 ≤ i〉) ∈ V is as above, i.e. j1 < j2 ≤ i ⇒ Di
j1

= gj1,j2/Di
j2˜

∈
Vµi /Di

j2˜
, gi

j1,j2
∈ µi (H(µi)) so P(D̄i , ḡi ) is as in [Mg4], and for some G3,i ⊆

P(〈Di
j : j ≤ i〉, 〈gj1,j2�µi : j1 ≤ µ2 ≤ i〉) generic over V0 (equivalently over V2)

we have G3,i ∈ V3 and H(µi+1)
V3 = H(µi+1)

V2[G3,i ] = H(µi+1)
V0[G3,i ]. See

[Mg4]. As P(D̄i, ḡi ) is µi-centered, clearly �4 follows.]
So obviously (by 1.5)

�5 in V3, for each i < κ we have Bµi
is a Boolean algebra of cardinality λµi

,
irr+(Bµi

) = λµi
, λµi

is weakly Mahlo.

Also in V[G1], the forcing notion Q2 satisfies the λ-Knaster condition and in V2 =
V[G1, G2], the forcing notion P(D̄, ḡ) from [Mg4] is µ-centered hence satisfies
the λ-Knaster hence

�6 in V3, B is a Boolean Algebra of cardinality λ, a Mahlo cardinal and
irr+(B) = λ.

Now let R = Levy(µ+, < λ)V = {f ∈ V : Dom(f ) ⊆ {(α, γ ) : α < λ, γ <

µ+}, |Dom(f )| ≤ µ and for γ < α, we have f (α, γ ) < 1 + α}, ordered by inclu-
sion. Clearly R satisfies the λ-Knaster condition, is µ+-complete in V and also in
V1. Let GR ⊆ R be generic over V1. Now in V[G1, GR], the forcing notion Q2 has
the same definition and same properties. Also (as in [MgSh 433], [ShSi 677]), in
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V[G1, G2, GR] the Di (i ≤ κ) are still normal ultrafilters on µ and the definition of
P(D̄, ḡ) gives the same forcing notion with the same properties and add the same
family of subsets to κ (as P(κ)V[G1,G2] = P(κ)V[G1,G2,GR]).

So GR is a subset of R generic over V[G1, G2, G3]. Also in V[G1, G2], R sat-
isfies the λ-Knaster condition and in V[G1, G2, GR], P(D̄, ḡ) is µ-centered hence
satisfies the λ-Knaster condition. Let V4 = V3[GR], so in V4 all the conclusions
above holds but λ = µ++ hence irr(B) = µ+ whereas irr+(B) remains λ = µ++.
So we are done. ��1.7

Claim 1.8. 1) In the Theorem 1.7 we can replace

“a Boolean algebra B of cardinality λ, irr+(B) = λ” by e.g. “a λ-Souslin
tree”

The “λ strongly inaccessible Mahlo” is needed just for applying 1.3, etc., but
for

∏

i<κ

Bi/D
∗ ∼= B it is not needed (any model M , with universe ⊆ λ is O.K.)

2) We can apply the proof above to the proof in [Sh 128] hence to theories of
cardinality < µ for simplicity in logics with Magidor Malitz quantifiers.

Proof. Similar to 1.7. ��1.7

§2. Consistency for small cardinals

Theorem 2.1 generalizes 1.7 in some ways. First D∗, instead of being a normal
ultrafilter on κ is just a normal filter which is large in an appropriate sense so later
it will be applied to the case κ = ℵ1 (after a suitable preliminary forcing). Second,
we deal with a general model and properties. Thirdly, the forcing makes µ to �κ

(and more)

Theorem 2.1. Suppose

(a) V satisfies GCH for every µ′ ≥ µ (for simplicity)
(b) κ is regular uncountable, ℵ0 ≤ θ ≤ κ < χ < µ < ϑ < λ ≤ λ∗ = (λ∗)µ, say

ϑ = µ+
(c) µ is supercompact, Laver indestructibly or just indestructibly λ∗-hypermeasure

(generally on such indestructibility see [GiSh 344], on the amount of hyper-
measurable needed here see Gitik Magidor [GM])

(d) D∗ is a filter on κ including the clubs and if f is a pressing down function on
κ then for some u ∈ [κ]<θ we have {δ < κ : f (δ) ∈ u} ∈ D∗

(e) Q1 is a (< µ)-directed complete forcing, |Q1| ≤ λ∗ and �Q1 “M˜ is a model
with universe λ and vocabulary τ˜ ∈ H(χ)”

(f) R is a µ++-complete forcing notion of cardinality ≤ λ∗
(g) Q2 is the forcing of adding λ∗ µ-Cohen subsets to µ and Q = Q1 × Q2.

Then for some forcing notion P we have Q1 × Q2 × R � P and in VP:

(α) the forcing with P collapse no cardinal except those collapsed by Q1 × R, in
fact P/(Q1 × Q2 × R) is ϑ−-centered; i.e., µ+α-centered if ϑ = µ+α+1
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(β) forcing with P add no subset of χ , forcing with P/(Q1 × Q2 × R) satisfies
�+

κ,µ,ϑ,λ,λ∗ from Definition 2.2 below as witnessed by 〈µi˜
: i < κ〉

(γ ) µi˜
= µi˜

[GP], µ is strong limit of cofinality κ and 〈µi : i < κ〉 is an increas-
ing continuous sequence of strong limit singulars with limit µ (and H(µi+1)

satisfies a parallel of the statement �4 from the proof of 1.7),
(δ) for each i < κ we have µi < λi ≤ λ∗

i = (λ∗
i )

µi and µκ = µ, λκ = λ, λ∗
κ =

λ∗ and (µi, λi, λ
∗
i ) is quite similar to (µ, λ, λ∗) (see proof), more specifi-

cally: in some intermediate universe V1, for some normal ultrafilter D on µ

and F, F∗ : µ → µ we have
∏

i<µ

(F (i), <)/D ∼= (λ, <), λi = F(µi) and

∏

i<µ

(F∗(i), <)/D ∼= (λ∗, <) and F∗(µi) = λ∗
i and we have M̄ = 〈Mi : i < µ〉

and Mi a model with universe λi and vocabulary τ ; and
∏

i<µ

Mi/D ∼= M

(ε) for i < κ we have 2µi = λ∗
i and 2λ∗

i = µi+1

(ζ )
∏

i<κ

Mµi
/D∗ is isomorphic to M if D∗ is a normal ultrafilter, in fact,

{〈f (µi) : i < κ〉/D∗ : f ∈ V1 and f ∈
∏

i<µ

F (i)} is the universe of

∏

i<κ

Mµi
/D∗

(η) for every f ∈
∏

i<κ

Mi/D
∗ we can in V1 find ε(f ) < θ and gf,ε ∈

∏

i<µ

F (i) for

ε < ε(f ) such that {i < κ :
∨

ε<ε(f ) f (i) = gf,ε(µi)} ∈ D∗

(θ)
∏

i<κ

(λi, <)/D∗ is λ-like linear ordering (not necessarily well ordering as

possibly θ > ℵ0) if � Q“cf(λ) > κ and α < λ → |α|κ < λ”
(ι) if D∗ is a normal ultrafilter, Q1 = Q1

µ,λ (of 1.1) and R = Levy(µ, < λ), then
the conclusion on irr in 1.7 holds.

Definition 2.2. 1)We say �γ,µ,ϑ,λ∗(Q) or we say Q satisfies �γ,µ,ϑ,λ∗ (as witnessed
by (µ̄

˜
, D) if:

(i) Q is a forcing notion of cardinality ≤ λ∗
(ii) Q satisfies the ϑ-c.c.

(iii) Q (i.e. forcing with Q) add a sequence 〈µi˜
: i < γ 〉 of cardinals < µ,

strongly inaccessible in V, strong limit in VQ

(iv) �Q “µi˜
(i < γ ) is increasing continuous”

(v) D is a normal ultrafilter on µ

(vi) for every p ∈ Q for some β < γ for every A ∈ D there is q satisfying
p ≤ q ∈ Q such that q � “{µi : β < i < γ } ⊆ A”

(vii) if γ is a limit ordinal then �Q “µ =
⋃

i<γ

µi˜
”

(viii) in VQ we have 2µ = λ∗ and µ is strong limit.
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2) We say �+
γ,µ,ϑ,λ∗(Q) or we say Q satisfies �+

γ,µ,ϑ,λ∗ (as witnessed by (µ̄
˜
, fθ , fλ∗)

if:

(a) Q satisfies �γ,µ,ϑ,λ∗ as witnessed by µ̄
˜

= 〈µi˜
: i < γ 〉

(b) if G ⊆ Q is generic over V then for every β < γ we have H(µβ+1)
VQ

is gotten from H(µβ+1)
V by a forcing Qβ+1 which is like Q with (β, µβ)

here standing for (γ, µ) there.

Proof. Like the proof of 1.7 but we use [GM] instead of [Mg4]; note that ϑ = µ+3

comes from making the forcing µ+3-c.c. So the pure decision of P(D̄, ḡ) is changed
accordingly. Of course, the change in the assumption on D∗ also has some influence.

��2.1

So we get e.g.

Conclusion 2.3. Assume V satisfies ZFC + µ is supercompact +“λ > µ is strong
inaccessible”.
1) For some forcing extension V∗, for some ultrafilterD∗ onω1 there is 〈λi : i < ω1〉
such that:

(i) for i < ω1, λi is weakly inaccessible < �ω1

(ii) λ = �++
ω1

(iii) the linear order
∏

i<ω1

(λi, <)/D∗ is λ-like,

(iv) λi is first weakly inaccessible > �i .

2) In part (1) we have: for some sequence 〈Bi : i < ω1〉 of Boolean algebras, each
of cardinality < �ω1 we have Length(

∏

i<ω1

Bi/D
∗) <

∏

i<ω1

Length(Bi)/D
∗.

3) If λ in V, λ > µ is Mahlo, replace (iv) by (iv)′ and we can demand in addition
that for some sequence 〈Bi : i < ω1〉 of Boolean algebra, |Bi | = irr(Bi) = λi we
have irr(

∏

i<ω1

Bi/D
∗) = �+

ω1
<

∏

i<ω1

λi/D
∗ where

(iv)′ λi is the first weakly inaccessible Mahlo cardinal > �i .

Proof. 1) We start getting by forcing using a forcing notion from H(µ) (see [Sh:f,
Ch.XVI,2.5,p.793] and history there) a normal filter D0 on ω1 such that P(ω1)/D

∗
is layered 1 and ♦ℵ1 + 2ℵ1 = ℵ2. Hence (see [FMSh 252] and history there) there
is an ultrafilter D∗ on ω1 extending D as required in 2.1 clause (d) for κ = θ = ℵ1,
that is: if g ∈ ω1ω1 is pressing down on some member of D∗ then for some
α < ω1, {β < ω1 : g(β) < α} ∈ D∗. Next by forcing with some ℵ2-complete
µ-c.c. forcing notion of cardinality µ, we get Laver indestructibility (by [L]). Now
apply 2.1 with κ = θ = ℵ1, R = Levy(µ+, < λ), Q1 trivial or for part (3) as in
1.1 recall that λ is strongly inaccessible Mahlo. Note that easily in VP, (∀λ1 < λ)

1 it means that this Boolean algebra is
⋃

i<ω2

B∗
i , B∗

i is a Boolean algebra of cardinality ℵ1,

increasing continuous with i, and cf(i) = ℵ1 ⇒ Bi � P(ω1)/D
∗
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(λ
ℵ0
1 < λ). The main new point is clause (iii) which follows by clause (η) of the

conclusion of 2.1 and the previous sentence; see the proof of part (3).
2) The proofs in [MgSh 433] applies also in our changed circumstances.
3) But for irr the problem seems more involved. We use 2.5 below instead of 1.3
and note that Q2, R and the Gitik Magidor forcing P/(Q1 × Q2 × R˜ ) though not
fully preserving (∗)λ,<µ,B˜

of 2.5 below it still preserves enough as we now prove.

So in VP let fα/D∗ ∈
∏

i<κ

Bµi
/D∗ so fα ∈

∏

i<κ

Bµi
for α < λ. By clause (η) of 2.1

for each α we can find in V2 a sequence 〈gα,n : n < ω〉 satisfying gα,n ∈
∏

i<µ

Bi

such that {i < ω1 : (∃n)(fα(i) = gα,n(µi))} ∈ D∗. Without loss of generality we
have Aα,n = An where Aα,n = {i < ω1 : fα(i) = gα,n(µi)}, as 2ℵ1 < �ω1 < λ =
cf(λ). Now in V1, there is an isomorphism j from

∏

i<µ

Bi/D onto B, so j(gα,n/D) ∈

B. In V2[GR] we apply (∗)λ,ℵ0,B of 2.5 and find β0 < β1 < β2 < β3 < λ such
that n < ω ⇒ B |= j(gβ0,n/D) = σ(j(gβ0,n/D), j(gβ0,n/D), j(gβ3,n/D)) where
σ is the Boolean term σ ∗(x0, x1, x2) = (x0 ∩ x1) ∪ (x0 ∩ x2) ∪ (x1 ∩ x2). Hence

Yn =df {ζ < µ : Bζ |= gβ0,n(ζ ) = σ ∗(gβ1,n(ζ ), gβ2,n(ζ ), gβ3,n(ζ ))} ∈ D

hence Y =
⋂

n<ω

Yn ∈ D hence for some i∗ < κ, (∀i)[i∗ ≤ i < κ → µi ∈ Y ]

but µi ∈ Y ⇒ (∀n < ω)[Bµi
|= gβ0,n(µi) = σ(gβ1,n(ζ ), gβi ,n(ζ ), gβ3,n(ζ ))]. As

Aβ�,n = An we are done. ��2.3

Remark 2.4. 1) In 2.3(1), (2) without loss of generality �ω1 is the limit of the first
ω1 (weakly) inaccessible.
2) In 2.3(3) without loss of generality �ω1 is the limit of the first ω1 Mahlo (weakly)
inaccessible. Can we omit Mahlo?
3) Of course, 2.3 is just one extreme variant.
4) If we would like to replace in 2.3, ℵ1 by κ = κ<κ > ℵ1, we can use [FMSh 252],
hence higher large cardinals.

Claim 2.5. 1) For Q = Q1
µ,λ, B˜ as in 1.3 we have, for τ < µ it is forced (�Q1

µ,λ
)

that:

(∗)λ,τ,B˜
if yα,ε ∈ B˜ for α < λ, ε < τ then for some β0 < β1 < β2 < β3 we have
ε < τ ⇒ yβ0,ε = σ ∗(yβ1,ε, yβ2,ε, yβ3,ε) where σ ∗(y1, y2, y3) = (y1 ∩
y2) ∪ (y1 ∩ y3) ∪ (y2 ∩ y3).

2) If B is a Boolean algebra, τ < λ and Q∗ is τ+-complete (or just do not add new
τ -sequence of ordinals < |B|) and satisfies the (λ, 4)-Knaster property (i.e. among
any λ conditions there are λ, any three of them has a common upper bound), then
forcing by Q∗ preserve (∗)λ,τ,B .

Proof. 1) As in the proof of 1.3, again the point is checking (∗)λ,τ,B˜
so let p �

“〈yβ,ε

˜
: β < λ, ε < τ 〉 be a counterexample”. For each α < λ choose pα such that

p ≤ pα and pα � “yα,ε

˜
= yα,ε” for ε < τ and without loss of generality yα,ε ∈
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Bw[pα] and choose αβ,ζ ∈ w[pβ ] for ζ < ζβ such that yβ,ε ∈ 〈{xγ : γ ∈ {αβ,ε : ε <

ζβ}〉B[pβ�
] for some ζβ < τ+ with αβ,ε increasing with ε, and let ξβ ≤ ζβ be such

that (∀ε)[αβ,ε < β ≡ ε < ξβ ]. Let yβ,ε = σβ,ε(. . . , xαβ,ε , . . . )ε<ζβ (so the term
σβ,ε uses only finitely many of its variables). We choose S, w, r , etc., as in the proof
there with ξ ≤ ζ, 〈αε : ε < ξ〉, 〈σε : ε < τ 〉 replacing m ≤ n, 〈α� : � < m〉, σ .

We choose β0 < β1 < β2 < β3 in S and it is enough to find q ∈ Q1
µ,λ such that

� < 4 ⇒ pβ�
≤ q and q � “yβ0,ε = σ(yβ1,ε, yβ2,ε, yβ3,ε) for ε < τ”. We define

u =
⋃

�<4

w[pβ�
] and F as there, i.e.,

{
f : f ∈ u2, f �w[pβ�

] ∈ F[pβ�
] for � < 4 and for some

� ∈ {1, 2, 3} we have

m ∈ {0, 1, 2, 3}\{�} ζ < µ ⇒ f (xαβ0 ,ζ ) = f (xαβm,ζ )
}
.

Now check.
2) Straightforward. ��2.5

Another case is, e.g.

Claim 2.6. We can replace in all the results above irr(B) by h-cof(B).

Remark. Recall h-cof+(B) = ∪{|Y |+ : Y ⊆ B and Y = {aα : α < |Y |} satisfies
α < β ⇒ ¬(aβ ≤ aα), see [M2, Th.18.1,p.226].

Proof. Similar just easier.
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