STRONGLY DEPENDENT THEORIES

BY

Saharon Shelah*
Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
e-mail: shlhetal@math.huji.ac.il and
Department of Mathematics, Hill Center-Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA

ABSTRACT

We further investigate the class of models of a strongly dependent (first order complete) theory T, continuing [Sh:715], [Sh:783] and related works. Those are properties (= classes) somewhat parallel to superstability among stable theory, though are different from it even for stable theories. We show equivalence of some of their definitions, investigate relevant ranks and give some examples, e.g., the first order theory of the p-adics is strongly dependent. The most notable result is: if $|A|+|T| \leq \mu, \mathbf{I} \subseteq \mathfrak{C}$ and $|\mathbf{I}| \geq \beth_{|T|^{+}}(\mu)$, then some $\mathbf{J} \subseteq \mathbf{I}$ of cardinality μ^{+}is an indiscernible sequence over A.

Annotated contents

$$
\begin{array}{lr}
\S 0 \text { Introduction, } & \text { p. } 3 \\
\S 1 \text { Strongly dependent: Basic variant, } & \text { p. } 6 \\
\text { We define } \kappa_{\text {ict }}(T) \text { and strongly dependent }\left(=\text { strongly }^{1} \text { dependent } \equiv\right. \\
\left.\kappa_{\text {ict }}(T)=\aleph_{0}\right),(1.2) \text {, note preservation passing from } T \text { to } T^{\text {eq }}, \text { preser- } \\
\text { vation under interpretation }(1.4) \text {, equivalence of some versions of " } \bar{\varphi}
\end{array}
$$

[^0]witness $\kappa<\kappa_{\text {ict }}(T)$ " (1.5), and we deduce that without loss of generality $m=1$ in (1.7). An observation (1.10) will help to prove the equivalence of some variants. To some extent, indiscernible sequences can replace an element and this is noted in 1.8, 1.9 dealing with the variant $\kappa_{\text {icu }}(T)$. We end with some examples, in particular (as promised in [Sh:783]) the first order theory of the p-adic is strongly dependent and this holds for similar fields and for some ordered abelian groups expanded by subgroups. Also, there is a (natural) strongly stable not strongly ${ }^{2}$ stable T.
$\S 2$ Cutting indiscernible sequence and strongly ${ }^{\ell}$ dependent,
We give equivalent conditions to strongly dependent by cutting indiscernibles (2.1) and recall the parallel result for T dependent. Then we define $\kappa_{\text {ict }, 2}(T)$ (in 2.3) and show that it always almost is equal to $\kappa_{\text {ict }}(T)$ in 2.8. The exceptional case is " T is strongly dependent but not strongly ${ }^{2}$ dependent" for which we give equivalent conditions (2.3 and 2.10).
$\S 3$ Ranks,
p. 39

We define $M_{0} \leq_{A} M_{1}, M_{0} \leq_{A, p} M_{2}$ (in 3.2) and observe some basic properties in 3.3. Then in 3.5 for most $\ell=1, \ldots, 12$ we define $<_{\ell}$ $,<_{\mathrm{at}}^{\ell},<_{\mathrm{pr}}^{\ell}, \leq^{\ell}$, explicit $\bar{\Delta}$-splitting, and last but not least the ranks dp$\mathrm{rk}_{\bar{\Delta}, \ell}(\mathfrak{x})$. Easy properties are in 3.7 , the equivalence of "rank is infinite" is $\geq|T|^{+}, T$ is strongly dependent in 3.7 and more basic properties in 3.9. We then add more cases $(\ell>12)$ to the main definition in order to deal with (a version of) strong dependency and then have parallel claims.
$\S 4$ Existence of indiscernibles,
p. 48

We prove that if $\mu \geq|A|+|T|$ and $a_{\alpha} \in{ }^{m} \mathfrak{C}$ for $\alpha<\beth_{\mu^{+}}$then for some $u \subseteq \beth_{\mu^{+}}$of cardinality $\mu^{+},\left\langle a_{\alpha}: \alpha \in u\right\rangle$ is indiscernible over A.

§5 Concluding Remarks,
 p. 52

We consider shortly several further relatives of strongly dependent.
(A) Ranks for dependent theories,
p. 52

We redefine explicitly $\bar{\Delta}$-splitting and dp-rk $\bar{\Delta}_{\bar{\Delta}, \ell}$ for more cases, i.e. more ℓ 's and for the case of finite Δ_{ℓ} 's in a way fitting dependent T (in 5.9), point out the basic equivalence (in 5.9), consider a variant (5.11) and questions (5.10, 5.12).
(B) Minimal theories (or types),

We consider minimality, i.e., some candidates are parallel to \aleph_{0}-stable theories which are minimal. It is hoped that some such definition will throw light on the place of o-minimal theories. We also consider content minimality of types.
(C) Local ranks for super dependent and indiscernibiles,

We deal with local ranks, giving a wide family parallel to superstable and then define some ranks parallel to those in $\S 3$.
(D) Strongly ${ }^{2}$ stable fields,
p. 62

We comment on strongly ${ }^{2}$ dependent/stable fields. In particular for every infinite non-algebraically closed field $K, \operatorname{Th}(\mathfrak{K})$ is not strongly ${ }^{2}$ stable.
(E) Strongly ${ }^{3}$ dependent,
p. 65

We introduce strong ${ }^{(3, *)}$ dependent/stable theories and remark on them. This is related to dimension
(F) Representability and strongly ${ }_{k}$ dependent, p. 67

We define and comment on representability and $\left\langle\bar{b}_{t}: t \in I\right\rangle$ being indiscernible for $I \in \mathfrak{k}$.
(G) Strongly y_{3} stable and primely minimal types, p. 71

We prove the density of primely regular types (for strongly 3_{3} stable T) and we comment how definable groups help.
(H) T is n-dependent,
p. 79

We consider strengthenings n-independent of " T is independent".
References
p. 81

0. Introduction

Our motivation is trying to solve the equations

$$
\text { "x/dependent }=\text { superstable/ stable" }
$$

(e.g., among complete first order theories). In [Sh:783, §3] mainly two approximate solutions are suggested: strongly ${ }^{\ell}$ dependent for $\ell=1,2$; here we try to investigate them not relying on [Sh:783, §3]. We define $\kappa_{\text {ict }}(T)$ generalizing $\kappa(T)$; the definition has the form " $\kappa<\kappa_{\text {ict }}(T)$ iff there is a sequence $\left\langle\varphi_{i}\left(\bar{x}, \bar{y}_{i}\right): i<\kappa\right\rangle$ of formulas such that ...".

Now T is strongly dependent ($=$ strongly ${ }^{1}$ dependent) iff $\kappa_{\text {ict }}(T)=\aleph_{0}$; prototypical examples are: the theory of dense linear orders, the theory of real closed
fields, the model completion of the theory of trees (or trees with levels), and the theory of the p-adic fields (and related fields with valuations). (The last one is strongly ${ }^{1}$ not strongly ${ }^{2}$ dependent, see 1.17.)

For T superstable, if $\left\langle\bar{a}_{t}: t \in I\right\rangle$ is an indiscernible set over A and C is finite, then for some finite $I^{*} \subseteq I,\left\langle\bar{a}_{t}: t \in I \backslash I^{*}\right\rangle$ is indiscernible over $A \cup C$, moreover over $A \cup C \cup\left\{\bar{a}_{t}: t \in I^{*}\right\}$. In $\S 2$ we investigate the parallel here, when I is a linear order, complete for simplicity (see more and history in [Sh:950, $\S 1 \mathrm{C}, 1.37])$. But we get two versions: strongly ${ }^{\ell}$ dependent $\ell=1,2$ according to whether we like to generalize the first version of the statement above or the "moreover".

Next, in $\S 3$, we define and investigate rank, not of types but of related objects $\mathfrak{x}=(p, M, A)$ where, e.g., $p \in \mathbf{S}^{m}(M \cup A)$; but there are several variants. For some of them we prove " T is strongly dependent iff the rank is always $<\infty$ iff the rank is bounded by some $\gamma<|T|^{+}$". We first deal with the ranks related to "strongly ${ }^{1}$ dependent" and then for the ones related to "strongly ${ }^{2}$ dependent".

Further serious evidence for those ranks being of interest is in $\S 4$, where we use them to get indiscernibles. Recall that if T is stable, $|A| \leq \lambda=\lambda^{|T|}, a_{\alpha} \in \mathfrak{C}$ for $\alpha<\mu:=\lambda^{+}$, then for some stationary $S \subseteq \mu,\left\langle a_{\alpha}: \alpha \in S\right\rangle$ is indiscernible over $A,|S|=\mu$; we can write this as $\lambda \rightarrow(\lambda)_{T, \mu}^{<\omega}$; We can get similar theorems from set theoretic assumptions: e.g., μ a measurable cardinal, very interesting and important but not for the present model theoretic investigation.

We may wonder: Can we classify first order theories by $\lambda \rightarrow_{T}(\mu)_{\kappa}$, as was asked by Grossberg and the author (see on this question [Sh:702, 2.9-2.20]). A positive answer appears in [Sh:197], but under a very strong assumption on T : not only T is dependent but for every subset P_{1}, \ldots, P_{n} of $|M|$ the theory $\operatorname{Th}\left(M, P_{1}, \ldots, P_{n}\right)$ is dependent, i.e., being dependent is preserved by monadic expansions.

Here we prove that if T is strongly stable and $\mu \geq|T|$, then $\beth_{\mu^{+}} \rightarrow_{T}\left(\mu^{+}\right)_{\mu^{+}}^{<\omega}$. We certainly hope for a better result (using $\beth_{n}(|T|)$ for some fixed n or even $\left(2^{\mu}\right)^{+}$instead of $\beth_{\mu^{+}}$) and weaker assumptions, say " T is dependent" (or less) instead of " T is strongly dependent". But still it seems worthwhile to prove 4.1, particularly having waited so long for something.

Let strongly ${ }^{\ell}$ stable mean strongly ${ }^{\ell}$ dependent and stable. As it happens (for T), being superstable implies strong ${ }^{2}$ stable implies strong ${ }^{1}$ stable, but the inverses fail. So strongly ${ }^{\ell}$ dependent does not really solve the equation we have
started with. However, this is not necessarily bad; the notion "strongly ${ }^{\ell}$ stable" seems interesting in its own right. This applies to the further variants.

We give a "simplest" example of a theory T which is strongly ${ }^{1}$ stable and not strongly ${ }^{2}$ stable at the end of $\S 1$ as well as prove that the (theories of the) p-adic field is strongly stable (for any prime p) as well as similar enough fields.

In $\S 5$ we comment on some further properties and ranks. Such further properties hopefully will be crucial in [Sh:F705], if it materializes; it tries to deal mainly with $K^{\text {or}}$-representable theories and contains other beginnings as well. We comment on ranks parallel to those in $\S 3$ suitable for all dependent theories.

We further try to look at theories of fields. Also, we deal with the search for families of dependent theories T which are unstable but "minimal", much more well behaved. For many years it seems quite bothering that we do not know how to define o-minimality as naturally arising from a parallel to stability theory rather than as an analog to minimal theories or to generalize examples related to the theory of the field of the reals and its expansions. Of course, the answer may be a somewhat larger class. This motivates Firstenberg-Shelah [FiSh:E50] (on $\operatorname{Th}(\mathbb{R}$), specifically on "perpendicularly is simple"), and some definitions in $\S 5$. Another approach to this question is of Onshuus in his very illuminating works on th-forking [On0x1] and [On0x2].

A result from [Sh:783, §3, $\S 4]$ used in [FiSh:E50] says that
0.1. Claim: Assume T is strongly ${ }^{2}$ dependent.
(a) If G is a definable group in \mathfrak{C}_{T} and h is a definable endomorphism of G with finite kernels then h is almost onto G, i.e., the index $(G: \operatorname{Rang}(h))$ is finite.
(b) It is not the case that: there are a definable (with parameters) subset $\varphi\left(\mathfrak{C}, \bar{a}_{1}\right)$ of \mathfrak{C}, an equivalence relation $E_{\bar{a}_{2}}=E\left(x, y, \bar{a}_{2}\right)$ on $\varphi\left(\mathfrak{C}, \bar{a}_{1}\right)$ with infinitely many equivalence classes and $\vartheta\left(x, y, z, \bar{a}_{3}\right)$ such that $E\left(c, c, \bar{a}_{2}\right) \Rightarrow$ $\vartheta\left(x, y, c, \bar{a}_{3}\right)$ is a one-to-one function from (a co-finite subset of) $\varphi\left(\mathfrak{C}, \bar{a}_{1}\right)$ into $c / E_{\bar{a}_{2}}$.

We continue investigating dependent theories in [Sh:900], [Sh:877], [Sh:906], more recently [Sh:950] and Kaplan-Shelah [KpSh:946], [?] and concerning definable groups in [Sh:876], [Sh:886] and [KpSh:993].

We thank Moran Cohen, Itay Kaplan, Aviv Tatarski and a referee for pointing out deficiencies.
0.2. Notation: (1) Let $\varphi^{\mathbf{t}}$ be φ if $\mathbf{t}=1$ or $\mathbf{t}=$ true and $\neg \varphi$ if $\mathbf{t}=0$ or $\mathbf{t}=$ false.
(2) $\mathbf{S}^{\alpha}(A, M)$ is the set of complete types over A in M (i.e., finitely satisfiable in M) in the free variables $\left\langle x_{i}: i<\alpha\right\rangle$.

1. Strongly dependent: Basic variant

1.1. Convention: (1) T is complete first order fixed.
(2) $\mathfrak{C}=\mathfrak{C}_{T}$ a monster model for T.

Recall, see [Sh:783]:
1.2. Definition: (1) $\kappa_{\text {ict }}(T)=\kappa_{\text {ict }, 1}(T)$ is the minimal κ such that for no $\bar{\varphi}=\left\langle\varphi_{i}\left(\bar{x}, \bar{y}_{i}\right): i<\kappa\right\rangle$ is $\Gamma_{\lambda}=\Gamma_{\lambda}^{\bar{\varphi}}$ consistent with T for some (\equiv every) λ, where $\ell g(\bar{x})=m, \ell g\left(\bar{y}_{m}^{i}\right)=\ell g\left(\bar{y}_{i}\right)$ and

$$
\Gamma_{\lambda}=\left\{\varphi_{i}\left(\bar{x}_{\eta}, \bar{y}_{\alpha}^{i}\right)^{\mathrm{if}(\eta(i)=\alpha)}: \eta \in{ }^{\kappa} \lambda, \alpha<\lambda \text { and } i<\kappa\right\} .
$$

(1A) We say that $\bar{\varphi}=\left\langle\varphi_{i}\left(\bar{x}, \bar{y}_{i}\right): i<\kappa\right\rangle$ witness $\kappa<\kappa_{\text {ict }}(T)$ (with $m=$ $\ell g(\bar{x}))$ when it is as in part (1).
(2) T is strongly dependent (or strongly ${ }^{1}$ dependent) when $\kappa_{\text {ict }}(T)=\aleph_{0}$.

Easy (or see [Sh:783]):
1.3. Observation: If T is strongly dependent then T is dependent.
1.4. Observation:
(1) $\kappa_{\text {ict }}\left(T^{\mathrm{eq}}\right)=\kappa_{\text {ict }}(T)$.
(2) If $T_{\ell}=\operatorname{Th}\left(M_{\ell}\right)$ for $\ell=1,2$, then $\kappa_{\text {ict }}\left(T_{1}\right) \leq \kappa_{\text {ict }}\left(T_{2}\right)$ when: (*) M_{1} is (first order) interpretable in M_{2}.
(3) If $T^{\prime}=\operatorname{Th}(\mathfrak{C}, c)_{c \in A}$, then $\kappa_{\text {ict }}\left(T^{\prime}\right)=\kappa_{\text {ict }}(T)$.
(4) If M is the disjoint sum of M_{1}, M_{2} (or the product) and $\operatorname{Th}\left(M_{1}\right)$, $\operatorname{Th}\left(M_{2}\right)$ are dependent, then so is $\operatorname{Th}(M)$; so M_{1}, M_{2}, M has the same vocabulary.
(5) In Definition 1.2, for some $\lambda, \Gamma_{\lambda}^{\bar{\varphi}}$ is consistent with T iff for every $\lambda, \Gamma_{\lambda}^{\bar{\varphi}}$ is consistent with T.

Remark: Concerning Part (4) for "strongly dependent", see Cohen-Shelah [CoSh:E65, Th.24].

Proof. Easy. $\boldsymbol{\square}_{1.4}$
1.5. Observation: Let $\ell g(\bar{x})=m, \bar{\varphi}=\left\langle\varphi_{i}\left(\bar{x}, \bar{y}_{i}\right): i<\kappa\right\rangle$ and let $\bar{\varphi}^{\prime}=\left\langle\bar{\varphi}_{i}^{\prime}\left(\bar{x}, \bar{y}_{i}^{\prime}\right): i<\kappa\right\rangle$ where $\varphi_{i}^{\prime}\left(\bar{x}, \bar{y}_{i}^{\prime}\right)=\left[\varphi_{i}\left(\bar{x}, \bar{y}_{i}^{1}\right) \wedge \neg \varphi_{i}\left(\bar{x}, \bar{y}_{i}^{2}\right)\right]$, and let $\bar{\varphi}^{\prime \prime}=\left\langle\varphi_{i}^{\prime \prime}\left(\bar{x}, \bar{y}_{i}^{\prime \prime}\right): i<\kappa\right\rangle$ where $\bar{\varphi}_{i}^{\prime \prime}\left(\bar{x}, \bar{y}_{i}^{\prime \prime}\right)=\left[\bar{\varphi}_{i}\left(\bar{x}, \bar{y}_{i}^{1}\right) \equiv \neg \varphi_{i}\left(\bar{x}, \bar{y}_{i}^{2}\right)\right]$. Then $\circledast \frac{1}{\bar{\varphi}} \Rightarrow \circledast_{\bar{\varphi}}^{2} \Leftrightarrow \circledast_{\bar{\varphi}}^{3} \Leftrightarrow(\exists \eta \in$ $\left.{ }^{\kappa} 2\right) \circledast_{\bar{\varphi}^{[\eta]}}^{2} \Leftrightarrow\left(\exists \eta \in{ }^{\kappa} 2\right) \circledast_{\bar{\varphi}[\eta]}^{3}$ and $\circledast_{\bar{\varphi}}^{\ell} \Leftrightarrow \circledast_{\bar{\varphi}^{\prime}}^{\ell} \Leftrightarrow \circledast_{\bar{\varphi}^{\prime \prime}}^{\ell}$ for $\ell=2,3$ and $\circledast_{\bar{\varphi}}^{3} \Leftrightarrow \circledast_{\bar{\varphi}^{\prime}}^{1} \Leftrightarrow$ $\circledast_{\varphi^{\prime \prime}}^{1}$ where $\bar{\varphi}^{[\eta]}=\left\langle\varphi_{i}\left(\bar{x}, \bar{y}_{i}\right)^{\eta(i)}: i<\kappa\right\rangle$ and
$\circledast \frac{1}{\bar{\varphi}} \bar{\varphi}$ witness $\kappa<\kappa_{\text {ict }}(T)$,
$\circledast \overbrace{\bar{\varphi}}^{2}$ we can find $\left\langle\bar{a}_{k}^{i}: k<\omega, i<\kappa\right\rangle$ in \mathfrak{C} such that $\ell g\left(\bar{a}_{k}^{i}\right)=\ell g\left(\bar{y}_{i}\right),\left\langle\bar{a}_{k}^{i}: k<\omega\right\rangle$ is indiscernible over $\cup\left\{\bar{a}_{k}^{j}: j<\kappa, j \neq i, k<\omega\right\}$ for each $i<\kappa$ and $\left\{\varphi_{i}\left(\bar{x}, \bar{a}_{0}^{i}\right) \wedge \neg \varphi_{i}\left(\bar{x}, \bar{a}_{1}^{i}\right): i<\kappa\right\}$ is consistent, i.e., finitely satisfiable in \mathfrak{C},
$\circledast_{\bar{\varphi}}^{3}$ like $\circledast{ }_{\bar{\varphi}}^{2}$ but in the end $\left\{\varphi_{i}\left(\bar{x}, \bar{a}_{0}^{i}\right) \equiv \neg \varphi_{i}\left(\bar{x}, \bar{a}_{1}^{i}\right): i<\kappa\right\}$ is consistent.
1.6. Remark: (1) We could have added the indiscernibility condition to $\circledast \frac{1}{\varphi}$, i.e., to $1.2(1)$, as this variant is equivalent to $\circledast \frac{1}{\varphi}$.
(2) Similarly we could have omitted the indiscernibility condition in $\circledast_{\bar{\varphi}}^{2}$ but demand in the end: "if $k_{i}<\ell_{i}<\omega$ for $i<\kappa$ then $\left\{\varphi_{i}\left(\bar{x}, \bar{a}_{k_{i}}^{i}\right) \wedge \neg \varphi_{i}\left(\bar{x}, a_{\ell_{i}}^{i}\right): i<\kappa\right\}$ is consistent" and get an equivalent condition.
(3) Similarly we could have omitted the indiscernibility condition in $\circledast_{\bar{\varphi}}^{3}$ but demand in the end "if $k_{i}<\ell_{i}<\omega$ for $i<\kappa$ then $\left\{\varphi_{i}\left(\bar{x}, \bar{a}_{k_{i}}^{i}\right) \equiv\right.$ $\left.\neg \varphi_{i}\left(\bar{x}, \bar{a}_{\ell_{i}}^{1}\right): i<\kappa\right\}$ is consistent" and get an equivalent condition.
(4) We could add $\circledast_{\bar{\varphi}}^{3} \Leftrightarrow \circledast_{\bar{\varphi}^{\prime}}$.
(5) In $\circledast \frac{2}{\varphi}, \circledast_{\bar{\varphi}}^{3}$ (and the variants above) we can replace ω by any λ (see 1.7).
(6) What about $\circledast_{\bar{\varphi}}^{2} \Rightarrow \circledast_{\bar{\varphi}}^{1}$? We shall now describe a model whose theory is a counterexample to this implication. We define a model M with $\tau_{M}=\left\{P, P_{i}, R_{i}: i<\kappa\right\}, P$ a unary predicate, P_{i} a unary predicate, R_{i} a binary predicate, as follows:
(a) $|M|$ the universe of M is $(\kappa \times \mathbb{Q}) \cup^{\kappa} \mathbb{Q}$,
(b) $P^{M}={ }^{\kappa} \mathbb{Q}$,
(c) $P_{i}^{M}=\{i\} \times \mathbb{Q}$,
(d) $R_{i}^{M}=\left\{(\eta,(i, q)): \eta \in{ }^{\kappa} \mathbb{Q}, q \in \mathbb{Q}\right.$ and $\left.\mathbb{Q} \models \eta(i) \geq q\right\}$,
(e) $\varphi_{i}(x, y)=P(x) \wedge P_{i}(y) \wedge R_{i}(x, y)$ for $i<\kappa$.

Now
(α) Why (for $\operatorname{Th}(\bar{M})$) do we have $\circledast_{\bar{\varphi}}^{2}$?
For $i<\kappa, k<\omega$ let $a_{k}^{i}=(i, k) \in P_{i}^{M}$ recalling $\omega \subseteq \mathbb{Q}$.

Easily $\left\langle a_{k}^{i}: k<\omega, i<\kappa\right\rangle$ are as required in $\circledast_{\bar{\varphi}}^{2}$; e.g., the unique $\eta \in{ }^{\kappa} \mathbb{Q}$ realizing the type. Also, for each $i<\kappa$, the sequence $\left\langle a_{k}^{i}: k<\omega\right\rangle$ is indiscernible over $\left\{a_{m}^{j}: j<\kappa, j \neq i\right.$ and $\left.m<\omega\right\}$.

Why? Because for every automorphism π of the rational order $(\mathbb{Q},<)$, for the given $i<\kappa$ we can define a function $\hat{\pi}_{i}$ with domain M by
$(*)_{1}$ for $j<\kappa$ and $q \in \mathbb{Q}$ we let $\hat{\pi}_{i}((j, q))$ be (j, q) if $j \neq i$ and $(j, \pi(q))$ if $j=i$, $(*)_{2}$ for $\eta, \nu \in \chi_{\mathbb{Q}}$ we have $\hat{\pi}_{i}(\eta)=\nu$ iff $(\forall j<\kappa)(j \neq i \Rightarrow \eta(j)=\nu(j))$ and $\nu(i)=\pi_{i}(\eta(i))$.
So $\hat{\pi}_{i}$ is an automorphism of M over $\bigcup_{j \neq i} P_{j}^{M}$ which includes the function $\left\{\left(a_{q}^{i}, a_{\pi(q)}^{i}\right): q \in \mathbb{Q}\right\}$
(β) Why (for $\operatorname{Th}(M))$ do we not have $\circledast{ }_{\bar{\varphi}}^{1}$?
Because $M \models\left(\forall y_{1}, y_{2}\right)\left[P_{i}\left(y_{1}\right) \wedge P_{i}\left(y_{2}\right) \wedge y_{1} \neq y_{2} \rightarrow \bigvee_{\ell=1}^{2}(\forall x)\left(\varphi_{i}\left(x, y_{\ell}\right) \wedge P(x) \rightarrow\right.\right.$ $\left.\left.\varphi_{i}\left(x, y_{3-\ell}\right)\right)\right]$.
$(\gamma) T$ is dependent. Why? Left to the reader (use restriction to any finite $\left.\tau \subseteq \tau_{M}\right)$.

Proof. The following series of implications clearly suffices.
$\circledast \frac{1}{\bar{\varphi}}$ implies $\circledast_{\bar{\varphi}}^{2}$
Why? As $\circledast \frac{1}{\bar{\varphi}}$, clearly for any $\lambda \geq \aleph_{0}$ we can find $\bar{a}_{\alpha}^{i} \in{ }^{\ell g\left(\bar{y}_{i}\right)} \mathfrak{C}$ for $i<\kappa, \alpha<\lambda$ and $\left\langle\bar{c}_{\eta}: \eta \in{ }^{\omega} \lambda\right\rangle, \bar{c}_{\eta} \in{ }^{\ell g(\bar{x})} \mathfrak{C}$ such that $\models \varphi_{i}\left[\bar{c}_{\eta}, \bar{a}_{\alpha}^{i}\right]$ iff $\eta(i)=\alpha$. By some applications of the Ramsey theorem (or polarized partition relations), without loss of generality $\left\langle\bar{a}_{\alpha}^{i}: \alpha<\lambda\right\rangle$ is indiscernible over $\bigcup\left\{\bar{a}_{\beta}^{j}: j<\kappa, j \neq i, \beta<\lambda\right\}$ for each $i<\omega$. Now those \bar{a}_{α}^{i} 's witness $\circledast{ }_{\bar{\varphi}}^{2}$ as \bar{c}_{η} witness the consistency of the required type when $\eta \in{ }^{\kappa}\{0\}$.
$\circledast_{\bar{\varphi}}^{2} \Rightarrow \circledast_{\bar{\varphi}}^{3}$ (hence in particular $\circledast_{\bar{\varphi}^{\prime}}^{2} \Rightarrow \circledast_{\bar{\varphi}^{\prime}}^{3}$ and $\circledast_{\bar{\varphi}^{\prime \prime}}^{2} \Rightarrow \circledast_{\bar{\varphi}^{\prime \prime}}^{3}$).
Trivial; read the definitions.
$\circledast_{\bar{\varphi}}^{3} \Rightarrow \circledast_{\bar{\varphi}}^{2}$ (hence in particular $\circledast_{\bar{\varphi}^{\prime}}^{3} \Rightarrow \circledast_{\bar{\varphi}^{\prime}}^{3}$ and $\circledast_{\bar{\varphi}^{\prime \prime}}^{2} \Rightarrow \circledast_{\bar{\varphi}^{\prime \prime}}^{3}$).
By compactness, for the dense linear order \mathbb{R} we can find \bar{a}_{t}^{i} for $i<\kappa, t \in \mathbb{R}$ such that for each $i<\kappa$ the sequence $\left\langle\bar{a}_{t}^{i}: t \in \mathbb{R}\right\rangle$ is indiscernible over $\bigcup\left\{\bar{a}_{s}^{j}: j \neq\right.$ $i, j<\kappa, s \in \mathbb{R}\}$ and for any $s_{0}<_{\mathbb{R}} s_{1}$ the set $\left\{\varphi_{i}\left(\bar{x}, \bar{a}_{s_{0}}^{i}\right) \equiv \neg \varphi_{i}\left(\bar{x}, \bar{a}_{s_{1}}^{i}\right): i<\kappa\right\}$ is consistent, say realized by $\bar{c}=\bar{c}_{s_{0}, s_{1}}$. Now let $u=\left\{i<\kappa: \mathfrak{C} \models \varphi_{i}\left[\bar{c}, \bar{a}_{s_{0}}^{i}\right]\right\}$, and for $n<\omega$ define \bar{b}_{n}^{i} as $\bar{a}_{s_{0}+n\left(s_{1}-s_{0}\right)}^{i}$ if $i \in u$ and as $\bar{a}_{s_{1}-n\left(s_{1}-s_{0}\right)}^{i}$ if $i \in \kappa \backslash u$. Now $\left\langle\bar{b}_{n}^{i}: n<\omega, i<\kappa\right\rangle$ exemplifies $\circledast{ }_{\bar{\varphi}}^{2}$.
$\circledast \circledast_{\bar{\varphi}}^{2}$ implies $\circledast \frac{1}{\bar{\varphi}^{\prime}}$ (hence by the above $\circledast \overbrace{\bar{\varphi}}^{2} \Rightarrow \circledast_{\bar{\varphi}^{\prime}}^{2}$ and $\circledast_{\bar{\varphi}}^{3} \Rightarrow \circledast_{\bar{\varphi}^{\prime}}^{3}$).

Let $\left\langle\bar{a}_{\alpha}^{i}: \alpha<\omega, i<\kappa\right\rangle$ witness $\circledast \frac{2}{\varphi}$ and \bar{c} realizes $\left\{\varphi_{i}\left(\bar{x}, a_{0}^{i}\right) \wedge \neg \varphi_{i}\left(\bar{x}, \bar{a}_{1}^{i}\right): i<\kappa\right\}$. Without loss of generality a_{t}^{i} is well defined for every $t \in \mathbb{Z}$ not just $t \in \omega$ (and $i<\kappa$), and $\left\langle a_{t}^{i}: t \in \mathbb{Z}\right\rangle$ is an indiscernible sequence over $\left\{a_{s}^{j}: j \in \kappa \backslash\{i\}\right.$ and $\left.s \in \mathbb{Z}\right\}$. Also, without loss of generality for each $i<\kappa,\left\langle\bar{a}_{\alpha}^{i}: \alpha \in[2, \omega)\right\rangle$ as well as $\left\langle a_{-1-n}^{i}: n \in \omega\right\rangle$ are indiscernible sequences over

$$
\bigcup\left\{\bar{a}_{t}^{j}: j<\kappa, j \neq i \text { and } t \in \mathbb{Z}\right\} \cup\{\bar{c}\} .
$$

For $t \in \mathbb{Z}, i<\kappa$ let $\bar{b}_{t}^{i}=\bar{a}_{2 t}^{i}{ }^{\wedge} \bar{a}_{2 t+1}^{i}$, so $\mathfrak{C} \models \varphi_{i}^{\prime}\left[\bar{c}, \bar{b}_{0}^{i}\right]$ (as this just means $\left.\mathfrak{C} \models \varphi_{i}\left(\bar{c}, \bar{a}_{0}^{i}\right) \wedge \neg \varphi_{i}\left[\bar{c}, \bar{a}_{1}^{i}\right]\right)$ and $\mathfrak{C} \models \neg \varphi_{i}^{\prime}\left[\bar{c}, \bar{b}_{s}^{i}\right]$ when $s \in \mathbb{Z} \backslash\{0\}$ (as the sequences $\bar{c}^{\wedge} \bar{a}_{2 s}^{i}$ and $\bar{c}^{\wedge} \bar{a}_{2 s+1}^{i}$ realize the same type). So $\left\langle\bar{b}{ }_{\alpha}^{i}: \alpha<\omega, i<\kappa\right\rangle$ witness $\circledast \frac{1}{\bar{\varphi}^{\prime}}$.
$\circledast_{\bar{\varphi}^{\prime}}^{3}$ implies $\circledast_{\bar{\varphi}^{\prime \prime}}^{3}$.
Read the definitions.
$\circledast_{\bar{\varphi}^{\prime \prime}}^{3}$ implies that for some $\eta \in{ }^{\kappa} 2$ we have $\circledast_{\bar{\varphi}[\eta]}^{1}$.
As in the proof of $\circledast_{\varphi}^{2} \Rightarrow \circledast \frac{1}{\bar{\varphi}^{\prime}}$; but we elaborate: let $\left\langle\left\langle\bar{a}_{\alpha}^{i}{ }^{\wedge} \bar{b}_{\alpha}^{i}: \alpha<\omega\right\rangle: i<\kappa\right\rangle$ witness $\circledast_{\bar{\varphi}^{\prime \prime}}^{3}$ noting $\bar{\varphi}^{\prime \prime}=\left\langle\varphi_{i}^{\prime \prime}\left(\bar{x}, \bar{y}_{1}^{i}, \bar{y}_{2}^{i}\right): i<\kappa\right\rangle$ where $\ell g\left(\bar{y}_{1}^{i}\right)=\ell g\left(\bar{y}_{i}\right)=$ $\ell g\left(\bar{y}_{2}^{i}\right)$. Let \bar{c} realize $\left\{\varphi_{i}^{\prime \prime}\left(\bar{x}, \bar{a}_{0}^{i}, \bar{b}_{0}^{i}\right) \equiv \neg \varphi_{i}^{\prime \prime}\left(\bar{x}, \bar{a}_{1}^{i}, \bar{b}_{1}^{i}\right): i<\kappa\right\}$. Without loss of generality, for each $i<\kappa$ the sequence $\left\langle\bar{a}_{\alpha}^{i}{ }^{\wedge} \bar{b}_{\alpha}^{i}: 2 \leq \alpha<\omega\right\rangle$ is indiscernible over $\bigcup\left\{\bar{a}_{\alpha}^{j}{ }^{\wedge} \bar{b}_{\alpha}^{j}: j \in \kappa \backslash\{i\}\right.$ and $\left.\alpha<\omega\right\} \cup \bar{c}$.

By this extra indiscernibility assumption, for each $i<\kappa$ we can find $\ell_{0}(i), \ell_{1}(i) \in\{0,1\}$ such that $n \geq 2 \Rightarrow \mathfrak{C} \models \varphi_{i}\left[\bar{c}, \bar{a}_{n}^{i}\right]^{\ell_{0}(i)} \wedge \varphi_{i}\left[\bar{c}, \bar{b}_{n}^{i}\right]^{\ell_{1}(i)}$. By the choice of \bar{c} we have $\mathfrak{C} \models \varphi_{i}^{\prime \prime}\left(\bar{c}, \bar{a}_{0}^{i}, \bar{b}_{0}^{i}\right) \equiv \varphi_{i}^{\prime \prime}\left(\bar{c}, \bar{a}_{1}^{i}, \bar{b}_{1}^{i}\right)$, hence by the choice of $\varphi_{i}^{\prime \prime}$ we cannot have $\mathfrak{C} \models \varphi_{i}\left[\bar{c}, \bar{a}_{0}^{i}\right]^{\ell_{0}(i)} \wedge \varphi_{i}\left[\bar{c}, \bar{a}, \bar{b}_{0}^{i}\right]^{\ell_{1}(i)} \wedge \varphi_{i}\left[\bar{c}, \bar{a}_{1}^{i}\right]^{\ell_{0}(i)} \wedge \varphi_{i}\left[\bar{c}, \bar{b}_{1}^{i}\right]^{\ell_{1}(i)}$.

Hence there are $\ell_{3}(i), \ell_{4}(i) \in\{0,1\}$ such that

- $\ell_{4}(i)=0 \Rightarrow \mathfrak{C} \models \varphi_{i}\left[\bar{c}, \bar{a}_{\ell_{3}(i)}^{i}\right]^{1-\ell_{0}(i)}$,
- $\ell_{4}(i)=1 \Rightarrow \mathfrak{C} \models \varphi_{i}\left[\bar{c}, \bar{b}_{\ell_{3}(i)}^{i}\right]^{1-\ell_{1}(i)}$.

Lastly, choose $\eta=\left\langle 1-\ell_{\ell_{4}(i)}(i): i<\kappa\right\rangle$ and we choose $\left\langle\bar{d}_{\alpha}^{i}: \alpha<\omega, i<\kappa\right\rangle$ as follows:

- if $\ell_{4}(i)=0$ and $n=0$ then $\bar{d}_{n}^{i}=\bar{a}_{\ell_{3}(i)}^{i}$,
- if $\ell_{4}(i)=0$ and $n>0$ then $\bar{d}_{n}^{i}=\bar{a}_{1+n}^{i}$,
- if $\ell_{4}(i)=1$ and $n=0$ then $\bar{d}_{n}^{i}=\bar{b}_{\ell_{3}(i)}^{i}$,
- if $\ell_{4}(i)=1$ and $n>0$ then $\bar{d}_{n}^{i}=\bar{b}_{1+n}^{i}$.

Now check that $\left\langle\bar{d}_{\alpha}^{i}: \alpha<\omega\right.$ and $\left.i<\kappa\right\rangle$ witness $\circledast_{\bar{\varphi}^{[\eta]}}^{1}$.
$\circledast_{\bar{\varphi}[\eta]}^{3}, \circledast_{\bar{\varphi}}^{3}$ are equivalent where $\eta \in{ }^{\kappa} 2$.

Why? Because the formula $\left(\varphi_{i}\left(x, \bar{a}_{0}^{i}\right) \equiv \neg \varphi_{i}\left(x, \bar{a}_{1}^{i}\right)\right)$ is equivalent to $\left(\varphi_{i}\left(x, a_{0}^{i}\right)^{\eta(i)} \equiv \neg \varphi_{i}\left(x, \bar{a}_{1}^{i}\right)^{\eta(i)}\right) . \quad \boldsymbol{■}_{1.5}$
1.7. Observation: (1) In Definition 1.2, without loss of generality $m(=\ell g(\bar{x}))$ is 1 .
(2) For any κ we have: $\kappa<\kappa_{\text {ict }}(T)$ iff for some infinite linear order I_{i} (for $i<\kappa$) and $\left\langle\bar{a}_{t}^{i}: t \in I_{i}, i<\kappa\right\rangle$ such that $\left\langle\bar{a}_{t}^{i}: t \in I_{i}\right\rangle$ is indiscernible over $\bigcup\left\{\bar{a}_{s}^{j}: s \in I_{j}\right.$ and $\left.j \neq i, j<\kappa\right\} \cup A$ and finite C, for κ ordinals $i<\kappa$, the sequence $\left\langle\bar{a}_{t}^{i}: t \in I_{i}\right\rangle$ is not indiscernible over $A \cup C$.
(3) In 1.5 , for any $\lambda\left(\geq \aleph_{0}\right)$, from the statement $\circledast_{\bar{\varphi}}^{2}$ we get an equivalent one if we replace ω by λ; similarly for $\circledast_{\bar{\varphi}}^{3}$.

Proof. (1) For some m, there is $\bar{\varphi}=\left\langle\varphi_{i}\left(\bar{x}, \bar{y}_{i}\right): i<\kappa\right\rangle, \ell g(\bar{x})=m$ witnessing $\kappa<\kappa_{\text {ict }}(T)$; without loss of generality m is minimal. Fixing $\bar{\varphi}$ by 1.5 we know that $\circledast_{\bar{\varphi}}^{2}$ from observation 1.5 holds. Let $\left\langle\bar{a}_{\alpha}^{i}: i<\kappa, \alpha<\lambda\right\rangle$ exemplify $\circledast_{\bar{\varphi}}^{2}$ with λ instead ω and let $\bar{c}=\left\langle c_{i}: i<m\right\rangle$ realize $\left\{\varphi_{i}\left(\bar{x}, \bar{a}_{0}^{i}\right) \wedge \neg \varphi_{i}\left(\bar{x}, \bar{a}_{1}^{i}\right): i<\kappa\right\}$.

CASE 1: For some $u \subseteq \kappa,|u|<\kappa$ for every $i \in \kappa \backslash u$ the sequence $\left\langle\bar{a}_{\alpha}^{i}: \alpha<\lambda\right\rangle$ is an indiscernible sequence over $\bigcup\left\{\bar{a}_{\beta}^{j}: j \in \kappa \backslash u \backslash\{i\}\right\} \cup\left\{c_{m-1}\right\}$.

In this case for $i \in \kappa \backslash u$ let $\psi_{i}\left(\bar{x}^{\prime}, \bar{y}_{i}^{\prime}\right):=\varphi_{i}\left(\bar{x} \upharpoonright(m-1),\left\langle x_{m-1}\right\rangle^{\wedge} \bar{y}_{i}\right)$ and $\bar{\psi}=\left\langle\psi_{i}\left(\bar{x}^{\prime}, \bar{y}_{i}^{\prime}\right): i \in \kappa \backslash u\right\rangle$ and $\bar{b}_{\alpha}^{i}=\left\langle c_{m-1}\right\rangle^{\wedge} \bar{a}_{\alpha}^{i}$ for $\alpha<\lambda, i \in \kappa \backslash u$ and $\bar{\varphi}=$ $\left\langle\psi_{i}\left(\bar{x}^{\prime}, \bar{y}_{i}^{\prime}\right): i \in \kappa \backslash u\right\rangle$. Now $\left\langle\bar{b}_{\alpha}^{i}: \alpha<\lambda, i \in \kappa \backslash u\right\rangle$ witness that (abusing our notation) $\circledast \frac{2}{\psi}$ holds (the consistency is exemplified by $\bar{c} \upharpoonright(m-1)$), hence (in the notation of 1.5) $\circledast \frac{1}{\bar{\psi}[\eta]}$ holds for some $\eta \in{ }^{\kappa \backslash u} 2$, contradiction to the minimality of m.

Case 2: Not Case 1.
We choose v_{ζ} by induction on $\zeta<\kappa$ such that
\otimes_{ζ} (a) $v_{\zeta} \subseteq \kappa \backslash \bigcup\left\{v_{\varepsilon}: \varepsilon<\zeta\right\}$,
(b) v_{ζ} is finite,
(c) for some $i \in v_{\zeta},\left\langle\bar{a}_{\alpha}^{i}: \alpha<\lambda\right\rangle$ is not indiscernible over

$$
\bigcup\left\{\bar{a}_{\beta}^{j}: j \in v_{\zeta} \backslash\{i\}, \beta<\lambda\right\} \cup\left\{c_{m-1}\right\}
$$

(d) under $(\mathrm{a})+(\mathrm{b})+(\mathrm{c}),\left|v_{\zeta}\right|$ is minimal.

In the induction step, the set $u_{\zeta}=\cup\left\{v_{\varepsilon}: \varepsilon<\zeta\right\}$ cannot exemplify Case 1 , so for some ordinal $i(\zeta) \in \kappa \backslash u_{\zeta}$ the sequence $\left\langle\bar{a}_{\alpha}^{i(\zeta)}: \alpha<\lambda\right\rangle$ is not indiscernible over $\bigcup\left\{\bar{a}_{\beta}^{j}: j \in \kappa \backslash u_{\zeta} \backslash\{i(\zeta)\}\right.$ and $\left.\beta<\lambda\right\} \cup\left\{c_{m-1}\right\}$, so by the finite character of indiscernibility, there is a finite $v \subseteq \kappa \backslash u_{\zeta} \backslash\{i(\zeta)\}$ such that $\left\langle\bar{a}_{\alpha}^{i(\zeta)}: \alpha<\lambda\right\rangle$ is not
indiscernible over $\bigcup\left\{\bar{a}_{\beta}^{j}: j \in v, \beta<\lambda\right\} \cup\left\{c_{m-1}\right\}$. So $v^{\prime}=\{i(\zeta)\} \cup v$ satisfies (a) $+(\mathrm{b})+(\mathrm{c})$, hence some finite $v_{\zeta} \subseteq \kappa \backslash u_{\zeta}$ satisfies clauses (a),(b),(c) and (d).

Having carried the induction let $i_{*}(\zeta) \in v_{\zeta}$ exemplify clause (c). We can find a sequence \bar{d}_{ζ} from $\bigcup\left\{\bar{a}_{\beta}^{j}: j \in v_{\zeta} \backslash\left\{i_{*}(\zeta)\right\}\right.$ and $\left.\beta<\lambda\right\}$ such that $\left\langle\bar{a}_{\alpha}^{i_{*}(\zeta)}: \alpha<\lambda\right\rangle$ is not indiscernible over $\left\langle c_{m-1}\right\rangle^{\wedge} \bar{d}_{\zeta}$.

Also, we can find $n(\zeta)<\omega$ and ordinals $\beta_{\zeta, \ell, 0}<\beta_{\zeta, \ell, 1}<\cdots<\beta_{\zeta, \ell, n(\zeta)-1}<\lambda$ for $\ell=1,2$ such that the sequences

$$
\bar{d}^{\wedge} \bar{a}_{\beta_{\zeta}, 1,0}^{i_{*}(\zeta)}{ }^{\wedge} \cdots^{\wedge} \bar{a}_{\beta_{\zeta}, 1, n(\zeta)-1}^{i_{*}(\zeta)} \text { and } \bar{d}^{\wedge} \bar{a}_{\beta_{\zeta}, 2,0}^{i_{*}(\zeta)}{ }^{\prime} \cdots^{\wedge} \bar{a}_{\beta_{\zeta}, 2, n(\zeta)-1}^{i_{*}(\zeta)}
$$

realize different types over c_{m-1}.
Now we consider $\bar{a}_{\beta}^{i_{*}(\zeta) \wedge} \ldots{ }^{i^{\prime}} \bar{a}_{\beta+n(\zeta)-1}$ where

$$
\beta:=\max \left\{\beta_{\zeta, 1, n(\zeta)-1}+1, \beta_{\zeta, 2, n(\zeta)-1}+1\right\}
$$

so renaming, without loss of generality $\beta_{\zeta, 1, n(\zeta)-1}<\beta_{\zeta, 2,0}$. Omitting some $a_{\beta}^{i_{*}(\zeta)}$,s, without loss of generality $\beta_{\beta_{\zeta}, 1, m}=m, \beta_{\zeta, 2, m}=n(\zeta)+m$ for $m<n(\zeta)$. Now we define $\bar{b}_{\beta}^{\zeta}:=\bar{d}_{\zeta}{ }^{\wedge} \bar{a}_{n(\zeta) \beta}^{i_{*}(\zeta)}{ }^{\wedge} \cdots^{\wedge} \bar{a}_{n(\zeta) \beta+n(\zeta)-1}^{i_{*}(\zeta)}$ for $\beta<\lambda, \zeta<\kappa$.

By the indiscernibility of $\left\langle\bar{a}_{\gamma}^{i_{\zeta}(*)}: \gamma<\lambda\right\rangle$ over $\bar{d}_{\zeta} \cup \bigcup\left\{\bar{a}_{\beta}^{j}: j \in \kappa \backslash v_{\zeta}, \beta<\lambda\right\} \subseteq$ $\bigcup\left\{a_{\beta}^{j}: j \in \kappa \backslash\left\{i_{\zeta}(*)\right\}, \beta<\lambda\right\}$ we can deduce that $\left\langle\bar{b}_{\beta}^{\zeta}: \beta<\lambda\right\rangle$ is an indiscernible sequence over $\bigcup\left\{\bar{b}_{\beta}^{\varepsilon}: \varepsilon \in \kappa \backslash\{\zeta\}, \alpha<\gamma\right.$ and $\left.\beta<\lambda\right\}$. But by an earlier sentence $\bar{b}_{0}^{\zeta}, \bar{b}_{1}^{\zeta}$ realizes different types over c_{m-1}, so we can choose $\varphi_{\zeta}^{\prime}\left(x, \bar{y}_{\zeta}\right)$ such that $\mathfrak{C} \models \varphi_{\zeta}^{\prime}\left(c_{m-1}, \bar{b}_{0}^{\zeta}\right) \wedge \neg \varphi_{i}^{\prime}\left(c_{m-1}, \bar{b}_{1}^{i}\right)$ for $i<\kappa$.

So $\left\langle\bar{b}{ }_{\alpha}^{\zeta}: \alpha<\omega, \zeta<\kappa\right\rangle$ and $\bar{\varphi}^{\prime}=\left\langle\varphi_{\zeta}^{\prime}\left(x, \bar{y}_{\zeta}\right): \zeta<\kappa\right\rangle$ satisfy the demands on $\left\langle\bar{a}_{k}^{i}: k<\omega, i<\kappa\right\rangle,\left\langle\varphi_{i}\left(x, \bar{y}_{i}\right): i<\kappa\right\rangle$ in $\circledast \frac{2}{\varphi}$ for $m=1$ (by 1.5's notation), so by 1.5 also $\circledast_{\bar{\varphi}[\eta]}^{1}$ holds for some $\eta \in{ }^{\kappa} 2$, so we are done.
(2) Implicit in the proof of part (1) (and see Case 1 in the proof of 2.1).
(3) Trivial. $\mathbf{■}_{1.7}$

A relative of $\kappa_{\text {ict }}(T)$ is
1.8. Definition: $(1) \kappa_{\text {icu }}(T)=\kappa_{\text {icu }, 1}(T)$ is the minimal κ such that for no $m<\omega$ and $\bar{\varphi}=\left\langle\varphi_{i}\left(\bar{x}_{i}, \bar{y}_{i}\right): i<\kappa\right\rangle$ with $\ell g\left(\bar{x}^{i}\right)=m \times n_{i}$ can we find $\bar{a}_{\alpha}^{i} \in{ }^{\ell g\left(\bar{y}_{i}\right)} \mathfrak{C}$ for $\alpha<\lambda, i<\kappa$ and $\bar{c}_{\eta, n} \in{ }^{m} \mathfrak{C}$ for $\eta \in{ }^{\kappa} \lambda$ such that:
(a) $\left\langle\bar{c}_{\eta, n}: n<\omega\right\rangle$ is an indiscernible sequence over $\bigcup\left\{\bar{a}_{\alpha}^{i}: \alpha<\lambda, i<\kappa\right\}$,
(b) for each $\eta \in{ }^{\kappa} \lambda, \alpha<\lambda$ and $i<\kappa$ we have $\mathfrak{C} \models \varphi_{i}\left(\bar{c}_{\eta, 0}{ }^{\wedge} \cdots^{\wedge} \bar{c}_{\eta, n_{i}-1}, \bar{a}_{\alpha}^{i}\right)^{\mathrm{if}(\alpha=\eta(i))}$.
(2) If $\bar{\varphi}$ is as in (1), then we say that it witnesses $\kappa<\kappa_{\mathrm{icu}}(T)$.
(3) T is strongly ${ }^{1, *}$ dependent if $\kappa_{\text {icu }}(T)=\aleph_{0}$.
1.9. CLAIM: $(1) \kappa_{\text {icu }}(T) \geq \kappa_{\text {ict }}(T)$.
(2) If $\operatorname{cf}(\kappa)>\aleph_{0}$ then $\kappa_{\text {icu }}(T)>\kappa \Leftrightarrow \kappa_{\text {ict }}(T)>\kappa$.
(3) The parallels of 1.4, 1.5, 1.7(2) hold. ${ }^{1}$

Proof. (1) Trivial.
(2) As in the proof of 1.7 .
(3) Similar. $\quad \boldsymbol{\square}_{1.9}$

To translate a statement on several indiscernible sequences to one (e.g., in 2.1), one notes:
1.10. Observation: Assume that for each $\alpha<\kappa, I_{\alpha}$ is an infinite linear order, the sequence $\left\langle\bar{a}_{t}: t \in I_{\alpha}\right\rangle$ is indiscernible over $A \cup \cup\left\{\bar{a}_{t}: t \in I_{\beta}\right.$ and $\beta \in$ $\kappa \backslash\{\alpha\}\}$ (and for notational simplicity $\left\langle I_{\alpha}: \alpha<\kappa\right\rangle$ are pairwise disjoint) and let $I=\Sigma\left\{I_{\alpha}: \alpha<\kappa\right\}, t \in I_{\alpha} \Rightarrow \ell g\left(\bar{a}_{t}\right)=\zeta(\alpha)$, and lastly for $\alpha \leq \kappa$ we let $\xi(\alpha)=\Sigma\{\zeta(\beta): \beta<\alpha\}$.

Then there is $\left\langle\bar{b}_{t}: t \in I\right\rangle$ such that
(a) $\ell g\left(\bar{b}_{t}\right)=\xi(\kappa)$,
(b) $\left\langle\bar{b}_{t}: t \in I\right\rangle$ is an indiscernible sequence over A,
(c) $t \in I_{\alpha} \Rightarrow \bar{a}_{t}=\bar{b}_{t} \upharpoonright\left[\xi_{\alpha}, \xi_{\alpha}+\zeta_{\alpha}\right)$,
(d) if $C \subseteq \mathfrak{C}$ and \mathscr{P} is a set of cuts of I such that $[J$ is a convex subset of I not divided by any member of $\mathscr{P} \Rightarrow\left\langle\bar{b}_{t}: t \in J\right\rangle$ is indiscernible over $A \cup C]$ then we can find $\left\langle\mathscr{P}_{\alpha}: \alpha<\kappa\right\rangle, \mathscr{P}_{\alpha}$ is a set of cuts of I_{α} such that $\Sigma\left\{\left|\mathscr{P}_{\alpha}\right|: \alpha<\kappa\right\}=|\mathscr{P}|$ and, if $\alpha<\kappa, J$ is a convex subset of I_{α} not divided by any member of \mathscr{P}_{α}, then $\left\langle\bar{a}_{t}: t \in J\right\rangle$ is indiscernible over $A \cup C$,
(e) if $C \subseteq \mathfrak{C}$ and \mathscr{P} is a set of cuts of I such that $[J$ is a convex subset of I not divided by any member of $\mathscr{P} \Rightarrow\left\langle\bar{b}_{t}: t \in J\right\rangle$ is indiscernible over $\left.A \cup C \cup\left\{b_{s}: s \in I \backslash J\right\}\right]$ then we can find $\left\langle\mathscr{P}_{\alpha}: \alpha<\kappa\right\rangle, \mathscr{P}_{\alpha}$ is a set of cuts of I_{α} such that $\Sigma\left\{\left|\mathscr{P}_{\alpha}\right|: \alpha<\kappa\right\}=|\mathscr{P}|$ and, if $\alpha<\kappa, J$ is a convex subset of I_{α} not divided by any member of \mathscr{P}_{α}, then $\left\langle\bar{a}_{t}: t \in J\right\rangle$ is indiscernible over $A \cup C \cup\left\{\bar{a}_{t}: t \in I \backslash J\right\}$,
(f) moreover, in clauses (d), (e) we can choose \mathscr{P}_{α} as the set of non-trivial cuts of I_{α} induced by \mathscr{P}, i.e., $\left\{\left(J^{\prime} \cap I_{\alpha}, J^{\prime \prime} \cap I_{\alpha}\right):\left(J^{\prime}, J^{\prime \prime}\right) \in \mathscr{P}\right\} \backslash\left\{\left(I_{\alpha}, \emptyset\right),\left(\emptyset, I_{\alpha}\right)\right\}$.

[^1]Proof. Straightforward; e.g.:
Without loss of generality $\left\langle I_{\alpha}: \alpha<\kappa\right\rangle$ are pairwise disjoint and let $I=$ $\Sigma\left\{I_{\alpha}: \alpha<\kappa\right\}$. We can find $\bar{b}_{t}^{\alpha} \in \zeta(\alpha) \mathfrak{C}$ for $t \in I, \alpha<\kappa$ such that: if $n<\omega$, $\alpha_{0}<\cdots<\alpha_{n-1}<\kappa, t_{0}^{\ell}<_{I} \cdots<_{I} t_{k_{\ell}-1}^{\ell}$ and $s_{0}^{\ell}<_{I_{\alpha_{\ell}}} \cdots<_{I_{a_{\ell}}} s_{k_{\ell}-1}^{\ell}$ for $\ell<n$, then the sequence $\left(\bar{b}_{t_{0}^{0}}^{\alpha_{0}} \ldots^{\wedge} \bar{b}_{t_{k_{0}-1}^{0}}^{\alpha_{0}}\right){ }^{\wedge} \cdots{ }^{\wedge}\left(\bar{b}_{t_{0}^{n-1}}^{\alpha_{n-1}}{ }^{\wedge} \cdots{ }^{\wedge} \bar{b}_{t_{k_{n-1}-1}^{n-1}}^{\alpha_{n-1}}\right)$ realizes the same type as the sequence $\left(\bar{a}_{s_{0}^{0}}^{\alpha}{ }^{\wedge} \cdots^{\wedge} \bar{a}_{s_{k_{n}-1}}^{\alpha_{0}}\right)^{\wedge} \cdots^{\wedge}\left(\bar{a}_{s_{0}^{n-1}}^{\alpha_{n-1}}{ }^{\wedge} \cdots^{\wedge} \bar{a}_{s_{k_{n-1}-1}^{n-1}}^{\alpha_{n-1}}\right)$; this is possible by compactness. Using an automorphism of \mathfrak{C}, without loss of generality $t \in I_{\alpha} \Rightarrow \bar{b}_{t}^{\alpha}=\bar{a}_{t}^{\alpha}$. Now for $t \in I$ let \bar{a}_{t}^{*} be $\left(\bar{a}_{t}^{0 \wedge} \bar{a}_{t}^{1 \wedge} \cdots^{\wedge} \bar{a}_{\alpha}^{1} \cdots\right)_{\alpha<\kappa}$.

Clauses (a) $+(\mathrm{b})+(\mathrm{c})$ hold trivially and clauses (d), (e), (f) follow. $\quad \boldsymbol{■}_{1.10}$

$$
\text { * } \quad * \quad *
$$

In the following we consider "natural" examples which are strongly dependent; see more in 2.5.
1.11. Claim: (1) Assume T is a complete first order theory of an ordered abelian group expanded by some individual constants and some unary predicates $P_{i}(i<i(*))$ which are subgroups and T has elimination of quantifiers.
T is strongly dependent iff we cannot find $i_{n}<i(*)$ and $\iota_{n} \in \mathbb{Z} \backslash\{0\}$ for $n<\omega$ such that:
(*) we can find $b_{n, \ell} \in \mathfrak{C}$ for $n, \ell<\omega$ such that
(a) $\ell_{1}<\ell_{2} \Rightarrow \iota_{n}\left(b_{n, \ell_{2}}-b_{n, \ell_{1}}\right) \notin P_{i_{n}}^{\mathbb{C}}$,
(b) for every $\eta \in{ }^{\omega} \omega$ there is c_{η} such that $c_{\eta}-b_{n, \eta(n)} \in P_{i_{n}}^{\mathbb{C}}$ for $n<\omega$.
(2) Let M be $\left(\mathbb{Z},+,-, 0,1,<, P_{n}\right)$ where $P_{n}=\{$ na : $a \in \mathbb{Z}\}$, so we know that $T=\operatorname{Th}(M)$ has elimination of quantifiers. Then T is strongly dependent, hence $\operatorname{Th}(\mathbb{Z},+,-, 0,<)$ is strongly dependent.
1.12. Remark: (1) This generalizes the parallel theorem for stable abelian groups.
(2) Note that if G is the ordered abelian group with sets of elements $\mathbb{Z}[x]$, addition of $\mathbb{Z}[x]$ and $p(x)>0$ iff the leading coefficient is >0, in \mathbb{Z}, P_{n} as above (so definable), then $\operatorname{Th}(G)$ is not strongly dependent using P_{n} for n prime.
(3) On elimination of quantifiers for ordered abelian groups, see Gurevich [Gu77].

Proof. (1) The main point is the if direction. We use the criterion from 2.1(2),(4) below. So let $\left\langle\bar{a}_{t}: t \in I\right\rangle$ be an infinite indiscernible sequence and $c \in \mathfrak{C}$
(with \bar{a}_{t} not necessarily finite). Without loss of generality $\mathfrak{C} \models$ " $c>0$ " and $\bar{a}_{t}=\left.\left\langle a_{t, \alpha}: \alpha\left\langle\alpha^{*}\right\rangle\right.$ list the members of M_{t}, a model and even a $| T\right|^{+}$-saturated model (see 2.1(4)), and let $p_{t}=\operatorname{tp}\left(c, M_{t}\right)$.

Note that
$(*)_{1}$ if $a_{s, i}=a_{t, j}$ and $s \neq t$, then $\left\langle a_{r, i}: r \in I\right\rangle$ is constant.
Obviously, without loss of generality, $c \notin \bigcup\left\{M_{t}: t \in I\right\}$ but \mathfrak{C} is torsion free (as an abelian group because it is ordered), hence
$(*)_{2} \iota \in \mathbb{Z} \backslash\{0\} \Rightarrow \iota c \notin \bigcup\left\{M_{t}: t \in I\right\}$,
$(*)_{3}$ for $t \in I, a \in M_{t}$ and $\iota \in \mathbb{Z} \backslash\{0\}$, let $\eta_{a}^{\iota} \in{ }^{i(*)+1} 2$ be such that $\left[\eta_{a}^{\iota}(i(*))=\right.$ $1 \Leftrightarrow \iota c>a]$ and, for $i<i(*),\left[\eta_{a}^{\iota}(i)=1 \Leftrightarrow \iota c-a \in P_{i}^{\mathfrak{C}}\right]$,
$(*)_{4}$ for $t \in I$ and $a \in M_{t}$ let $p_{a}:=\bigcup_{\iota \in \mathbb{Z} \backslash\{0\}}\left(p_{a}^{\iota} \cup q_{a}^{\iota}\right)$ where ${ }^{2} p_{a}^{\iota}(x):=$ $\left\{\iota x \neq a,(\iota x>a)^{\eta_{a}^{\iota}(i(*))}\right\}$ and $q_{a}^{\iota}(x):=\left\{P_{i}(\iota x-a)^{\eta_{a}^{\iota}(i)}: i<i(*)\right\}$.

Now
\square_{0} for $\iota \in \mathbb{Z} \backslash\{0\}$ and $\alpha<\alpha^{*}$ let $I_{\alpha}^{\iota}=\left\{t \in I: a_{t, \alpha}<\iota c\right\}$;
$\square_{1}\left\langle u_{-1}, u_{0}, u_{1}\right\rangle$ is a partition of α^{*}, where
(a) $u_{-1}=\left\{\alpha<\alpha^{*}\right.$: for every $s<_{I} t$ we have $\left.\mathfrak{C} \models a_{t, \alpha}<a_{s, \alpha}\right\}$,
(b) $u_{0}=\left\{\alpha<\alpha^{*}\right.$: for every $s<_{I} t$ we have $\left.\mathfrak{C} \mid=a_{s, \alpha}=a_{t, \alpha}\right\}$,
(c) $u_{1}=\left\{\alpha<\alpha^{*}\right.$: for every $s<_{I} t$ we have $\left.\mathfrak{C} \models a_{s, \alpha}<a_{t, \alpha}\right\}$;
\square_{2} if $\iota \in \mathbb{Z} \backslash\{0\}$ then
(a) I_{α}^{ι} is an initial segment of I when $\alpha \in u_{1}$,
(b) I_{α}^{ι} is an end segment of I when $\alpha \in u_{-1}$,
(c) $I_{\alpha}^{\iota} \in\{\emptyset, I\}$ when $\alpha \in u_{0}$,
(d) $\left\{I_{\alpha}^{\iota}: \alpha \in u_{1}\right\} \backslash\{\emptyset, I\}$ has at most 2 members.
[Why? Recall $<^{\mathfrak{C}}$ is a linear order. So for each $\iota \in \mathbb{Z} \backslash\{0\}, \alpha \in u_{1}$, by the definition of u_{1} the set $I_{\alpha}^{\iota}:=\left\{t \in I: a_{t, \alpha}<\iota c\right\}$ is an initial segment of I, also $t \in I \backslash I_{\alpha}^{\iota} \Rightarrow \iota c<^{\mathfrak{C}} a_{t, \alpha}$ as $c \notin \bigcup\left\{M_{s}: s \in I\right\}$ by $(*)_{2}$.

Now suppose $\alpha, \beta \in u_{1}$ and $\left|I_{\beta}^{\iota} \backslash I_{\alpha}^{\iota}\right|>1$ and $I_{\alpha}^{\iota}, I_{\beta}^{\iota} \notin\{\emptyset, I\} ;$ then choose $t_{1}<{ }_{I} t_{2}$ from $I_{\beta}^{\iota} \backslash I_{\alpha}^{\iota}$ and $t_{0} \in I_{\alpha}^{\iota}, t_{3} \in I \backslash I_{\beta}^{\iota}$. As $I_{\alpha}^{\iota}, I_{\beta}^{\iota}$ are initial segments and $t_{0}<_{I} t_{1}<_{I} t_{2}<_{I} t_{3}$, necessarily $\mathfrak{C} \models " a_{t_{0}, \alpha}<\iota c<a_{t_{1}, \alpha} \wedge a_{t_{2}, \beta}<\iota c<a_{t_{3}, \beta}$ ". If $a_{t_{1}, \alpha} \leq{ }^{\mathfrak{C}} a_{t_{2}, \beta}$ we can deduce a contradiction $\left(\mathfrak{C} \models " \iota c<a_{t_{1}, \alpha} \leq a_{t_{2}, \beta}<\iota c\right.$ "). Otherwise, by the indiscernibility of the sequence $\left\langle\left(a_{t, \alpha}, a_{t, \beta}\right): t \in I\right\rangle$ we get $\mathfrak{C} \models a_{t_{3}, \beta}<a_{t_{0}, \alpha}$ and a similar contradiction. So $\left|I_{\beta}^{\iota} \backslash I_{\alpha}^{\iota}\right| \leq 1$.

[^2]So $I_{\alpha}^{\iota}, I_{\beta}^{\iota} \notin\{\emptyset, I\} \Rightarrow\left|I_{\beta}^{\iota} \backslash I_{\alpha}^{\iota}\right| \leq 1$ and by symmetry $\left|I_{\alpha}^{\iota} \backslash I_{\beta}^{\iota}\right| \leq 1$. So $\mid\left\{I_{\alpha}^{\iota}: \alpha \in\right.$ $\left.u_{1}\right\} \backslash\{\emptyset, I\} \mid \leq 2$, i.e., clause (d) of \square_{2} holds; the other clauses should be clear.]

Now clearly
\square_{3} if $\alpha, \beta<\alpha(*), \iota \in \mathbb{Z} \backslash\{0\}$ and $a_{t, \alpha}=-a_{t, \beta}$ (for some equivalently for every $t \in I)$ then:
(a) $\left(\alpha \in u_{1}\right) \equiv\left(\beta \in u_{-1}\right)$,
(b) $\left((\iota c)<a_{t, \alpha}\right) \equiv\left(a_{t, \beta}<((-\iota) c)\right)$ recalling $\iota c,(-\iota) c \notin \bigcup_{t \in I} M_{t}$,
(c) $I_{\alpha}^{\iota}=I \backslash I_{\beta}^{\iota}$.

Also
\square_{4} if ι_{1}, ι_{2} are from $\{1,2, \ldots\}$ and $\iota_{1} a_{t, \alpha}=\iota_{2} a_{t, \beta}$ then
(a) $\left[\alpha \in u_{-1} \equiv \beta \in u_{-1}\right],\left[\alpha \in u_{0} \equiv \beta \in u_{0}\right]$ and $\left[\alpha \in u_{1} \equiv \beta \in u_{1}\right]$,
(b) $\left(t \in I_{\alpha}^{L_{2}}\right) \Leftrightarrow\left(t \in I_{\beta}^{L_{1}}\right)$, hence $I_{\alpha}^{\iota_{2}}=I_{\beta}^{L_{1}}$.
[Why? Clause (a) is obvious. For clause (b) note that $t \in I_{\alpha}^{\iota_{2}} \Leftrightarrow a_{t, \alpha}<\iota_{2} c \Leftrightarrow$ $\left.\iota_{1} a_{t, \alpha}<\iota_{1}\left(\iota_{2} c\right) \Leftrightarrow \iota_{2} a_{t, \beta}<\iota_{2}\left(\iota_{1} c\right) \Leftrightarrow a_{t, \beta}<\iota_{1} c \Leftrightarrow t \in I_{\beta}^{\iota_{1}}.\right]$

By symmetry, i.e., by \square_{3}, clearly
\square_{5} the statement (d) in \square_{2} holds for $\alpha \in u_{-1}$.
Obviously
\square_{6} if $\alpha \in u_{0}$ then $I_{\alpha}^{\iota} \in\{\emptyset, I\}$.
Together
$\square_{7}\left\{I_{\alpha}^{\iota}: \alpha<\alpha^{*}\right.$ and $\left.\iota \in \mathbb{Z} \backslash\{0\}\right\} \backslash\{\emptyset, I\}$, hence has ≤ 4 members.
Hence
\circledast_{0} There are initial segments J_{ℓ} of I for $\ell<\ell(*) \leq 4$ such that: if s, t belongs to I and $\ell<\ell(*) \Rightarrow\left[s \in J_{\ell} \equiv t \in J_{\ell}\right]$ then $\eta_{a_{t, \alpha}}^{\iota}(i(*))=\eta_{a_{s, \alpha}}^{\iota}(i(*))$.
[Why? By the above and the definition of $\eta_{a_{t, \alpha}}^{\iota}(i(*))$ we are done.]
\circledast_{1} For each $t \in I$ we have $\bigcup\left\{p_{a}(x): a \in M_{t}\right\} \vdash p_{t}(x)$.
[Why? Use the elimination of quantifiers and the closure properties of M_{t}. That is, every formula in $p_{t}(x)$ is equivalent to a Boolean combination of quantifier free formulas. So it suffices to deal with the cases $\varphi(x, \bar{a}) \in p_{t}(x)$ which is atomic or negation of atomic and x appear. As for $b_{1}, b_{2} \in \mathfrak{C}$, exactly one of the possibilities $b_{1}<b_{2}, b_{1}=b_{2}, b_{2}<b_{1}$ holds, and, by symmetry, it suffices to deal with $\sigma_{1}(x, \bar{a})>\sigma_{2}(x, \bar{a}), \sigma_{1}(x, \bar{a})=$ $\sigma_{2}(x, \bar{a}), P_{i}(\sigma(x, \bar{a})), \neg P_{i}(\sigma(x, \bar{a}))$ where $\sigma(x, \bar{y}), \sigma_{1}(x, \bar{y}), \sigma_{2}(x, \bar{y})$ are terms in $\mathbb{L}\left(\tau_{T}\right)$. As we can substract, it suffices to deal with $\sigma(x, \bar{a})>0, \sigma(x, \bar{a})=$ $0, P_{i}(\sigma(x, \bar{a})), \neg P_{i}(\sigma(x, \bar{a}))$. By linear algebra, as M_{t} is closed under the
operations, without loss of generality $\sigma(x, \bar{a})=\iota x-a_{t, \alpha}$ for some $\iota \in \mathbb{Z}$ and $\alpha<\alpha^{*}$, and without loss of generality $\iota \neq 0$. The case $\varphi(x)=\left(\iota x-a_{t, \alpha}=\right.$ $0) \in p(x)$ implies $c \in M_{t}$ (as M is torsion free), which we assume does not hold. In the case $\varphi(x, \bar{a})=\left(\iota x-a_{t, \alpha}>0\right)$ use $p_{a_{t, \alpha}}^{\iota}(x)$, in the case $\varphi(x, \bar{a})=P_{i}\left(\iota x-a_{t, \alpha}\right)$ or $\varphi(x, \bar{a})=\neg P_{i}\left(\iota x-a_{t, \alpha}\right)$ use $q_{a_{t, \alpha}}^{\iota}(x)$ for $\left.\eta_{a_{t, \alpha}}^{\iota}(i).\right]$
\circledast_{2} If $\iota \in \mathbb{Z} \backslash\{0\}, n<\omega$ and $a_{0}, \ldots, a_{n-1} \in M_{t}$, then for some $a \in M_{t}$ we have $\ell<n \wedge i<i(*) \wedge \eta_{a_{\ell}}^{\iota}(i)=1 \Rightarrow \eta_{a}^{\iota}(i)=1$.
[Why? Let $a^{\prime} \in M_{t}$ realize $p_{t} \upharpoonright\left\{a_{0}, \ldots, a_{n-1}\right\}$, exist as M_{t} was chosen as $|T|^{+}$-saturated; less is necessary. Now $\iota c-a_{\ell} \in P_{i}^{\mathcal{C}} \Rightarrow \iota a^{\prime}-a_{\ell} \in P_{i}^{\mathcal{C}} \Rightarrow$ $\left(\iota c-\iota a^{\prime}\right)=\left(\left(\iota c-a_{\ell}\right)-\left(\iota a^{\prime}-a_{\ell}\right)\right) \in P_{i}^{\mathcal{C}}$ and let $\left.a:=\iota a^{\prime}.\right]$
\circledast_{3} Assume $\iota \in \mathbb{Z} \backslash\{0\}, i<i(*), \alpha<\alpha^{*}, s_{1}<_{I} s_{2}$ and $t \in I \backslash\left\{s_{1}, s_{2}\right\}$; then:
(a) if $\eta_{a_{s_{1}, \alpha}}^{\iota}(i)=1$ and $\eta_{a_{s_{2}, \alpha}}^{\iota}(i)=0$, then $\eta_{a_{t, \alpha}}^{\iota}(i)=0$,
(b) if $\eta_{a_{s_{1}, \alpha}}^{\iota}(i)=0$ and $\eta_{a_{s_{2}, \alpha}}^{\iota}(i)=1$, then $\eta_{a_{t, \alpha}}^{\iota}(i)=0$.
[Why? As we can invert the order of I it is enough to prove clause (a). By the choice of $a \mapsto \eta_{a}^{\iota}$ we have $\iota c-a_{s_{1}, \alpha} \in P_{i}^{\mathfrak{C}}, \iota c-a_{s_{2}, \alpha} \notin P_{i}^{\mathfrak{C}}$, hence $a_{s_{1}, \alpha}-a_{s_{2}, \alpha} \notin P_{i}^{\mathbb{C}}$, hence also $a_{s_{2}, \alpha}-a_{s_{1}, \alpha} \notin P_{i}^{\mathbb{C}}$.

By the indiscernibility we have $a_{t, \alpha}-a_{s_{1}, \alpha} \notin P_{i}^{\mathfrak{C}}$ and as $\iota c-a_{s_{1}, \alpha} \in P_{i}^{\mathbb{C}}$ we can deduce $\iota c-a_{t, \alpha} \notin P_{i}^{\mathcal{C}}$, hence $\eta_{a_{t, \alpha}}^{\iota}(i)=0$. So we are done.]
\circledast_{4} For each $\iota \in \mathbb{Z} \backslash\{0\}, i<i(*)$ and $\alpha<\alpha^{*}$, the set $I_{i, \alpha}^{\iota}:=\left\{t: \eta_{a_{t, \alpha}}^{\iota}(i)=1\right\}$ is \emptyset, I or a singleton.
[Why? By \circledast_{3}.]
\circledast_{5} if $I_{*}=\bigcup\left\{I_{i, \alpha}^{\iota}: \iota \in \mathbb{Z} \backslash\{0\}, i<i(*), \alpha<\alpha^{*}\right.$ and $I_{i, \alpha}^{\iota}$ is a singleton $\}$ is infinite, then (possibly inverting I) we can find $t_{n} \in I$ and $\beta_{n}<\alpha^{*}, \iota_{n} \in \mathbb{Z} \backslash\{0\}$ and $i_{n}<i(*)$ for $n<\omega$ such that
(a) $t \in I$, then $\left[\iota_{n} c-a_{t, \beta_{n}} \in P_{i_{n}}^{\mathfrak{C}}\right] \Leftrightarrow t=t_{n}$ for every $n<\omega$,
(b) $\left\langle a_{t, \beta_{n}}-a_{s, \beta_{n}}: s \neq t \in I\right\rangle$ are pairwise not equal $\bmod P_{i_{n}}^{\mathfrak{C}}$,
(c) $t_{n}<t_{n+1}$ for $n<\omega$.
[Why? Should be clear.]
\circledast_{6} If $I_{*}=\bigcup\left\{I_{i, \alpha}^{\iota}: \iota \in \mathbb{Z} \backslash\{0\}, \alpha<\alpha^{*}, i<i(*)\right.$ and $I_{i, \alpha}^{\iota}$ is a singleton $\}$ is finite and $J_{\ell}(\ell<\ell(*) \leq 4)$ are as in \circledast_{0}, then $\operatorname{tp}\left(\bar{a}_{s},\{c\}\right)=\operatorname{tp}\left(\bar{a}_{t},\{c\}\right)$ whenever $\left(s, t \in I \backslash I_{*}\right) \wedge \bigwedge_{\ell<\ell(*)}\left(s \in J_{\ell} \equiv t \in J_{\ell}\right)$ recalling \bar{a}_{t} list the elements of M_{t}.
[Why? By \circledast_{4} and \circledast_{1} (and \circledast_{0}) recalling the choice of p_{a} in $(*)_{4}$.]

Assume $c,\left\langle\bar{a}_{t}: t \in I\right\rangle$ exemplify T is not strongly dependent; then I_{*} cannot be finite (by \circledast_{6}) hence I_{*} is infinite, so by \circledast_{5} we can find $\left\langle\left(t_{n}, \beta_{n}, \iota_{n}, i_{n}\right): n<\omega\right\rangle$ as there.

That is, for $n<\omega, \ell<\omega$ let $b_{n, \ell}:=a_{t_{\ell}, \beta_{n}}$. So
$\circledast_{7} \iota_{n} c-b_{n, \ell} \in P_{i_{n}}^{\mathbb{C}}$ iff $\iota_{n} c-a_{\ell_{\ell}, \beta_{n}} \in P_{i_{n}}^{\mathcal{C}}$ iff $t_{\ell}=t_{n}$ iff $\ell=n$,
\circledast_{8} if $\ell_{1}<\ell_{2}$ then $b_{n, \ell_{2}}-b_{n, \ell_{2}} \notin P_{i_{n}}^{\mathbb{C}}$.
[Why? By clause (b) of \circledast_{5}.]
Now
\circledast_{9} if $\eta \in{ }^{\omega} \omega$ is increasing, then there is $c_{\eta} \in \mathfrak{C}$ such that $n<\omega$ $\Rightarrow \iota_{n} c_{\eta}-b_{n, \eta(n)} \in P_{i_{n}}^{\mathbb{C}}$.
[Why? As $\left\langle\bar{a}_{t}: t \in I\right\rangle$ is an indiscernible sequence, there is an automorphism $f=f_{\eta}$ of \mathfrak{C} which maps $\bar{a}_{t_{n}}$ to $\bar{a}_{t_{\eta(n)}}$ for $t \in I$, so $f_{\eta}\left(b_{\eta, n}\right)=b_{n, \eta(n)}$. Hence $c_{\eta}=f_{\eta}(c)$ satisfies $n<\omega \Rightarrow \iota_{n} f(c)-b_{\eta, \eta(n)} \in P_{i_{n}}^{\mathbb{C}}$.]

Now $\left\langle b_{n, \ell}: n, \ell<\omega\right\rangle$ almost satisfies (*) of 1.11. Clause (a) holds by \circledast_{8} and clause (b) holds for all increasing $\eta \in{ }^{\omega} \omega$. By compactness we can find $\left\langle\bar{b}_{n, \ell}^{\prime}: n, \ell<\omega\right\rangle$ satisfying (a) $+(\mathrm{b})$ of (*) of 1.11.
[Why? Let $\Gamma=\left\{P_{i_{n}}\left(\iota_{n} x_{\eta}-y_{n, \eta(n)}\right): \eta \in^{\omega} \omega, n<\omega\right\} \cup\left\{\neg P_{i_{n}}\left(\iota_{n} x_{n, \ell_{1}}-\iota_{n} x_{n, \ell_{2}}\right)\right.$: $\left.n<\omega, \ell_{1}<\ell_{2}<\omega\right\}$. If Γ is satisfied in \mathfrak{C} we are done, otherwise there is a finite inconsistent $\Gamma^{\prime} \subseteq \Gamma$. Let n_{*} be such that: if $y_{n, \ell}$ appear in Γ^{\prime} then $n, \ell<n_{*}$. But the assignment $y_{n, \ell} \mapsto b_{n n_{*}+\ell}$ for $n<n_{*}, \ell<n_{*}$ exemplified that Γ^{\prime} is realized, so we have proved half of the claim. The other direction should be clear, too.]
(2) The first assertion (on T) holds by part (1); the second holds as the set of terms $\{0,1,2, \ldots, n-1\}$ is provably a set of representatives for \mathbb{Z} / P_{n} which is finite. $\mathbf{】}_{1.11}$
1.13. Example: $\operatorname{Th}(M)$ is not strongly stable when M satisfies the following:
(a) it has universe ${ }^{\omega} \mathbb{Q}$
(b) it is an abelian group as a power of $(\mathbb{Q},+)$,
(c) it $P_{n}^{M}=\{f \in M: f(n)=0\}$, a subgroup.

We now consider the p-adic fields and more generally valued fields.
1.14. Definition: (1) We define a valued field M as one in the Denef-Pas language, i.e., a model M such that:
(a) the elements of M are of three sorts:
(α) the field P_{0}^{M} which (as usual) we call K^{M}, so $K=K^{M}$ is the field of M and has universe P_{0}^{M}, so we have appropriate individual constants (for 0,1), and the field operations (including the inverse which is partial),
(β) the residue field P_{1}^{M} which (as usual) is called k^{M}, so $k=k^{M}$ is a field with universe P_{1}^{M}, so with the appropriate 0,1 and field operations,
(γ) the valuation ordered abelian group P_{2}^{M} which (as usual) we call Γ^{M}, so $\Gamma=\Gamma^{M}$ is an ordered abelian group with universe P_{2}^{M}, so with 0 , addition, subtraction and the order;
(b) the functions (and individual constants) of K^{M}, k^{M}, Γ^{M} and the order of Γ^{N} (actually mentioned in clause (a));
(c) $\operatorname{val}^{M}: K^{M} \rightarrow \Gamma^{M}$, the valuation;
(d) $\mathrm{ac}^{M}: K^{M} \rightarrow k^{M}$, the function giving the "leading coefficient" (when, as in natural cases, the members of K are power series);
(e) of course, satisfying the sentences saying that the following hold:
$(\alpha) \Gamma^{M}$ is an ordered abelian group,
$(\beta) k$ is a field,
$(\gamma) K$ is a field,
(δ) val,ac satisfies the natural demands.
(1A) Above we replace "language" by ω-language when: in clause (b), i.e., (a) $(\gamma), \Gamma^{M}$ has 1_{Γ} (the minimal positive elements) and we replace (d) by

$$
\begin{aligned}
& (d)_{\bar{\omega}}^{-} \operatorname{ac}_{n}^{M}: K^{M} \rightarrow k^{M} \text { satisfies: } \bigwedge_{\ell<n} \operatorname{ac}_{\ell}^{M}(x)=\operatorname{ac}_{k}^{M}(y) \Rightarrow \operatorname{val}^{M}(x-y)> \\
& \quad \operatorname{val}^{m}(x)+n
\end{aligned}
$$

(2) We say that such M (or $\operatorname{Th}(M)$) has elimination of the field quantifier when: every first order formula (in the language of $\operatorname{Th}(M)$) is equivalent to a Boolean combination of atomic formulas, formulas about k^{M} (i.e., all variable, free and bounded vary on P_{1}^{M}) and formulas about Γ^{M}; note this definition requires clause (d) in part (1).

The following is well known (on 1.15 and 1.16 see, e.g., [Pa90], [CLR06]).
1.15. Claim: (1) Assume Γ is a divisible ordered abelian group and k is a perfect field of characteristic zero. Let K be the field of power series for (Γ, k), i.e., $\{f: f \in \Gamma k$ and $\operatorname{supp}(f)$ is well ordered $\}$ where $\operatorname{supp}(f)=\left\{s \in \Gamma: f(s) \neq 0_{k}\right\}$. Then the model defined by (K, Γ, k) has elimination of the field quantifiers.
(2) For p prime, we can consider the p-adic field as a valued field in the Denef-Pas ω-language and its first order theory has elmination of the field quantifiers (this version of the p-adics and the original one are (first-order) biinterpretable; note that the field k here is finite and formulas speaking on Γ which is the ordered abelian group \mathbb{Z} are well understood).

We will actually be interested only in valuation fields M with elimination of the field quantifiers. The following is well known.
1.16. Claim: Assume $\mathfrak{C}=\mathfrak{C}_{T}$ is a (monster, i.e., quite saturated) valued field in the Denef-Pas language (or in the ω-language) with elimination of the field quantifiers. If $M \prec \mathfrak{C}$ then:
(a) it satisfies the cellular decomposition of Denef which implies ${ }^{3}$: if $p \in$ $\mathbf{S}^{1}(M)$ and $P_{0}(x) \in p$ then p is equivalent to $p^{[*]}:=\bigcup\left\{p_{c}^{[*]}: c \in P_{0}^{M}\right\}$ where $p_{c}^{[*]}=p_{c}^{[*, 1]} \cup p_{c}^{[*, 2]}$ and $p_{c}^{[*, 1]}=\{\varphi(\operatorname{val}(x-c), \bar{d}) \in p: \varphi(x, \bar{y})$ is a formula speaking on Γ^{M} only so $\left.\bar{d} \subseteq \Gamma^{M}, c \in P_{0}^{M}\right\}$ and $p_{c}^{[*, 2]}=$ $\left\{\varphi(\operatorname{ac}(x-c), \bar{d}) \in p: \varphi\right.$ speaks on k^{M} only $\}$, but for the ω-language we should allow $\varphi\left(\operatorname{ac}_{0}(x-c), \ldots, \operatorname{ac}_{n}(x-c), \bar{d}\right)$ for some $n<\omega$;
(b) if $p \in \mathbf{S}^{1}(M), P_{0}(x) \in p$ and $c_{1}, c_{2} \in P_{0}^{M}$ and $\operatorname{val}^{M}\left(x-c_{1}\right)<^{\Gamma^{M}} \operatorname{val}^{M}\left(x-c_{2}\right)$ belongs to $p(x)$ then $p_{c_{2}}^{[*]}(x) \vdash p_{c_{1}}^{[*]}(x)$ and even $\left\{\operatorname{val}\left(x-c_{1}\right)<\operatorname{val}\left(x-c_{2}\right)\right\} \vdash$ $p_{c_{1}}^{[*]}(x)$;
(c) for $\bar{c} \in{ }^{\omega>}\left(k^{M}\right)$, the type $\operatorname{tp}\left(\bar{c}, \emptyset, k^{M}\right)$ determines $\operatorname{tp}(\bar{c}, \emptyset, M)$, and similarly for Γ^{M}.
1.17. Claim:(1) The first order theory T of the p-adic field is strongly dependent.
(2) For the theory T of a valued field \mathbb{F} which has elimination of the field quantifier we have: T is strongly dependent iff the theory of the valued ordered group and the theory of the residue fields of \mathbb{F} are strongly dependent.
(3) Like (2), when we use the ω-language and we assume k^{M} is finite.
1.18. Remark: (1) In 1.17 we really get that T is strongly dependent over the residue field + the valuation ordered abelian group.
(2) We had asked in a preliminary version of [Sh:783, §3]: show that the theory of the p-adic field is strongly dependent. Udi Hrushovski has noted that the criterion $(\mathrm{St})_{2}$ presented there (and repeated in 0.1 here from $[\mathrm{Sh}: 783$, $3.10=$ ss.6]) apply, so T is not strongly ${ }^{2}$ dependent. Namely, take the following equivalence relation E on $\mathbb{Z}_{p}: \operatorname{val}(x-y) \geq \operatorname{val}(c)$, where c is some fixed element with infinite valuation. Given x, the map $y \mapsto(x+c y)$ is a bijection between \mathbb{Z}_{p} and the class x / E.
(3) By [Sh:783, §3], the theory of real closed fields, i.e., $\operatorname{Th}(\mathbb{R})$ is strongly dependent. Onshuus shows that also the theory of the field of the reals is not

[^3]strongly ${ }^{2}$ dependent (e.g., though Claim [Sh:783, $3.10=$ ss. 6] does not apply but its proof works using pairwise, not too near \bar{b} 's, in general just an uncountable set of \bar{b} 's).
(4) See more in $\S 5$.

Of course,
1.19. Observation: (1) For a field $K, \operatorname{Th}(K)$ being strongly dependent is preserved by finite extensions in the field theoretic sense by $1.4(2)$.
(2) In 1.17, if we use the ω-language and k^{N} is infinite, the theory is not strongly dependent.

Proof. (1) Recall that by $1.11(2)$, the theory of the valued group (which is an ordered abelian group) is strongly dependent, and this holds trivially for the residue field being finite. So by $1.15(2)$ we can apply part (3).
(2) We consider the models of T as having three sorts: P_{0}^{M} the field, P_{1}^{M} the ordered abelian group (like value of valuations) and P_{2}^{M} the residue field.

Let
\square_{1} (a) I be an infinite linear order, without loss of generality complete and dense (and with no extremal members),
(b) $\left\langle\bar{a}_{t}: t \in I\right\rangle$ be an indiscernible sequence, $\bar{a}_{t} \in{ }^{\alpha} \mathfrak{C}$ and let $c \in \mathfrak{C}$ (a singleton!),
and we shall prove
\sqcup_{2} for some finite $J \subseteq I$ we have: if $s, t \in I \backslash J$ and $(\forall r \in J)\left(r<_{I} s \equiv r<_{I} t\right)$, then \bar{a}_{s}, \bar{a}_{t} realizes the same type over $\{c\}$.
This suffices by 2.1 and, as there, by $2.1(4)$ without loss of generality
$\square_{3} \bar{a}_{t}=\left\langle a_{t, i}: i<\alpha\right\rangle$ list the elements of an elementary submodel M_{t} of $\mathfrak{C}=\mathfrak{C}_{T}$ (we may assume M_{t} is \aleph_{1}-saturated; alternatively we could have assumed that it is quite complete).
It easily follows that it suffices to prove (by the L.S.T. argument, but not used)
\square_{2}^{\prime} for every countable $u \subseteq \alpha$ there is a finite $J \subseteq I$ which is O.K. for $\left\langle\bar{a}_{t} \upharpoonright u: t \in I\right\rangle$.

Let $\mathbf{f}_{t, s}$ be the mapping $a_{s, i} \mapsto a_{t, i}$ for $i<\alpha$; clearly it is an isomorphism from M_{s} onto M_{s}.

Now
$\square_{4} p_{t}=\operatorname{tp}\left(c, M_{t}\right)$, so $\left(p_{t}\right)_{a}^{[*]}$ for $a \in M_{t}$ is well defined in 1.16(a).

The case $P_{2}(x) \in \bigcap_{t} p_{t}$ is easy and the case $P_{1}(x) \in \bigcap_{t} p_{t}$ is easy, too, by an assumption (and clause (c) of 1.16), so we can assume $P_{0}(x) \in \bigcap_{t} p_{t}(x)$.

Let $\mathscr{U}=\left\{i<\alpha: a_{s, i} \in P_{0}^{\mathcal{C}}\right.$ for every (\equiv some) $\left.s \in I\right\}$.
Now for every $i \in \mathscr{U}$:
$(*)_{i}^{1}$ The function $(s, t) \mapsto \operatorname{val}^{\mathfrak{C}}\left(a_{t, i}-a_{s, i}\right)$ for $s<_{I} t$ satisfies one of the following:

CASE (a) ${ }_{i}^{1}$: it is constant.
CASE (b) ${ }_{i}^{1}$: it depends just on s and is a strictly monotonic (increasing, by $<_{\Gamma}$) function of s.

CASE (c) ${ }_{i}^{1}$: it depends just on t and is a strictly monotonic (decreasing, by $<_{\Gamma}$) function of t.
[Why? This follows by inspection or see the proof of $(*)_{i, j}^{2}$ below.]
For $\ell=-1,0,1$ let $\mathscr{U}_{\ell}:=\left\{i \in \mathscr{U}:\right.$ if $\ell=0,1,-1$ then case $(\mathrm{a})_{i}^{1},(\mathrm{~b})_{i}^{1},(\mathrm{c})_{i}^{1}$ respectively of $(*)_{i}^{1}$ holds $\}$, so $\left\langle\mathscr{U}_{-1}, \mathscr{U}_{0}, \mathscr{U}_{1}\right\rangle$ is a partition of \mathscr{U}.

For $i, j \in \mathscr{U}_{1}$ we shall prove more:
$(*)_{i, j}^{2}$ We have $i, j \in \mathscr{U}_{1}$, and the function $(s, t) \mapsto \operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s, i}\right)$ for $s<_{I} t$ satisfies one of the following:

CASE $(\mathrm{a})_{i, j}^{2}: \operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s, i}\right)$ is constant.
CASE (b) $)_{i, j}^{2}$: $\operatorname{val}^{\mathfrak{c}}\left(a_{t, j}-a_{s, i}\right)$ depends only on s and is a monotonic (increasing) function of s and is equal to $\operatorname{val}^{\mathfrak{C}}\left(a_{s_{1}, i}-a_{s, i}\right)$ when $s<_{I} s_{1}$.

CASE $(\mathrm{c})_{i, j}^{2}: \operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s, i}\right)$ depends only on t and is a monotonic (increasing) function of t and is equal to $\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{t_{1}, j}\right)$ when $t<_{I} t_{1}$.
[Why does $(*)_{i, j}^{2}$ hold? In this case we give a full check.
First, assume: for some (equivalently every) $t \in I$ the sequence $\left\langle\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s, i}\right)\right.$: s satisfies $\left.s<_{I} t\right\rangle$ is $<_{\Gamma}$-decreasing with s recalling that we have assumed I is a linear order with neither first nor last element. Choose $s_{1}<_{I} s_{2}<_{I} t$, so by the present assumption we have $\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s_{2}, i}\right)<_{\Gamma} \quad \operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s_{1}, i}\right)$, hence $\operatorname{val}^{\mathfrak{C}}\left(\left(a_{t, j}-a_{s_{2}, i}\right)-\left(a_{t, j}-a_{s_{1}, i}\right)\right)=\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s_{2}, i}\right)$, which means $\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s_{2}, i}\right)=\operatorname{val}^{\mathfrak{C}}\left(-\left(a_{s_{2}, i}-a_{s_{1}, i}\right)\right)=\operatorname{val}^{\mathfrak{C}}\left(a_{s_{2}, i}-a_{s_{1}, i}\right)$. So in the right side t does not appear, in the left side s_{1} does not appear, hence by the equality the left side, $\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s_{2}, i}\right)$, does not depend on t and the right side, $\operatorname{val}^{\mathfrak{C}}\left(a_{s_{2}, i}-a_{s_{1}, i}\right)$, does not depend on s_{1}, but as $i \in \mathscr{U}_{1}$ it does not depend on s_{2}. Together, by the indiscernibility for $s<_{I} t$ we have $\operatorname{val}^{\mathscr{C}}\left(a_{t, i}-a_{s, i}\right)$ is constant, i.e., case $(a)_{i, j}^{2}$ holds. So we can from now on assume: for each $t \in I$
the sequence $\left\langle\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s, i}\right): s\right.$ satisfies $\left.s<_{I} t\right\rangle$ is constant or for each $t \in I$ it is $<_{\Gamma}$-increasing with s.

Second, assume: for some (equivalently every) $s \in I$ the sequence $\left\langle\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s, i}\right): t\right.$ satisfies $\left.s<_{I} t\right\rangle$ is $<_{\Gamma}$-decreasing with t. As above in the "first" situation, we can show that case $(a)_{i, j}^{2}$ holds. So from now on we can assume that for every $s \in I$ the sequence $\left\langle\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s, i}\right): t\right.$ satisfies $\left.s<_{I} t\right\rangle$ is constant or for every $s \in I$ the sequence is $<_{\Gamma}$-increasing with s.

Third, assume: for some (equivalently every) $t \in I$ the sequence $\left\langle\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s, i}\right): s\right.$ satisfies $\left.s<_{I} t\right\rangle$ is constant. This implies that $s<_{I} t \Rightarrow$ $\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s, i}\right)=e_{t}$ for some $\bar{e}=\left\langle e_{t}: t \in I\right\rangle$. If for some (equivalently every) $s \in I$ the sequence $\left\langle\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s, i}\right): t\right.$ satisfies $\left.s<_{I} t\right\rangle$ is constant, then clearly case $(a)_{i, j}^{2}$ holds, so we can assume this fails; so by the end of the "second" situation this sequence is $<_{\Gamma}$-increasing, hence $\left\langle e_{t}: t \in I\right\rangle$ is $<_{\Gamma}$-increasing. So most of the requirements in case $(c)_{i, j}^{2}$ hold; still we have to show that $t<_{I} t_{1} \Rightarrow \operatorname{val}\left(a_{t, j}-a_{t_{1}, j}\right)=e_{t}$.

Let $s<{ }_{I} t<_{I} t_{1}$. We know that $e_{t}<_{\Gamma} e_{t_{1}}$, which means that $\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s, i}\right)<_{\Gamma}$ $\operatorname{val}^{\mathfrak{C}}\left(a_{t_{1}, j}-a_{s, i}\right)$. This implies that $\operatorname{val}^{\mathfrak{C}}\left(\left(a_{t, j}-a_{s, i}\right)-\left(a_{t_{1}, j}-a_{s, i}\right)\right)=\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s, i}\right)$, which means that $\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{t_{1}, j}\right)=\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s, i}\right)=e_{t}$ as required; so case $(c)_{i, j}^{2}$ holds and we are done (if the "third" situation holds).

Fourth, assume that for some (equivalently every) $s \in I$ the sequence $\left\langle\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s, i}\right): t\right.$ satisfies $\left.s<_{I} t\right\rangle$ is constant. Then we proceed as in the "third" situation, getting case $(b)_{i, j}^{2}$ instead of case $(c)_{i, j}^{2}$.

So assume that none of the above occurs. Hence for every (equivalently some) $t \in I$ the sequence $\left\langle\operatorname{val}^{\mathfrak{l}}\left(a_{t, j}-a_{s, i}\right): s\right.$ satisfies $\left.s<_{I} t\right\rangle$ is $<_{\Gamma}$-increasing (with s, by the "first" and "third" situations above), and for every (equivalently some) $s \in I$ the sequence $\left\langle\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s, i}\right): t\right.$ satisfies $\left.s<_{I} t\right\rangle$ is $<_{\Gamma}$-increasing (with t, by the "second" and "fourth" situations above).

Hence we have $s<_{I} t_{1}<_{I} t_{2} \Rightarrow \operatorname{val}^{\mathfrak{C}}\left(a_{t_{1}, j}-a_{s, i}\right)<_{\Gamma} \quad \operatorname{val}^{\mathfrak{C}}\left(a_{t_{2}, j}-a_{s, i}\right) \Rightarrow$ $\operatorname{val}^{\mathfrak{C}}\left(a_{t_{1}, j}-a_{s, i}\right)=\operatorname{val}^{\mathfrak{C}}\left(\left(a_{t_{2}, j}-a_{s, i}\right)-\left(a_{t_{1}, j}-a_{s, i}\right)\right)=\operatorname{val}\left(a_{t_{2}, j}-a_{t_{1}, j}\right)$, hence $\operatorname{val}^{\mathfrak{C}}\left(a_{t_{1}, j}-a_{s, i}\right)$ does not depend on s as s does not appear on the left side; but (see above) it is $<_{\Gamma}$-increasing with s, contradiction. So we have finished proving $(*)_{i, j}^{2}$.]
$(*)_{i}^{3}$ For each $i \in \mathscr{U}_{1}$, for some $t_{i}^{*} \in\{-\infty\} \cup I \cup\{+\infty\}$ we have:
$(\mathrm{a})_{i}^{3} \operatorname{val}^{\mathfrak{C}}\left(c-a_{s, i}\right)=\operatorname{val}^{\mathfrak{C}}\left(a_{t, i}-a_{s, i}\right)$ when $s<_{I} t$ and $s \in I_{<t_{i}^{*}}$,
(b) $)_{i}^{3}\left\langle\operatorname{val}^{\mathfrak{C}}\left(c-a_{s, i}\right): s \in I_{>t_{i}^{*}}\right\rangle$ is constant, and if $r \in I_{>t_{i}^{*}}$ and $s<_{I} t$
are from $I_{>t_{i}^{*}}$ then $\operatorname{val}^{\mathfrak{C}}\left(c-a_{r, i}\right)<_{\Gamma} \operatorname{val}^{\mathfrak{C}}\left(a_{t, i}-a_{s, i}\right)$,
$(\mathrm{c})_{i}^{3} \operatorname{ac}^{\mathfrak{C}}\left(c-a_{s, i}\right)=\operatorname{ac}^{\mathfrak{C}}\left(a_{t, i}-a_{s, i}\right)$ when $s<_{I} t$ and $s \in I_{<t_{i}^{*}}$,
$(\mathrm{d})_{i}^{3}\left\langle\mathrm{ac}^{\mathfrak{C}}\left(c-a_{s, i}\right): s \in I_{>t_{i}^{*}}\right\rangle$ is constant.
[Why? Recall the definition of \mathscr{U}_{1} which appeared just after $(*)_{i}^{1}$, recalling that we are assuming I is a complete linear order; see $\square_{1}(a)$.]
$(*)_{4}$ The set $J_{1}=\left\{t_{i}^{*}: i \in \mathscr{U}_{1}\right\}$ has at most one member in I.
[Why? Otherwise we can find i, j from \mathscr{U}_{1} such that $t_{i}^{*} \neq t_{j}^{*}$ are from I. Now apply $(*)_{i, j}^{2}+(*)_{i}^{3}+(*)_{j}^{3}$.]

So without loss of generality
$(*)_{5} J_{1}$ is empty.
[Why? If not, let $J_{0}=\left\{t_{*}\right\}$ and we can get enough to prove the claim for $I_{<t_{*}}$ and for $I_{>t_{*}}$.]

Now:
\boxplus_{1} If $i \in \mathscr{U}_{1}$ and $t_{i}^{*}=\infty$ then for every $s_{0}<_{I} s_{1}<_{I} s_{2}<_{I} s_{3}$ we have
(a) $\left\{\operatorname{val}^{\mathfrak{C}}\left(x-a_{s_{3}, i}\right)>\operatorname{val}^{\mathfrak{C}}\left(a_{s_{2}, i}-a_{s_{1}, i}\right)\right\} \vdash p_{a_{s_{0}, i}}^{[*]}$ and
(b) c satisfies the formula in the left side; on $p_{a_{s_{0}, j}}^{[*]}$, see \boxtimes_{4}.
[Why? By clause (b) of 1.16 and $(*)_{i}^{3}$ and reflect.]
Hence:
\boxplus_{2} If $\mathscr{W}_{1}=\left\{i \in \mathscr{U}_{1}: t_{i}^{*}=\infty\right\}$ then $\boxtimes_{\mathscr{W}_{1}}$, where for $\mathscr{W} \subseteq \mathscr{U}$ we let:
$\boxtimes_{\mathscr{W}}$ if $s<_{I} t$ then $\boxtimes_{\mathscr{W}}^{s, t}$, where for $\mathscr{U}^{\prime} \subseteq \mathscr{U}$:
$\boxtimes_{\mathscr{U}^{\prime}}^{s, t} \quad \mathscr{U}^{\prime} \subseteq \alpha, s, t \in I$ and $\mathbf{f}_{t, s} \operatorname{maps} \bigcup\left\{p_{a_{s, i}}^{[*]}: i \in \mathscr{U}^{\prime}\right\}$ onto $\bigcup\left\{p_{a_{t, i}}^{[*]}: i \in \mathscr{U}^{\prime}\right\}$.
[Why? Should be clear as $J_{1}=\emptyset$ and the indiscernibility of $\left\langle\bar{a}_{t}: t \in I\right\rangle$ and \boxplus_{1}.]
\boxplus_{3} Assume that: we have $i \in \mathscr{U}_{1}$ satisfying $t_{i}^{*}=-\infty$, and $j \in \mathscr{U}_{1}$ is such that $t_{j}^{*}=-\infty$ and $s, t \in I \Rightarrow \operatorname{val}^{\mathfrak{c}}\left(c-a_{t, j}\right)>\operatorname{val}^{\mathfrak{c}}\left(c-a_{s, i}\right)$. Then:
\odot_{3} if $s_{0}<_{I} s_{1}<_{I} s_{2}$, then $\left\{\operatorname{val}^{\mathfrak{C}}\left(x-a_{s_{2}, j}\right)>\operatorname{val}^{\mathfrak{C}}\left\{\left(c-a_{s_{1}, i}\right)\right\} \vdash p_{a_{s_{0}, i}}^{[*]}\right.$ and the formula on the left is satisfied by c.
[Why? Should be clear.]
Hence:
\boxplus_{4} If for every $i \in \mathcal{U}_{1}$ satisfying $t_{i}^{*}=-\infty$ there is j as in the assumption of \boxplus_{3} then $\boxtimes_{\mathscr{W}_{2}}$ holds for $\mathscr{W}_{2}=\left\{i \in \mathscr{U}_{1}: t_{i}^{*}=-\infty\right\}$.
[Why? As in \boxplus_{2}.]
Consider the assumption:
\boxplus_{5} The hypothesis of \boxplus_{4} fails and let $j(*) \in \mathscr{U}_{1}$ exemplify this (so, in particular, $\left.t_{j(*)}^{*}=-\infty\right)$. Let $\mathscr{W}_{3}=\left\{i \in \mathscr{U}_{1}: t_{i}^{*}=-\infty\right.$ and $\operatorname{val}^{\mathfrak{C}}\left(c-a_{s, j(*)}\right)>$ $\operatorname{val}^{\mathfrak{C}}\left(c-a_{t, i}\right)$ for any $\left.s, t \in I\right\}$ and $\mathscr{W}_{4}=\left\{i \in \mathscr{U}_{1}: t_{i}^{*}=-\infty\right.$ and $\left.i \notin \mathscr{W}_{3}\right\}$, so $j(*) \in \mathscr{W}_{4}$
\boxplus_{6} If \boxplus_{5} then $\boxtimes_{\mathscr{W}_{3}}$.
[Why? Similarly to the proof of \boxplus_{2}.]
\boxplus_{7} If \boxplus_{5} then:
(a) $\left\langle\operatorname{val}^{\mathfrak{C}}\left(c-a_{s, j}\right): s \in I\right.$ and $\left.j \in \mathscr{W}_{4}\right\rangle$ is constant,
(b) $\operatorname{val}^{\mathfrak{C}}\left(c-a_{r, j(*)}\right)<_{\Gamma} \quad \operatorname{val}^{\mathfrak{C}}\left(a_{t, i}-a_{s, i}\right)$, hence $\left(p_{s}\right)_{a_{s, j(*)}}^{[*]} \vdash\left(p_{s}\right)_{a_{s, i}}^{[*]}$ when $i \in \mathscr{W}_{4}$ and $s<_{I} t \wedge r \in I$,
(c) for some finite $J_{1} \subseteq I$ we have: if $s, t \in J \backslash J_{1}$ and $\left(\forall r \in J_{1}\right)\left(s<_{I} s \equiv\right.$ $\left.\left.r<_{I} t\right)\right)$ then $\operatorname{tp}\left(\operatorname{val}^{\mathfrak{C}}\left(c-a_{s, j(*)}\right), M_{s}\right)=\mathbf{f}_{s, t}\left(\operatorname{tp}\left(\operatorname{val}^{\mathfrak{C}}\left(c-a_{t, j(*)}\right), M_{t}\right)\right)$,
(d) for some finite $J_{2} \subseteq I$ we have: if $s, t \in I \backslash J_{2}$ and $\left(\forall r \in J_{r}\right)\left(r<_{I} s \equiv\right.$ $\left.r<_{I} t\right)$ then $\operatorname{tp}\left(\operatorname{ac}^{\mathfrak{C}}\left(c-a_{s, j(*)}\right), M_{s}\right)=\mathbf{f}_{s, t}\left(\operatorname{tp}\left(\operatorname{ac}^{\mathfrak{C}}\left(c-a_{t, j(*)}\right), M_{t}\right)\right.$,
(e) for some finite $J_{3} \subseteq I$ we have: if $s, t \in I \backslash J_{3}$ and $(\forall r \in J)\left(r<_{I}\right.$ $s \equiv r<_{I} t$, then $\boxtimes_{\mathscr{W}_{4}}^{s, t}$.
[Why? Let $i \in \mathscr{W}_{4}$; so $i \in \mathscr{W}_{2}$, hence $i \in \mathscr{U}_{1}$, which means that case (b) ${ }_{i}^{1}$ of $(*)_{i}^{1}$ holds, so for each $t \in I$ the sequence $\left\langle\operatorname{val}^{\mathfrak{l}}\left(a_{t, i}-a_{s, i}\right): s\right.$ satisfies $\left.s<_{I} t\right\rangle$ is $<_{\Gamma}$-increasing. Also, as $i \in \mathscr{W}_{2}$ clearly $t_{i}^{*}=-\infty$, hence by $(*)_{i}^{3}(\mathrm{~b})_{i}^{3}$ we have $\left\langle\operatorname{val}^{\mathfrak{C}}\left(c-a_{s, i}\right): s \in I\right\rangle$ is constant; call it e_{i}. All this applies to $j(*)$, too. Now as $i \in \mathscr{W}_{4}$, we know that for some $s_{1}, t_{1} \in I$ we have $\operatorname{val}^{\mathfrak{C}}\left(c-a_{s_{1}, j(*)}\right) \leq_{\Gamma} \operatorname{val}^{\mathfrak{C}}\left(c-a_{t_{1}, i}\right)$, i.e., $e_{j(*)} \leq_{\Gamma} e_{i}$. By the choice of $j(*)$, for every $j \in \mathscr{U}_{1}$ such that $t_{j}^{*}=-\infty$, i.e., for every $j \in \mathscr{W}_{2}$ for some (equivalently every) $s, t \in I$, we have $\operatorname{val}^{\mathfrak{c}}\left(c-a_{s, j}\right) \leq$ $\operatorname{val}^{\mathfrak{C}}\left(c-a_{t, j(*)}\right)$. In particular, this holds for $j=i$, hence for some $s_{2}, t_{2} \in I$ we have $\operatorname{val}^{\mathfrak{C}}\left(c-a_{s_{2}, i}\right) \leq \operatorname{val}^{\mathfrak{C}}\left(c-a_{t_{2}, j(*)}\right)$, i.e., $e_{i} \leq_{\Gamma} e_{j(*)}$, so together with the previous sentence, $e_{i}=e_{j(*)}$, so clause (a) of \boxplus_{7} holds. Also, the first phrase in clause (b) is easy (using $(*)_{i}^{3}(\mathrm{~b})_{i}^{3}$, second phrase); the second phrase of (b) follows because $e_{i}=e_{j(*)}$. For clause (c) note that it means $\operatorname{tp}\left(e_{j(*)}, M_{s}\right)=\mathbf{f}_{s, t}\left(\operatorname{tp}\left(e_{j(*)}, M_{t}\right)\right)$ is strongly stable; for clause (d) note that $(*)_{i}^{3}(d)_{i}^{3}$ and $\operatorname{Th}\left(k^{M}\right)$ is strongly dependent.

Lastly, for clause (e) combine the earlier clauses.]
\boxplus_{8} For some finite $J \subseteq I$, if $s, t \in I \backslash J$ and $(\forall r \in J)\left(r<_{I} s \equiv r<_{I} t\right)$ then $\boxtimes_{\mathscr{U}_{1}}^{s, t}$.
[Why? If the hypothesis of \boxplus_{3} holds let $J=\emptyset$, and if it fails (so $\boxplus_{5}, \boxplus_{6}, \boxplus_{7}$ apply) let J be as in $\boxplus_{7}(e)$, so it partitions I to finitely many intervals. It is enough to prove $\boxtimes_{\mathscr{W}}^{s, t}$ for several $\mathscr{W} \subseteq \mathscr{U}_{1}$ which covers \mathscr{U}_{1}. Now by \boxplus_{2} this holds for $\mathscr{W}_{1}=\left\{i \in \mathscr{U}_{1}: t_{i}^{*}=\infty\right\}$. If the assumption of \boxplus_{3} holds we get the same for \mathscr{W}_{2} by \boxplus_{4}, and if it fails we get it for \mathscr{W}_{3} by \boxplus_{6} and for \mathscr{W}_{4} by $\boxplus_{7}(e)$ and the choice of J. Using $\mathscr{U}_{1}=\mathscr{W}_{1} \cup \mathscr{W}_{2}, \mathscr{W}_{2}=\mathscr{W}_{3} \cup \mathscr{W}_{4}$ we are done.]
As we can replace I by its inverse:
\boxplus_{9} For some finite $J \subseteq I$, if $s, t \in I \backslash J$ and $(\forall r)\left(r<_{I} s \equiv r<_{I} t\right)$ then $\boxtimes_{\mathscr{U}_{-1}}^{s, t}$.
So we are left with \mathscr{U}_{0}. For $i \in \mathscr{U}_{0}$ let $e_{0, i}=\operatorname{val}\left(a_{t, i}-a_{s, i}\right)$ for $s<_{I} t$, well defined by the definition of \mathscr{U}_{0}. Let $\mathscr{W}_{5}:=\left\{i \in \mathscr{U}_{0}\right.$: for every (equivalently some) $\left.s \neq t \in I, \operatorname{val}^{\mathfrak{C}}\left(c-a_{s, i}\right)<\operatorname{val}\left(a_{t, i}-a_{s, i}\right)\right\}$ and let $\mathscr{W}_{6}:=\mathscr{U}_{0} \backslash \mathscr{W}_{5}$.

Obviously:
\boxplus_{10} We have $\boxtimes_{\mathscr{W}_{5}}$.
Easily:
\boxplus_{11} If $i, j \in \mathscr{W}_{6}$ then case $(\mathrm{a})_{i, j}^{2}$ of $(*)_{i, j}^{2}$ holds.
[Why? By $(*)_{i, j}^{2}$ and as $i, j \in \mathscr{W}_{6} \Rightarrow(*)_{i}^{1}(a)_{i}^{1}+(*)_{j}^{1}(a)_{j}^{i}$.]
\boxplus_{12} If $i, j \in \mathscr{W}_{6}$ and $s \neq t \in I$, then $\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s, i}\right)=e_{0, i}$.
[Why? As $\mathscr{W}_{6}=\mathscr{U}_{0} \backslash \mathscr{W}_{5}$.]
Hence:
$\boxplus_{13}\left\langle e_{0, i}: i \in \mathscr{W}_{6}\right\rangle$ is constant. Call the constant value e_{*}, so $s \neq t \in$ $I \wedge i, j \in \mathscr{W}_{6} \Rightarrow \operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{s, i}\right)=e_{*}$.
Easily:
\boxplus_{14} For every $i \in \mathscr{W}_{6}$ the set $I_{i, c}:=\left\{s \in I: \operatorname{val}^{\mathfrak{C}}\left(c-a_{s, i}\right)>e_{*}\right\}$ has at most one member.
\boxplus_{15} Let $\mathscr{W}_{7}:=\left\{i \in \mathscr{W}_{6}: I_{i, c} \neq \emptyset\right\}$ and let $\left\{t_{i}^{* *}\right\}=I_{i, c}$ for $i \in \mathscr{W}_{7}$.
\boxplus_{16} If $i, j \in \mathscr{W}_{7}$ then $t_{i}^{* *}=t_{j}^{* *}$.
[Why? Otherwise without loss of generality $t_{i}^{* *}<t_{j}^{* *}$ and let $t \in I$ be such that $t_{i}^{* *}<t \wedge t_{j}^{* *}<t$. Now $\operatorname{val}^{\mathfrak{C}}\left(c-a_{t_{i}^{* *}, j}\right)>\operatorname{val}^{\mathfrak{C}}\left(a_{t, i}-a_{t_{i}^{* *}, i}\right)=e_{*}$ and $\operatorname{val}^{\mathfrak{C}}\left(c-a_{t_{j}^{* *}, j}\right)>\operatorname{val}^{\mathfrak{C}}\left(a_{t, j}-a_{t_{j}^{* *}, j}\right)=e_{*}$, hence $e_{*}<\operatorname{val}^{\mathfrak{C}}\left(\left(c-a_{t_{i}^{* *}, i}\right)-(c-\right.$ $\left.\left.a_{t_{j}^{* *}, j}\right)\right)=\operatorname{val}^{\mathfrak{C}}\left(a_{t_{j}^{* *}, j}-a_{t_{i}^{* *}, i}\right)$; but the last one is e_{*} by \boxplus_{12}, contradiction.]
\boxplus_{17} Without loss of generality $\mathscr{W}_{7}=\emptyset$.
[Why? E.g., as otherwise we can prove separately for $I_{<t_{i}^{* *}}$ and for $I_{>t_{i}^{* *}}$ for any $i \in \mathscr{W}_{7}$.]
\boxplus_{18} If $i, j \in \mathscr{W}_{6}$ and $s \neq t \in I$ then $\operatorname{ac}^{\mathfrak{C}}\left(c-a_{t, j}\right)-\operatorname{ac}^{\mathfrak{C}}\left(c-a_{s, i}\right)=\operatorname{ac}^{\mathfrak{C}}\left(a_{s, i}-a_{t, j}\right)$. [Why? As $\operatorname{val}^{\mathfrak{C}}\left(c-a_{t, j}\right), \operatorname{val}^{\mathfrak{C}}\left(c-a_{s, i}\right)$ and $\operatorname{val}^{\mathfrak{C}}\left(c_{s, i}-\left(c_{t, j}\right)\right.$ are all equal to e_{*}.]

The rest should be clear.
(3) For the ω-language the proof is similar. $\square_{1.17}$

2. Cutting indiscernible sequence and strongly ${ }^{+}$dependent

2.1. Observation: (1) The following conditions on T are equivalent, for $\alpha \geq \omega$.
(a) T is strongly dependent, i.e., $\aleph_{0}=\kappa_{\text {ict }}(T)$.
(b) $)_{\alpha}$ If I is an infinite linear order, $\bar{a}_{t} \in{ }^{\alpha} \mathfrak{C}$ for $t \in I, \mathbf{I}=\left\langle\bar{a}_{t}: t \in I\right\rangle$ is an indiscernible sequence and $C \subseteq \mathfrak{C}$ is finite, then there is a convex equivalence relation E on I with finitely many equivalence classes such that $s E t \Rightarrow \operatorname{tp}\left(\bar{a}_{s}, C\right)=\operatorname{tp}\left(\bar{a}_{t}, C\right)$.
$(\mathrm{c})_{\alpha}$ If $\mathbf{I}=\left\langle\bar{a}_{t}: t \in I\right\rangle$ is as above and $C \subseteq \mathfrak{C}$ is finite, then there is a convex equivalence relation E on I with finitely many equivalence classes such that: if $s \in I$ then $\left\langle\bar{a}_{t}: t \in(s / E)\right\rangle$ is an indiscernible sequence over C.
(2) We can add to the list in (1)
$(\mathrm{b})_{\alpha}^{\prime}$ like $(\mathrm{b})_{\alpha}$, but C a singleton;
$(\mathrm{c})_{\alpha}^{\prime}$ like $(\mathrm{c})_{\alpha}$, but the set C is a singleton.
(3) We can, in parts (1) and (2), clauses $(\mathrm{c})_{\alpha},(\mathrm{b})_{\alpha},(\mathrm{b})_{\alpha}^{\prime},(\mathrm{c})_{\alpha}^{\prime}$, restrict ourselves to well order I.
(4) In parts (1), (2) and (3), given $\kappa=\kappa^{<\theta}, \theta>|T|$, in clauses (b) $)_{\kappa},(\mathrm{c})_{\kappa}$ and their parallels, we can add that " \bar{a}_{α} is the universe of a θ-saturated model"; moreover, we allow \mathbf{I} to be:
(i) $\mathbf{I}=\left\langle\bar{a}_{u}: u \in[I]^{<\aleph_{0}}\right\rangle$ is indiscernible over A (see Definition 5.45(2)),
(ii) $\bar{a}_{\{t\}}=\bar{a}_{t}$,
(iii) each \bar{a}_{t} is the universe of a θ-saturated model,
(iv) for some infinite linear orders I_{-1}, I_{1} and some $\mathbf{I}^{\prime}=\left\langle\bar{a}_{u}^{\prime}: u \in\left[I_{-1}+I+I_{1}\right]^{<\aleph_{0}}\right\rangle$ indiscernible over $A=\operatorname{Rang}\left(\bar{a}_{\emptyset}\right)$, we have:
(α) $u \in[I]^{<\aleph_{0}} \Rightarrow \bar{a}_{u}^{\prime}=\bar{a}_{u}$,
(β) for every $B \subseteq A$ of cardinality $<\theta$, every subtype of the type of $\left\langle\bar{a}_{u}: u \in\left[I_{-1}+I_{1}\right]^{<\aleph_{0}}\right\rangle$ over $\left\langle\bar{a}_{u}: u \in[I]^{<\aleph_{0}}\right\rangle$ of cardinality $<\theta$ is realized in A (we can use only A and $\left\langle\bar{a}_{t}: t \in I\right\rangle$, of course).

Remark: (1) Note that 2.8 below says more for the cases $\kappa_{\text {ict }}(T)>\aleph_{0}$, so there is no point in dealing with it here.
(2) We can, in 2.1, add in $(\mathrm{b})_{\alpha},(\mathrm{c})_{\alpha},\left(\mathrm{b}_{\alpha}\right)^{\prime},\left(\mathrm{c}_{\alpha}\right)^{\prime}$ "over a fixed A " by $1.4(3)$.
(3) By 1.10 we can translate this to the case of a family of indiscernible sequences.

Proof. (1) Let $\kappa=\omega$ (to serve in the proof of a subsequence observation).
$\neg(\mathrm{a}) \Rightarrow \neg(\mathrm{b})_{\alpha}$
Let $\lambda>\aleph_{0}$; as in the proof of 1.5 , because we are assuming \neg (a), there are $\bar{\varphi}=\left\langle\varphi_{i}\left(\bar{x}, \bar{y}_{i}\right): i<\kappa\right\rangle$ and $\left\langle\bar{a}_{\alpha}^{i}: i<\omega, \alpha<\lambda\right\rangle$ witnessing $\circledast_{\bar{\varphi}}^{2}$ from there.

For $\alpha<\lambda$ let $\bar{a}_{\alpha}^{*} \in \mathfrak{C}$ be the concatenation of $\left\langle\bar{a}_{\alpha}^{i}: i<\kappa\right\rangle$, possibly with repetitions, so it has length κ.

Let $\eta=\langle\omega n: n<\omega\rangle$ and \bar{b}^{*} realizes $\left\{\varphi_{n}\left(x, \bar{a}_{\omega n}^{n}\right) \wedge \neg \varphi_{n}\left(x, \bar{a}_{\omega n+1}^{n}\right): n<\omega\right\}$.
So for each $n, \operatorname{tp}\left(\bar{a}_{\omega n}^{n}, \bar{b}^{*}\right) \neq \operatorname{tp}\left(a_{\omega n+1}^{n}, \bar{b}^{*}\right)$, hence $\operatorname{tp}\left(\bar{a}_{\omega n}^{*}, \bar{b}^{*}\right) \neq \operatorname{tp}\left(\bar{a}_{\omega n+1}^{*}, \bar{b}^{*}\right)$. So any convex equivalence relation on λ as required (i.e., such that $\alpha E \beta \Rightarrow$ $\left.\operatorname{tp}\left(\bar{a}_{\alpha}^{*}, \bar{b}^{*}\right)=\operatorname{tp}\left(\bar{a}_{\beta}^{*}, \bar{b}^{*}\right)\right)$ satisfies $n<\omega \Rightarrow \neg(\omega n) E(\omega n+1)$; it certainly shows $\neg(\mathrm{b})_{\alpha}$.

$$
\neg(\mathrm{b})_{\alpha} \Rightarrow \neg(\mathrm{c})_{\alpha}
$$

Trivial.

$$
\neg(\mathrm{c})_{\alpha} \Rightarrow \neg(\mathrm{a})
$$

Let $\left\langle\bar{a}_{t}: t \in I\right\rangle$ and C exemplify $\neg(\mathrm{c})_{\alpha}$, and assume toward a contradiction that (a) holds. Without loss of generality I is a dense linear order (hence with neither first nor last element) and is complete and let \bar{c} list C.

So

(*) for no convex equivalence relation E on I with finitely many equivalence classes do we have $s \in I \Rightarrow\left\langle\bar{a}_{t}: t \in(s / E)\right\rangle$ is an indiscernible sequence over C.

We now choose ($E_{n}, I_{n}, \Delta_{n}, J_{n}$) by induction on n such that
$\circledast\left(\right.$ a) E_{n} is a convex equivalence relation on I such that each equivalence class is dense (so with no extreme member!) or is a singleton;
(b) Δ_{n} is a finite set of formulas (each of the form $\varphi\left(\bar{x}_{0}, \ldots, \bar{x}_{m-1}, \bar{y}\right)$, $\ell g\left(\bar{x}_{\ell}\right)=\alpha$, for some $\left.m, \ell g(\bar{y})=\ell g(\bar{c})\right) ;$
(c) $I_{0}=I, E_{0}$ is the equality, $\Delta_{0}=\emptyset$;
(d) I_{n+1} is one of the equivalence classes of E_{n} and is infinite;
(e) Δ_{n+1} is a finite set of formulas such that $\left\langle\bar{a}_{t}: t \in I_{n+1}\right\rangle$ is not Δ_{n+1}-indiscernible over C;
(f) $E_{n+1} \upharpoonright I_{n+1}$ is a convex equivalence relation with finitely many classes, each dense (no extreme member) or singleton; if J is an infinite equivalence class of $E_{n+1} \upharpoonright I_{n+1}$ then $\left\langle\bar{a}_{t}: t \in J\right\rangle$ is $\Delta_{n+1^{-}}$ indiscernible over C and $\left|I_{n+1} / E_{n+1}\right|$ is minimal under those conditions;
(g) $E_{n+1} \upharpoonright\left(I \backslash I_{n+1}\right)=E_{n} \upharpoonright\left(I \backslash I_{n+1}\right)$, so E_{n+1} refines E_{n};
(h) we choose $\left(\Delta_{n+1}, E_{n+1}\right)$ such that, if possible, I_{n+1} / E_{n+1} has ≥ 4 members.

There is no problem in carrying the induction as T is dependent (see $2.2(1)$ below, which says more, or see [Sh:715, 3.4+Def. 3.3]).

For $n>0, E_{n} \upharpoonright I_{n}$ is an equivalence relation on I_{n} with finitely many equivalence classes, each convex; so as I is a complete linear order clearly
$(*)_{1}$ for each $n>0$ there are $t_{1}^{n}<_{I} \cdots<t_{k(n)-1}^{n}$ from I_{n} such that $s_{1} \in$ $I_{n} \wedge s_{2} \in I_{n} \Rightarrow\left[s_{1} E_{n} s_{2} \equiv(\forall k)\left(s_{1}<t_{k}^{n} \equiv s_{2}<t_{k}^{n} \wedge s_{1}>t_{k}^{n} \equiv s_{2}>t_{k}^{n}\right)\right]$.

As $n>0 \Rightarrow E_{n} \neq E_{n-1}$, clearly
$(*)_{2} k(n) \geq 2$ and $\left|I_{n} / E_{n}\right|=2 k(n)-1$,
$(*)_{3}\left\{I_{n, \ell}: \ell<k(n)\right\} \cup\left\{\left\{t_{\ell}^{n}\right\}: 0<\ell<k(n)\right\}$ are the equivalence classes of $E_{n} \upharpoonright I_{n}$, where
$(*)_{4}$ for non-zero $n<\omega, \ell<k(i)$ we define $I_{n, \ell}$:

$$
\begin{aligned}
& \text { if } 0<\ell<k(n)-1 \text { then } I_{n, \ell}=\left(t_{\ell}^{n}, t_{\ell+1}^{n}\right)_{I_{n}} \\
& \text { if } 0=\ell \text { then } I_{n, \ell}=\left(-\infty, t_{\ell}^{n}\right)_{I_{n}} \\
& \text { if } \ell=k(n)-1 \text { then } I_{n, \ell}=\left(t_{\ell}^{n}, \infty\right)_{I_{n}} .
\end{aligned}
$$

As (see end of clause (f))) we cannot omit any $t_{\ell}^{n}(\ell<k(n))$ and transitivity of equality of types, clearly
$(*)_{5}$ for each $\ell<k(n)-1$ for some m and $\varphi=\varphi\left(x_{0}, \ldots, \bar{x}_{m-1}, \bar{y}\right) \in \Delta_{n}$ there are $s_{0}<_{I} \cdots<_{I} s_{m-1}$ from $I_{n, \ell}$ and $s_{0}^{\prime}<_{I} \cdots<_{I} s_{m-1}^{\prime}$ from $I_{n, \ell} \cup\left\{t_{\ell+1}^{n}\right\} \cup I_{n, \ell+1}$ such that $\mathfrak{C} \models \varphi\left[\bar{a}_{s_{0}}, \ldots, \bar{c}\right] \equiv \neg \varphi\left[a_{s_{0}^{\prime}}, \ldots, \bar{c}\right]$.

Hence easily
$(*)_{6} J \in\left\{I_{n, \ell}: \ell<k(n)\right\}$ iff J is a maximal open interval of I_{n} such that $\left\langle\bar{a}_{t}: t \in J\right\rangle$ is Δ_{n}-indiscernible over C.

By clause (h) and $(*)_{6}$,
$(*)_{7}$ if $k(n)<4$ and $\ell<k(n)$, then $\left\langle a_{t}: t \in I_{n, \ell}\right\rangle$ is an indiscernible sequence over C, hence
$(*)_{8}$ if $k(n)<4$, then for at most one $m>n$ do we have $I_{m} \subseteq I_{n}$.
Note that
$(*)_{9} \quad m<n \Rightarrow I_{n} \subset I_{m} \vee I_{n} \cap I_{m}=0$.
CASE 1: There is an infinite $u \subseteq \omega$ such that $\left\langle I_{n}: n \in u\right\rangle$ are pairwise disjoint.

For each $n \in u$ we can find $\bar{c}_{n} \in{ }^{\omega>} C$ and $k_{n}<\omega$ (no connection to $k(n)$ from above!) and $\varphi\left(\bar{x}_{0}, \ldots, \bar{x}_{k_{n}-1}, \bar{y}\right) \in \Delta_{n}$ such that $\left\langle\bar{a}_{t}: t \in I_{n}\right\rangle$ is not $\varphi_{n}\left(\bar{x}_{0}, \ldots, \bar{x}_{k_{n}-1}, \bar{c}\right.$)-indiscernible (so $\ell g\left(\bar{x}_{\ell}\right)=\alpha$). So we can find $t_{n, 0}^{\ell}<\cdots<$ $t_{n, k_{n}-1}^{\ell}$ in I_{n} for $\ell=1,2$ such that $\models \varphi_{n}\left[\bar{a}_{n, t_{0}^{\ell}}, \ldots, \bar{a}_{n, t_{k_{n}-1}^{\ell}}, \bar{c}_{n}\right]^{\mathrm{if}(\ell=2)}$. By minor changes in Δ_{n}, φ_{n}, without loss of generality \bar{c}_{n} is without repetitions, hence without loss of generality $n<\omega \Rightarrow \bar{c}_{n}=\bar{c}_{*}$.

Without loss of generality Δ_{n} is closed under negation and, without loss of generality, $t_{k_{n}-1}^{1}<_{I} t_{0}^{2}$. We can choose $t_{k}^{m} \in I_{n}\left(m<\omega, m \notin\{1,2\}, k<k_{n}\right)$ such that, for every $m<\omega, k<k_{n}$, we have $t_{k}^{m}<_{I} t_{k+1}^{m}, t_{k_{n}-1}^{m}<_{I} t_{0}^{m+1}$; let $\bar{a}_{n, m}^{*}=\bar{a}_{t_{0}^{m}}{ }^{\wedge} \cdots^{\wedge} \bar{a}_{t_{k_{n}-1}}^{m}$ and let $\bar{x}=\left\langle x_{i}: i<\ell g\left(\bar{c}_{*}\right)\right\rangle$. So for every $\eta \in{ }^{\omega} \omega$ the type $\left\{\neg \varphi_{n}\left(\bar{a}_{n, \eta(n)}^{*}, \bar{x}\right) \wedge \varphi_{n}\left(\bar{a}_{n, \eta(n)+1}^{*}, \bar{x}\right): n<\omega\right\}$ is consistent. This is enough for showing $\kappa_{\mathrm{ict}}(T)>\aleph_{0}$.

CASE 2: There is an infinite $u \subseteq \omega$ such that $\left\langle I_{n}: n \in u\right\rangle$ is decreasing.
For each $n \in u, E_{n} \upharpoonright I_{n}$ has an infinite equivalence class J_{n} (so $J_{n} \subseteq I_{n}$) such that $n<m \wedge\{n, m\} \subseteq u \Rightarrow I_{m} \subseteq J_{n}$. By $(*)_{8}$, clearly for each $n \in u, k(n) \geq 4$, hence we can find $\ell(n)<k(n)$ such that $I_{n}^{\prime}=\left(I_{n, \ell(n)} \cup\left\{t_{\ell, n}^{n}\right\} \cup I_{n, \ell(n)+1}\right)$ is disjoint to J_{m}. Now $\left\langle I_{n}^{\prime}: n \in u\right\rangle$ are pairwise disjoint and we continue as in Case 1.

By the Ramsey theorem at least one of the two cases occurs, so we are done.
(2) By induction on $|C|$.
(3), (4) Easy by now. $\square_{2.1}$

Recall
2.2. Observation: (1) Assume that T is dependent, $\left\langle\bar{a}_{t}: t \in I\right\rangle$ is an indiscernible sequence, Δ a finite set of formulas, $C \subseteq \mathfrak{C}$ finite. Then for some convex equivalence relation E on I with finitely many equivalence classes, each equivalence class in an infinite open convex set or is a singleton such that, for every $s \in I,\left\langle\bar{a}_{t}: t \in s / E\right\rangle$ is an Δ-indiscernible sequence over $\bigcup\left\{\bar{a}_{t}: t \in I \backslash(s / E)\right\} \cup C$.
(2) If I is dense and complete, there is the least fine such E. In fact, for J an open convex subset of I we have: J is an E-equivalence class iff J is a maximal open convex subset of I such that $\left\langle\bar{a}_{t}: t \in J\right\rangle$ is Δ-indiscernible over $C \cup \bigcup\left\{\bar{a}_{t}: t \in I \backslash J\right\}$.
(3) Assume that I is dense (with no extreme elements) and complete. Then there are $t_{1}<_{I} \cdots<t_{k-1}$ such that, stipulating $t_{0}=-\infty, t_{k}=\infty, I_{\ell}=$ $\left(t_{\ell}, t_{\ell+1}\right)_{I}$, we have
(a) $\left\langle\bar{a}_{t}: t \in I_{\ell}\right\rangle$ is indiscernible over C,
(b) if $\ell \in\{1, \ldots, k-1\}$) and $t_{\ell}^{-}<_{I} t_{\ell}<_{I} t_{\ell}^{+}$, then $\left\langle a_{t}: t \in\left(t_{\ell}^{-}, t_{\ell}^{+}\right)_{I}\right\rangle$ is not Δ-indiscernible over C.

Proof. (1) See clause (b) of [Sh:715, Claim 3.2].
(2), (3) Done within the proof of 2.1 and see the proof of 2.10. $\boldsymbol{\Pi}_{2.2}$
2.3. Definition: (1) We say that $\bar{\varphi}=\left\langle\varphi_{i}\left(\bar{x}, \bar{y}_{i}\right): i<\kappa\right\rangle$ witnesses $\kappa<\kappa_{\mathrm{ict}, 2}(T)$ when there are a sequence $\left\langle\bar{a}_{i, \alpha}: \alpha<\lambda, i<\kappa\right\rangle$ and $\left\langle\bar{b}_{i}: i<\kappa\right\rangle$ such that
(a) $\left\langle\bar{a}_{i, \alpha}: \alpha<\lambda\right\rangle$ is an indiscernible sequence over $\cup\left\{\bar{a}_{j, \beta}: j \in \kappa \backslash\{i\}\right.$ and $\beta<\lambda\}$ for each $i<\kappa$,
(b) $\bar{b}_{i} \subseteq \cup\left\{\bar{a}_{j, \alpha}: j<i, \alpha<\lambda\right\}$,
(c) $p=\left\{\varphi_{i}\left(\bar{x}, \bar{a}_{i, 0}{ }^{\wedge} \bar{b}_{i}\right), \neg \varphi_{i}\left(\bar{x}, \bar{a}_{i, 1}{ }^{\wedge} \bar{b}_{i}\right): i<\kappa\right\}$ is consistent (= finitely satisfiable in $\mathfrak{C})$.
(2) $\kappa_{\text {ict }, 2}(T)$ is the first κ such that there is no witness for $\kappa<\kappa_{\text {ict }, 2}(T)$.
(3) T is strongly ${ }^{2}$ dependent (or strongly ${ }^{+}$dependent) if $\kappa_{\text {ict }, 2}(T)=\aleph_{0}$.
(4) T is strongly ${ }^{2}$ stable if it is strongly ${ }^{2}$ dependent and stable.
2.4. Observation: If M is a valued field in the sense of Definition 2.3 and $\left|\Gamma^{M}\right|>$ 1 , then $T:=\operatorname{Th}(M)$ is not strongly ${ }^{2}$ dependent.

Proof. Let $a \in \Gamma^{M}$ be positive, $\varphi_{0}(x, a):=(\operatorname{val}(x) \geq a), E(x, y, a):=$ $(\operatorname{val}(x, y) \geq 2 a)$ and $F(x, y)=x^{2}+y$ (squaring in $\left.K^{M}\right)$. Now for $b \in \varphi_{0}(M, \bar{a})$, the function $F(-, b)$ is a (≤ 2)-to- 1 function from $\varphi_{0}(M, a)$ to b / E. So we can apply [Sh:783, §4].

Alternatively, let $a_{n} \in \Gamma^{M}, a_{n}<_{\Gamma^{M}} a_{n+1}$ for $n<\omega$ be such that there are $b_{n, \alpha} \in K^{M}$ for $\alpha<\omega$ such that $\alpha<\beta<\omega \Rightarrow a_{n+1}>\operatorname{val}^{M}\left(b_{n, \alpha}-b_{n, \beta}\right)>a_{n}$ and $\operatorname{val}\left(b_{n, \alpha}\right)>a_{n}$. Without loss of generality, for each $n<\omega$ the sequence $\left\langle b_{n, \alpha}: \alpha<\omega\right\rangle$ is indiscernible over $\left\{b_{n_{1}, \alpha_{1}}: n_{1} \in \omega \backslash\{n\}, \alpha<\omega\right\} \cup\left\{a_{n_{1}}: n_{1}<\right.$
$\omega\}$. Now for $\eta \in{ }^{\omega} \omega$ clearly $p_{\eta}=\left\{\operatorname{val}\left(x-\Sigma\left\{a_{m, \eta(m)}: m<n\right\}\right)>a_{n}: n<\omega\right\}$; it is consistent, and we have an example. $\boldsymbol{\square}_{2.4}$

Note that the definition of strongly ${ }^{2}$ dependent here (in 2.3) is equivalent to the one in $[\operatorname{Sh}: 783,3.7(1)]$ by $(\mathrm{a}) \Leftrightarrow(\mathrm{e})$ of Claim 2.9 below.

The following example shows that there is a difference even among the stable T.
2.5. Example: There is a strongly ${ }^{1}$ stable not strongly ${ }^{2}$ stable T (see Definition 2.3).

Proof. Fix λ large enough. Let \mathbb{F} be a field, let V be a vector space over \mathbb{F} of infinite dimension, let $\left\langle V_{n}: n<\omega\right\rangle$ be a decreasing sequence of subspaces of V with V_{n} / V_{n+1} having infinite dimension λ and $V_{0}=V$ and $V_{\omega}=\bigcap\left\{V_{n}: n<\omega\right\}$ have dimension λ. Let $\left\langle x_{\alpha}^{n}+V_{n+1}: \alpha<\lambda\right\rangle$ be a basis of V_{n} / V_{n+1} and let $\left\langle x_{\alpha}^{\omega, i}: i \in \mathbb{Z}\right.$ and $\left.\alpha<\lambda\right\rangle$ be a basis of V_{ω}. Let $M=M_{\lambda}$ be the following model:
(a) universe: V,
(b) individual constants: 0^{V},
(c) the vector space operations: $x+y, x-y$ and $c x$ for $c \in \mathbb{F}$,
(d) functions: F_{1}^{M}, a linear unary function: $F_{1}^{M}\left(x_{\alpha}^{n}\right)=x_{\alpha}^{n+1}, F_{1}^{M}\left(x_{\alpha}^{\omega, i}\right)=$ $x_{\alpha}^{\omega, i+1}$,
(e) F_{2}^{M}, a linear unary function:
$F_{2}^{M}\left(x_{\alpha}^{0}\right)=x_{\alpha}^{0}, F_{2}^{M}\left(x_{\alpha}^{n+1}\right)=x_{\alpha}^{n}$ and $F_{2}^{M}\left(x_{\alpha}^{\omega, i}\right)=x_{\alpha}^{\omega, i-1}$,
(f) predicates: $P_{n}^{M}=V_{n}$, so P_{n} unary.

Now
$(*)_{0}$ for any models M_{1}, M_{2} of $\operatorname{Th}\left(M_{\lambda}\right)$ with uncountable $\bigcap\left\{P_{n}^{M_{\ell}}: n<\omega\right\}$ for $\ell=1,2$, the set \mathscr{F} exemplifies M_{1}, M_{2} are $\mathbb{L}_{\infty, \aleph_{0}}$-equivalent where: \mathscr{F} is the family of partial isomorphisms f from M_{1} into M_{2} such that, for some $n,\left\langle N_{i}: i<n \vee i=\omega\right\rangle$ we have:
(a) $\operatorname{Dom}(f)=\bigoplus_{i<n} N_{i} \oplus N_{\omega}$,
(b) $N_{i} \subseteq P_{i}^{M_{1}}$ is a subspace when $i<n \vee i=\omega$,
(c) N_{i} is of finite dimension,
(d) $\quad(\alpha) N_{i} \cap P_{i+1}^{M_{1}}$ if $i<n$ and $F_{1}^{M_{1}}\left(N_{i}\right)=N_{i+1}$ if $i+1<n$.
(β) $N_{i} \cap \sum_{m>0} N_{i, m}=\{0\}$ when $i=w$ and $N_{i, 0}:=N_{i}, N_{i, m+1}:=$ $F_{2}^{M_{1}}\left(N_{i, m}\right)$,
(e) similar conditions on $N_{i}^{\prime}=f\left(N_{i}\right)$ for $i<n \vee i=\omega$.
$(*)_{1} T=\operatorname{Th}\left(M_{\lambda}\right)$ has elimination of quantifiers
[Why? Easy.]
Hence
$(*)_{2} T$ does not depend on λ,
$(*)_{3} T$ is stable.
[Why? Because if N_{1} is \aleph_{1}-saturated, $N_{1} \prec N_{2}$, then $\left\{\operatorname{tp}\left(a, N_{1}, N_{2}\right): a \in \mathfrak{C}\right\}$ has cardinality $\leq\left\|N_{1}\right\|^{\aleph_{0}}$ by $(*)_{0}$.]

Now
$(*)_{4} T$ is not strongly ${ }^{2}$ dependent.
[Why? By 0.1. Alternatively, define a term $\sigma_{n}(y)$ by induction on $n: \sigma_{0}(y)=y, \sigma_{n+1}(y)=F_{1}\left(\sigma_{n}(y)\right)$, and for $\eta \in{ }^{\omega} \lambda$ increasing let

$$
\begin{aligned}
p_{\eta}(y)=\{ & P_{1}\left(y-\sigma_{0}\left(x_{\eta(0))}^{0}\right), P_{2}\left(y-\sigma_{0}\left(x_{\eta(0)}^{0}\right)-\sigma_{1}\left(x_{\eta(1)}^{1}\right)\right), \ldots,\right. \\
& \left.P_{n}\left(y-\Sigma\left\{\sigma_{\ell}\left(x_{\eta(\ell)}^{\ell}\right): \ell<n\right\}\right), \ldots\right\} .
\end{aligned}
$$

Clearly each p_{η} is finitely satisfiable in M_{λ}. Easily this proves that T is not strongly ${ }^{2}$ stable I.]
So it remains to prove
$(*)_{5} T$ is strongly stable.
Why does this hold? We work in $\mathfrak{C}=\mathfrak{C}_{T}$. Let $\lambda \geq\left(2^{\kappa}\right)^{+}$be large enough and $\kappa=\kappa^{\aleph_{0}}$. We shall prove $\kappa_{\text {ict }}(T)=\aleph_{0}$ by the variant of (b) ${ }_{\omega}^{\prime}$ from 2.1(3); this suffices. Let $\left\langle\bar{a}_{\alpha}: \alpha<\lambda\right\rangle$ be an indiscernible sequence over a set A such that $\ell g\left(\bar{a}_{\alpha}\right) \leq \kappa$. By 1.10, without loss of generality each \bar{a}_{α} enumerates the set of elements of an elementary submodel N_{α} of \mathfrak{C} which includes A and is \aleph_{1}-saturated.

Without loss of generality $(I \cap \mathbb{Z}=\emptyset$ and $)$:
\square_{1} for some $\bar{a}_{n}^{\prime}(n \in \mathbb{Z}), A \supseteq c \ell\left(A^{\prime} \cup \bigcup\left\{\bar{a}_{i}^{\prime}: i \in \mathbb{Z}\right\}\right)$, and $\left\langle\bar{a}_{n}^{\prime}: n<\right.$ $0\rangle^{\wedge}\left\langle\bar{a}_{\alpha}: \alpha<\lambda\right\rangle^{\wedge}\left\langle\bar{a}_{n}^{\prime}: n \geq 0\right\rangle$ is an indiscernible sequence over A^{\prime} and $\left\langle\bar{a}_{\alpha}: \alpha<\lambda\right\rangle^{\wedge}\langle A\rangle$ is linearly independent over A^{\prime}, A is the universe of N, N is \aleph_{1}-saturated and $N \cap N_{\alpha}$ is \aleph_{1}-saturated (and does not depend on α).
Hence by $(*)_{0}$
\square_{2} (a) $\alpha \neq \beta \wedge a_{\alpha, i}=a_{\beta, j} \Rightarrow a_{\alpha, i}=a_{\beta, i} \in A$,
(b) if $u \subseteq \lambda$ then $\left.c \ell\left(\bigcup\left\{\bar{a}_{\alpha}: \alpha \in u\right\} \cup A\right\}\right)$ is $\prec \mathfrak{C}$,
(c) if $u \subseteq \lambda$ is finite we get an \aleph_{1}-saturated model (not really used).
(We can use the stronger 2.1(4).) Easily
\unlhd_{3} if $a \in N_{\alpha}, b \in c \ell\left(\bigcup\left\{N_{\beta}: \beta<\alpha\right\} \cup A\right)$ then:
(a) $a=b \Rightarrow a \in A$,
(b) $a-b \in P_{n}^{\mathfrak{C}} \Rightarrow(\exists c \in A)\left(a-c \in P_{n}^{\mathfrak{C}} \wedge b-c \in P_{n}^{\mathfrak{C}}\right)$.
[Why? Let $b=\sigma^{\mathfrak{C}}\left(\bar{a}_{\beta_{0}}, \ldots, \bar{a}_{\beta_{m-1}}, \bar{a}\right), \bar{a} \in^{\omega>} A, \sigma$ a term, $\beta_{0}<\beta_{1}<\cdots<\beta_{m-1}<$ α; then for every $k<\omega$ large enough $b^{\prime}:=\sigma^{\mathfrak{C}}\left(a_{k}^{\prime}, \bar{a}_{k+1}^{\prime}, \ldots, \bar{a}_{k+m-1}, \bar{a}\right)$ belongs to A (recalling $(*)_{3}+\square_{1}$) and, in Case (a), $a=b \Rightarrow a=b^{\prime}$, and in Case (b), $\left.a-b \in P_{n}^{\mathbb{C}} \Rightarrow a-b^{\prime} \in P_{n}^{\mathbb{C}}.\right]$
\square_{4} If $a_{\ell} \in c \ell\left(\bigcup\left\{N_{\alpha}: \alpha \in u_{\ell}\right\} \cup A\right)$ and $u_{\ell} \subseteq \lambda$ for $\ell=1,2$ then:
(a) if $a_{1}=a_{2}$, then for some $b \in c \ell\left(\bigcup\left\{N_{\alpha}: \alpha \in u_{1} \cap u_{2}\right\} \cup A\right)$ we have $a_{1}-b=a_{2}-b \in A ;$
(b) if $a_{1}-a_{2} \in P_{n}^{\mathcal{C}}$, then for some $b \in c \ell\left(\left\{N_{\alpha}: \alpha \in u_{1} \cap u_{2}\right\} \cup A\right)$ and $c \in A$ we have $a_{2}-b-c \in P_{n}^{\mathfrak{C}}$ and $a_{2}-b-c \in P_{n}^{\mathfrak{C}}$.
[Why? Similarly to \square_{3}.]
Now let $c \in \mathfrak{C}$; the proof splits into cases.
CASE 1: $c \in c \ell\left(\bigcup\left\{\bar{a}_{\beta}: \beta<\lambda\right\} \cup A\right)$.
So for some finite $u \subseteq \lambda, c \in c \ell\left(\bigcup\left\{\bar{a}_{\beta}: \beta \in u\right\}\right)$; easily $\left\langle\bar{a}_{\beta}: \beta \in \lambda \backslash u\right\rangle$ is an indiscernible set over $A \cup\{c\}$, and we are done.

CASE 2: For some finite $u \subseteq \lambda$, for every n for some $c_{n} \in c \ell\left(\bigcup\left\{\bar{a}_{\beta}: \beta \in u\right\} \cup A\right)$ we have $c-c_{n} \in P_{n}^{M}$ (but not case 1).

Clearly u is as required. (In fact, easily $c \ell\left(\left\{\bar{a}_{\beta}: \beta \in u\right\} \cup A\right)$ is \aleph_{1}-saturated (as u is finite, by $\left.\square_{2}(\mathrm{c})\right)$, hence there is $c^{*} \in c \ell\left(\bigcup\left\{a_{\beta}: \beta \in u\right\} \cup A\right)$ such that $\left.n<\omega \Rightarrow c^{*}-c_{n} \in P_{n}^{M}.\right)$

Case 3: Neither case 1 nor case 2 (less is needed).
Let $n(1)<\omega$ be maximal such that, for some $c_{n(1)} \in A$, we have $c-c_{n(1)} \in$ $P_{n(1)}^{M}\left(\right.$ for $n=0$ every $c^{\prime} \in A$ is O.K.; by not Case 2 such $n(1)$ exists).

Subcase 3A: There is $n(2) \in(n(1), \omega)$ and $c_{n(2)} \in c \ell\left(\left\{\bar{a}_{\beta}: \beta<\lambda\right\} \cup A\right)$ such that $c-c_{n(2)} \in P_{n(2)}^{M}$.

Let u be a finite subset of λ such that $c_{n(2)} \in c \ell\left(\left\{\bar{a}_{\beta}: \beta \in u\right\} \cup A\right)$; now u is as required (by $\boxtimes_{3}+\square_{4}$ above).

Subcase 3B: Not subcase 3A.
Choosing $u=\emptyset$ works, because neither Case 1 nor Case 2 holds with $u=\emptyset$ and subcase 3A fails. $\quad \boldsymbol{\square}_{2.5}$
2.6. Remark: We can prove a claim parallel to 1.11 , i.e., replacing strong dependent by strongly ${ }^{2}$ dependent.
2.7. CLAim: (1) $\kappa_{\text {ict }, 2}\left(T^{e q}\right)=\kappa_{\text {ict }, 2}(T)$.
(2) If $T_{\ell}=\operatorname{Th}\left(M_{\ell}\right)$ for $\ell=1,2$, then $\kappa_{\text {ict }, 2}\left(T_{1}\right) \geq \kappa_{\text {ict }, 2}\left(T_{2}\right)$ when:
(*) M_{1} is (first order) interpretable in M_{2}.
(3) If $T^{\prime}=\operatorname{Th}(\mathfrak{C}, c)_{c \in A}$, then $\kappa_{\text {ict }, 2}\left(T^{\prime}\right)=\kappa_{\text {ict }, 2}(T)$.
(4) If M is the disjoint sum of M_{1}, M_{2} (or the product) and $\operatorname{Th}\left(M_{1}\right), \operatorname{Th}\left(M_{2}\right)$ are strongly ${ }^{2}$ dependent, then so is $\operatorname{Th}(M)$.

Proof. Similar to 1.11. $\quad \square_{2.7}$

Now $\kappa_{\text {ict }}(T)$ is very close to being equal to $\kappa_{\text {ict }, 2}(T)$.
2.8. Claim: (1) If $\kappa=\kappa_{\text {ict }, 2}(T) \neq \kappa_{\text {ict }}(T)$ then:
(a) $\kappa_{\text {ict }, 2}(T)=\aleph_{1} \wedge \kappa_{\text {ict }}(T)=\aleph_{0}$,
(b) there is an indiscernible sequence $\left\langle\bar{a}_{t}: t \in I\right\rangle$ with $\bar{a}_{t} \in{ }^{\omega} \mathfrak{C}$ and $c \in \mathfrak{C}, I$ is dense complete for clarity, such that
$(*)$ for no finite $u \subseteq I$ do we have: if J is a convex subset of I disjoint to u then $\left\langle\bar{a}_{t}: t \in J\right\rangle$ is indiscernible over $\bigcup\left\{\bar{a}_{t}: t \in I \backslash J\right\} \cup\{c\}$.
(2) If T is strongly ${ }^{+}$dependent then T is strongly dependent.
(3) In the definition of $\kappa_{\text {ict }, 2}(T)$, without loss of generality $m=1$.

Proof. (1) We use Observation 1.5. Obviously $\kappa_{\text {ict }}(T) \leq \kappa_{\text {ict, } 2}(T)$; the rest is proved together with 2.10 below.
(2) Easy.
(3) Similar to the proof of 1.7, or better use $2.10(1),(2) . \quad \boldsymbol{\square}_{2.8}$
2.9. Claim: The following conditions on T are equivalent:
(a) $\kappa_{\text {ict }, 2}(T)>\aleph_{0}$,
(b) we can find A and an indiscernible sequence $\left\langle\bar{a}_{t}: t \in I\right\rangle$ over A satisfying $\bar{a}_{t} \in{ }^{\omega} \mathfrak{C}$ and $t_{n} \in I$ increasing with n and $\bar{c} \in{ }^{\omega>} \mathfrak{C}$ such that, for every n, $t_{n}<_{I} t \Rightarrow \operatorname{tp}\left(\bar{a}_{t_{n}}, A \cup \bar{c} \cup\left\{\bar{a}_{t_{m}}: m<n\right\}\right) \neq \operatorname{tp}\left(\bar{a}_{t}, A \cup \bar{c} \cup\left\{\bar{a}_{t_{m}}: m<n\right\}\right)$,
(c) similarly to (b), but $t_{n}<_{I} t \Rightarrow \operatorname{tp}\left(\bar{a}_{t_{m}}, A \cup \bar{c} \cup\left\{\bar{a}_{s}: s<_{I} t_{n}\right\}\right) \neq \operatorname{tp}\left(a_{t}, A \cup\right.$ $\left.\bar{c} \cup\left\{\bar{a}_{s}: s<_{I} t_{n}\right\}\right)$,
(d) we can find A and a sequence $\left\langle\bar{a}_{t}^{n}: t \in I_{n}\right\rangle, I_{n}$ an infinite order, such that $\left\langle\bar{a}_{t}^{n}: t \in I_{n}\right\rangle$ is indiscernible over $A \cup \bigcup\left\{\bar{a}_{t}^{m}: m \neq n, m<\omega, t \in I_{n}\right\}$ and, for some $\bar{c} \in{ }^{\omega>} \mathfrak{C}$ for each $n,\left\langle\bar{a}_{t}^{n}: t \in I_{n}\right\rangle$ is not indiscernible over $A \cup \bar{c} \cup \bigcup\left\{\bar{a}_{t}^{m}: t \in I_{m}, m<n\right\}$,
(e) we can find a sequence $\left\langle\varphi_{n}\left(x, \bar{y}_{n}, \ldots, \bar{y}_{0}\right): n<\omega\right\rangle$ and $\left\langle\bar{a}_{\alpha}^{n}: \alpha<\lambda, n<\omega\right\rangle$ such that: for every $\eta \in{ }^{\omega} \lambda$ the set

$$
p_{\eta}=\left\{\varphi_{n}\left(\bar{x}, \bar{a}_{\alpha}^{n}, \bar{a}_{\eta(n-1)}^{n-1}, \ldots, \bar{a}_{\eta(0)}^{0}\right)^{i f(\alpha=\eta(n))}: n<\omega, \alpha<\lambda\right\}
$$

is consistent.
Proof. Should be clear from the proof of 2.1 (more in 2.3). $\quad \boldsymbol{\square}_{2.9}$
2.10. Observation: (1) For any κ and $\zeta \geq \kappa$ we have $(\mathrm{d}) \Leftrightarrow(\mathrm{c})_{\zeta} \Rightarrow(\mathrm{b})_{\zeta} \Leftrightarrow(\mathrm{a})$; if, in addition, we assume $\neg\left(\aleph_{0}=\kappa_{\text {ict }}(T)<\kappa=\aleph_{1}=\kappa_{\text {ict }, 2}(T)\right)$ then we have also $(\mathrm{c})_{\zeta} \Leftrightarrow(\mathrm{b})_{\zeta}$, so all the following conditions on T are equivalent;
(a) $\kappa \geq \kappa_{\text {ict }}(T)$,
(b) $)_{\zeta}$ if $\left\langle\bar{a}_{t}: t \in I\right\rangle$ is an indiscernible sequence, I a linear order, $\bar{a}_{t} \in{ }^{\zeta} \mathfrak{C}$ and
$C \subseteq \mathfrak{C}$ is finite, then for some set \mathscr{P} of $<\kappa$ initial segments of I we have:
$(*)$ if $s, t \in I$ and $(\forall J \in \mathscr{P})(s \in J \equiv t \in J)$, then \bar{a}_{s}, \bar{a}_{t} realizes the same type over C (if I is complete this means: for some $J \subseteq I$ of cardinality $<\kappa$, if $s, t \in I$ realizes the same quantifier free type over J in I, then \bar{a}_{s}, \bar{a}_{t} realizes the same type over C),
$(\mathrm{c})_{\zeta}$ like (b), but strengthening the conclusion to: if $n<\omega, s_{0}<_{I} \cdots<_{I}$
$s_{n-1}, t_{0}<_{I} \cdots<_{I} t_{n}$ and $(\forall \ell<n)(\forall k<n)(\forall J \in \mathscr{P})\left[s_{\ell} \in J=t_{k} \in J\right]$, then $\bar{a}_{s_{0}}{ }^{\wedge} \cdots^{\wedge} \bar{a}_{t_{n-1}}$ and $\bar{a}_{t_{0}}{ }^{\wedge} \cdots^{\wedge} \bar{a}_{t_{n-1}}$ realize the same type over C,
(d) $\kappa \geq \kappa_{\text {ict }, 2}(T)$.
(2) We can, in clauses $(\mathrm{b})_{\zeta}$ and $(\mathrm{c})_{\zeta}$, add $|C|=1$ and/or demand I is well ordered (for the last, use 1.10).

Proof. We shall prove various implications, which together obviously suffice (for 2.10 and 2.8(1) and 2.8(3)).
$\neg(\mathrm{a}) \Rightarrow \neg(\mathrm{b})_{\zeta}$
Let $\lambda \geq \kappa$. As in the proof of 1.5 there are $\bar{\varphi}=\left\langle\varphi_{i}\left(\bar{x}, \bar{y}_{i}\right): i<\kappa\right\rangle, m=$ $\ell g(\bar{x})$ and $\left\langle\bar{a}_{\alpha}^{i}: i<\kappa, \alpha<\lambda\right\rangle$ exemplifying $\circledast_{\bar{\varphi}}^{2}$ from 1.5 , so necessarily \bar{a}_{α}^{ℓ} is non-empty. Recall that $\ell g\left(\bar{a}_{\alpha}^{i}\right)$ is finite for $i<\kappa, \alpha<\lambda$. Let $\bar{a}_{\alpha}^{*} \in \zeta \mathfrak{C}$ be $\bar{a}_{\alpha}^{0}{ }^{\wedge} \bar{a}_{\alpha}^{1}{ }^{\wedge} \cdots^{\wedge} \bar{a}_{\alpha}^{\prime}$ where $\bar{a}_{\alpha}^{\prime}$ has length $\zeta-\Sigma_{\ell<\kappa} \ell g\left(\bar{a}_{\alpha}^{i}\right)$ and is constantly the first member of \bar{a}_{α}^{0}. Let \bar{c} realize $p=\left\{\varphi_{i}\left(\bar{x}, \bar{a}_{2 i}\right) \wedge \neg \varphi_{i}\left(\bar{x}, \bar{a}_{2 i+1}\right): i<\kappa\right\}$.

Easily \bar{c} (or pedantically $\operatorname{Rang}(\bar{c})$) and $\left\langle\bar{a}_{\alpha}^{*}: \alpha<\lambda\right\rangle$ exemplify $\neg(\mathrm{b})_{\zeta}$.
$(\mathrm{a}) \Rightarrow(\mathrm{b})_{\zeta}$.
If $\kappa=\aleph_{0}$, this holds by $2.1(1)$; in general, this holds by the proof of $2.1(1)$ and this is why there we use κ.
$\neg(\mathrm{b})_{\zeta} \Rightarrow \neg(\mathrm{c})_{\zeta}$
Obvious.
$\neg(\mathrm{a}) \Rightarrow \neg(\mathrm{d})$
The witness for \neg (a) is a witness for \neg (d).
$\neg(\mathrm{d}) \Rightarrow \neg(\mathrm{c})_{\zeta}$
Let $\left\langle\varphi_{i}\left(\bar{x}, \bar{y}_{i}\right): i<\kappa\right\rangle$ witness $\neg(d)$, i.e., witness $\kappa<\kappa_{\text {ict,2 }}(T)$, so there are $\left\langle\bar{a}_{i, \alpha}: \alpha<\lambda, i<\kappa\right\rangle$ and $\left\langle\bar{b}_{i}: i<\kappa\right\rangle$ satisfying clauses (a), (b), (c) of Definition 2.3. By Observation 1.10 we can find an indiscernible sequence $\left\langle\bar{a}_{\alpha}^{*}: \alpha<\right.$ $\lambda \times \kappa\rangle, \ell g\left(\bar{a}_{\alpha}^{*}\right)=\zeta_{\kappa}$, where $\zeta_{j}:=\Sigma\left\{\ell g\left(\bar{y}_{i}\right): i<j\right\}$ such that $i<\kappa \wedge \alpha<\lambda \Rightarrow$ $\bar{a}_{i}^{*} \upharpoonright\left[\zeta_{i}, \zeta_{i+1}\right)=\bar{a}_{\alpha}^{i}$. Now $\left\langle\bar{a}_{\alpha}^{*}: \alpha<\lambda \times \kappa\right\rangle, \bar{c}$ witness $\neg(c)_{\zeta_{\kappa}}$, because if \mathscr{P} is as required in $(\mathrm{c})_{\zeta_{\kappa}}$ then easily $(\forall i<\kappa)(\exists J \in \mathscr{P})(J \cap[\lambda i, \lambda i+\lambda) \notin\{\emptyset,[\lambda i, \lambda i+\lambda)\}$, hence $|\mathscr{P}| \geq \kappa$. Now clearly $\zeta_{\kappa} \leq \zeta$, hence repeating the first element $(\zeta-\kappa)$ times we get $\left\langle\bar{b}{ }_{\alpha}^{i}: \alpha<\lambda \kappa\right\rangle$, which together with \bar{c} exemplify $\neg(\mathrm{c})_{\zeta}$.

It is enough to prove:
$(*)$ assume $\neg(\mathrm{c})_{\zeta}$; then
(i) $\neg(\mathrm{d})$,
(ii) \neg (a) except possibly when (a) + (b) of 2.8(1) holds, in particular $\aleph_{0}=\kappa_{\text {ict }}(T)<\kappa=\aleph_{1}=\kappa_{\text {ict }, 2}(T)$.
Toward this we can assume that
$\boxtimes T$ is dependent and $C,\left\langle\bar{a}_{t}: t \in I\right\rangle$ form a witness to $\neg(\mathrm{c})_{\zeta}$.
Let \bar{c} list C without repetitions and, without loss of generality, I is a dense complete linear order (so with no extreme elements). Let $\ell g\left(\bar{x}_{\ell}\right)=\zeta$ for $\ell<\omega$ be pairwise disjoint with no repetitions, of course, $\ell g(\bar{y})=\ell g(\bar{c})<\omega$ (pairwise disjoint), and let $\bar{\varphi}=\left\langle\varphi_{i}=\varphi_{i}\left(\bar{x}_{0}, \ldots, \bar{x}_{n(i)-1}, \bar{y}\right): i<\right| T| \rangle$ list all such formulas in $\mathbb{L}\left(\tau_{T}\right)$. For each $i<|T|$, by $2.2(1),(2)$ there are $m(i)<\omega$ and $t_{i, 1}<_{I} \cdots<_{I}$ $t_{i, m(i)-1}$ as there and $m(i)$ is minimal, so stipulating $t_{i, 0}=-\infty, t_{i, m(i)}=\infty$ we have:
$(*)_{1}$ if $s_{0}^{\prime}<_{I} \cdots<_{I} \quad s_{m(i)-1}^{\prime}$ and $s_{0}^{\prime \prime}<_{I} \cdots<_{I} \quad s_{m(i)-1}^{\prime \prime}$ and $s_{\ell}^{\prime}, s_{\ell}^{\prime \prime}$ realize the same quantifier free type over $\left\{t_{i, 1}, \ldots, t_{i, m(i)-1}\right\}$ in the linear order I for each $\ell<m(i)$, then $\mathfrak{C} \models " \varphi_{i}\left[\bar{a}_{s_{0}^{\prime}}, \ldots, \bar{a}_{s_{m(i)-1}^{\prime}}, \bar{c}\right] \equiv$ $\varphi_{i}\left[\bar{a}_{s_{0}^{\prime \prime}}, \ldots, \bar{a}_{s_{m(i)-1}^{\prime \prime}} \bar{c}\right] "$.
For each $i<|T|$, for each $\ell \in\{1, \ldots, m(i)\}$ we can find $w_{i, \ell}$ such that
$(*)_{2}$ (a) $w_{i, \ell} \subseteq I \backslash\left\{t_{i, \ell}\right\}$,
(b) $w_{i, \ell}$ is finite,
(c) if $s_{1}<t_{i, \ell(i)}<s_{2}$ then $\left\langle\bar{a}_{t}: t \in\left(s_{1}, s_{2}\right)_{I}\right\rangle$ is not $\left\{\varphi_{i}\right\}$-indiscernible over $C \cup\left\{\bar{a}_{t}: t \in w_{i}\right\}$. Moreover for some $n_{i}^{*}<m(i)$, letting $\Pi_{i}:\{0, \ldots, m(i)-1\} \rightarrow\{0, \ldots, m(i)-1\}$ be $\Pi_{i}(0)=n_{i}^{*}, \Pi_{i}\left(n_{i}^{*}\right)=$ 0 and $\Pi_{i}(n)=n$ otherwise and letting $\varphi_{i}^{\prime}\left(\bar{x}_{0}, \ldots \bar{x}_{m(i)-1}, \bar{y}\right)=$ $\varphi\left(\bar{x}_{\Pi_{i}(0)}, \ldots, \bar{x}_{\Pi_{i}(m(i)-1)}\right)$ for some $t_{i, n}^{*} \in w_{i, \ell(i)}$ for $n=1, \ldots, n(i)-$ 1 if $s_{1}<_{I} t_{i, \ell(i)}<s_{2}$ then for some $t^{\prime} \in\left(s_{1}, s_{2}\right)_{I} \backslash\{t\}$ we have $\vDash \varphi_{i}^{\prime}\left[\bar{a}_{t^{\prime}}, \bar{a}_{t_{*_{i, 1}}}, \ldots, \bar{a}_{t_{*_{i, n(i)-1}}}, \bar{c}\right] \equiv \neg \varphi_{i}^{\prime}\left[\bar{a}_{t_{i, \ell(i)}}, \bar{a}_{t_{i, 1}^{*}}, \ldots, \bar{a}_{t_{i, n(i)-1}^{*}}, \bar{c}\right]$.
If the set $\left\{t_{i, k}: i<|T|, k=1, \ldots, m(i)-1\right\}$ has cardinality $<\kappa$ we are done, so assume that
$(*)_{3}\left\{t_{i, \ell}: i<|T|\right.$ and $\left.\ell \in[1, m(i)]\right\}$ has cardinality $\geq \kappa$.
CASE 1: $\kappa>\aleph_{0}$ (so we have to prove \neg (a)).
By the Hajnal free subset theorem and by $(*)_{3}$ there is $u_{0} \subseteq|T|$ of order type κ such that $i \in u_{0} \Rightarrow\left\{t_{i, \ell}: \ell=1, \ldots, m(i)-1\right\} \nsubseteq\left\{t_{j, \ell}: j \in u_{0} \backslash\{i\}\right.$ and $\ell=1, \ldots, m(j)-1\} \cup \bigcup\left\{w_{j, \ell}: j \in u \backslash\{i\}\right.$ and $\left.\ell \in(1, m(i))\right\}$.

There are $u \subseteq u_{0}$ of cardinality κ and a sequence $\langle\ell(i): i \in u\rangle, 0<\ell(i)<m(i)$ such that $\left\langle t_{i, \ell(i)}: i \in u\right\rangle$ is with no repetitions and disjoint to $\left\{t_{i, \ell}: i \in u\right.$ and $\ell \neq \ell(i)\} \cup \bigcup\left\{w_{i, \ell(i)}: i \in u\right\}$. We shall now prove $\kappa<\kappa_{\text {ict }}(T)$; this gives $\neg(\mathrm{a})$, $\neg(\mathrm{d})$ so it suffices.
Clearly by 1.5 it suffices to show (λ any cardinality $\geq \aleph_{0}$; we can easily change the \bar{a}_{ℓ}^{i} 's to have finite length preserving $(a)+(b)$ below):
\square_{u} there are $\bar{a}_{\alpha}^{i} \in{ }^{\zeta} \mathfrak{C}$ for $i \in u, \alpha<\lambda$ and set A such that
(a) $\left\langle\bar{a}_{\alpha}^{i}: \alpha<\lambda\right\rangle$ is an indiscernible sequence over $\bigcup\left\{\bar{a}_{\beta}^{j}: j \in u, j \neq\right.$ $i, \alpha<\lambda\} \cup A$,
(b) $\left\langle\bar{a}_{\alpha}^{i}: \alpha<\lambda\right\rangle$ is not $\left\{\varphi_{i}\right\}$-indiscernible over $A \cup \bar{c}$.

By compactness it suffices to prove \square_{v} for any finite $v \subseteq u$ and $\lambda=\aleph_{0}$; also, we can replace λ by any infinite linear order.

We can find $\left\langle\left(s_{1, i}, s_{2, i}\right): i \in v\right\rangle$ such that
$(*)_{4} s_{1, i}<_{I} t_{i, \ell(i)}<_{I} s_{2, i}$ (for $i \in v$),
$(*)_{5}\left(s_{1, i}, s_{2, i}\right)_{I}$ is disjoint to $\bigcup\left\{\left(s_{1, j}, s_{2, j}\right): j \in v \backslash\{i\}\right\} \cup \bigcup\left\{w_{j, \ell(j)} \in v\right\}$.
So $\left\langle\left\langle a_{t}^{j}: t \in\left(s_{1, j}, s_{2, j}\right)_{I}\right\rangle: j \in v\right\rangle$ and choosing $A=\bigcup\left\{\bar{a}_{t}: t \in w_{i, \ell(i)}, i \in v\right\}$ are as required above. Thus we are done.

CASE 2: $\kappa=\aleph_{0}$ so we have to prove \neg (d) and clause (ii) of (*) and (for proving part (2) of the present 2.10) that, without loss of generality, $|C|=1$.

We can find A and u :
\square^{1} (a) $A \subseteq C$,
(b) $u \subseteq I$ is finite,
(c) if $n<\omega$ and $t_{0}^{\ell}<_{I} \cdots<_{I} t_{n-1}^{\ell}$ for $\ell=1,2$ and $(\forall k<n)(\forall s \in u)$ $\left(t_{k}^{1}=s \equiv t_{k}^{2}=s \wedge t_{k}^{1}<_{I} s \equiv t_{k}^{2}<_{I} s\right)$, then $\bar{a}_{t_{0}^{1}}{ }^{\wedge} \cdots^{\wedge} \bar{a}_{t_{n-1}^{1}}, \bar{a}_{t_{0}^{2}}{ }^{\wedge} \cdots^{\wedge} \bar{a}_{t_{n-1}^{2}}$ realize the same type over A,
(d) if A^{\prime}, u^{\prime} satisfies (a)+(b)+(c), then $\left|A^{\prime}\right| \leq|A|$.

This is possible because C is finite and the empty set satisfies clauses (a), (b), (c) for A. By our present assumption $A \neq C$, so let $c \in C \backslash A$. Now we try to choose $\left(i_{k}, \ell_{k}, w_{k}\right)$ by induction on $k<\omega$:

* (a) $i_{k}<\kappa$,
(b) $1 \leq \ell_{k} \leq m\left(i_{k}\right)-1$,
(c) $t_{i_{k}, \ell_{k}} \in I \backslash w_{k}$,
(d) $w_{k} \supseteq u \cup w_{0} \cup \cdots \cup w_{k-1} \cup\left\{t_{i_{0}, k_{0}}, \ldots, t_{i_{k-1}, \ell_{k-1}}\right\}$,
(e) $w_{k} \subseteq I \backslash\left\{t_{i_{k}, \ell_{k}}\right\}$ is finite,
(f) if $s^{\prime}<_{I} t_{i_{k}, \ell_{k}}<_{I} s^{\prime \prime}$, then $\left\langle\bar{a}_{t}: t \in\left(s^{\prime}, s^{\prime \prime}\right)_{I}\right\rangle$ is not indiscernible over $\left\{\bar{a}_{s}: s \in w_{k}\right\} \cup\{c\}$ moreover the parallel of $(*)_{2}(c)$ holds.

If we are stuck in k, then $w_{k-1} \in[I]^{<\aleph_{0}}$ when $k>0$ and u when $k=0$ show that $\left\langle\bar{a}_{t}: t \in I\right\rangle, A \cup\{c\}$ contradict the choice of A recalling we are assuming $\neg(\mathrm{c})_{\zeta}$. If we succeed, then we prove as in Case 1 that $\kappa_{\text {ict,2 }}\left(\operatorname{Th}(\mathfrak{C}, a)_{a \in A}\right)>\aleph_{0}$, so by 1.4 we get $\kappa_{\text {ict }, 2}(T)>\aleph_{0}$. So we have proved clause (d) completing the proof of 2.10 ; also clearly $(*)(b)$ holds hence we complete also the proof of $2.8 \quad \mathbf{L}_{2.10}$.
2.11. Conclusion: T is strongly ${ }^{2}$ dependent by Definition 2.3 iff T is strongly ${ }^{2}$ dependent by $[\mathrm{Sh}: 783, \S 3,3.7]$, which means we say T is strongly ${ }^{2}$ (or strongly ${ }^{+}$) dependent when: if $\left\langle\overline{\mathbf{a}}_{t}: t \in I\right\rangle$ is an indiscernible sequence over $A, t \in I \Rightarrow$ $\ell g\left(\overline{\mathbf{a}}_{t}\right)=\alpha$ and $\bar{b} \in^{\omega>}(\mathfrak{C})$ then we can divide I into finitely many convex sets $\left\langle I_{\ell}: \ell<k\right\rangle$ such that, for each ℓ, the sequence $\left\langle\overline{\mathbf{a}}_{t}: t \in I_{\ell}\right\rangle$ is an indiscernible sequence over $\left\{\bar{a}_{s}: s \in I \backslash I_{\ell}\right\} \cup A \cup \bar{b}$.

Discussion: Now we define " T is strongly ${ }^{2, *}$ dependent", parallel to $1.8,1.9$ at the end of $\S 1$.
2.12. Definition: (1) $\kappa_{\mathrm{icu}, 2}(T)$ is the minimal κ such that, for no $m<\omega$ and $\bar{\varphi}=\left\langle\varphi_{i}\left(\bar{x}_{i}, \bar{y}_{i}\right): i<\kappa\right\rangle$ with $\lg \left(\bar{x}^{i}\right)=m \times n_{i}$, can we find $\bar{a}_{\alpha}^{i} \in{ }^{\ell g\left(\bar{y}_{i}\right)} \mathfrak{C}$ for $\alpha<\lambda, i<\kappa$ and $\bar{c}_{\eta, n} \in{ }^{m} \mathfrak{C}$ for $\eta \in{ }^{\kappa} \lambda$ such that:
(a) $\left\langle\bar{c}_{\eta, n}: n<\omega\right\rangle$ is an indiscernible sequence over $\bigcup\left\{\bar{a}_{\alpha}^{i}: \alpha<\lambda, i<\kappa\right\}$,
(b) for each $\eta \in{ }^{\kappa} \lambda$ and $i<\kappa$ we have $\mathfrak{C} \models \varphi_{i}\left(\bar{c}_{\eta, 0}{ }^{\wedge} \cdots{ }^{\wedge} \bar{c}_{\eta, n_{i}-1}, \bar{a}_{\alpha}^{i}\right)^{\text {if }}(\alpha=\eta(i))$.
(2) If $\bar{\varphi}$ is as in (1), then we say that it witnesses $\kappa<\kappa_{\mathrm{icu}, 2}(T)$.
(3) T is strongly ${ }^{1, *}$ dependent if $\kappa_{\text {icu }}(T)=\aleph_{0}$.
2.13. Claim: $(1) \kappa_{\text {icu }, 2}(T) \leq \kappa_{\text {ict }, 2}(T)$.
(2) If $\operatorname{cf}(\kappa)>\aleph_{0}$ then $\kappa_{\text {icu, } 2}(T)>\kappa \Leftrightarrow \kappa_{\text {ict }, 2}(T)>\kappa$.
(3) The parallel of 1.4, 1.5, 1.7(2) holds.

3. Ranks

3A. Rank for strongly dependent T.
3.1. Explanation/Thesis: (a) For stable theories we normally consider not just a model M (and, say, a type in it), but all its elementary extensions; we analyze them together.
(b) For dependent theories we should be more liberal, allowing one to replace M by $N^{[\bar{a}]}$ when $M \prec N \prec N_{1}, \bar{a} \in{ }^{\ell g(\bar{a})}\left(N_{1}\right)\left(N^{[\bar{a}]}\right.$ is the expansion of N by restrictions of the relation in N_{1} definable with parameters from \bar{a});
(c) this motivates some of the ranks below.

Such ranks relate to strongly ${ }^{1}$ dependent, they have relatives for strongly ${ }^{2}$ dependent.

Note that we can represent the $\mathfrak{x} \in K_{\ell, m}^{\prime}$ (and ranks) close to [Sh:783, §1], particularly $\ell=9$.
3.2. Definition: (1) Let $M_{0} \leq_{A} M_{1}$ for $M_{0}, M_{1} \prec \mathfrak{C}$ and $A \subseteq \mathfrak{C}$ mean that:
(a) $M_{0} \subseteq M_{1}$ (equivalently $M_{0} \prec M_{1}$),
(b) for every $\bar{b} \in M_{1}$, the type $\operatorname{tp}\left(\bar{b}, M_{0} \cup A\right)$ is f.s. (= finitely satisfiable) in M_{0}.
(2) Let $M_{0} \leq_{A, p} M_{1}$ for $M_{0}, M_{1} \prec \mathfrak{C}, A \subseteq \mathfrak{C}$ and $p \in \mathbf{S}^{<\omega}\left(M_{1} \cup A\right)$, or p is just a $(<\omega)$-type over $M_{1} \cup A$, means that
(a) $M_{0} \subseteq M_{1}$;
(b) if $\bar{b} \in M_{1}, \bar{c} \in M_{0}, \bar{a}_{1} \in A, \bar{a}_{2} \in A, \mathfrak{C} \models \varphi_{1}\left[\bar{b}, \bar{a}_{1}, \bar{c}\right]$ and $\varphi_{2}\left(\bar{x}, \bar{b}, \bar{a}_{2}, \bar{c}\right) \in p$ or is just a (finite) conjunction of members of p (e.g., empty), then for some
$\bar{b}^{\prime} \in M_{0}$ we have $\mathfrak{C} \models \varphi_{1}\left[\bar{b}_{1}^{\prime}, \bar{a}_{1}, \bar{c}\right]$ and $\varphi_{2}\left(\bar{x}, \bar{b}^{\prime}, \bar{a}_{2}, \bar{c}\right) \in p$, or is just a finite conjunction of members of p.
3.3. Observation: (1) $M_{0} \leq_{A, p} M_{1}$ implies $M_{0} \leq_{A} M_{1}$.
(2) If $p=\operatorname{tp}\left(\bar{b}, M_{1} \cup A\right) \in \mathbf{S}^{m}\left(M_{1} \cup A\right)$, then $M_{0} \leq_{A, p} M_{1}$ iff $M_{1} \leq_{A \cup \bar{b}} M_{2}$.
(3) If $M_{0} \leq{ }_{A} M_{1} \leq_{A} M_{2}$, then $M_{0} \leq{ }_{A} M_{2}$.
(4) If $M_{0} \leq_{A, p \upharpoonright\left(M_{1} \cup A\right)} M_{1} \leq_{A, p} M_{2}$, then $M_{0} \leq_{A, p} M_{2}$.
(5) If the sequences $\left\langle M_{1, \alpha}: \alpha \leq \delta\right\rangle,\left\langle A_{\alpha}: \alpha \leq \delta\right\rangle$ are increasing continuous, δ a limit ordinal and $M_{0} \leq A_{\alpha} M_{1, \alpha}$ for $\alpha<\delta$, then $M_{0} \leq_{A_{\delta}} M_{1, \delta}$. Similarly using $<_{A_{\alpha}, p_{\alpha}}$.
(6) If $M_{1} \subseteq M_{2}$ and p is an m-type over $M_{1} \cup A$, then $M_{1} \leq_{A} M_{2} \Leftrightarrow$ $M_{1} \leq_{A, p} M_{2}$.

Proof. Easy.
3.4. Discussion: (1) Note that the ranks defined below are related to [Sh:783, $\S 1]$. An alternative presentation (for $\ell \in\{3,6,9,12\}$) is that we define M_{A} as $(M, a)_{a \in A}$ and $T_{A}=\operatorname{Th}(\mathfrak{C}, a)_{a \in A}$, and we consider $p \in \mathbf{S}\left(M_{A}\right)$, and in the definition of ranks to extend A and p we use appropriate $q \in$ $\mathbf{S}\left(N_{B}\right), M_{A} \prec N_{A}, A \subseteq B$. Originally, we prsented here many variants, but now we present only two $(\ell=8,9)$, retaining the others in $\S 5 \mathrm{~A}$.
(2) We may change the definition, each time retaining from p only one formula with little change in the claims.
(3) We can define $\mathfrak{x} \in K_{\ell, m}$ such that it has also $N^{\mathfrak{x}}$, where $M^{\mathfrak{x}} \subseteq N^{\mathfrak{x}}\left(\prec \mathfrak{C}_{T}\right)$ and:
(A) change the definition of $\mathfrak{x} \leq_{a t}^{\ell} \mathfrak{y}$ to:
(a) $N^{\mathfrak{y}} \subseteq N^{\mathfrak{x}}$,
(b) $A^{\mathfrak{x}} \subseteq A^{\mathfrak{y}} \subseteq A^{\mathfrak{x}} \cup N^{\mathfrak{x}}$,
(c) $M^{\mathfrak{x}} \subseteq M^{\mathfrak{y}} \subseteq N^{\mathfrak{x}}$,
(d) $p^{\mathfrak{y}} \subseteq p^{\mathfrak{x}}$;
(B) change "y explicitly $\bar{\Delta}$-split ℓ-strongly over \mathfrak{x} " according to, and replacing in Def 3.5(4) or Def. 5.1(4) clauses (e), (e) $)^{\prime}$ the type $p^{\mathfrak{r}^{\prime}}$ by p^{x},
(C) dp-rk $\frac{m}{\Delta, \ell}$ is changed accordingly.

So now dp-rk $\frac{\bar{\Delta}}{m}$ may be any ordinal, hence 3.7 may fail, but the result in $\S 4$ becomes stronger, covering also some models of non-strongly dependent T.
3.5. Definition: (1) For $\ell=8,9$ let

$$
\begin{aligned}
K_{m, \ell}=\{\mathfrak{x}: \mathfrak{x} & =(p, M, A), M \text { a model } \prec \mathfrak{C}_{T}, A \subseteq \mathfrak{C}_{T} \\
p & \left.\in \mathbf{S}^{m}(M \cup A), \text { and if } \ell=9 \text { then } p \text { is finitely satisfiable in } M\right\} .
\end{aligned}
$$

If $m=1$ we may omit it.
For $\mathfrak{x} \in K_{m, \ell}$ let $\mathfrak{x}=\left(p^{\mathfrak{x}}, M^{\mathfrak{x}}, A^{\mathfrak{x}}\right)=(p[\mathfrak{x}], M[\mathfrak{x}], A[\mathfrak{x}])$ and $m=m(\mathfrak{x})$, recalling $p^{\mathfrak{r}}$ is an m-type.
(2) For $\mathfrak{x} \in K_{m, \ell}$ let $N_{\mathfrak{x}}$ be $M^{\mathfrak{x}}$ expanded by $R_{\varphi(\bar{x}, \bar{y}, \bar{a})}=\left\{\bar{b} \in{ }^{\ell g(\bar{y})} M\right.$: $\varphi(\bar{x}, \bar{b}, \bar{a}) \in p\}$ for $\varphi(\bar{x}, \bar{y}, \bar{z}) \in \mathbb{L}\left(\tau_{T}\right), \bar{a} \in{ }^{\ell g(\bar{z})} A$ and $R_{\varphi(\bar{y}, \bar{a})}=\left\{\bar{b} \in{ }^{\ell g(\bar{y})} M:\right.$ $\mathfrak{C} \models \varphi[\bar{b}, \bar{a}]\}$ for $\varphi(\bar{y}, \bar{z}) \in \mathbb{L}\left(\tau_{T}\right), \bar{a} \in{ }^{\ell g(\bar{y})} \mathfrak{C} ;$ let $\tau_{\mathfrak{x}}=\tau_{N_{\mathfrak{x}}}$.
(2A) In parts (1) and (2): if we omit p we mean $p=\operatorname{tp}(\langle \rangle, M \cup A)$, therefore we can write N_{A}, a τ_{A}-model, so in this case $p=\{\varphi(\bar{b}, \bar{a}): \bar{b} \in M, \bar{a} \in M$ and $\mathfrak{C} \mid=\varphi[\bar{b}, \bar{a}]\}$.
(3) For $\mathfrak{x}, \mathfrak{y} \in K_{m, \ell}$ let
$(\alpha) \mathfrak{x} \leq_{\mathrm{pr}}^{\ell} \mathfrak{y}$ means that $\mathfrak{x}, \mathfrak{y} \in K_{m, \ell}$ and
(a) $A^{\mathfrak{x}}=A^{\mathfrak{y}}$,
(b) $M^{\mathfrak{x}} \leq_{A[\mathfrak{x}]} M^{\mathfrak{y}}$,
(c) $p^{\mathfrak{x}} \subseteq p^{\mathfrak{y}}$,
(d) $M^{\mathfrak{x}} \leq_{A[\mathfrak{r}], p[\mathfrak{y}]} M^{\mathfrak{y}}$;
$(\beta) \mathfrak{x} \leq^{\ell} \mathfrak{y}$ means that for some n and $\left\langle\mathfrak{x}_{k}: k \leq n\right\rangle, \mathfrak{x}_{k} \leq_{\text {at }}^{\ell} \mathfrak{x}_{k+1}$ for $k<n$ and $(\mathfrak{x}, \mathfrak{y})=\left(\mathfrak{x}_{0}, \mathfrak{x}_{n}\right)$, where
$(\gamma) \mathfrak{x} \leq_{a t}^{\ell} \mathfrak{y}$ iff $\left(\mathfrak{x}, \mathfrak{y} \in K_{m, \ell}\right.$ and) for some $\mathfrak{x}^{\prime} \in K_{m, \ell}$ we have
(a) $\mathfrak{x} \leq_{\mathrm{pr}}^{\ell} \mathfrak{x}^{\prime}$,
(b) $A^{\mathfrak{x}} \subseteq A^{\mathfrak{y}} \subseteq A^{\mathfrak{x}} \cup M^{\mathfrak{x}^{\prime}}$,
(c) $M^{\mathfrak{y}} \subseteq M^{\mathfrak{x}^{\prime}}$,
(d) $p^{\mathfrak{y}}=p^{\mathfrak{x}^{\prime}} \upharpoonright\left(M^{\mathfrak{y}} \cup A^{\mathfrak{y}}\right)$.
(4) For $\mathfrak{x}, \mathfrak{y} \in K_{m, \ell}$ we say that \mathfrak{y} explicitly $\bar{\Delta}$-splits ℓ-strongly over \mathfrak{x} when: $\bar{\Delta}=\left(\Delta_{1}, \Delta_{2}\right), \Delta_{1}, \Delta_{2} \subseteq \mathbb{L}\left(\tau_{T}\right)$, and for some \mathfrak{x}^{\prime} and $\varphi(\bar{x}, \bar{y}) \in \Delta_{2}$ we have clauses (a),(b),(c),(d) of part (3)(γ) and
(e) there are $\overline{\mathbf{b}}, \overline{\mathbf{a}}$ such that
$(\alpha) \overline{\mathbf{a}}=\left\langle\bar{a}_{i}: i<\omega+1\right\rangle$ is Δ_{1}-indiscernible over $A^{\mathfrak{x}} \cup M^{\mathfrak{y}}$,
(β) $A^{\mathfrak{y}} \backslash A^{\mathfrak{x}}=\bigcup\left\{\bar{a}_{i}: i<\omega\right\}$; yes ω not $\omega+1$! (note that " $A^{\mathfrak{y}} \backslash A^{\mathfrak{x}}=$ " and not " $A^{\mathfrak{y}} \backslash A^{\mathfrak{x}} \supseteq$ " as we use it in $(e)(\gamma)$ in the proof of 3.7),
$(\gamma) \bar{a}_{i} \in M^{\mathfrak{x}^{\prime}}$ for $i<\omega+1$ and $\bar{b} \in{ }^{\omega>}\left(A^{\mathfrak{x}}\right)$,
(δ) $\varphi\left(\bar{x}, \bar{a}_{k}{ }^{\wedge} \bar{b}\right) \wedge \neg \varphi\left(\bar{x}, \bar{a}_{\omega}{ }^{\wedge} \bar{b}\right)$ belongs to $p^{\mathfrak{x}^{\prime}}$ for $k<\omega$.
(5) We define dp-rk $\frac{m, \ell}{m}: K_{m, \ell} \rightarrow$ Ord $\cup\{\infty\}$ by
(a) $\operatorname{dp-rk}_{\Delta, \ell}^{m}(\mathfrak{x}) \geq 0$ always,
(b) dp-rk $\bar{\Delta}, \ell_{m}^{(x)} \geq \alpha+1$ iff there is $\mathfrak{y} \in K_{m, \ell}$ which explicitly $\bar{\Delta}$-splits ℓ-strongly over \mathfrak{x} and $\operatorname{dp}^{-\mathrm{rk}_{\bar{\Delta}, \ell}(\mathfrak{y}) \geq \alpha \text {, }, ~=1 ~}$
(c) dp-rk ${ }_{\Delta}^{m}, \ell(\mathfrak{x}) \geq \delta$ iff $\operatorname{dp-rk}_{\Delta, \ell}^{m}(\mathfrak{x}) \geq \alpha$ for every $\alpha<\delta$ when δ is a limit ordinal.

This is clearly well defined. We may omit m from dp-rk as \mathfrak{x} determines it.
(6) Let dp-rk ${\underset{\Delta}{\Delta}, \ell}_{m}(T)=\bigcup\left\{\right.$ dp-rk $\left._{\bar{\Delta}, \ell}(\mathfrak{x}): \mathfrak{x} \in K_{m, \ell}\right\}$; if $m=1$ we may omit it.
(7) If $\Delta_{1}=\Delta_{2}=\Delta$ we may write Δ instead of $\left(\Delta_{1}, \Delta_{2}\right)$. If $\Delta=\mathbb{L}\left(\tau_{T}\right)$ then we may omit it.

Remark: There are obvious monotonicity and inequalities.
3.6. Observation: $\quad(1) \leq_{\mathrm{pr}}^{\ell}$ is a partial order on $K_{m, \ell}$.
(2) $K_{m, 9} \subseteq K_{m, 8}$.
(3) if $\mathfrak{x}, \mathfrak{y} \in K_{m, 9}$ then $\mathfrak{x} \leq_{\mathrm{pr}}^{8} \mathfrak{y} \Leftrightarrow \mathfrak{x} \leq_{\mathrm{pr}}^{9} \mathfrak{y}$.
(4) if $\mathfrak{x}, \mathfrak{y} \in K_{m, 9}$ then $\mathfrak{x} \leq_{a t}^{8} \mathfrak{y} \Leftrightarrow \mathfrak{x} \leq_{a t}^{9} \mathfrak{y}$.
(5) if $\mathfrak{x}, \mathfrak{y} \in K_{m, 9}$ then \mathfrak{y} explicitly $\bar{\Delta}$-splits 8 -strongly over \mathfrak{x} iff \mathfrak{y} explicitly $\bar{\Delta}$-splits 9 -strongly over \mathfrak{x}.
(6) If $\mathfrak{x} \in K_{m, 9}$, then dp-rk ${ }_{\bar{\Delta}, 9}^{m}(\mathfrak{x}) \leq \operatorname{dp}-\mathrm{rk}_{\Delta, 8}^{m}(\mathfrak{x})$.
(7) If $\bar{a} \in{ }^{m} \mathfrak{C}$ and $\mathfrak{x}=(\operatorname{tp}(\bar{a}, M \cup A), M, A)$, then $\mathfrak{x} \in K_{m, 8}$.
(8) In part (7), if $\operatorname{tp}(\bar{a}, M \cup A)$ is finitely satisfiable in M then also $\mathfrak{y} \in K_{m, 9}$.
(9) If $\mathfrak{x} \in K_{m, \ell}$ and $\kappa>\aleph_{0}$, then there is $\mathfrak{y} \in K_{m, \ell}$ such that $\mathfrak{x} \leq_{\mathrm{pr}}^{\ell} \mathfrak{y}$ and $M^{\mathfrak{y}}$ is κ-saturated; moreover, $M_{A[\mathfrak{y}], p[\mathfrak{y}]}^{\mathfrak{y}}$ is κ-saturated (hence in Definition $3.2(4)$, without loss of generality, $M^{\mathfrak{x}^{\prime}}$ is $\left(\left|M^{\mathfrak{x}} \cup A^{\mathfrak{x}}\right|^{+}\right)$-saturated).

Proof. Easy.
 iff $\kappa_{\text {ict }}(T)>\aleph_{0}$.
(2) For each $m \in[1, \omega)$, the latter holds similarly using $\operatorname{dp}^{2} \mathrm{rk}_{\ell}^{m}(T)$, hence the properties do not depend on such m.
3.8. Remark: In the implications in the proof we allow more cases of ℓ.

Proof. Part (2) has the same proof as part (1) when we recall 1.7(1).
$\kappa_{\text {ict }}(T)>\aleph_{0}$ implies dp-rk ${ }_{\ell}(T)=\infty:$
By the assumption there is a sequence $\bar{\varphi}=\left\langle\varphi_{n}\left(x, \bar{y}_{n}\right): n<\omega\right\rangle$ exemplifying $\aleph_{0}<\kappa_{\text {ict }}(T)$. Let $\lambda>\aleph_{0}$ and I be $\lambda \times \mathbb{Z}$ ordered lexicographically, and let
$I_{\alpha}=\{\alpha\} \times \mathbb{Z}$ and $I_{\geq \alpha}=[\alpha, \lambda) \times \mathbb{Z}$. As in 1.5 , by the Ramsey theorem and compactness we can find $\left\langle\bar{a}_{t}^{n}: t \in I, n<\omega\right\rangle$ (in \mathfrak{C}_{T}) such that

* (a) $\ell g\left(\bar{a}_{t}^{n}\right)=\ell g\left(\bar{y}_{n}\right)$,
(b) $\left\langle\bar{a}_{t}^{n}: t \in I\right\rangle$ is an indiscernible sequence over $\bigcup\left\{\bar{a}_{t}^{m}: m<\omega, m \neq n\right.$ and $t \in I\}$,
(c) for every $\eta \in{ }^{\omega} I, p_{\eta}=\left\{\varphi_{n}\left(x, \bar{a}_{t}^{n}\right)^{\mathrm{if}(\eta(n)=t)}: n<\omega, t \in I\right\}$ is consistent (i.e., finitely satisfiable in \mathfrak{C}).

Choose a complete $T_{1} \supseteq T$ with Skolem functions, and $M^{*} \models T_{1}$ expanding \mathfrak{C} be such that in it $\left\langle\bar{a}_{\alpha}^{n}: t \in I, n<\omega\right\rangle$ satisfies \circledast also in M^{*}; this exists by the Ramsey theorem. Let M_{n}^{*} be the Skolem hull in M^{*} of $\bigcup\left\{\bar{a}_{t}^{m}: m<n, t \in\right.$ $\left.I_{1}\right\} \cup\left\{\bar{a}_{t}^{m}: m \in[n, \omega)\right.$ and $\left.t \in I\right\}$ and let $M_{n}=M_{n}^{*} \upharpoonright \tau(T)$. So we have $M_{n} \prec \mathfrak{C}$, which includes $\left\{\bar{a}_{t}^{m}: t \in I, m \in[n, \omega)\right\}$ such that $M_{n+1} \prec M_{n}$ and $\left\langle\bar{a}_{t}^{n}: t \in I_{\geq 2}\right\rangle$ is an indiscernible sequence over $M_{n+1} \cup\left\{\bar{a}_{t}^{m}: m<n, t \in I_{1}\right\}$, hence $\left\langle a_{t}^{n}: t \in I_{2}\right\rangle$ is an indiscernible sequence over $M_{n+1} \cup A_{n}$; the indiscernibility holds even in M^{*}, where $A_{n}=\left\{\bar{a}_{t}^{m}: m<n\right.$ and $\left.t \in I_{1}\right\}$. We delay the case $\ell=9$. Let $\eta \in{ }^{\omega} I$ be chosen as $\langle(2, i): i<\omega\rangle$. Let $p \in \mathbf{S}\left(M_{0}\right)$ be such that it includes p_{η}.

Lastly, let $\mathfrak{x}_{n}=\mathfrak{x}_{n}^{\prime}=\left(p_{n}, M_{n}, A_{n}\right)$, where $p_{n}=p \upharpoonright\left(A_{n} \cup M_{n}\right)$. By 3.6(7) clearly $\mathfrak{x}_{n} \in K_{\ell}$.

It is enough to show that $\operatorname{dp-rk}_{\ell}\left(\mathfrak{x}_{n}\right)<\infty \Rightarrow \operatorname{dp-rk}_{\ell}\left(\mathfrak{x}_{n}\right)>\operatorname{dp-rk}{ }_{\ell}\left(\mathfrak{x}_{n+1}\right)$, as by the ordinals being well ordered this implies that dp-rk $\mathrm{k}_{\ell}\left(\mathfrak{x}_{n}\right)=\infty$ for every n. By Definition 3.5(5) clause (b), it is enough to show (fixing $n<\omega$) that \mathfrak{x}_{n+1} explicitly splits ℓ-strongly over \mathfrak{x}_{n} using $\left\langle\bar{a}_{(1, i)}^{n}: i<\omega\right\rangle^{\wedge}\left\langle\bar{a}_{(2, n)}^{n}\right\rangle$. To show this, see Definition 3.5(4); we use $\mathfrak{x}_{n}^{\prime}:=\mathfrak{x}_{n}$, clearly $\mathfrak{x}_{n} \leq_{\mathrm{pr}}^{\ell} \mathfrak{x}_{n}^{\prime}$ as $\mathfrak{x}_{n}=\mathfrak{x}_{n}^{\prime} \in K_{\ell}$, so clause (a), of Definition 3.5(3)(γ) holds. Also, $A^{\mathfrak{x}_{n}} \subseteq A^{\mathfrak{x}_{n+1}} \subseteq A^{\mathfrak{x}_{n}} \cup M^{\mathfrak{x}_{n}^{\prime}}$ as $A^{\mathfrak{x}_{n+1}}=A^{\mathfrak{x}_{n}} \cup\left\{\bar{a}_{t}^{n}: t \in I_{1}\right\}$ and $\bigcup\left\{\bar{a}_{t}^{n}: t \in I_{1}\right\} \subseteq M^{\mathfrak{x}_{n}}$, so clause (b) of Definition 3.5 (3) (γ) holds. Also, $M^{\mathfrak{x}_{n+1}} \subseteq M^{\mathfrak{x}_{n}^{\prime}}$ and $p^{\mathfrak{x}_{n+1}} \supseteq p^{\mathfrak{x}_{n}^{\prime}} \upharpoonright\left(A^{\mathfrak{x}_{n}} \cup M^{\mathfrak{x}_{n+1}}\right)$ and even $p^{\mathfrak{x}_{n+1}}=p^{\mathfrak{r}_{n}^{\prime}} \upharpoonright\left(A^{\mathfrak{x}_{n+1}} \cup M^{\mathfrak{x}_{n+1}}\right)$ hold trivially, so also clause (c),(d) of Definition 3.5 3) (γ) holds.

Lastly, $\neg \varphi_{n}\left(x, \bar{a}_{(1, i)}^{n}\right)$ for $i<\omega, \varphi_{n}\left(x, \bar{a}_{(2, n)}\right)$ belongs to p_{η}, hence to $p^{\mathfrak{r}_{n+1}}$, hence by renaming also clause (e) from Definition 3.5(4) holds. So we are done.

We are left with the case $\ell=9$. For the proof above to work we need just that $p\left(\in \mathbf{S}\left(M_{0}\right)\right)$ satisfies $n<\omega \Rightarrow p \upharpoonright\left(M_{n} \cup A_{n}\right)$ is finitely satisfiable in M_{n}. Toward this, without loss of generality, for each n there is a function symbol $F_{n} \in \tau\left(M^{*}\right)$ such that: if $\eta \in{ }^{n} I$ then $c_{\eta}:=F_{n}^{M^{*}}\left(\bar{a}_{\eta(0)}^{0}, \ldots, \bar{a}_{\eta(n-1)}^{n-1}\right)$ realizes $\left\{\varphi_{m}\left(x, \bar{a}_{t}^{m}\right)^{\mathrm{if}(t=\eta(m))}: m<n\right.$ and $\left.\alpha<\lambda\right\}$, so F_{n} has arity $\Sigma\left\{\ell g\left(\bar{y}_{m}\right): m<n\right\}$.

Let D be a uniform ultrafilter on ω and let $c_{\omega} \in \mathfrak{C}$ realize $p^{*}=\{\psi(x, \bar{b})$: $\bar{b} \subseteq M_{0}, \psi(x, \bar{y}) \in \mathbb{L}\left(\tau_{M^{*}}\right)$ and $\left.\left\{n: \mathfrak{C} \models \psi\left(c_{\eta \upharpoonright n}, \bar{b}\right)\right\} \in D\right\}$, so clearly $p=$ $\operatorname{tp}\left(c_{\omega}, M_{0}, \mathfrak{C}\right) \in \mathbf{S}\left(M_{0}\right)$ extends $\left\{\varphi_{n}\left(x, \bar{a}_{t}^{m}\right)^{\mathrm{if}(t=\eta(n))}: n<\omega\right.$ and $\left.t \in I\right\}$. Therefore we have just to check that $p_{n}=p \upharpoonright\left(A_{n} \cup M_{n}\right)$ is finitely satisfiable in M_{n}, so let $\vartheta(\bar{x}, \bar{b}) \in p_{n}$; thus we can find $k(*)<\omega(\subseteq \mathbb{Z})$ such that \bar{b} is included in the Skolem hull $M_{n, k(*)}^{*}$ of $\cup\left\{\bar{a}_{(1, a)}^{m}: m<n\right.$ and $\left.a \in \mathbb{Z} \wedge a<k(*)\right\} \cup\left\{\bar{a}_{t}^{m}: m \in\right.$ $[n, \omega), t \in I\}$ inside M^{*}.

Let $\nu \in{ }^{\omega} \lambda$ be defined by

$$
\begin{gathered}
\nu(m)=\eta(m) \text { for } m \in[n, \omega) \\
\nu(m)=(1, k(*)+m) \text { for } m<n .
\end{gathered}
$$

By the indiscernibility:
$(*)_{1}$ for every $n, \mathfrak{C} \models \psi\left(c_{\eta \upharpoonright n}, \bar{b}\right) \equiv \psi\left(c_{\nu \upharpoonright n}, \bar{b}\right)$,
and by the choice of p
$(*)_{2}\left\{n: \mathfrak{C} \models \psi\left(c_{\eta \upharpoonright n}, \bar{b}\right)\right\}$ is infinite, but clearly
$(*)_{3} c_{\eta \upharpoonright m} \in M_{n}$ for $m<\omega$.
Together we are done.
$\operatorname{dp-rk}_{\ell}(T)=\infty$ implies $\operatorname{dp-rk}_{\ell}(T) \geq|T|^{+}$:
Trivial.
$\operatorname{dp-rk}_{\ell}(T) \geq|T|^{+} \Rightarrow \kappa_{\text {ict }}(T)>\aleph_{0}$:
We choose by induction on n sequences $\bar{\varphi}^{n}$ and $\left.\left.\left\langle\mathfrak{x}_{\alpha}^{n}: \alpha<\right| T\right|^{+}\right\rangle,\left\langle\overline{\mathbf{a}}_{\alpha}^{n}, A_{\alpha}^{n}: \alpha<\right.$ $\left.|T|^{+}\right\rangle$such that:
\circledast_{n} (a) $\bar{\varphi}^{n}=\left\langle\varphi_{m}\left(x, \bar{y}_{m}\right): m<n\right\rangle$; that is $\bar{\varphi}^{n}=\left\langle\varphi_{m}^{n}\left(x, \bar{y}_{m}^{n}\right): m<n\right\rangle$ and $\varphi_{m}^{n}\left(x, \bar{y}_{m}^{n}\right)=\varphi_{m}^{n+1}\left(x, \bar{y}_{m}^{m+1}\right)$ for $m<n$, so we call it $\varphi_{m}\left(x, \bar{y}_{m}\right)$.
(b) $\mathfrak{x}_{\alpha}^{n} \in K_{\ell}$ and $\operatorname{dp-rk} \mathrm{k}_{\ell}\left(\mathfrak{x}_{\alpha}^{n}\right) \geq \alpha$.
(c) $\overline{\mathbf{a}}_{\alpha}^{n}=\left\langle\bar{a}_{\alpha, k}^{n, m}: k<\omega, m<n\right\rangle$, where the sequence $\bar{a}_{\alpha, k}^{n, m}$ is from $A^{\mathfrak{x}_{\alpha}^{n}}$.
(d) For each $\alpha<|T|^{+}$and $m<n$ the sequence $\left\langle\bar{a}_{\alpha, k}^{n, m}: k<\omega\right\rangle$ is indiscernible over $\bigcup\left\{\bar{a}_{\alpha, k}^{n, i}: i<n, i \neq m, k<\omega\right\} \cup M^{\mathfrak{x}_{\alpha}^{n}} \cup A_{\alpha}^{n}$.
(e) We have $\bar{b}_{\alpha}^{n, m} \subseteq A^{\mathfrak{x}_{\alpha}^{n}}=\bigcup\left\{\bar{a}_{\alpha, k}^{n, i}: i<m, k<\omega\right\} \cup A_{\alpha}^{n}$ for $m<n$ such that: if $\eta \in{ }^{n} \omega$ and $m<n \Rightarrow \bar{b}_{\alpha}^{n, m} \subseteq \bigcup\left\{\bar{a}_{\alpha, k}^{n, i}: i<m, k<\eta(i)\right\} \cup$ A_{α}^{n}, then $\left(p^{\mathfrak{x}_{\alpha}^{n}} \upharpoonright M^{\mathfrak{x}_{\alpha}^{n}}\right) \cup\left\{\neg \varphi_{m}\left(\bar{a}_{\alpha, \eta(m)}^{n, m}, \bar{b}_{\alpha}^{n, m}\right) \wedge \varphi_{m}\left(\bar{x}, \bar{a}_{\alpha, \eta(m)+1}^{n, m}, \bar{b}_{\alpha}^{n, m}\right)\right.$: $m<n\}$ is finitely satisfiable in \mathfrak{C}.
For $n=0$ this is trivial by the assumption $\operatorname{rk}-\operatorname{dp}_{\ell}(T) \geq|T|^{+}$; see Definition $3.5(6)$ (and 3.5(7)).

For $n+1$, for every $\alpha<|T|^{+}$(as rk-dp $\ell\left(\mathfrak{x}_{\alpha+1}^{n}\right)>\alpha$ by Definition 3.5(5)) we can find $\mathfrak{z}_{\alpha}^{n}, \mathfrak{y}_{\alpha}^{n}, \varphi_{\alpha}^{n}\left(x, \bar{y}_{\alpha}^{n}\right),\left\langle\bar{a}_{\alpha, k}^{n, *}: k<\omega\right\rangle$ such that Definition 3.5(4) is satisfied, with $\left(\mathfrak{x}_{\alpha+1}^{n}, \mathfrak{z}_{\alpha}^{n}, \mathfrak{y}_{\alpha}^{n}, \varphi_{\alpha}^{n}\left(x, \bar{y}_{\alpha}\right),\left\langle\bar{a}_{\alpha, k}^{n, *}: k<\omega\right\rangle\right)$ here standing for $\left(\mathfrak{x}, \mathfrak{x}^{\prime}, \mathfrak{y}, \varphi(x, \bar{y}),\left\langle\bar{a}_{k}: k<\omega\right\rangle\right)$ there such that $\operatorname{rk}-\operatorname{dp}_{\ell}\left(\mathfrak{y}_{\alpha}^{n}\right) \geq \alpha$, and we also have $\bar{a}_{\alpha, \omega}^{n, *}, \bar{b}_{\alpha}^{n, *}$ here standing for $\bar{a}_{\omega}, \bar{b}$ there. So for some formula $\varphi_{n}\left(x, \bar{y}_{n}\right)$ the set $S_{n}=\left\{\alpha<|T|^{+}: \varphi_{\alpha}^{n}\left(x, \bar{y}_{\alpha}^{n}\right)=\varphi_{n}\left(x, \bar{y}_{n}\right)\right\}$ is unbounded in $|T|^{+}$, so $\bar{\varphi}^{n+1}$ is well defined, hence clause (a) of \circledast_{n+1} holds.

For $\alpha<|T|^{+}$, let $\beta_{n}(\alpha)=\operatorname{Min}\left(S_{n} \backslash \alpha\right)$ and let $\mathfrak{x}_{\alpha}^{n+1}=\mathfrak{y}_{\beta(\alpha)}^{n}$ so clause (b) of \circledast_{n+1} holds. Let $\left\langle\bar{a}_{\alpha, k}^{n+1, m}: k<\omega\right\rangle$ be $\left\langle\bar{a}_{\beta(\alpha)+1, k}^{n, m}: k<\omega\right\rangle$ if $m<n$ and $\left\langle\bar{a}_{\beta(\alpha), k}^{n, *}: k<\omega\right\rangle$ if $m=n$, and let $A_{\alpha}^{n+1}=A_{\beta(\alpha)+1}^{n}$, so clauses $(\mathrm{c})+(\mathrm{d})$ from \circledast_{n+1} hold. Also, we let $\bar{b}_{\alpha}^{n+1, m}$ be $\bar{b}_{\beta(\alpha)+1}^{n, m}$ if $m<n$ and $\bar{b}_{\beta(\alpha)}^{n, *}$ if $m=n$. Next, we check clause (e) of \circledast_{n+1}.

Let $\eta \in{ }^{n+1} \omega$ be as required in sub-clause (γ) of clause (e) of \circledast_{n+1} and let α be any member of S. By the induction hypothesis

$$
\left.\left(p^{\mathfrak{r}_{\alpha+1}^{n}} \upharpoonright M^{\mathfrak{x}_{\alpha+1}^{n}}\right) \cup\left\{\neg \varphi\left(x, \bar{a}_{\alpha, \eta(m)}^{n, m}\right), \bar{b}_{\alpha}^{n, m}\right) \wedge \varphi\left(x, \bar{a}_{\alpha, \eta(m)+1}^{n, m}, \bar{b}_{\alpha}^{n, m}\right): m<n\right\}
$$

is finitely satisfiable in \mathfrak{C}.
By clause (d) of $3.5(3)(\alpha)$ it follows that

$$
\left.\left(p^{\mathfrak{z}_{\alpha}^{n}} \upharpoonright M^{\mathfrak{\mathfrak { b }}_{\alpha}^{n}}\right) \cup\left\{\neg \varphi\left(x, \bar{a}_{\alpha+1, \eta(m)}^{n, m}\right), b_{\alpha}^{n, m}\right) \wedge \varphi\left(x, \bar{a}_{\alpha+1, \eta(m)+1}^{n, m}\right): m<n\right\}
$$

is finitely satisfiable in \mathfrak{C} (i.e., we use $M^{\mathfrak{x}_{\alpha+1}^{n}} \leq_{A\left[\mathfrak{z}_{\alpha}^{n}\right], p\left[\mathfrak{z}_{\alpha}^{n}\right]\left\lceil M\left[\mathfrak{z}_{\alpha}^{n}\right]\right.} M^{\mathfrak{z}_{\alpha}^{n}}$, which suffices; we use freely the indiscernibility).

Hence, by monotonicity, the set

$$
\begin{aligned}
&\left(p^{\mathfrak{z}_{\alpha}^{n}} \upharpoonright\left(M^{\mathfrak{y}_{\alpha}^{n}} \cup\left\{\bar{a}_{\alpha, k}^{n+1, m}: k \leq \eta(n) \text { or } k=\omega\right\} \cup A_{\alpha+1}^{n}\right)\right. \\
& \cup\left\{\neg \varphi\left(\bar{x}, \bar{a}_{\alpha, \eta(m)}^{n+1, m}, \bar{b}_{\alpha}^{m, n}\right) \wedge \varphi\left(x, \bar{a}_{\alpha, \eta(m)+1}^{n+1, m} ; \bar{b}_{\alpha}^{n, m}\right): m<n\right\}
\end{aligned}
$$

is finitely satisfiable in \mathfrak{C}.
Similarly,

$$
\begin{aligned}
&\left(p^{\mathfrak{z}_{\alpha}^{n}} \upharpoonright\left(M^{\mathfrak{y}_{\alpha}^{n}}\right) \cup\left\{\neg \varphi\left(x, \bar{a}_{\alpha, \eta(n)}^{n+1, m}, \bar{b}_{\alpha}^{n+1, n}\right) \wedge \varphi\left(x, \bar{a}_{\alpha, \omega}^{n+1, n}\right)\right\}\right. \\
& \cup\left\{\neg \varphi\left(x, \bar{a}_{\alpha, \eta(m)}^{n+1, n}, \bar{b}_{\alpha}^{n+1, m}\right) \wedge \varphi\left(x, \bar{a}_{\alpha, \eta(m)+1}^{n+1, m}, \bar{b}_{\alpha}^{n+1, m}\right): m<n\right\}
\end{aligned}
$$

is finitely satisfiable in \mathfrak{C}.
But $\bar{a}_{\alpha, \omega}^{n+1, m}, \bar{a}_{\alpha, \eta(n)+1}^{n+1, n}$ realize the same type over a set including all the relevant elements, so we can replace above the first $\left(\bar{a}_{\alpha, \omega}^{n+1, n}\right)$ by the second $\left(\bar{a}_{\alpha, \eta(m)+1}^{n+1, n}\right)$, so we are done proving clause (e) of \circledast_{n+1}.

Having carried out the induction it suffices to show that $\bar{\varphi}=\left\langle\varphi_{n}\left(x, \bar{y}_{n}\right): n<\right.$ $\omega\rangle$ exemplifies that $\kappa_{\text {ict }}(T)>\aleph_{0}$; for this it suffices to prove the assertion $\circledast_{\bar{\varphi}}^{2}$ from 1.5(1). By compactness, it suffices for each n to find $\left\langle\bar{a}_{k}^{n, m}: k<\omega\right\rangle$ for $m<n$ in \mathfrak{C} such that $\ell g\left(\bar{a}_{k}^{n, m}\right)=\ell g\left(\bar{y}_{n}\right),\left\langle\bar{a}_{k}^{n, m}: k<\omega\right\rangle$ is indiscernible over $\bigcup\left\{\bar{a}_{k}^{n, i}: k<\omega, i<n, i \neq m\right\}$ for each $m<n$ and $\mathfrak{C} \models(\exists x)\left[\bigwedge_{m<n}\left(\neg \varphi\left(x, \bar{a}_{0}^{n, m}\right) \wedge\right.\right.$ $\left.\varphi\left(x, \bar{a}_{1}^{n, m}\right)\right]$.

We choose $\bar{a}_{k}^{n, m}=\bar{a}_{\alpha, k(*)+k}^{n, m} \bar{b}_{\alpha}^{n, m}$, where $k(*)$ is large enough such that $\bigcup\left\{\bar{b}_{\alpha}^{n, m}: m<n\right\} \subseteq \bigcup\left\{\bar{a}_{\alpha, k}^{n, m}: m<n\right.$ and $\left.k<k(*)\right\}$ and let $\alpha=0$; clearly we are done. $\quad \square_{3.7}$
3.9. Observation: (1) If $\mathfrak{x} \in K_{\ell}$ and $|T|+\left|A^{\mathfrak{x}}\right| \leq \mu<\left\|M^{\mathfrak{x}}\right\|$, then for some $M_{0} \prec M^{\mathfrak{x}}$ we have $\left\|M_{0}\right\|=\mu$ and for every $\mathfrak{y} \leq_{\text {pr }}^{\ell} \mathfrak{x}$ satisfying $M_{0} \subseteq M^{\mathfrak{y}}$

(1A) If $\operatorname{dp-rk}_{\ell}(\mathfrak{x})<\infty$ then it is $<|T|^{+}$. Similarly, $\operatorname{dp-rk}_{\ell}(T)$ (with $\left(2^{|T|}\right)^{+}$ this is easier).
(1B) If dp-rk $\bar{\Delta}, \ell(\mathfrak{x})<\infty$ then it is $<\left|\Delta_{1} \cup \Delta_{2}\right|^{+}+\aleph_{1}$.
(2) If $\mathfrak{x} \leq_{\mathrm{pr}}^{\ell} \mathfrak{y}$ then $\operatorname{dp-rk}_{\ell}(\mathfrak{x}) \geq \operatorname{dp-rk}_{\ell}(\mathfrak{y})$.
(3) If $\mathfrak{x} \leq_{\mathrm{pr}}^{\ell} \mathfrak{y}$ and \mathfrak{z} explicitly splits ℓ-strongly over \mathfrak{y}, then \mathfrak{z} explicitly splits ℓ-strongly over \mathfrak{x}.
(4) The previous parts hold for $m>1$, too.

Proof. (1) We do not need a really close look at the rank for this. First, fix an ordinal ζ.

We can choose a vocabulary $\tau_{\zeta, \alpha, m}$ of cardinality $|A|+|\zeta|+|T|$ such that:
\circledast_{1} for any set A fixing a sequence $\overline{\mathbf{a}}=\left\langle a_{\beta}: \beta<\alpha\right\rangle$ listing the elements of $A, M \prec \mathfrak{C}$ and $p \in \mathbf{S}^{m}\left(M \cup\left\{a_{\beta}: \beta<\alpha\right\}\right), M_{A, p}$, or more exactly $M_{\overline{\mathbf{a}}, p}$, is a $\tau_{\zeta, \alpha, m}$-model;
we let
\circledast_{2} (a) $\mathrm{ds}(\zeta)=\{\eta: \eta$ a decreasing sequence of ordinals $<\zeta\}$,
(b) $\Gamma_{\zeta}=\{u: u$ is a subset of $\mathrm{ds}(\zeta)$ closed under initial segments $\}$ and $\Gamma_{\infty}=\bigcup\left\{\Gamma_{\zeta}: \zeta\right.$ an ordinal $\}$,
(c) for $u \in \Gamma_{\zeta}$ let $\Xi_{u}^{m}=\left\{\bar{\varphi}: \bar{\varphi}\right.$ has the form $\left\langle\varphi_{n}\left(\bar{x}, \bar{y}_{\eta}\right): \eta \in u\right\rangle$ where $\left.\bar{x}=\left\langle x_{\ell}: \ell<m\right\rangle, \varphi_{\eta}\left(\bar{x}, \bar{y}_{n}\right) \in \mathbb{L}\left(\tau_{T}\right)\right\}$, and
\circledast_{3} there are functions $\Phi_{\alpha, m}$ for $m<\omega, \alpha$ an ordinal, satisfying:
(a) if $u \in \Gamma_{\infty}, \alpha \in$ Ord and $\bar{\varphi} \in \Xi_{u}^{m}$, then $\Phi_{\alpha, m}(u)$ is a set of first order sentences,
(b) $\Phi_{\alpha, m}(u)$ is a set of first order sentences,
(c) if $\mathfrak{x} \in K_{m, \ell}$ and $\overline{\mathbf{a}}=\left\langle a_{\beta}: \beta<\alpha\right\rangle$ list $A^{\mathfrak{x}}$, then $\operatorname{dp-rk} \mathrm{k}_{\ell}(\mathfrak{x}) \geq \zeta$ iff $\operatorname{Th}\left(M_{\overline{\mathbf{a}}, p[\mathfrak{r}]}\right) \cup \Phi_{\alpha, m}(\bar{\varphi})$ is consistent for some $\bar{\varphi} \in \Xi_{\mathrm{ds}(\zeta)}^{m}$,
(d) if $\bar{\varphi}, \bar{\psi}$ are isomorphic (see below), then $\Phi_{\alpha, m}(\bar{\varphi})$ is consistent iff $\Phi_{\alpha, m}(\bar{\psi})$ is,
where
$\circledast_{4} \bar{\varphi}=\left\langle\varphi_{n}\left(\bar{x}, \bar{y}_{\eta}\right): \eta \in u\right\rangle, \bar{\psi}=\left\langle\psi_{\eta}\left(\bar{x}, \bar{z}_{\eta}\right): \eta \in v\right\rangle$ are isomorphic when there is a one-to-one mapping function h from u onto v preserving lengths, being initial segments, and its negation such that $\varphi_{\eta}\left(\bar{x}, \bar{y}_{\eta}\right)=$ $\psi_{h(\eta)}\left(\bar{x}, \bar{z}_{h(\eta)}\right)$ for $\eta \in u$.
[Why \circledast_{3} ? Just reflect on the definition.]
Now if $\zeta=\operatorname{dp-rk}_{\ell}(\mathfrak{x})$ has cardinality $\leq \mu$ (e.g., $\zeta<|T|^{+}$), part (1) should be clear. In the remaining case, if $\mu \geq|T|^{+}$, by (1A) we are done and otherwise use the implicit characterization of " $\infty=\operatorname{dp}^{2}-\mathrm{rk}_{\ell}(\mathfrak{x})$ ".
(1A) Now the proof is similar to the third part of the proof of $3.7(1)$ and is standard. We choose by induction on n a formula $\varphi_{n}\left(\bar{x}, \bar{y}_{n}\right)<|T|^{+}$for some decreasing sequence $\eta_{m, \alpha}^{*}$ of ordinals $>\alpha$ of length n; we have
$\odot \Phi_{n, \alpha}\left(\bar{\varphi}^{n}\right)$ is consistent with $\operatorname{Th}\left(M_{\overline{\mathbf{a}}\left[\mathfrak{x}_{\alpha}^{n}\right], p\left[\mathfrak{x}_{\alpha}^{n}\right]}^{\mathfrak{r}_{n}^{n}}\right)$ where $\operatorname{Dom}\left(\bar{\varphi}^{n, \alpha}\right)=$ $\left\{\eta_{n, \alpha}^{*} \upharpoonright \ell: \ell \leq n\right\}$ and $\varphi_{\eta_{n, \alpha} \upharpoonright \ell}^{n, \alpha}\left(\bar{x}, \bar{y}_{\eta_{n, \alpha} \upharpoonright \ell}^{n, \alpha}\right)=\varphi_{\ell}\left(\bar{x}, \bar{y}_{\ell}\right)$ for $\ell<n$.
The induction should be clear and clearly is enough.
(1B) Similarly.
(2) We prove by induction on the ordinal ζ that $\operatorname{dp-rk}_{\ell}(\mathfrak{y}) \geq \zeta \Rightarrow \operatorname{dp-rk}{ }_{\ell}(\mathfrak{x}) \geq$ ζ. For $\zeta=0$ this is trivial, and for ζ a limit ordinal this is obvious. For ζ successor order, let $\zeta=\xi+1$ so there is $\mathfrak{z} \in K_{\ell}$ which explicitly splits ℓ-strongly over \mathfrak{y} by part (3) and the definition of $\mathrm{dp}_{\mathrm{-r}}^{\ell}{ }_{\ell}$; we are done.
(3) Easy, as $\leq_{\ell}^{\mathrm{pr}}$ is transitive.
(4) Similarly. $\quad \mathbf{■}_{3.9}$

3B. RANks For Strongly ${ }^{+}$Dependent T. We now deal with a relative of Definition 3.5 relevant for "strongly ${ }^{+}$dependent".
3.10. Definition: (1) For $\ell \in\{14,15\}$ we define $K_{m, \ell}=K_{m, \ell-6}$ (and if $m=1$ we may omit it and $\leq_{\mathrm{pr}}^{\ell}=\leq_{\mathrm{pr}}^{\ell-6}, \leq_{\mathrm{at}}^{\ell}=\leq_{\mathrm{at}}^{\ell-6}, \leq^{\ell}=\leq^{\ell-6}$).
(2) For $\mathfrak{x}, \mathfrak{y} \in K_{m, \ell}$ we say that \mathfrak{y} explicitly $\bar{\Delta}$-splits ℓ-strongly over \mathfrak{x} when $\bar{\Delta}=\left(\Delta_{1}, \Delta_{2}\right), \Delta_{1}, \Delta_{2} \subseteq \mathbb{L}\left(\tau_{T}\right)$ and for some \mathfrak{x}^{\prime} and $\varphi(\bar{x}, \bar{y}) \in \Delta_{2}$ with $\ell g(\bar{x})=m$ we have clauses (a),(b),(c),(d) of clause (γ) of Definition 3.5(3), and
(e) ${ }^{\prime \prime}$ there are \bar{b}, \bar{a} such that
(α) $\overline{\mathbf{a}}=\left\langle\bar{\alpha}_{i}: i\langle\omega\rangle\right.$ is Δ_{1}-indiscernible over $A^{\mathfrak{x}} \cup M^{\mathfrak{y}}$,
(β) $A^{\mathfrak{V}} \supseteq A^{\mathfrak{x}} \cup\left\{\bar{a}_{i}: i<\omega\right\}$,
$(\gamma) \bar{b} \subseteq A^{\mathfrak{x}}$ and $\bar{a}_{i} \in M^{\mathfrak{x}}$ for $i<\omega$,
($\delta) \varphi\left(\bar{x}, \bar{a}_{0} \wedge \bar{b}\right) \wedge \neg \varphi\left(\bar{x}, \bar{a}_{1} \wedge \bar{b}\right) \in p^{r^{\prime}}$.
(3) $\operatorname{dp-rk}_{\ell}^{m}(T)=\bigcup\left\{\operatorname{dp-rk}_{\ell}(\mathfrak{x})+1: \mathfrak{x} \in K_{\ell}\right\}$.
(4) If $\Delta_{1}=\Delta=\Delta_{2}$ we may write Δ instead of $\bar{\Delta}$, and if $\Delta=\mathbb{L}\left(\tau_{T}\right)$ we may omit Δ. Lastly, if $m=1$ we may omit it.

Similarly to 3.6 .
3.11. Observation: (1) If $\mathfrak{x}, \mathfrak{y} \in K_{15}$, then " \mathfrak{y} explicitly $\bar{\Delta}$-splits 15 -strongly over \mathfrak{x} " iff " \mathfrak{y} explicitly $\bar{\Delta}$-splits 14 -strongly over \mathfrak{x} ".
(2) If $\mathfrak{x} \in K_{m, 15}$ then $\operatorname{dp}^{1-r k}{ }_{\Delta, 15}^{m}(\mathfrak{x}) \leq \operatorname{dp-rk}_{\Delta, 14}^{m}(\mathfrak{x})$.

Proof. Easy by the definition.
3.12. Claim: (1) For $\ell=14$ we have $\mathrm{dp}^{\mathrm{r}} \mathrm{rk}_{\ell}(T)=\infty$ iff $\mathrm{dp}^{(\mathrm{rk}}{ }_{\ell}(T) \geq|T|^{+}$iff $\kappa_{\text {ict }, 2}(T)>\aleph_{0}$.
(2) For each $m \in[1, \omega)$, similarly using $\operatorname{dp-rk}_{\ell}^{m}(T)$.
(3) The parallel of 3.9 holds (for $\ell=14,15$).

Proof. (1) $\kappa_{\text {ict }, 2}(T)>\aleph_{0}$ implies dp-rk ${ }_{\ell}(T)=\infty$.
As in the proof of 3.7.
$\operatorname{dp-rk}_{\ell}(T)=\infty \Rightarrow \operatorname{dp-rk}_{\ell}(T) \geq|T|^{+}$for any ℓ.
Trivial.
$\operatorname{dp-rk}{ }_{\ell}(T) \geq|T|^{+} \Rightarrow \kappa_{\text {ict }, 2}(T)$.
We repeat the proof of the parallel statement in 3.7, and we choose \bar{b} but not $\bar{a}_{\alpha, \omega}^{n+1, n}$.
(2) By part (1) and 2.8(3).
(3) A similar proof. $\quad \mathbf{】}_{3.12}$

4. Existence of indiscernibles

Now we arrive at our main result.
4.1. Theorem: (1) Assume
(a) $\ell \in\{8,9\}$,
(b) $\infty>\zeta(*)=\operatorname{dp-rk}{ }_{\ell}^{m}(T)$ so $\zeta(*)<|T|^{+}$,
(c) $\lambda_{*}=\beth_{2 \times(\zeta(*)+1)}(\mu)$,
(d) $\bar{a}_{\alpha} \in \mathfrak{C}_{T}$ for $\alpha<\lambda_{*}^{+}, \lg \left(\bar{a}_{\alpha}\right)=m$,
(e) $A \subseteq \mathfrak{C}_{T},|A|+|T| \leq \mu$.

Then for some $u \in\left[\lambda_{*}^{+}\right]^{\mu^{+}}$, the sequence $\left\langle\bar{a}_{\alpha}: \alpha \in u\right\rangle$ is an indiscernible sequence over A.
(2) If T is strongly dependent, then for some $\zeta(*)<|T|^{+}$part (1) holds, i.e., if clauses (c),(d),(e) from there hold, then the conclusion there holds.
4.2. Remark: (0) This works for $\ell=14,15,17,18$, too; see $\S 5 \mathrm{~A}$.
(1) A theorem in this direction is natural as small dp-rk points to definability and if the relevent types increase with the index and are definable, say over the first model, then it follows that the sequence is indiscernible.
(2) The $\beth_{2 \times(\zeta+1)}(\mu)$ is more than needed; we can use $\lambda_{\zeta(*)}^{+}$where we define $\lambda_{\zeta}=\mu+\Sigma\left\{\left(2^{\lambda_{\xi}}\right)^{+}: \xi<\zeta\right\}$ by induction on ζ.
(3) We may like to have a one-model version of this theorem. This will be dealt with elsewhere.

Proof. (1) Clearly $\mathfrak{x} \in K_{m, \ell} \Rightarrow p^{\mathfrak{x}} \in \mathbf{S}^{m}\left(A^{\mathfrak{x}} \cup M^{\mathfrak{x}}\right)$ and we shall use clause (e) of Definition 3.5(4).

By 3.6(6), it is enough to prove this for $\ell=9$, but the proof is somewhat simpler for $\ell=8$, so we carry the proof for $\ell=8$ but say what more is needed for $\ell=9$. We prove by induction on the ordinal ζ that (note that the M_{α} 's are increasing but not necessarily the p_{α} 's; this is not an essential point as by decreasing somewhat the cardinals we can regain it):
$(*)_{\zeta}$ if the sequence $\mathbf{I}=\left\langle\bar{a}_{\alpha}: \alpha<\lambda^{+}\right\rangle$satisfies \boxtimes_{ζ} below, then for some $u \in\left[\lambda^{+}\right]^{\mu^{+}}$the sequence $\left\langle\bar{a}_{\alpha}: \alpha \in u\right\rangle$ is an indiscernible sequence over A where (below, the 2 is an overkill, in particular for successor of successor, but for limit ζ we "catch our tail"):
\boxtimes_{ζ} there are $\lambda, B, \bar{M}, \bar{p}$ such that
(a) $\lambda=\lambda^{\beth_{2(\xi+1)}(\mu)}$ for every $\xi<\zeta$,
(b) $\bar{M}=\left\langle M_{\alpha}: \alpha<\lambda^{+}\right\rangle$and $M_{\alpha} \prec \mathfrak{C}_{T}$ is increasing continuous (with $\alpha)$,
(c) M_{α} has cardinality $\leq \lambda$,
(d) $\bar{a}_{\alpha} \in{ }^{m}\left(M_{\alpha+1}\right)$ for $\alpha<\lambda^{+}$,
(e) $p_{\alpha}=\operatorname{tp}\left(\bar{a}_{\alpha}, M_{\alpha} \cup A \cup B\right)$,
(f) $B \subseteq \mathfrak{C},|B| \leq \aleph_{0}$,
(g) $\mathfrak{x}_{\alpha}=\left(p_{\alpha}, M_{\alpha}, A \cup B\right)$ belongs to $K_{m, \ell}$ and satisfies dp-rk $\ell_{\ell}^{m}\left(\mathfrak{x}_{\alpha}\right)<\zeta$.
[Why is this enough? We apply $(*)$ for the case $\zeta=\zeta(*)$ so $\lambda=\lambda_{*}$, and we choose $M_{\alpha} \prec \mathfrak{C}$ of cardinality λ by induction on $\alpha<\lambda^{+}$such that M_{α} is increasing continuous, $\left\{\bar{a}_{\beta}: \beta<\alpha\right\} \subseteq M_{\alpha}$.]

If $\ell=8$, fine; if $\ell=9$, it seems that we have a problem with clause (g). That is, in checking $\mathfrak{x}_{\alpha} \in K_{n, \ell}$ we have to show that " p_{α} is finitely satisfiable in M_{α} ". But this is not a serious one: in this case note that for some club E of λ^{+}, for every $\alpha \in E$, the type we have $\operatorname{tp}\left(a_{\alpha}, M_{\alpha} \cup A \cup B\right)$ is finitely satisfiable in M_{α}. So letting $M_{\alpha}^{\prime}=M_{\alpha^{\prime}}, a_{\alpha}^{\prime}=\bar{a}_{\alpha^{\prime}}$ when $\alpha<\lambda^{+}, \alpha^{\prime} \in E$ and otp $\left(C \cap \alpha^{\prime}\right)=\alpha$ and similarly $p_{\alpha}^{\prime}=\operatorname{tp}\left(\bar{a}_{\alpha^{\prime}}, M_{\alpha}, \mathfrak{C}\right)$ we can use $\left\langle\left(a_{\alpha}^{\prime}, M_{\alpha}^{\prime}, p_{\alpha}^{\prime}\right): \alpha<\lambda^{+}\right\rangle$, so we are done.

So let us carry the induction; arriving at ζ we let $\theta_{\ell}=\beth_{2 \times \zeta+\ell}(\mu)$, for $\ell<$ 3; note that $\theta_{\ell+1}^{\theta_{\ell}}=\theta_{\ell}$ and $\lambda^{\theta_{2}}=\lambda$. Let χ be large enough and let $\mathfrak{B} \prec$ $\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)$ be of cardinality λ such that $\mathfrak{C}, \bar{M}, \bar{p}, \overline{\mathbf{a}}, B, A$ belong to \mathfrak{B} and $\lambda+1 \subseteq \mathfrak{B}$ and $Y \subseteq \mathfrak{B} \wedge|Y| \leq \theta_{2} \wedge \lambda^{|Y|}=X \Rightarrow Y \in \mathfrak{B}$. Let $\delta(*)=$ $\mathfrak{B} \cap \lambda^{+}$so, without loss of generality, $\operatorname{cf}(\delta(*))$ satisfies $\lambda^{\mathrm{cf}(\delta(*))}>\lambda$. Let $\zeta^{*}=$ $\operatorname{dp-rk}\left(p_{\delta(*)}, M_{\delta(*)}, A \cup B\right)$ and $\theta=\theta_{1}$, hence $\lambda=\lambda^{\theta^{+}}$. We try by induction on $\varepsilon \leq \theta^{+}+\theta^{+}$to choose $\left(N_{\alpha_{\varepsilon}}, \alpha_{\varepsilon}\right)$ such that:
$\circledast_{\varepsilon}$ (a) $\alpha_{\varepsilon}<\delta(*)$ is increasing with ε,
(b) $N_{\varepsilon}<_{A \cup B, p_{\alpha(*)}} M_{\delta(*)}$ is increasing continuous with ε,
(c) N_{ε} has cardinality θ,
(d) $\xi<\varepsilon \Rightarrow a_{\alpha_{\xi}} \in N_{\alpha_{\varepsilon}}$,
(e) $\bar{a}_{\alpha_{\varepsilon}}$ realizes $p_{\delta(*)} \upharpoonright\left(N_{\alpha_{\varepsilon}} \cup A \cup B\right)$
(f) if $p_{\delta(*)}$ splits over $N_{\varepsilon} \cup A \cup B$, then $p_{\delta(*)} \upharpoonright\left(N_{\alpha_{\varepsilon+1}} \cup A \cup B\right)$ splits over $N_{\varepsilon} \cup A \cup B$,
(g) $\left(p_{\alpha_{\varepsilon}} \upharpoonright\left(N_{\alpha_{\varepsilon}} \cup A \cup B\right), N_{\alpha_{\varepsilon}}, A \cup B\right)<_{\operatorname{pr}}\left(p_{\delta(*)}, M_{\delta(*)}, A \cup B\right)$ and they (have to) have the same dp-rk,
(h) $N_{\varepsilon} \subseteq M_{\alpha_{\varepsilon}}$ (but not used).

Clearly we can carry the definition. Now the proof splits into two cases.
Case 1: For $\xi=\theta^{+}, p_{\delta(*)}$ does not split over $N_{\alpha_{\xi}} \cup A \cup B$.
By clause (e) of $\circledast_{\varepsilon}$ clearly $\varepsilon \in\left[\xi, \xi+\theta^{+}\right) \Rightarrow \operatorname{tp}\left(\bar{a}_{\alpha_{\varepsilon}}, N_{\varepsilon} \cup A \cup B\right)$ does not split over $N_{\alpha_{\xi}} \cup A \cup B$ and increases with ε. As $\left\langle N_{\xi+\varepsilon}: \varepsilon<\theta\right\rangle$ is increasing and
$\bar{a}_{\alpha_{\varepsilon}} \in N_{\varepsilon+1}$, it follows that $\operatorname{tp}\left(\bar{a}_{\alpha_{\varepsilon}}, N_{\theta+} \cup\left\{\bar{a}_{\beta}: \beta \in\left[\theta^{+}, \varepsilon\right)\right\} \cup A \cup B\right\}$ does not split over $N_{\theta_{1}^{+}} \cup A \cup B$. Hence by [Sh:c, I, $\left.\S 2\right]$ the sequence $\left\langle\bar{a}_{\alpha_{j}}: j \in\left[\xi, \xi+\theta^{+}\right)\right\rangle$ is an indiscernible sequence over $N_{\alpha_{\xi}} \cup A \cup B$ so, as $M^{+} \leq \theta^{+}$, we are done.

CASE 2: For $\xi=\theta^{+}, p_{\delta(*)}$ splits over $N_{\alpha_{\xi}} \cup A \cup B$.
So we can find $\varphi(x, \bar{y}) \in \mathbb{L}\left(\tau_{T}\right)$ and $\bar{b}, \bar{c} \in{ }^{\ell g(\bar{y})}\left(M_{\delta(*)} \cup A \cup B\right)$ realizing the same type over $N_{\alpha_{\xi}} \cup A \cup B$ and $\varphi(\bar{x}, \bar{b}), \neg \varphi(\bar{x}, \bar{c}) \in p_{\delta(*)}$. So, without loss of generality, $\bar{b}=\bar{b}^{\prime \wedge} \bar{d}, \bar{c}=\bar{c}^{\prime \wedge} \bar{d}$ where $\bar{d} \in{ }^{\omega>}(A \cup B)$ and $\bar{b}^{\prime}, \bar{c}^{\prime} \in{ }^{m(*)}\left(M_{\delta(*)}\right)$ for some $m(*)$. As $N_{\alpha_{\xi}}<_{A \cup B} M_{\delta(*)}$ (see clause (b) of \circledast_{ξ}) clearly there is D, an ultrafilter on ${ }^{m(*)}\left(N_{\xi}\right)$ such that $\operatorname{Av}\left(N_{\xi} \cup A \cup B, D\right)=\operatorname{tp}\left(\bar{b}^{\prime}, N_{\xi} \cup A \cup B\right)=$ $\operatorname{tp}\left(\bar{c}^{\prime}, N_{\xi} \cup A \cup B\right)$.
Without loss of generality $\left\{\bar{b}^{\prime \prime} \in{ }^{m(*)}\left(N_{\alpha_{\xi}}\right): \neg \varphi\left(\bar{x}, \bar{b}^{\prime \prime}, \bar{d}\right) \in p_{\delta(*)}\right\}$ belongs to D, as otherwise we can replace $\varphi, \bar{b}^{\prime}, \bar{c}^{\prime}$ by $\neg \varphi, \bar{c}^{\prime}, \bar{b}^{\prime}$.

Let $M_{*}=\left(M_{\delta(*)}\right)_{A \cup B \cup\left\{\bar{a}_{\delta(*)}\right\}}$ and let $M^{+} \prec \mathfrak{C}$ be such that $M_{\delta(*)} \subseteq M^{+}$ and, moreover, $\left(M_{*}\right)_{A \cup B \cup\left\{\bar{a}_{\delta(*)}\right\}} \prec M_{A \cup B \cup\left\{\bar{a}_{\delta(*)}\right\}}^{+}$and the latter is λ^{+}-saturated. Clearly, letting $p_{\delta}^{+}=\left(\operatorname{tp}\left(\bar{a}_{\delta(*)}, M^{+} \cup A \cup B\right)\right.$ and $\mathfrak{x}_{\delta(*)}^{+}=\left(p_{\delta(*)}^{+}, M_{\delta(*)}^{+}, A \cup B\right)$ we have $\mathfrak{x}_{\delta(*)} \leq_{\mathrm{pr}} \mathfrak{x}_{\delta(*)}^{+}$. Note that $\varepsilon<\xi \Rightarrow\left(p_{\alpha_{\varepsilon}} \upharpoonright\left(N_{\alpha_{\varepsilon}} \cup A \cup B\right), N_{\alpha_{\varepsilon}}, A \cup B\right) \leq_{\mathrm{pr}}$ $\mathfrak{x}_{\delta(*)}$.

We can find $\left\langle\bar{b}_{\alpha}: \alpha<\omega+\omega\right\rangle$ such that $\bar{b}_{\alpha} \in{ }^{m(*)}\left(M^{+}\right)$realizes $\operatorname{Av}\left(N_{\alpha_{\xi}} \cup A \cup\right.$ $\left.B \cup\left\{\bar{b}_{\beta}: \beta<\alpha\right\}, D\right)$ and, without loss of generality, $\bar{b}_{\omega}=\bar{b}^{\prime}$.

We would like to apply the induction hypothesis to $\zeta^{\prime}=\operatorname{dp-rk}\left(\mathfrak{x}_{\delta(*)}\right)$, so let:(a) $\lambda^{\prime}=\theta$,
(b) $a_{\varepsilon}^{\prime}=a_{\alpha_{\varepsilon}}$ for $\varepsilon<\theta^{+}$,
(c) $M_{\varepsilon}^{\prime}=N_{\varepsilon}$,
(d) $p_{\varepsilon}^{\prime}=\operatorname{tp}\left(\bar{a}_{\alpha_{\varepsilon}}, N_{\varepsilon}\right)$,
(e) $B^{\prime}=B \cup\left\{\bar{b}_{\alpha}: \alpha<\omega+\omega\right\}$,
(f) $A^{\prime}=A$.

We can apply the induction hypothesis to ζ^{\prime}, i.e., use $(*)_{\zeta^{\prime}}$: for some $u^{\prime} \subseteq \theta^{+}$ of cardinality μ^{+}the sequence $\left\langle a_{\varepsilon}^{\prime}: \varepsilon \in u^{\prime}\right\rangle$ is indisernible over A, hence the set $u:=\left\{\alpha_{\varepsilon}: \varepsilon \in u^{\prime}\right\}$ has cardinality μ^{+}and the sequence $\left\langle a_{\alpha}: \alpha \in u\right\rangle$ is indiscernible over A, so we are done.

But we have to check that the demands from $\boxtimes_{\zeta^{\prime}}$ hold (for θ^{+}), $\bar{M}^{\prime}=\left\langle M_{\varepsilon}^{\prime}\right.$: $\left.\varepsilon<\theta^{+}\right\rangle, \bar{p}^{\prime}=\left\langle p_{\varepsilon}^{\prime}: \varepsilon<\theta^{+}\right\rangle$.

Clause (a): As $\theta=\beth_{2 \times \zeta^{*}+1}(\mu)$, clearly for every $\xi<\zeta^{*}$ we have $\theta=$ $\theta^{\beth_{2 \times(\xi+1)}}$, hence $\theta=\theta^{\beth_{2 \times(\xi+1)}}$.

Clause (b): By $\circledast_{\varepsilon}(\mathrm{b}), \bar{M}$ is increasing continuous.

Clause (c): By $\circledast_{\varepsilon}(\mathrm{c})$.
Clause (d): By $\circledast_{\varepsilon}(\mathrm{d})$.
Clause (e): By the choice of p_{ε}^{\prime}.
Clause (f): By the choice of B^{\prime}.
Clause (g): Clearly $\mathfrak{x}_{\varepsilon}^{\prime} \in K_{m, \ell}$, but why do we have dp-rk $\left(\mathfrak{x}_{\varepsilon}^{\prime}\right)<\zeta^{*}$? This is equivalent to $\mathrm{dp}-\mathrm{rk}\left(\mathfrak{x}_{\varepsilon}^{\prime}\right)<\operatorname{dp-rk}\left(\mathfrak{x}_{\delta(*)}\right)$.

Recall $\mathfrak{x}_{\delta(*)} \leq_{\mathrm{pr}} \mathfrak{x}_{\delta(*)}^{+}$and $\mathfrak{x}_{\varepsilon}^{\prime}$ explicitly split ℓ-strongly over $\mathfrak{x}_{\delta(*)}$, hence by the definition of dp-rk we get $\operatorname{dp-rk}\left(\mathfrak{x}_{\varepsilon}^{\prime}\right)<\operatorname{dp-rk}\left(\mathfrak{x}_{\delta(*)}\right)$.

What about the finitely satisfiable property of p^{\prime} when $\ell=9$? For some club E of $\theta^{+}, \varepsilon \in E \Rightarrow \operatorname{tp}\left(\bar{a}_{\alpha_{\varepsilon}}, N_{\alpha_{\varepsilon}} \cup A \cup B^{\prime}\right)$ is finitely satisfiable in $N_{\alpha_{\varepsilon}}$.
(2) By 3.7, $\mathrm{dp}^{2} \mathrm{rk}_{\ell}^{m}(T)<|T|^{+}$for $\ell=8$, so we can apply part (1).

5. Concluding remarks

We comment on some things here which we intend to continue elsewhere, so the various parts ((A), (B),..) are not so connected.
(A). Ranks for dependent theories. We note some generalizations of $\S 3$, so Definition 3.5 is replaced by
5.1. Definition: (1) For $\ell=1,2,3,4,5,6,8,9,11,12$ (but not 7, 10), let

$$
\begin{aligned}
K_{m, \ell}=\{\mathfrak{x} & : \mathfrak{x}=(p, M, A), M \text { a model } \prec \mathfrak{C}_{T}, A \subseteq \mathfrak{C}_{T} \\
& \text { if } \ell \in\{1,4\} \text { then } p \in \mathbf{S}^{m}(M), \text { if } \ell \notin\{1,4\} \text { then } \\
& p \in \mathbf{S}^{m}(M \cup A), \text { and if } \ell=3,6,9,12 \text { then } \\
& p \text { is finitely satisfiable in } M\} .
\end{aligned}
$$

If $m=1$ we may omit it.
For $\mathfrak{x} \in K_{m, \ell}$ let $\mathfrak{x}=\left(p^{\mathfrak{x}}, M^{\mathfrak{x}}, A^{\mathfrak{x}}\right)=(p[\mathfrak{x}], M[\mathfrak{x}], A[\mathfrak{x}])$ and $m=m(\mathfrak{x})$, recalling $p^{\mathfrak{x}}$ is an m-type.
(2) For $\mathfrak{x} \in K_{m, \ell}$ let $N_{\mathfrak{x}}$ be M expanded by $R_{\varphi(\bar{x}, \bar{y}, \bar{a})}=\left\{\bar{b} \in{ }^{\ell g(\bar{y})} M\right.$: $\varphi(\bar{x}, \bar{b}, \bar{a}) \in p\}$ for $\varphi(\bar{x}, \bar{y}, \bar{z}) \in \mathbb{L}\left(\tau_{T}\right), \bar{a} \in{ }^{\ell g(\bar{z})} A$ and $\ell=1,4 \Rightarrow \bar{a}=\langle \rangle$ and $R_{\varphi(\bar{y}, \bar{a})}=\left\{\bar{b} \in{ }^{\ell g(\bar{y})} M: \mathfrak{C} \models \varphi[\bar{b}, \bar{a}]\right\}$ for $\left.\varphi(\bar{y}, \bar{z}) \in \mathbb{L}\left(\tau_{T}\right), \bar{a} \in{ }^{\ell g(\bar{y})} \mathfrak{C}\right\}$; let $\tau_{\mathfrak{x}}=\tau_{N_{\mathfrak{x}}}$.
(2A) If we omit p we mean $p=\operatorname{tp}(\langle \rangle, M \cup A)$ so we can write N_{A}, a τ_{A}-model, so in this case $p=\{\varphi(\bar{b}, \bar{a}): \bar{b} \in M, \bar{a} \in M$ and $\mathfrak{C} \models \varphi[\bar{b}, \bar{a}]\}$.
(3) For $\mathfrak{x}, \mathfrak{y} \in K_{m, \ell}$ let
($\alpha) \mathfrak{x} \leq_{\mathrm{pr}}^{\ell} \mathfrak{y}$ means that $\mathfrak{x}, \mathfrak{y} \in K_{m, \ell}$ and
(a) $A^{\mathfrak{x}}=A^{\mathfrak{y}}$,
(b) $M^{\mathfrak{x}} \leq_{A[\mathfrak{x}]} M^{\mathfrak{y}}$,
(c) $p^{\mathfrak{x}} \subseteq p^{\mathfrak{y}}$,
(d) if $\ell=1,2,3,8,9$ then $M^{\mathfrak{y}} \leq_{A[\mathfrak{x}], p[\mathfrak{y}]} M^{\mathfrak{y}}$ (for $\ell=1$ this follows from clause (b)).
$(\beta) \mathfrak{x} \leq^{\ell} \mathfrak{y}$ means that for some n and $\left\langle\mathfrak{x}_{k}: k \leq n\right\rangle, \mathfrak{x}_{k} \leq_{a t}^{\ell} \mathfrak{x}_{k+1}$ for $k<n$ and $(\mathfrak{x}, \mathfrak{y})=\left(\mathfrak{x}_{0}, \mathfrak{x}_{n}\right)$ where
$(\gamma) \mathfrak{x}_{\text {at }}^{\ell} \mathfrak{y}$ iff $\left(\mathfrak{x}, \mathfrak{y} \in K_{m, \ell}\right.$ and) for some $\mathfrak{x}^{\prime} \in K_{m, \ell}$ we have
(a) $\mathfrak{x} \leq_{\mathrm{pr}}^{\ell} \mathfrak{x}^{\prime}$,
(b) $A^{\mathfrak{x}} \subseteq A^{\mathfrak{y}} \subseteq A^{\mathfrak{x}} \cup M^{\mathfrak{x}^{\prime}}$,
(c) $M^{\mathfrak{y}} \subseteq M^{\mathfrak{x}^{\prime}}$,
(d) $\ell \in\{1,4\} \Rightarrow p^{\mathfrak{y}}=p^{\mathfrak{x}^{\prime}} \upharpoonright M^{\mathfrak{y}}$ and $\ell \notin\{1,4\} \Rightarrow p^{\mathfrak{y}}=p^{\mathfrak{x}^{\prime}} \upharpoonright\left(M^{\mathfrak{y}} \cup A^{\mathfrak{y}}\right)$.
(4) For $\mathfrak{x}, \mathfrak{y} \in K_{m, \ell}$ we say that \mathfrak{y} explicitly $\bar{\Delta}$-splits ℓ-strongly over \mathfrak{x} when: $\bar{\Delta}=\left(\Delta_{1}, \Delta_{2}\right), \Delta_{1}, \Delta_{2} \subseteq \mathbb{L}\left(\tau_{T}\right)$ and, for some \mathfrak{x}^{\prime} and $\varphi(\bar{x}, \bar{y}) \in \Delta_{2}$, we have clauses (a),(b),(c),(d) of part (3)(γ) and
(e) when $\ell \in\{1,2,3,4,5,6\}$, in $A^{\mathfrak{y}}$ there is a Δ_{1}-indiscernible sequence $\left\langle\bar{a}_{k}: k<\omega\right\rangle$ over $A^{\mathfrak{x}} \cup M^{\mathfrak{y}}$ such that $\bar{a}_{k} \in{ }^{\omega>}\left(M^{\mathfrak{x}^{\prime}}\right)$ and $\varphi\left(\bar{x}, \bar{a}_{0}\right), \neg \varphi\left(\bar{x}, \bar{a}_{1}\right) \in$ $p^{\mathfrak{x}^{\prime}}$ and $\bar{a}_{k} \subseteq A^{\mathfrak{y}}$ for $k<\omega$,
$(\mathrm{e})^{\prime}$ when $\ell=8,9,11,12$ there are $\bar{b}, \overline{\mathbf{a}}$ such that
$(\alpha) \overline{\mathbf{a}}=\left\langle\bar{a}_{i}: i<\omega+1\right\rangle$ is Δ_{1}-indiscernible over $A^{\mathfrak{x}} \cup M^{\mathfrak{y}}$,
(β) $A^{\mathfrak{y}} \backslash A^{\mathfrak{x}}=\left\{\bar{a}_{i}: i<\omega\right\}$; yes ω not $\omega+1$! (note that " $A^{\mathfrak{x}}=$ " and not " $A^{\mathfrak{y}} \backslash A^{\mathfrak{x}} \supseteq$ " as we use it in (e)(γ) in the proof of 3.7),
$(\gamma) \bar{b} \subseteq A^{\mathfrak{x}}$ and $\bar{a}_{i} \in M^{\mathfrak{x}^{\prime}}$ for $i<\omega+1$,
(δ) $\left.\varphi\left(\bar{x}, \bar{a}_{k}{ }^{\wedge} \bar{b}\right) \wedge \neg \varphi\left(\bar{x}, \bar{a}_{\omega}{ }^{\wedge} \bar{b}\right)\right)$ belongs ${ }^{4}$ to $p^{\mathfrak{r}^{\mathfrak{c}^{\prime}}}$ for $k<\omega$.
(5) We define dp-rk $\frac{m, \ell}{m}: K_{m, \ell} \rightarrow$ Ord $\cup\{\infty\}$ by
(a) $\operatorname{dp-rk}_{\Delta, \ell}^{m}(\mathfrak{x}) \geq 0$ always,
(b) dp-rk $\bar{\Delta}, \ell_{m}^{m}(\mathfrak{x}) \geq \alpha+1$ iff there is $\mathfrak{y} \in K_{m, \ell}$ which explicitly $\bar{\Delta}$-splits ℓ-strongly over \mathfrak{x} and $\operatorname{dp-rk}_{\bar{\Delta}, \ell}(\mathfrak{y}) \geq \alpha$,
(c) dp-rk ${ }_{\Delta, \ell}^{m}(\mathfrak{x}) \geq \delta$ iff $\operatorname{dp-rk}{ }_{\Delta, \ell}^{m}(\mathfrak{x}) \geq \alpha$ for every $\alpha<\delta$ when δ is a limit ordinal. These are clearly well defined. We may omit m from dp-rk as \mathfrak{x} determines it.
(6) Let dp-rk ${\underset{\Delta}{\Delta}, \ell}_{m}^{(T)}=\bigcup\left\{\operatorname{dp-rk}_{\bar{\Delta}, \ell}(\mathfrak{x}): \mathfrak{x} \in K_{m, \ell}\right\}$; if $m=1$ we may omit it.

[^4](7) If $\Delta_{1}=\Delta_{2}=\Delta$ we may write Δ instead of $\left(\Delta_{1}, \Delta_{2}\right)$. If $\Delta=\mathbb{L}\left(\tau_{T}\right)$ then we may omit it.
(8) For $\mathfrak{x} \in K_{m, \ell}$ let $\mathfrak{x}^{[*]}=\left(p^{\mathfrak{x}} \upharpoonright M^{\mathfrak{x}}, M^{\mathfrak{x}}, A^{\mathfrak{x}}\right)$.

So Observation 3.6 is replaced by
5.2. Observation: $\quad(1) \leq_{\mathrm{pr}}^{\ell}$ is a partial order on K_{ℓ}.
(2) $K_{m, \ell(1)} \subseteq K_{m, \ell(2)}$ when $\ell(1), \ell(2) \in\{1,2,3,4,5,6,8,9,11,12\}$ and $\ell(1) \in\{1,4\} \Leftrightarrow \ell(2) \in\{1,4\}$ and $\ell(2) \in\{3,6,9,12\} \Rightarrow \ell(1) \in\{3,6,9,12\}$.
(2A) $K_{m, \ell(1)} \subseteq\left\{\mathfrak{x}^{[*]}: \mathfrak{x} \in K_{m, \ell(2)}\right\}$ when $\ell(1) \in\{1,4\}, \ell(2) \in\{1, \ldots, 6,8,9,11,12\}$.
(2B) In (2A) equality holds if $x(\ell(1), \ell(2)) \in\{(1,2),(1,3),(4,5),(4,6)\}$.
(3) $\mathfrak{x} \leq_{\mathrm{pr}}^{\ell(1)} \mathfrak{y} \Rightarrow \mathfrak{x} \leq_{\mathrm{pr}}^{\ell(2)} \mathfrak{y}$ when $(\ell(1), \ell(2))$ is as in (2) and $\ell(2) \in\{2,3,8,9\} \Rightarrow$ $\ell(1) \in\{2,3,8,9\}$.
$(3 \mathrm{~A}) \mathfrak{x} \leq_{\mathrm{pr}}^{\ell(1)} \mathfrak{y} \Rightarrow \mathfrak{x}^{[*]} \leq_{\mathrm{pr}}^{\ell(1)} \mathfrak{y}^{[*]}$ when the pair $(\ell(1), \ell(2))$ is as in $(2 \mathrm{~B})$.
(4) $\mathfrak{x} \leq_{a t}^{\ell(1)} \mathfrak{y} \Rightarrow \mathfrak{x} \leq_{a t}^{\ell(2)} \mathfrak{y}$ when $(\ell(1), \ell(2))$ are as in part (3) (hence (2)).
(4A) $\mathfrak{x} \leq_{a t}^{\ell(1)} \mathfrak{y} \Rightarrow \mathfrak{x}^{[*]} \leq_{a t}^{\ell(2)} \mathfrak{y}$ if $(\ell(1), \ell(2))$ are as in part (2A).
(5) \mathfrak{y} explicitly $\bar{\Delta}$-splits $\ell(1)$-strongly over \mathfrak{x} implies \mathfrak{y} explicitly $\bar{\Delta}$-splits $\ell(2)$-strongly over \mathfrak{x} when the pair $(\ell(1), \ell(2))$ is as in parts $(2),(3)$ and $\ell(1) \in\{1,2,3,4,5,6\} \Leftrightarrow \ell(2) \in\{1,2,3,4,5,6\}$.
(6) Assume $(\ell(1), \ell(2))$ is as in parts (2),(3),(5). If $\mathfrak{x} \in K_{m, \ell(1)}$ then dp$\operatorname{rk}_{\overline{\Delta, \ell(1)}}^{m}(\mathfrak{x}) \leq \operatorname{dp}^{m} \mathrm{rk}_{\bar{\Delta}, \ell(2)}^{m}(\mathfrak{x})$, i.e.,
$\{\ell(1), \ell(2)) \in\{(3,2),(2,5),(3,5),(6,5),(3,6)\}$

$$
\cup\{(9,8),(8,11),(9,11),(12,11),(9,12)\}
$$

(7) Assume $\bar{a} \in{ }^{m} \mathfrak{C}$ and $\mathfrak{y}=(\operatorname{tp}(\bar{a}, M \cup A), M, A)$ and $\mathfrak{x}=(\operatorname{tp}(\bar{a}, M \cup$ A), M, A). Then
(a) $\mathfrak{x}^{[*]}=\mathfrak{y}^{[*]}$,
(b) $\mathfrak{x} \in K_{m, 1} \cap K_{m, 4}$,
(c) $\mathfrak{y} \in K_{m, 2} \cap K_{m, 5} \cap K_{m, 8} \cap K_{m, 11}$,
(d) if $\operatorname{tp}(\bar{a}, M \cup A)$ is finitely satisfiable in M then also $\mathfrak{y} \in K_{m, 3} \cap$ $K_{m, 6} \cap K_{m, 9} \cap K_{m, 12}$.
(8) If $\mathfrak{x} \in K_{m, \ell(2)}$, then $\operatorname{dp-rk}_{\ell^{m}(2)}\left(\mathfrak{x}^{[*]}\right) \leq \operatorname{dp-rk}_{\ell^{m}(2)}(\mathfrak{x})$ when the pair $(\ell(1), \ell(2))$ is as in part $(2 \mathrm{~A})$.
(9) If $\mathfrak{x} \in K_{m, \ell}$ and $\kappa>\aleph_{0}$, then there is $\mathfrak{y} \in K_{m, \ell}$ such that $\mathfrak{x} \leq_{\mathrm{pr}}^{\ell} \mathfrak{y}$ and $M^{\mathfrak{y}}$ is κ-saturated; moreover, $M_{A[\mathfrak{y}], p[\mathfrak{y}]}^{\mathfrak{y}}$ is κ-saturated (hence in Definition $3.2(4)$, without loss of generality, $M^{\mathfrak{x}^{\prime}}$ is $\left(\left|M^{\mathfrak{x}} \cup A^{\mathfrak{x}}\right|^{+}\right)$-saturated).

5.3. Claim: In 3.7 we can allow $\ell=1,2,5$ (in addition to $\ell=8,9$).

Proof. Similar but:
$\kappa_{\text {ict }}(T)>\aleph_{0} \operatorname{implies~}_{\operatorname{dp-rk}}^{\ell}(T)=D$ when $\ell \in\{1,2,4,5,8,9,11,12\}:$
(A) Let $A_{n}=\cup\left\{\bar{a}_{t}^{m}: m<n, t \in I_{2}\right\}$ if $\ell<7$ and, if $\ell>7, A_{n}=\left\{\bar{a}_{t}^{m}: m<n\right.$ and $\left.t \in I_{1}\right\}$.
(B) " \mathfrak{x}_{n+1} explicitly split ℓ-strongly over \mathfrak{x}_{n} " using $\left\langle\bar{a}_{(2, n+i)}^{n}: i<\omega\right\rangle$ if $\ell<7$ and $\left\langle a_{(1, i)}^{n}: i<\omega\right\rangle^{\wedge}\left\langle\bar{a}_{2, n}^{n}\right\rangle$ if $\ell>7$.
(C) Similarly in "Lastly...": Lastly, if $\ell<7, \varphi_{n}\left(x, \bar{a}_{(1, n)}^{n}\right), \neg \varphi_{n}\left(x, \bar{a}_{(1, n+1)}^{n}\right)$ belongs to $p^{\mathfrak{r}_{n}^{\prime}}$ and even $p^{\mathfrak{r}_{n+1}}$, and if $\ell>7, \varphi_{n}\left(x, \bar{a}_{(1, n)}^{n}\right)$ for $n<\omega$, $\neg \varphi_{n}\left(x, \bar{a}_{(2, n)}\right)$ belongs to p_{η}, hence to $p^{\mathfrak{x}_{n+1}}$, so by renaming also clause (e) or (e) from Definition 3.5(4) holds. Thus we are done.
$\operatorname{dp-rk}_{\ell}(T) \geq|T|^{+} \Rightarrow \kappa_{\text {ict }}(T)>\aleph_{0}$ when $\ell=1,2,3,5,6,8,9$:
(D) $\operatorname{In} \circledast_{n}(e)$ we use
(E) (α) if $\ell \in\{2,3,5,6\}$ and $m<n, k<\omega$, then $\varphi_{m}\left(x, \bar{a}_{\alpha, k}^{n, m}\right) \in p^{\mathfrak{r}_{\alpha}^{n}} \Leftrightarrow k=0$ hence $\neg \varphi_{m}\left(x, \bar{a}_{\alpha, k}^{n, m}\right) \in p^{\mathfrak{r}_{\alpha}^{n}} \Leftrightarrow k \neq 0$ for $k<2$;
(β) if $\ell=1$ then $p^{\mathfrak{r}_{\alpha}^{n}} \cup\left\{\varphi_{m}\left(x, \bar{a}_{\alpha, k}^{n, m}\right)^{\mathrm{if}(k=0)}: m<n, k<2\right\}$ is consistent,
(γ) if $\ell=8,9$ we also have $\bar{b}_{\alpha}^{n, m} \subseteq A^{\mathfrak{x}_{\alpha}^{n}}=\bigcup\left\{\bar{a}_{\alpha, k}^{n, i}: i<m, k<\omega\right\} \cup A_{\alpha}^{n}$ for $m<n$ such that: if $\eta \in{ }^{n} \omega$ and $m<n \Rightarrow \bar{b}_{\alpha}^{n, m} \subseteq \bigcup\left\{\bar{a}_{\alpha, k}^{n, i}\right.$: $i<m, k<\eta(i)\} \cup A_{\alpha}^{n}$, then $\left(p^{\mathfrak{r}_{\alpha}^{n}} \upharpoonright M^{\mathfrak{x}_{\alpha}^{n}}\right) \cup\left\{\varphi_{m}\left(\bar{a}_{\alpha, \eta(m)}^{n, m}, \bar{b}_{\alpha}^{n, m}\right) \wedge\right.$ $\left.\neg \varphi_{m}\left(\bar{x}, \bar{a}_{\alpha, \eta(m)+1}^{n, m}, \bar{b}_{\alpha}^{n, m}\right): m<n\right\}$ is finitely satisfiable in \mathfrak{C}.
(F) In checking clause (e) of \circledast_{n+1}

CASE $\ell=1$: We know that

$$
p^{\mathfrak{x}_{\alpha+1}^{n}} \cup\left\{\varphi_{m}\left(x, \bar{a}_{\alpha, k}^{n, m}\right)^{\mathrm{if}(k=0)}: m<n \text { and } k<2\right\}
$$

is consistent. As $\mathfrak{x}_{\alpha+1}^{n} \leq_{\mathrm{pr}}^{\ell} \mathfrak{z}_{\alpha}^{n}$ by clause $(\alpha)(\mathrm{d})$ of Definition 3.5(3), we know that $q_{\alpha}^{n+1}:=p^{\mathfrak{z}_{\alpha}^{n}} \cup\left\{\varphi_{m}\left(x, \bar{a}_{\alpha+1, k}^{n, m}\right)^{\operatorname{if}(k=0)}: m<n\right.$ and $\left.k<2\right\}$ is consistent. But $\varphi_{n}\left(x, \bar{a}_{\alpha, k}^{n+1, m}\right)=\varphi_{n}\left(x, \bar{a}_{\alpha+1, k}^{n, m}\right) \in q_{\alpha}^{n+1}$ for $k<2, m<n$ and $\varphi_{n}\left(x, \bar{a}^{n+1}, m_{\alpha, k}\right)^{\text {if }(k=0)}=\varphi_{n}\left(x, \bar{a}_{\alpha, k}^{n, *}\right)^{\mathrm{if}(k=0)} \in q_{\alpha}^{n+1}$ and $p^{\mathfrak{r}_{\alpha}^{n+1}} \subseteq p^{\mathfrak{z}_{\alpha}^{n}} \subseteq$ q_{α}^{n+1}, hence $p^{r_{\alpha}^{n+1}} \cup\left\{\varphi\left(x, \bar{a}_{\alpha, k}^{n, m}\right)^{\mathrm{if}(k=0)}: m \leq n\right.$ and $\left.k<2\right\}$, being a subset of q_{α}^{n+1}, is consistent, as required (this argument does not work for $\ell=4$).

Case 2: $\ell \in\{2,3,5,6\}$. Straightforward.
CASE 3: $\ell \in\{8,9\}$.
As before
5.4. Observation: Like 3.9 for $\ell=1,2,3,4,5,6,8,9,11,12$.
5.5. Definition: In Definition 3.10 we allow $\ell=17,18$.
5.6. Observation: (1) If " \mathfrak{y} explicitly $\bar{\Delta}$-splits $\ell(1)$-strongly over \mathfrak{x} ", then " \mathfrak{y} explicitly $\bar{\Delta}$-splits $\ell(2)$-strongly over \mathfrak{x} " when

$$
(\ell(1), \ell(2)) \in\{(15,14),(14,17),(18,17),(15,18)\} \cup\{(\ell, \ell+12): \ell=2,3,5,6\}
$$

(2) If $\mathfrak{x} \in K_{m, \ell(1)}$, then $\operatorname{dp-rk}_{\Delta, \ell(1)}^{m}(\mathfrak{x}) \leq \operatorname{dp-rk}{\underset{\Delta}{\Delta, \ell(2)}}_{m}(\mathfrak{x})$ when $(\ell(1), \ell(2))$ is as above.

Proof. Easy by the definition.
5.7. Claim: (1) In 3.12(3) we allow $\ell=17,18$.
(2) "dp-rk ${ }_{\ell}(T) \geq|T|^{+} \Rightarrow \kappa_{\text {ict }}(T) \geq \aleph_{1}$ "; we allow $\ell=14,15,17,18$.
5.8. Theorem: In 4.1 we can allow
(a) $\ell \in\{8,9,11,12\}$ and even $\ell \in\{14,15,17,18\}$.

Proof. Similar to 4.1. $\boldsymbol{\Xi}_{5.8}$

We can try to use ranks as in $\S 3$ for T which are just dependent. In this case it is natural to revise the definition of the rank to make it more "finitary", say in Definition 3.5(4), clauses (e), (e) ${ }^{\prime}$ replace $\left\langle\bar{a}_{k}: k<\omega\right\rangle$ by a finite long enough sequence.

Meanwhile just note
5.9. Claim: Let $\ell=1,2,3,5,6$ [and even $\ell=14,15,17,18]$. For any finite $\Delta \subseteq \mathbb{L}\left(\tau_{T}\right)$ we have: for every finite $\Delta_{1}, \operatorname{rk}_{\Delta_{1}, \Delta, \ell}(T)=\infty$ iff for every finite Δ_{1}, $\operatorname{rk}_{\Delta_{1}, \Delta, \ell}(T) \geq \omega$ iff some $\varphi(x, \bar{y}) \in \Delta$ has the independence property.

Proof. Similar proof to 3.7, 5.3.
Let $\left\langle\bar{a}_{\alpha}: \alpha<\omega\right\rangle \subseteq M$ be indiscernible.
Let $\varphi\left(\bar{x}, \bar{a}_{0}\right), \neg \varphi\left(\bar{x}, \bar{a}_{1}\right) \in p$ exemplify " p splits strongly over $A_{\varepsilon}=\bigcup\left\{M_{\alpha_{\varepsilon}}\right.$: $\zeta<\varepsilon\} \cup A \cup B$ so $\operatorname{tp}\left(\bar{a}_{0}, A_{\varepsilon}\right)=\operatorname{tp}\left(\bar{a}_{1}, A_{\varepsilon}\right)$. Let $A^{+}=A \cup \bar{a}_{0} \cup a_{1}$ and we find $u \subseteq\left\{\alpha_{\varepsilon}: \varepsilon<\theta_{1}^{+}\right\}$as required:
$(*)$ there is $N^{+} \prec M,\left\|N^{*}\right\| \leq \theta$ such that $N^{*} \prec N \prec M \Rightarrow \operatorname{dp-rk}(A, p \upharpoonright$

$$
\left.\left(N^{*} \cup A\right), N^{*}\right)=\operatorname{dp-rk}(A, p, M)
$$

5.10. Question: (1) Can such local ranks help us prove some weak versions of "every $p \in \mathbf{S}_{\varphi}(M)$ is definable"? (Of course, the first problem is to define such "weak definability"; see $[$ Sh:783, §1]).
(2) Does this help for indiscernible sequences?
5.11. Definition: We define $K_{m, \ell}^{x}$ and dx-rk ${ }_{\Delta, \ell}^{m}$ for $x=\{p, c, q\}$ as follows:
(A) for $x=p$: as in Definition 3.5(4),(5), 5.1(4),(5),
(B) for $x=c$: as in Definition 3.5(4),(5), 5.1(4),(5) but we demand that in clause (e), (e) $)^{\prime}$ of part (4) that $\left\{\varphi\left(\bar{x}, \bar{b}_{n}\right): n<\omega\right\}$ is contradictory;
(C) for $x=q$: as in Definition 3.5(4),(5), 5.1(4),(5) but in clauses (e),(e) of part (4) we have \bar{a}_{α} from $A^{\mathfrak{y}}$ for $\alpha<\omega+\omega$ such that $\left\{\varphi\left(x, a_{\alpha}\right)^{\operatorname{if}(\alpha<\omega)}\right.$: $\alpha<\omega+\omega\} \subseteq p^{\mathfrak{r}^{\prime}}$ and in (e^{\prime}) we have \bar{a}_{n} from $A^{\mathfrak{y}}$ and $\mathbf{a}_{\omega+n}$ from $M^{\mathfrak{x}^{\prime}}$. In detail:
(e) when $\ell \in\{1,2,3,4,5,6\}$, in $A^{\mathfrak{y}}$ there is a Δ_{1}-indiscernible sequence $\left\langle\bar{a}_{k}: k<\omega\right\rangle$ over $A^{\mathfrak{x}} \cup M^{\mathfrak{y}}$ such that $\bar{a}_{k} \in{ }^{\omega>}\left(M^{\mathfrak{x}^{\prime}}\right)$ for $\alpha<\omega$ and $\varphi\left(\bar{x}, \bar{a}_{k}\right), \neg \varphi\left(\bar{x}, \bar{a}_{\omega+k}\right) \in p^{\mathfrak{r}^{\prime}}$ and $\bar{a}_{k}, \bar{a}_{\omega+k} \subseteq A^{\mathfrak{y}}$ for $k<\omega$,
(e) ${ }^{\prime}$ when $\ell=8,9,11,12$ there are $\bar{b}, \overline{\mathbf{a}}$ such that
$(\alpha) \overline{\mathbf{a}}=\left\langle\bar{a}_{i}: i<\omega+\omega\right\rangle$ is Δ_{1}-indiscernible over $A^{\mathfrak{x}} \cup M^{\mathfrak{y}}$,
(β) $A^{\mathfrak{y}} \supseteq A^{\mathfrak{x}} \cup\left\{\bar{a}_{i}: i<\omega+\omega\right\}$,
$(\gamma) \bar{b} \subseteq A^{\mathfrak{x}}$ and $\bar{a}_{i} \in M^{\mathfrak{x}^{\prime}}$ for $i<\omega+\omega$,
(δ) $\varphi\left(\bar{x}, \bar{a}_{k}{ }^{\wedge} \bar{b}\right) \wedge \neg \varphi\left(\bar{x}, \bar{a}_{\omega}{ }^{\wedge} \bar{b}\right)$ belongs ${ }^{5}$ to $p^{\mathfrak{r}^{\prime}}$ for $k<\omega$.
5.12. Question: Does Definition 5.11 help concerning Question 5.10?
5.13. Discussion: We can imitate $\S 3$ with dc-rk or dq-rk instead of dp-rk and use appropriate relatives of $\kappa_{\text {ict }}(T)$. But compare with $\S 4$.
(B). Minimal theories (or types). It is natural to look for the parallel of minimal theories (see end of the introduction).

A subsequent work of E. Firstenberg and the author [FiSh:E50], using [Sh:757] (see better [Sh:E63]), considered a generalization of "uni-dimensional stable T ". The generalization says (see 5.22(1)):
5.14. Definition: (1) T is uni-dp-dimensional when: (T is a dependent theory and) if \mathbf{I}, \mathbf{J} are infinite non-trivial indiscernible sequences of singletons, then \mathbf{I}, \mathbf{J}

[^5]have finite distance, see below, or \mathbf{I} and \mathbf{J}^{*} do, recalling \mathbf{J}^{*} is the inverse of \mathbf{J} (i.e., we invert the order).
(2) (From [Sh:93]) For indiscernible sequences \mathbf{I}, \mathbf{J} over A we say that they are immediate A-neighbours if $\mathbf{I}+\mathbf{J}$ is an indiscernible sequence over A or $\mathbf{J}+\mathbf{I}$ is an indiscernible sequence over A. They have distance $\leq n$ if there are $\mathbf{I}_{0}, \ldots, \mathbf{I}_{n}$ such that $\mathbf{I}=\mathbf{I}_{0}, \mathbf{J}=\mathbf{I}_{n}$ and $\mathbf{I}_{\ell}, \mathbf{I}_{\ell+1}$ are immediate A-neighbors (so indiscernible over A) for $\ell<n$. They are neighbors ${ }^{6}$ if they have distance $\leq n$ for some n.
(3) If \mathbf{I} is an infinite indiscernible sequence over A, then $\mathbf{C}_{A}(\mathbf{I})=\bigcup\left\{\mathbf{I}^{\prime}: \mathbf{I}^{\prime}, \mathbf{I}\right.$ have finite A-distance.

Discussion: Note that for $\operatorname{Th}(\mathbb{Q},<)$, the first order theory of the rational order, any two increasing infinite sequences of elements are of distance 2 . If we forget above to have the "or $\mathbf{I}, \mathbf{J}^{*}$ of finite distance", we shall get two classes up to the relevant equivalence.
5.15. Problem: (1) Does uni-dp-dimensional theories have a dimension theory?
(2) Can we characterize them?
(3) If $p \in \mathbf{S}^{m}(A)$, is there an indiscernible sequence $\mathbf{I} \subseteq p(\mathfrak{C})$ based on A ?, i.e., such that $\left\{F\left(\mathbf{C}_{A}(\mathbf{I})\right): F\right.$ an automorphism of \mathfrak{C} over $\left.A\right\}$ has cardinality $<\mathfrak{C}$ (equivalently $\leq 2^{|T|+|A|}$) as is the case for simple theories.

We can try another generalization.
5.16. Hypothesis (till 5.23): Let ℓ be as in Definitions 3.5 and 5.1.
5.17. Definition: T is dp^{ℓ}-minimal when $\operatorname{dp-rk}^{\ell}(\mathfrak{x}) \leq 1$ for every $\mathfrak{x} \in K_{\ell}$, i.e., $K_{m, \ell}$ for $m=1$.
5.18. Remark: For this property, T and T^{eq} may differ. Probably, if we add only finitely many sorts, the "finite rank, i.e., dp-rk ${ }^{\ell}(\mathfrak{x})<n^{*}<\omega$ for every $\mathfrak{x} \in K_{\ell}$ ", is preserved.
5.19. Observation: T is dp^{ℓ}-minimal when: for every infinite indiscernible sequence $\left\langle\bar{a}_{t}: t \in I\right\rangle, I$ complete, $\bar{a}_{t} \in{ }^{\alpha} \mathfrak{C}$ and element $c \in \mathfrak{C}$ there is $\{t\} \subseteq I$ as

[^6]in 2.1 (i.e., a singleton or the empty set if you like) when $\ell \leq 12$, and as in 2.9 when $\ell \in\{14, \ldots\}$.

Proof. Should be clear. $\quad \mathbf{■}_{5.19}$
5.20. Claim: (1) For $\ell=1,2$ we have T is dp^{ℓ}-minimal when: there are no $\left\langle\bar{a}_{n}^{i}: n<\omega\right\rangle$ and $\varphi_{i}\left(x, \bar{y}_{i}\right)$ such that
(a) for $i=1,2,\left\langle\bar{a}_{n}^{i}: n<\omega\right\rangle$ is an indiscernible sequence over $\bigcup\left\{\bar{a}_{n}^{3-i}: n<\omega\right\}$,
(b) for some $b \in \mathfrak{C}$ we have $\models \varphi_{1}\left(b, \bar{a}_{0}^{1}\right) \wedge \neg \varphi_{2}\left(b, \bar{a}_{1}^{1}\right) \wedge \varphi_{2}\left(b, \bar{a}_{0}^{2}\right) \wedge \neg \varphi_{2}\left(b, \bar{a}_{1}^{2}\right)$.
(2) Similarly for $\operatorname{rk}^{-d^{\ell}}(\mathfrak{x}) \leq n(<\omega)$, i.e., if we replace 1 by n in Definition 5.17 .

Proof. Straightforward.
5.21. Problem: (1) Are dp^{ℓ}-minimal theories T similar to o-minimal theories?
(2) Characterize the dp^{ℓ}-minimal theories of fields.
(3) What are the implications between "dp-minimal" for the various ℓ ?
(4) As above also for uni-dp-dimensionality.
5.22. Claim: (1) For $\ell=1,2$ the theory $T, \operatorname{Th}(\mathbb{R})$, the theory of real closed fields is dp^{ℓ}-minimal; similarly for any o-minimal theory.
(2) $\operatorname{Th}(\mathbb{R})$ is dp^{ℓ}-minimal for $\ell=1,2$, similarly for any o-minimal theory.
(3) For prime p, the first order theory of the p-adic field is dp^{1}-minimal.

Proof. (1) As in [FiSh:E50].
(2) Repeat the proof in [Sh:783, 3.3](6).
(3) By the proof of 1.17 . $\boldsymbol{\square}_{5.22}$
5.23. Remark: If T is a theory of valued fields with elimination of field quantifier (see Definition $1.14(1),(2)$) and $k^{\mathfrak{C}_{T}}$ is infinite, this fails. However, if $\Gamma^{\mathfrak{C}_{T}}, k^{\mathfrak{C}_{T}}$ are dp^{1}-minimal then the dp-rk for T are ≤ 2.

Another direction is:
5.24. Definition: (1) We say that a type $p(\bar{x})$ is content minimal when:
(a) $p(\bar{x})$ is not algebraic,
(b) if $q(\bar{x})$ extends $p(\bar{x})$ and is not algebraic then $\Phi_{q(\bar{x})}=\Phi_{p(\bar{x})}$; see below.
(2) $\Phi_{p(\bar{x})}=\left\{\varphi\left(\bar{x}_{0}, \ldots, \bar{x}_{n-1}\right): \bigcup\left\{p\left(\bar{x}_{\ell}\right): \ell<n\right\} \cup\left\{\varphi\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)\right\}\right.$ is consistent (see [Sh:93]).
5.25. Question: Can we define a reasonable dimension for such types, at least for T dependent or even strongly dependent?
(C). Local ranks for super dependent and indiscernibles. Note that the original motivation of introducing "strongly dependent" in [Sh:783] was to solve the equation: $\mathrm{X} /$ dependent $=$ superstable/stable. However, (the various variants of) strongly dependent, when restricted to the family of stable theories, gives classes which seem to be interesting but are not the class of superstable T. So the original question remains open. Now returning to the search for "super-dependent" we may consider another generalization of superstable.
5.26. Definition: (1) We define $\operatorname{lc}_{\mathrm{c}} \mathrm{rk}^{m}(p, \lambda)=\operatorname{lc}_{0}-\mathrm{rk}^{m}(p, \lambda)$ for types p which belong to $\mathbf{S}_{\Delta}^{m}(A)$ for some $A(\subseteq \mathfrak{C})$ and finite $\Delta\left(\subseteq \mathbb{L}\left(\tau_{T}\right)\right)$.

It is an ordinal or infinity and
(a) ${\operatorname{lc}-\mathrm{rk}^{m}(p, \lambda) \geq 0 \text { always, }}^{2}$
(b) $\operatorname{lc-rk}^{m}(p, \lambda) \geq \alpha=\beta+1$ iff for every $\mu<\lambda$ there are finite $\Delta_{1} \supseteq \Delta$ and pairwise distinct $q_{i} \in \mathbf{S}_{\Delta_{1}}^{m}(A)$ extending p such that $i<1+\mu \Rightarrow$ $\operatorname{lc}_{\mathrm{crk}}{ }^{m}\left(q_{i}, \lambda\right) \geq \beta$,
(c) $\mathrm{lc}_{\mathrm{c}-\mathrm{rk}^{m}}(p, \lambda) \geq \delta, \delta$ a limit ordinal iff $\operatorname{lc}^{2} \mathrm{rk}^{m}(p) \geq \alpha$ for every $\alpha<\delta$.
(2) For $p \in \mathbf{S}^{m}(A) \operatorname{let}^{7} \mathrm{lc}_{\mathrm{c}} \mathrm{rk}^{m}(p, \lambda)$ be $\min \left\{\operatorname{lc-rk}^{m}(p, \lambda) \upharpoonright \Delta: \Delta \subseteq \mathbb{L}\left(\tau_{T}\right)\right.$ finite $\}$.
(3) Let $\operatorname{lc-rk}^{m}(T, \lambda)=\bigcup\left\{\operatorname{lc-rk}^{m}(p, \lambda)+1: p \in \mathbf{S}^{m}(A), A \subset \mathfrak{C}\right\}$.
(4) If we omit λ we mean $\lambda=|T|^{++}$.
5.27. Discussion: There are other variants and they are naturally connected to the existence of indiscernibles (for subsets of ${ }^{m} \mathfrak{C}$, concerning subsets of ${ }^{|T|} \mathfrak{C}$); probably representability is also relevant ([CoSh:919], [Sh:F705]).
5.28. Claim: (1) The following conditions on T are equivalent (for all $\lambda>$ $\left.|T|^{+}\right)$:
(a) ${ }_{\lambda}$ for every A and $p \in \mathbf{S}_{\Delta}^{m}(A)$ we have $\operatorname{lc-rk}^{m}(p, \lambda)<\infty$,
(b) ${ }_{\lambda}$ for some $\alpha^{*}<|T|^{+}$, for every A and $p \in \mathbf{S}_{\Delta}^{m}(A)$ we have $l_{c-r k}{ }^{m}(p, \lambda)<$ α^{*},

[^7]$(\mathrm{c})_{\lambda}$ there is no increasing chain $\left\langle\Delta_{n}: n<\omega\right\rangle$ of finite subsets of $\mathbb{L}\left(\tau_{T}\right)$ and A and $\left\langle p_{\eta}: \eta \in^{\omega>} \lambda\right\rangle$ such that $p_{\eta} \in \mathbf{S}_{\Delta_{\ell g(\eta)}}^{m}(A)$ and $\nu \triangleleft \eta \Rightarrow p_{\nu} \subseteq p_{\eta}$, and if $\eta_{1} \neq \eta_{2}$ are from ${ }^{n} \lambda$ then $p_{\eta_{1}} \neq p_{\eta_{2}}$,
$(\mathrm{c})_{\aleph_{0}}$ like $(c)_{\lambda}$ with $\left\langle p_{\eta}: \eta \in{ }^{\omega\rangle} \omega\right\rangle$.
(2) Similarly restricting ourselves to $A=|M|$.

Proof. Easy. $\boldsymbol{■}_{5.28}$
Closely related is
5.29. Definition: (1) We define $\operatorname{lc}_{1}-\mathrm{rk}^{m}(p, \lambda)$ for types $p \in \mathbf{S}^{m}(A)$ for $A \subseteq \mathfrak{C}$ as an ordinal or infinitely by:
(a) $\mathrm{lc}_{1}-\mathrm{rk}^{m}(p, \lambda) \geq 0$ always,
(b) $\mathrm{lc}_{1}-\operatorname{rk}^{m}(p, \lambda) \geq \alpha=\beta+1$ iff for every $\mu<\lambda$ and finite $\Delta \subseteq \mathbb{L}\left(\tau_{T}\right)$ we can find pairwise distinct $q_{i} \in \mathbf{S}^{m}(A)$ for $i<1+\mu$ such that $p \upharpoonright \Delta \subseteq q_{i}$ and $\mathrm{lc}_{1}-\mathrm{rk}^{m}\left(q_{i}, \lambda\right) \geq \beta$,
(c) $\mathrm{lc}_{1}-\mathrm{rk}^{m}(p, \lambda) \geq \delta$ for δ a limit ordinal iff $\mathrm{lc}_{1}-\mathrm{rk}^{m}(p) \geq \alpha$ for every $\alpha<\delta$.
(2) If $\lambda=\beth_{2}(|T|)^{++}$we may omit it.
5.30. Claim: (1) The following conditions on T are equivalent when $\mu>\lambda=\beth_{2}(|T|)^{+}:$
(a) ${ }_{\mu}$ for every A and $p \in \mathbf{S}^{m}(A)$ we have $\operatorname{lc}_{1}-\operatorname{rk}^{m}(p, \mu)<\infty$,
(b) μ_{μ} for some $\alpha^{*}<\beth_{2}(|T|)^{+}$, for every A and $p \in \mathbf{S}^{m}(A)$ we have $l c_{1}-\operatorname{rk}^{m}(p, \mu)<\alpha^{*}$,
(c) λ_{λ} for no A do we have a non-empty set $\mathbf{P} \subseteq \mathbf{S}^{m}(A)$ such that, for every $p \in \mathbf{P}$ and finite $\Delta \subseteq \mathbb{L}\left(\tau_{T}\right)$, for some finite Δ_{1} the set $\left\{q \upharpoonright \Delta_{1}: q \in \mathbf{P}\right.$ and $q \upharpoonright \Delta=p \upharpoonright \Delta\}$ has cardinality $\geq \lambda$,
(d) $)_{\lambda}$ letting $\Xi=\bigcup\left\{\Xi_{n}: n<\omega\right\}, \Xi_{n}=\{\bar{\Lambda}: \bar{\Lambda}$ is a sequence of length n of finite sets of formulas $\left.\varphi(\bar{x}, \bar{y}) \in \mathbb{L}\left(\tau_{T}\right), \ell g(\bar{x})=m\right\}$ there is no $\left\langle\Delta_{\bar{\Lambda}}: \bar{\Lambda} \in \Xi\right\rangle$, where $\Delta_{\bar{\Lambda}}$ is a finite set of formulas such that: for every λ we can find A and $\left\langle p_{\bar{\Lambda}, \eta}: \bar{\Lambda} \in \Xi\right.$ and $\left.\eta \in^{\ell g(\bar{\Lambda})} \lambda\right\rangle$ such that:
(α) $p_{\bar{\Lambda}, \bar{\eta}} \in \mathbf{S}^{m}(A)$,
(β) if $\bar{\Lambda} \in \Xi_{n}, \eta \in{ }^{n} \lambda$ and $\bar{\Lambda}^{\prime}=\bar{\Lambda}^{\wedge}\left\langle\Lambda_{n}\right\rangle \in \Xi_{n+1}$, then $p_{\bar{\Lambda}^{\prime}, \eta^{\wedge}\langle\alpha\rangle} \upharpoonright$ $\Lambda_{n}=p_{\bar{\Lambda}, \eta} \upharpoonright \Lambda_{n}$ for $\alpha<\lambda$ and $\left\langle p_{\bar{\Lambda}^{\prime}, \eta^{\wedge}\langle\alpha\rangle} \upharpoonright \Delta_{\bar{\Lambda}^{\prime}}: \alpha<\lambda\right\rangle$ are pairwise distinct,
(e) $)_{\lambda}$ for some $\left\langle\Delta_{\bar{\Lambda}}: \bar{\Lambda} \in \Xi\right\rangle$ as above the set $T \cup \Gamma_{\lambda}$ is inconsistent, where Γ is non-empty and:
(α) if $\bar{\Lambda}=\Xi_{n+1}, \eta \in{ }^{n+1} \lambda$ and $\varphi(\bar{x}, \bar{y}) \in \Lambda_{n}$, then
$(\forall \bar{y})\left[\bigwedge_{\ell<\ell g(\bar{y})} P\left(y_{\ell}\right) \rightarrow\left(\varphi\left(\bar{x}_{\bar{\Lambda}, \eta}, \bar{y}\right) \equiv \varphi\left(\bar{x}_{\bar{\Lambda} \upharpoonright n, \eta \upharpoonright n}, \bar{y}\right)\right)\right]$,
(β) if $\bar{\Lambda} \in \Xi_{n+1}, \eta \in{ }^{n} \lambda$ and $\alpha<\beta<\lambda$, then

$$
\bigvee_{\varphi(x, \bar{y}) \in \Delta_{\bar{\Lambda}}}(\exists \bar{y})\left(\bigwedge_{\ell<\ell g(\bar{y})} P\left(y_{\ell}\right) \wedge\left(\varphi\left(x_{\bar{\Lambda}, \eta^{\wedge}\langle\alpha\rangle}: \bar{y}\right)\right) \equiv \neg \varphi\left(\bar{x}_{\bar{\Lambda}, \eta^{\wedge}\langle\beta\rangle}, \bar{y}\right)\right)
$$

(2) Similarly restricting ourselves to the cases $A=|M|$, i.e., A is the universe of some $M \prec \mathfrak{C}$.

Proof. We will elaborate elsewhere, using [893, Th 2.16, 335]. $\llbracket_{5.30}$
5.31. Definition: (1) We define $\mathrm{lc}_{2}-\mathrm{rk}^{m}(p, \lambda)$ and $\mathrm{lc}_{3}-\mathrm{rk}^{m}(p, \lambda)$ like $\mathrm{lc}_{0}-\mathrm{rk}^{m}(p, \lambda)$ and $\mathrm{l}_{1}-\mathrm{rk}^{m}(p, \lambda)$, respectively, replacing " $\Delta \subseteq \mathbb{L}\left(\tau_{T}\right)$ is finite" by " $\Delta \subseteq \mathbb{L}\left(\tau_{T}\right)$ and $\operatorname{arity}(\Delta)<\omega$ " where:
(2) $\operatorname{arity}(\varphi)=$ the number of free variables of $\varphi, \operatorname{arity}(\Delta)=\sup \{\operatorname{arity}(\varphi)$: $\varphi \in \Delta\}$ (if we use the objects $\varphi(\bar{x})$ we may use $\operatorname{arity}(\varphi(\bar{x}))=\ell g(\bar{x}))$.
5.32. Claim: The parallel of 5.28, 5.30 for Definition 5.31.

Remark: In particular, the rank $\mathrm{lc}_{3}-\mathrm{rk}^{m}$ seems related to the existence of indiscernibility, i.e.,
5.33. Conjecture: (1) Assume $\operatorname{lc}_{\ell}-\mathrm{rk}^{m}(T)<\infty$ for some $\ell \leq 3$. We can prove (in ZFC!) that for every cardinal μ, for some λ we have $\lambda \rightarrow(\mu)_{T}$.
(2) Moreover, λ is not too large, say is less than $\beth_{\omega+1}(\mu+|T|)^{++}$(or just $\left.<\beth_{\left(2^{\mu}\right)^{+}}\right)$.
(D). Strongly ${ }^{2}$ stable fields. A reasonable aim is to generalize the characterization of the superstable complete theories of fields. Macintyre [Ma71] proved that every infinite field whose first order theory is \aleph_{0}-stable, is algebraically closed. Cherlin [Ch78] proves that every infinite division ring whose first order theory is superstable, is commutative, i.e., is a field so algebraically closed. Cherlin and Shelah [ChSh:115] prove "any superstable theory $\operatorname{Th}(K), K$ an infinite field, is the theory of algebraically closed fields" (and this is true even
for division rings). More generally, we would like to replace stable by dependent and/or superstable by strongly dependent or at least strongly ${ }^{2}$ stable (or another variant).

Of course, for strongly dependent we should allow at least the following cases (in addition to the algebraically closed fields): the first order theory of the real field (not problematic, as it is the only one with finite non-trivial Galois groups), the p-adic field for any prime p and the first order theories covered by $1.17(2)$, i.e., $\operatorname{Th}\left(K^{\mathbb{F}}\right)$ for such \mathbb{F}.

Hence
5.34. Conjecture: (a) If K is an infinite field and $T=T h(K)$ is strongly ${ }^{2}$ dependent (i.e., $\kappa_{\text {ict }, 2}(T)=\aleph_{0}$), then K is an algebraically closed field (not strongly!!).
(b) Similarly for division rings.
(c) If K is an infinite field and $T=T h(K)$ is strongly ${ }^{1}$ dependent, then K is finite or algebraically closed or real closed or elementary equivalent to $K^{\mathbb{F}}$ for some \mathbb{F} as in 1.17(2) (like the p-adics) or a finite algebraic extension of such a field.
(d) Similar to (c) for division rings.

Of course it is even better to answer 5.35(1):
5.35. Question: (1) Characterize the fields with dependent first order theory.
(2) At least "strongly dependent" (or another variant; see (E), (F) below).
(3) Suppose M is an ordered field and $T=\operatorname{Th}(M)$ is dependent (or strongly dependent). Can we characterize?

Remark: But we do not know this even for stability. So adopting strongly dependent as our context we look to what we can do.
5.36. Claim: For a dependent T and group G interpreted in the monster model \mathfrak{C} of T, for every $\varphi(x, \bar{y}) \in \mathbb{L}\left(\tau_{T}\right)$ there is $n_{\varphi}<\omega$ such that, if α is finite, $\left\langle\bar{a}_{i}: i<\alpha\right\rangle$ is such that $G \cap \varphi\left(\mathfrak{C}, \bar{a}_{i}\right)$ is a subgroup of G, then their intersection is the intersection of some $\leq n_{\varphi}$ of them.

Remark: If T is stable this holds also for infinite α by the Baldwin-Saxl theorem [BaSx76].

Proof. See Kaplan-Shelah [KpSh:993].
5.37. Claim: If the complete theory T is strongly" dependent, then "finite kernel implies almost surjectivity", which means that if in \mathfrak{C}, G is a definable group, π a definable homomorphism from G into G with finite kernel, then $(G: \operatorname{Rang}(\pi))$ is finite.

Proof. By a general result from [Sh:783, 3.8, 4.5] quoted here as 0.1. $\boldsymbol{\Pi}_{5.37}$
5.38. Claim: Being strongly ${ }^{\ell}$ dependent is preserved under interpretation.

Proof. By 1.4, 2.7. ■ $_{5.38}$
Hence the proof in [ChSh:115] works "except" the part on "translating the connectivity", which relies on ranks not available here.

However, if T is stable this is fine, hence we deduce
5.39. Conclusion: If K is an infinite field and $\operatorname{Th}(K)$ is strongly ${ }^{2}$ stable, then T is algebraically closed.
5.40. Claim: Let p be a prime. Then T is not strongly dependent if T is the theory of differentially closed fields of characteristic p or T is the theory of some separably closed fields of characteristic p which is not algebraically closed.

Proof. The second case implies the first because, if $\tau_{1} \subseteq \tau_{1}, T_{2}$ a complete $\mathbb{L}\left(\tau_{2}\right)$ theory which is strongly dependent, then so is $T_{1}=T_{2} \cap \mathbb{L}\left(\tau_{1}\right)$. So let M be a \aleph_{1}-saturated separably closed field of characteristic p which is not algebraically closed. Let $\varphi_{n}(x)=(\exists y)\left(y^{p^{n}}=x\right)$ and $p_{*}(x)=\left\{\varphi_{n}(x): n<\omega\right\}$ and let $x E_{n} y$ mean $\varphi_{n}(x-y)$, so E_{n}^{M} is an equivalent relation.

Let $\left\langle a_{\alpha}: \alpha<\omega_{1}\right\rangle$ be an indiscernible set such that $\alpha<\beta<\omega_{1} \Rightarrow a_{\beta}-a_{\alpha} \notin$ $\varphi_{1}(M)$.

Let $\psi_{n}\left(x, y_{0}, y_{1}, \ldots, y_{n-1}\right)=(\exists z)\left[\varphi_{n}(z) \wedge x=y_{0}+y_{1}^{p}+\cdots+y_{n-1}^{p^{n-1}}+z\right]$.
Now by our understanding of $\operatorname{Th}(M)$:
\circledast (a) if $b_{\ell} \in M$ for $\ell<n$ then $M \models(\exists x) \psi_{n}\left(x, b_{0}, \ldots, b_{n-1}\right)$,
(b) in M we have $\psi_{n+1}\left(x, y_{0}, \ldots, y_{n}\right) \vdash \psi_{n}\left(x, y_{0}, \ldots, y_{n-1}\right)$,
(c) in M we have, if $\psi_{n}\left(b, a_{\alpha_{0}}, \ldots, a_{\alpha_{n-1}}\right) \wedge \psi_{n}\left(b, a_{\beta_{0}}, \ldots, a_{\beta_{n-1}}\right)$, then

$$
\bigwedge_{\ell<n} \alpha_{\ell}=\beta_{\ell}
$$

[Why? Clause (a) holds because, if $b_{\ell} \in M$ for $\ell<n$, then $a=b_{0}+b_{1}^{p}+\cdots+b_{n-1}^{p^{n-1}}$ exemplifies " $\exists x$ ". Clause (b) holds because if $M \models \psi_{n+1}\left[a, b_{0}, \ldots, b_{n-1}, b_{n}\right]$ as witnessed by $z \mapsto d$, then $M \models \psi_{n}\left[a, b_{0}, \ldots, b_{n-1}\right]$ as witnessed by $z \mapsto$ $d+b_{n}^{p^{n}}$, which $\in \varphi_{n}(M)$ as $\varphi_{n}(M)$ is closed under addition, and $d \in \varphi_{n}(M)$
by $d \in \varphi_{n+1}(M) \subseteq \varphi_{n}(M)$ and $b_{n}^{p^{n}} \in \varphi_{n}(M)$ as b_{n} witnesses it. Lastly, to prove clause (c) assume that for $\ell=1,2$ we have $d^{\ell}=d_{\ell}^{p^{n}} \in \varphi_{n}(M), b=$ $a_{\alpha_{0}}+a_{\alpha_{1}}^{p}+a_{\alpha_{2}}^{p^{2}}+\cdots+a_{\alpha_{n-1}}^{p^{n-1}}+d_{1}^{p^{n}}$ and $b=a_{\beta_{0}}+a_{\beta_{1}}^{p}+a_{\beta_{2}}^{p^{2}}+\cdots+a_{\beta_{n-1}}^{p^{n-1}}+d_{2}^{p^{n}}$. We prove this by induction on n. For $n=0$ this is trivial, $n=m+1$ substituting, etc., we get $a_{\alpha_{0}}-a_{\beta_{0}}=\left(a_{\beta_{1}}^{p}-a_{\alpha_{1}}^{p}\right)+\cdots+\left(a_{\beta_{n-1}}^{p^{n-1}}-a_{\alpha_{n-1}}^{p^{n-1}}\right)+\left(d_{2}^{p^{n}}-d_{1}^{p^{n}}\right) \in \varphi_{1}(M)$, so by an assumption on $\left\langle a_{\gamma}: \gamma<\omega_{1}\right\rangle$ it follows that $\alpha_{0}=\beta_{0}$. As there are unique p-th roots the original equation implies $a_{\alpha_{1}}+a_{\alpha_{2}}^{p}+\cdots+a_{\alpha_{n-2}}^{p^{n-2}}+d_{1}^{p^{n}}=$ $a_{\beta_{1}}+a_{\beta_{2}}^{p}+\cdots+a_{\beta_{n-2}}^{p^{n-2}}+d_{2}^{p^{n}}$, and we use the induction hypothesis.]

So together:
\odot for every $\eta \in^{\omega}\left(\omega_{1}\right)$, there is $b_{\eta} \in M$ such that
(α) $M \vdash \psi_{n}\left(b_{\eta}, a_{\eta(0)}, \ldots, a_{\eta(n-1)}\right)$, hence
(β) if $n<\omega, \nu \in{ }^{n}\left(\omega_{1}\right), \nu \neq \eta \upharpoonright n$ then $M \models \neg \psi_{n}\left(b_{\eta}, a_{\nu(0)}, \ldots, a_{\nu(m-1)}\right)$.
This suffices.

$$
\mathbf{m}_{5.40}
$$

(E). Strongly ${ }^{3}$ dependent. It is still not clear which versions of strong dependent (or stable) will be most interesting. Another reasonable version is strongly ${ }^{3}$ dependent, but see more below. It has parallel properties and is natural. Hopefully, at least some of those versions allows us to generalize weight (see $[$ Sh:c, $\mathrm{V}, \S 3]$); we intend to return to it elsewhere. Meanwhile, note:
5.41. Definition: (1) T is strongly ${ }^{3}$ dependent if $\kappa_{\text {ict }, 3}(T)=\aleph_{0}$ (see below).
(2) $\kappa_{\text {ict }, 3}(T)$ is the first κ such that the following ${ }^{8}$ holds:
if γ is an ordinal, $\bar{a}_{\alpha} \in{ }^{\gamma}\left(M_{\alpha+1}\right)$ for $\alpha<\delta,\left\langle\bar{a}_{\alpha}: \alpha \in[\beta, \delta)\right\rangle$ is an indiscernible sequence over M_{β} for $\beta<\delta$ and $\beta_{1}<\beta_{2} \Rightarrow M_{\beta_{1}} \prec M_{\beta_{2}} \prec \mathfrak{C}$ and $\bar{c} \in{ }^{\omega>} \mathfrak{C}$ and $\operatorname{cf}(\delta) \geq \kappa$, such that if $n<\omega, \alpha_{\ell, 0}<\cdots \alpha_{\ell, n-1}<k$ for $\ell=1,2, \alpha_{1, i} \leq \alpha_{2, i}$ for $1<n$ and $\bar{b}^{1} \subseteq M_{\alpha_{1, n-1}^{*}}$ there is $\bar{b}^{2} \subseteq M_{\alpha_{2, n-1}^{*}}$ such that $\bar{a}_{\alpha_{1,0}} \wedge \cdots \wedge \bar{a}_{\alpha_{1, n-1}} \wedge \bar{b}^{1}$ and $\bar{a}_{\alpha_{2,0}} \wedge \cdots \wedge \bar{a}_{\alpha_{2, n-1}} \wedge \bar{b}^{2}$ realize the same type, then for some $\beta<\kappa,\left\langle\bar{a}_{\alpha}\right.$: $\alpha \in[\beta, \delta)\rangle$ is an indiscernible sequence over $M_{\beta} \cup \bar{c}$.
(3) We say T is strongly ${ }^{\ell}$ stable if T is strongly ${ }^{\ell}$ dependent and is stable.
(4) We define $\kappa_{\text {ict,3,* }}(T)$ and strongly ${ }^{3, *}$ dependent and strongly ${ }^{3, *}$ stable as in the parallel cases (see Definitions 1.8 and 2.12), i.e., above we replace \bar{c} by $\left\langle\bar{c}_{n}: n<\omega\right\rangle$ indiscernible over $\bigcup\left\{M_{\beta}: \beta<\delta\right\}$.

[^8]5.42. Claim: (1) If T is strongly ${ }^{\ell+1}$ dependent then T is strongly ${ }^{\ell}$ dependent for $\ell=1,2$.
(2) T is strongly ${ }^{\ell}$ dependent iff $T^{e q}$ is; moreover, $\kappa_{\text {ict }, \ell}(T)=\kappa_{\text {ict }, \ell}\left(T^{e q}\right)$.
(3) If T_{1} is interpretable in T_{2} then $\kappa_{\text {ict }, \ell}\left(T_{1}\right) \leq \kappa_{\text {ict }, \ell}\left(T_{2}\right)$.
(4) If $T_{2}=\operatorname{Th}\left(\mathfrak{B}_{M, M A}\right)$ (see $\left.[\operatorname{Sh}: 783, \S 1]\right)$ and $T_{1}=\operatorname{Th}(M)$ then $\kappa_{\text {ict, } \ell}\left(T_{2}\right)=$ $\kappa_{\text {ict }, \ell}\left(T_{1}\right)$.
(5) T is not strongly ${ }^{3}$ dependent iff we can find $\bar{\varphi}=\left\langle\varphi_{n}\left(\bar{x}_{0}, \bar{x}_{1}, \bar{y}_{n}\right): n<\omega\right\rangle$, $m=\ell g\left(\bar{x}_{0}\right)$, and for any infinite linear order I we can find an indiscernible sequence $\left\langle\bar{a}_{t}, \bar{b}_{\eta}: t \in I, \eta \in{ }^{\omega>} I\right.$ increasing \rangle (see Definition 5.45 below) such that for any increasing sequence $\eta \in{ }^{\omega} I$, the set $\left\{\varphi_{n}\left(\bar{x}_{0}, \bar{a}_{s}, \bar{b}_{\eta \upharpoonright n}\right)^{i f(s=\eta(n))}\right.$: $n<\omega$ and $\eta(n-1)<_{I} s \in I$ if $\left.n>0\right\}$ of formulas is consistent (or use just $s=\eta(n), \eta(n)+1$ or $\eta(n) \leq_{I} s$, it does not matter).
(6) The parallel of parts (1)-(5) hold with strongly ${ }^{3, *}$ instead of strongly ${ }^{3}$. In particular, (parallel to part (5)) we have T is not strongly ${ }^{3, *}$ dependent iff we can find $\bar{\varphi}=\left\langle\varphi_{n}\left(\bar{x}_{0}, \ldots, \bar{x}_{k(n)}, \bar{y}_{n}\right): n<\omega\right\rangle, m=\lg (\bar{x})$, and for any infinite linear order I we can find an indiscernible sequence $\left\langle\bar{a}_{t}, \bar{b}_{\eta, t}: t \in I, \eta \in^{\omega>} I\right.$ increasing \rangle (see 5.45) such that for any increasing $\eta \in{ }^{\omega} I$,
\[

$$
\begin{aligned}
& \left\{\varphi\left(\bar{x}_{0}, \bar{a}_{s}, \bar{b}_{\eta \uparrow n}\right)^{i f(s=\eta(n))}: n<\omega \text { and } \eta(n-1)<_{I} s \text { if } n>0\right\} \\
& \cup\left\{\psi\left(\bar{x}_{i_{0}}, \ldots, \bar{x}_{i_{m-1}}, \bar{c}\right)=\psi\left(\bar{x}_{j_{0}}, \ldots, \bar{x}_{j_{m-1}}, \bar{c}\right): m<\omega, i_{0}<\cdots<i_{m-1}<\omega\right. \\
& \left.\quad j_{0}<\cdots<j_{m-1}<\omega \text { and } \bar{c} \subseteq \bigcup\left\{\bar{a}_{s}, b_{\rho}: s \in I, \rho \in{ }^{\omega>} I \text { increasing }\right\}\right\}
\end{aligned}
$$
\] is consistent.

Proof. (1)-(4). Easy.
(5), (6) Easy, see [Sh:F918]. $\quad \mathbf{■}_{5.42}$

Recall that this definition applies to stable T (i.e., Definition $5.41(3)$).
5.43. Observation: The theory T is strongly ${ }^{3}$ stable iff: T is stable and we cannot find $\left\langle M_{n}: n<\omega\right\rangle, \bar{c} \in{ }^{\omega>} \mathfrak{C}$ and $\overline{\mathbf{a}}_{n} \in^{\omega}\left(M_{n+1}\right)$ such that:
(a) M_{n} is \mathbf{F}_{κ}^{a}-saturated,
(b) M_{n+1} is \mathbf{F}_{κ}^{a}-prime over $M_{n} \cup \overline{\mathbf{a}}_{n}$,
(c) $\operatorname{tp}\left(\overline{\mathbf{a}}_{n}, M_{n}\right)$ does not fork over M_{0},
(d) $\operatorname{tp}\left(\bar{c}, M_{n} \cup \overline{\mathbf{a}}_{n}\right)$ forks over M_{n}.

Proof. Easy. $\boldsymbol{\square}_{5.43}$
5.44. Conjecture: For strongly ${ }^{3}$ stable T we have dimension theory (including weight) close to the one for superstable theories (as in [Sh:c, V]). We may try to deal with it in [Sh:839]; it is related to $\S 5 \mathrm{G}$ below.
(F). Representability and strongly 4 dependent. In [Sh:897] we deal with T being fat or lean. We say a class K of models is fat when, for every ordinal α, there are a regular cardinal λ and non-isomorphic models $M, N \in K_{\lambda}$ which are $\mathrm{EF}_{\alpha, \lambda}^{+}$-equivalent, where $\mathrm{EF}_{\alpha, \lambda}^{+}$is a strong version of "the isomorphism player has a winning strategy in a strong version of the Ehrenfuecht-Frässe game of length λ ". We prove there that, consistently, if T is not strongly stable and $T_{1} \supseteq T$, then $\mathrm{PC}\left(T_{1}, T\right)$ is fat (in a work in preparation [Sh:F918] we show that it suffices to assume " T is not strongly 4_{4}-stable"; see below).

Cohen-Shelah [CoSh:919] deals with the stable case [Sh:F705], a work in preparation, we hope to deal with representability. The weakest form (for \mathfrak{k} a class of index models, e.g., linear orders) is, e.g., first order T is weakly \mathfrak{k} represented when for every model M of T and, say, a finite set $\Delta \subseteq \mathbb{L}\left(\tau_{T}\right)$ we can find an index model $I \in \mathfrak{k}$ and sequence $\left\langle\bar{a}_{t}: t \in I\right\rangle$ of finite sequences from $M^{\mathfrak{C}}$ (or just singletons) which is Δ-indiscernible, i.e., (see below) such that $|M| \subseteq\left\{a_{t}: t \in I\right\}$.

This is a parallel to stable and superstable when we play with essentially the arity of the functions of \mathfrak{k} and the size of Δ 's considered. The thesis is that T is stable iff it, essentially, can be represented for essentially \mathfrak{k} the class of sets and parallel representability for \mathfrak{k} derived for order characterize versions of the class of dependent theories. We also define \mathfrak{k}-forking, i.e., replace linear orders by other index sets. Meanwhile, [CoSh:919], has fulfilled those hopes for stable T but [KpSh:975] shows that for general dependent T the hopes fail. We define
5.45. Definition: (1) For any structure I we say that $\left\langle\bar{a}_{t}: t \in I\right\rangle$ is indiscernible (in \mathfrak{C} over A) when: $\ell g\left(\bar{a}_{t}\right)$ depends only on the quantifier type of t in I and: if $n<\omega$ and $\bar{s}=\left\langle s_{0}, s_{1}, \ldots, s_{n-1}\right\rangle, \bar{t}=\left\langle t_{0}, \ldots, t_{n-1}\right\rangle$ realize the same quantifier-free type in I then $\bar{a}_{\bar{t}}:=\bar{a}_{t_{0}}{ }^{\wedge}{ }^{\prime}{ }^{\wedge} \bar{a}_{t_{n-1}}$ and $\bar{a}_{\bar{s}}=\bar{a}_{s_{0}}{ }^{\wedge} \cdots^{\wedge} \bar{a}_{s_{n-1}}$ realize the same type (over A) in \mathfrak{C}.
(2) We say that $\left\langle\bar{b}_{u}: u \in[I]^{<\aleph_{0}}\right\rangle$ is indiscernible (in \mathfrak{C}) (over A) similarly: if $n<\omega, w_{0}, \ldots, w_{m-1} \subseteq\{0, \ldots, n-1\}$ and $\bar{s}=\left\langle s_{\ell}: \ell<n\right\rangle, \bar{t}=$ $\left\langle t_{\ell}: \ell<n\right\rangle$ realize the same quantifier-free types in I and $u_{\ell}=$ $\left\{s_{k}: k \in w_{\ell}\right\}, v_{\ell}=\left\{t_{k}: k \in w_{\ell}\right\}$ then $\bar{a}_{u_{0}}{ }^{\wedge} \cdots^{\wedge} \bar{a}_{u_{n-1}}, \bar{a}_{v_{0}}{ }^{\wedge} \cdots^{\wedge} \bar{a}_{v_{n-1}}$ realize the same type in \mathfrak{C} (over A).
(3) We may use incr $(<\omega, I)$ instead of $[I]^{<\aleph_{0}}$, where $\operatorname{incr}\left({ }^{\alpha} I\right)=\operatorname{incr}_{\alpha}(I)=$ $\operatorname{incr}(\alpha, I)=\{\rho: \rho$ is an increasing sequence of length α of members of $I\}$. We can use $<\alpha$ or $\leq \alpha$; clearly the difference between $\operatorname{incr}(<\omega, I)$ and $[I]^{<\aleph_{0}}$ is notational only (when we have order).
5.46. Definition: (1) We say that the m-type $p(\bar{x})$ does (Δ, n)-ict divide over A (or (Δ, n)-ict ${ }^{1}$ divide over A) when: there are an indiscernible sequence $\left\langle\bar{a}_{t}: t \in I\right\rangle, I$ an infinite linear order and $s_{0}<_{I} t_{0} \leq_{I} s_{1}<_{I}$ $t_{1}<_{I} \cdots \leq_{I} s_{n-1}<_{I} t_{n-1}$ such that
$\circledast_{1} p(\bar{x}) \vdash " \operatorname{tp}_{\Delta}\left(\bar{x}^{\wedge} \bar{a}_{s_{\ell}}, A\right) \neq \operatorname{tp}_{\Delta}\left(\bar{x}^{\wedge} \bar{a}_{t_{\ell}}, A\right)$ " for $\ell<n$.
(2) We say that the m-type $p(\bar{x})(\Delta, n)$-ict ${ }^{2}$-divides over A when, above, we replace \circledast_{1} by:
$\circledast_{2} p(\bar{x}) \vdash " \operatorname{tp}_{\Delta}\left(\bar{x}^{\wedge} \bar{a}_{s_{\ell}}, \bigcup\left\{\bar{a}_{s_{k}}: k<\ell\right\} \cup A\right) \neq \operatorname{tp}_{\Delta}\left(\bar{x}^{\wedge} \bar{a}_{t_{\ell}}, \bigcup\left\{\bar{a}_{s_{k}}: k<\right.\right.$ $\ell\} \cup A$)" for $\ell<n$.
(3) We say that the m-type $p(\bar{x})(\Delta, n)$ - ict 3-divides over A when, above, $\left(\left\langle\bar{a}_{t}: t \in I \cup \operatorname{incr}(<n, I)\right\rangle\right.$ is indiscernible over A and we replace \circledast_{1} by $\circledast_{3} p(\bar{x}) \vdash " \operatorname{tp}_{\Delta}\left(\bar{x}^{\wedge} \bar{a}_{s_{\ell}}, \bar{a}_{\left\langle s_{0}, \ldots, s_{\ell-1}\right\rangle} \cup A\right) \neq \operatorname{tp}_{\Delta}\left(\bar{x}^{\wedge} \bar{a}_{t_{\ell}}, \bar{a}_{\left\langle s_{0}, \ldots, s_{\ell-1}\right\rangle} \cup A\right) "$ for $\ell<n$.
(4) We say that the m-type $p(\bar{x})(\Delta, n)$-ict ${ }^{4}$-divides over A when there are $n^{*}<\omega$ and sequence $\left\langle\bar{a}_{\eta}: \eta \in \operatorname{inc}\left(\leq n^{*}, I\right)\right\rangle$ indiscernible over A such that $($ where $\operatorname{comp}(I)$ is the completion of the linear order $I)$:
if \bar{c} realizes $p(\bar{x})$, then for no set $J \subseteq \operatorname{comp}(I)$ with $\leq n$ members is the sequence $\left\langle\bar{a}_{\eta}: \eta \in \operatorname{inc}\left(\leq n^{*}, I^{+}\right)\right\rangle \Delta$-indiscernible over A, where $I^{+}=\left(I, P_{t}\right)_{t \in J}$ and $P_{t}:=\{s \in I: s<t\}$. Note that if T is stable, we can equivalently require $J \subseteq I$ and use $P_{t}:=\{t\}$.
(5) For $k \in\{1,2,3,4\}$ we say that the m-type $p(\bar{x})(\Delta, n)$-ict ${ }^{k}$-forks over A when for some sequence $\left\langle\psi_{\ell}\left(\bar{x}, \bar{a}_{\ell}\right): \ell<\ell(*)<\omega\right\rangle$ we have
(a) $p(\bar{x}) \vdash \bigvee_{\ell<\ell(*)} \psi_{\ell}\left(\bar{x}, \bar{a}_{i}\right)$,
(b) $\psi_{\ell}\left(\bar{x}, \bar{a}_{\ell}\right)(\Delta, n)$-ict ${ }^{k}$-divides over A.

If $k=1$ we may omit it; if $\Delta=\mathbb{L}\left(\tau_{T}\right)$ we may omit it.
(6) We define ict ${ }^{k}-\mathrm{rk}^{m}(p)$, an ordinal or ∞, as follows (easily well defined): ict $^{k}-\operatorname{rk}^{m}(p) \geq \alpha$ iff p is an m-type and, for every finite $q \subseteq p$, finite $A \subseteq \operatorname{Dom}(p)$ and $n<\omega$ and $\beta<\alpha$, there is an m-type r extending q which $\left(\mathbb{L}\left(\tau_{T}\right), n\right)-$ ict k-forks over A with ict $^{k}-$ rk $^{m}(r) \geq \beta$. If ict ${ }^{k}$ $\operatorname{rk}^{m}(r) \nsupseteq \beta+1$, we say that n witnesses this if the demand above for this n fails. If $n+1$ is the minimal witness, let $n=$ ict $^{k}-\mathrm{wg}^{n}(r)$.
(7) $\kappa_{k, \text { ict }}^{m}(T)$ is the first $\kappa \geq \aleph_{0}$ such that, for every $p \in \mathbf{S}^{m}(B), B \subseteq \mathfrak{C}$, there is a set $A \subseteq B$ of cardinality $<\kappa$ such that p does not ict ${ }^{k}$-fork over A. Omitting m means for some $m<\omega$; note that we write $\kappa_{k, \text { ict }}(T)$ to distinguish it from Definition 2.3 of $\kappa_{\text {ict,2 }}$.
(8) T is strongly ${ }_{k}$ dependent [stable] if $\kappa_{k, \text { ict }}(T)=\aleph_{0}$ [and T is stable].
(9) We define $\kappa_{k, \text { ict,* }}(T)$ in a parallel way, i.e., now $p(\bar{x})$ is the type of an indiscernible sequence of m-tuples and T is strongly ${ }_{k, *}$ dependent [stable] if it is dependent [stable] and $\kappa_{k, \text { ict }, *}(T)=\aleph_{0}$.
5.47. Claim: (1) For dependent T, the following conditions are equivalent:
(a) $\kappa_{4, \text { ict,* }}(T)>\aleph_{0}$; see Definition 5.46(4),(7),(9).
(b) There are $m,\left\langle\left(\Delta_{\ell}, n_{\ell}\right): \ell<\omega\right\rangle, I, \mathbf{J}$ such that:
$(\alpha) \Delta_{\ell} \subseteq \mathbb{L}\left(\tau_{T}\right)$ finite and $n_{\ell}<\omega$ and $n_{\ell}>\ell$ for $\ell<\omega$,
(β) I is an infinite linear order with increasing ω-sequence of members,
$(\gamma) \mathbf{J}=\left\langle\bar{a}_{\rho}: \rho \in \operatorname{inc}_{<\omega}(I)\right\rangle$ is an indiscernible sequence with $\bar{a}_{\rho} \in{ }^{\omega} \mathfrak{C}$,
(δ) for $\eta \in{ }^{\omega} I$ an increasing sequence, for some $\bar{c}_{\ell} \in{ }^{m} \mathfrak{C}(\ell<\omega)$ we have:
(i) $\left\langle\bar{c}_{\ell}: \ell<\omega\right\rangle$ is an indiscernible sequence over $\bigcup\left\{\bar{a}_{\rho}: \rho \in \operatorname{incr}(I,<\right.$ $\omega)\}$,
(ii) if J is the completion of the linear order I, then for no finite $J_{0} \subseteq$ J do we have: if $n<\omega$ and $\rho_{0}^{\ell}, \ldots, \rho_{n-1}^{\ell} \in \operatorname{incr}(I,<\omega)$ for $\ell=1,2$ are such that $\ell g\left(\rho_{m}^{1}\right)=\ell g\left(\rho_{m}^{2}\right)$ for $m<n$ and $\rho_{0}^{1 \wedge} \cdots^{\wedge} \rho_{n-1}^{1}$ and $\rho_{0}^{2}{ }^{\wedge} \cdots{ }^{\wedge} \rho_{n-1}^{2}$ realize the same quantifier free type over J_{0} in J, then $\bar{a}_{\rho_{0}^{1}}{ }^{\wedge} \cdots^{\wedge} \bar{a}_{\rho_{n-1}^{1}}, \bar{a}_{\rho_{0}^{2}}{ }^{\wedge} \cdots^{\wedge} \bar{a}_{\rho_{n-1}^{2}}$ realize the same Δ_{ℓ}-type over $\bigcup\left\{\bar{c}_{\ell}: \ell<\omega\right\}$ in \mathfrak{C}.
(c) The natural rank is always $<\infty$.
(2) For dependent T the following conditions are equivalent:
(a) $\kappa_{4, \text { ict }}^{m}(T)>\aleph_{0}$,
(b) like (b) is part (1), only $\left\langle\bar{c}_{\ell}: \ell<\omega\right\rangle$ is replaced by one m-tuple \bar{c},
(c) $\mathrm{ict}^{4}-\operatorname{rk}^{m}(\bar{x}=\bar{x})=\infty$,
(d) ict $^{4}-\operatorname{rk}^{m}(\bar{x}=\bar{x}) \geq|T|^{+}$.
(3) Similarly (just simpler) for $k=1,2,3$ instead 4.

Proof. Straightforwad, but for part (2) see details in Cohen and Shelah [CoSh:E65, §2]. $\quad \boldsymbol{U}_{5.47}$
5.48. Question: (1) Can we characterize the T such that the ict ${ }^{k}-\mathrm{rk}^{1}$ rank of the formula $x=x$ is 1 ?
(2) Do we have ict ${ }^{\ell}-\mathrm{rk}^{m}(\bar{x}=\bar{x})=\infty$ iff ict $^{\ell}-\mathrm{rk}^{1}(x=x)=\infty$, i.e., can we in part (2) say that the properties do not depend on m ? The positive answer will appear in Cohen and Shelah [CoSh:E65].

Now

5.49. Observation: (1) For $k=1,2,3$, if $p(\bar{x})(\Delta, n)$-ict ${ }^{k}$ forks over A, then $p(\bar{x})(\Delta, n)$-ict ${ }^{k+1}$ forks over A.
(2) If T is strongly ${ }_{k+1}$ dependent/stable, then T is strongly ${ }_{k}$ dependent/ stable.
(3) For $k \in\{1,2,3,4\}$, if T is strongly k dependent/stable, then T is strongly k dependent/stable; if T_{1} is interpretable in T_{2} and T_{2} is strongly $_{k}$ dependent/stable, then so is T_{1}.
(4) Assume T is stable. If $p \in \mathbf{S}^{m}(B)$ does not fork over $A \subseteq B$, then $\mathrm{ict}^{k}-\mathrm{rk}^{m}(p)=\mathrm{ict}^{k}-\mathrm{rk}^{m}(p \upharpoonright A)$.

Remark: Also, the natural inequalities concerning ict ${ }_{k}-\mathrm{rk}^{n}(-)$ follow by 5.49 (1). The parallel of 5.49 holds for types of indiscernible sequences over A.

Proof. Straightforward. Details on the proof of part (3) for $k=1$, see [CoSh:E65, 12] $\quad \mathbf{U}_{5.49}$
5.50. Example: (1) There is a stable NDOP, NOTOP, not multi-dimensional countable complete theory which is not strongly ${ }^{2}$ dependent.
(2) $T=\operatorname{Th}\left({ }^{\omega_{1}}\left(\mathbb{Z}_{2}\right), E_{n}\right)_{n<\omega}$ is as above, where $\mathbb{Z}_{2}=\mathbb{Z} / 2 \mathbb{Z}$ as an additive group; $E_{n}=\left\{(\eta, \nu): \eta, \nu \in \omega^{\omega_{1}}\left(\mathbb{Z}_{2}\right)\right\}$ are such that $\eta \upharpoonright(\omega n)=\nu \upharpoonright(\omega n)$.
(3) As in part (1) but T is not strongly dependent.

Remark: This is [Sh:897, 0.2]. It shows that the theorem there adds more cases.
Proof. (1) By part (2).
(2) So let M_{0} be the additive group ($\omega_{1}\left(\mathbb{Z}_{2}\right),+$) where + is coordinatewise addition and, for $\alpha \leq \omega$, let $M_{\alpha}=\left({ }^{\omega_{1}}\left(\mathbb{Z}_{2}\right), P_{n}\right)_{n<\alpha}$, where $P_{n}=\left\{\eta \in{ }^{\omega_{1}}\left(\mathbb{Z}_{2}\right)\right.$: $\eta \upharpoonright(\omega n)\}$ is constantly zero and $E_{n}=\left\{(\eta, \nu): \eta, \nu \in \omega^{\omega_{1}}\left(\mathbb{Z}_{2}\right)\right.$ are such that $\eta \upharpoonright(\omega n)=\nu \upharpoonright(\omega n)\}$ and $M_{\alpha}^{\prime}=\left({ }^{\omega_{1}}\left(\mathbb{Z}_{2}\right), E_{n}\right)_{n<\alpha}$. Hence $M_{\alpha}^{\prime}, M_{\alpha}$ are biinterpretable, so we shall use M_{α}. Let $T=\operatorname{Th}\left(M_{\omega}\right)$ and let $T_{\alpha}=\operatorname{Th}\left(M_{\alpha}\right)$. So for a model N of T_{α} is just an abelian group in which every element has
order 2, with distinguished subgraph P_{n}^{N} for $n<\alpha$, hence a vector space over the field \mathbb{Z}_{2} and P_{n}^{N} decrease with n.
T is stable:
For $n<\omega$, a model of T_{n} is determined by finitely many dimensions: $\left(P_{k}^{N}\right.$: P_{k+1}^{N}) for $k<n$ (where E_{0}^{N} is interpreted as the equality), so T_{n} is superstable not multi-dimensional.

Hence T necessarily is stable.
T is strongly dependent not strongly ${ }^{2}$ dependent:
As in 2.5 ; in fact it is strongly dependent.
T is not multi-dimensional:
If N is an \aleph_{1}-saturated model of T, then it is determined by the following dimension as vector spaces over \mathbb{Z}_{2}, for $n<\omega$:
$(*)_{1} P_{n}^{N} / P_{n+1}^{N}$,
$(*)_{2} \bigcap_{n<\omega} P_{n}^{N}$.
Each corresponds to a regular type (in $\mathfrak{C}_{T}^{\mathrm{eq}}$).
T has NDOP:
Follows from non-multi-dimensionality.
T has NOTOP:
Assume $N_{\ell} \prec \mathfrak{C}_{T}$ is \aleph_{1}-saturated, $N_{0} \prec N_{\ell}$ for $\ell=0,1,2$ such that $\operatorname{tp}\left(N_{1}, N_{2}\right)$ does not fork over N_{0}. Let A be the subgroup of \mathfrak{C} generated by $N_{1} \cup N_{2}$ and let $N_{3}=\mathfrak{C}_{T} \upharpoonright A$. Easily $N_{3} \prec \mathfrak{C}_{T}$; moreover, N_{3} is \aleph_{1}-saturated.

By [Sh:c, XII] this suffices.
(3) Expand M_{α} by $Q_{m}=\left\{\eta \in \omega^{\omega}\left(\mathbb{Z}_{2}\right): \eta \upharpoonright[\omega m, \omega m+\omega)\right.$ is constantly zero $\}$ for $m<n . \quad \quad_{5.50}$
(G). Strongly 3 Stable and primely minimal types.
5.51. Hypothesis: T is stable (throughout $\S 5 \mathrm{G}$).
5.52. Definition: [T stable] We say $p \in \mathbf{S}^{\alpha}(A)$ is primely regular (usually $\alpha<\omega$) when: if $\kappa>|T|+|\alpha|$ is a regular cardinal, the model M is κ-saturated, the type $\operatorname{tp}(\bar{a}, M)$ is parallel to p (or just a stationarization of it) and N is κ-prime over $M+\bar{a}$ and $\bar{b} \subseteq{ }^{\kappa>} N \backslash^{\kappa>} M$, then $\operatorname{tp}(\bar{a}, M+\bar{b})$ is κ-isolated; equivalently ${ }^{9}$ N is κ-prime over $M+\bar{b}$.
5.53. Claim: (1) Definition 5.52 is equivalent to: there are κ, M, \bar{a}, N as there.

[^9](2) We can in part (1) replace " $\kappa>|T|+|\alpha|$ regular, κ-prime" by " $\mathrm{cf}(\kappa) \geq$ $\kappa(T), \mathbf{F}_{\kappa}^{a}$-prime", respectively.

Proof. Straightforward. $\boldsymbol{\square}_{5.53}$
Now (recalling Definition 5.41 and Observation 5.43)
5.54. CLAim (T is strongly 3_{3} stable): If $\operatorname{cf}(\kappa) \geq \kappa_{r}(T)$ and $M \prec N$ are $\mathbf{F}_{\kappa}^{a}{ }^{-}$ saturated, then for some $a \in N \backslash M$ the type $\operatorname{tp}(a, M)$ is primely regular.

Proof. The reader can note that by easy manipulations, without loss of generality $\kappa=\operatorname{cf}(\kappa)>|T|$; in fact, by this we can use tp instead of stp, etc.

Let $\alpha_{*}=\min \left\{\operatorname{ict}^{3}-\operatorname{rk}(\operatorname{tp}(a, M)): a \in N \backslash M\right\}$, and let $a \in N \backslash M$ and $\varphi_{*}\left(x, \bar{d}_{*}\right) \in \operatorname{tp}(a, M)$ be such that $\alpha_{*}=\operatorname{ict}^{3}-\operatorname{rk}\left(\left\{\varphi_{*}\left(x, \bar{d}_{*}\right)\right\}\right)$.

We try to choose $N_{\ell}, a_{\ell}, B_{\ell}$ by induction on $\ell<\omega$ such that
\boxplus_{ℓ} (a) $M \prec N_{\ell} \prec N$ and $a_{\ell} \in N_{\ell} \backslash M$;
(b) N_{ℓ} is \mathbf{F}_{κ}^{a}-primary over $M+a_{\ell}$ and $a_{0}=a$;
(c) if $\ell=m+1$ then
(α) $N_{\ell} \prec N_{m}$ and $\operatorname{tp}\left(a_{m}, M+a_{\ell}\right)$ is not \mathbf{F}_{κ}^{a}-isolated,
(β) N_{m} is \mathbf{F}_{κ}^{a}-primary over $N_{\ell}+a_{m}$,
$(\gamma) N_{\ell}$ is \mathbf{F}_{κ}^{a}-constructible over $N_{\ell+1}+a_{0}$;
(d) $\quad(\alpha) B_{\ell} \subseteq N_{\ell}$,
(β) $a_{\ell} \in B_{\ell}$,
$(\gamma)\left|B_{\ell}\right|<\kappa$,
(δ) every \mathbf{F}_{κ}^{a}-isolated type $q \in \mathbf{S}^{<\omega}\left(M \cup B_{\ell}\right)$ has no extension in $\mathbf{S}^{<\omega}\left(M \cup \bigcup\left\{B_{m}: m \leq \ell\right\}\right)$ which forks over $M \cup B_{\ell}$,
(ε) B_{ℓ} is \mathbf{F}_{κ}^{a}-atomic over $M+a_{\ell}$.
Let $\left(N_{\ell}, a_{\ell}\right)$ be defined iff $\ell<1+\ell(*) \leq \omega$; clearly $\ell(*) \geq 0$.
\boxtimes_{1} If $\ell(*)<\omega$, then $\operatorname{tp}\left(a_{\ell(*)}, M\right)$ is primely regular.
[Why? If not, then for some $b \in N_{\ell(*)} \backslash M$ we have $\operatorname{tp}\left(a_{\ell(*)}, M+b\right)$ is not \mathbf{F}_{κ}^{a}-isolated.

We try to choose $\bar{b}_{\varepsilon}^{\prime}$ by induction on $\varepsilon<\kappa$ such that
$\left(\boxtimes_{1.1}\right) \quad(\alpha) \bar{b}_{0}^{\prime}=\langle b\rangle$,
(β) $\bar{b}_{\varepsilon}^{\prime} \in{ }^{\omega>}\left(N_{\ell(*)}\right)$,
$(\gamma) \operatorname{tp}\left(\bar{b}_{\varepsilon}^{\prime}, M \cup \bigcup\left\{\bar{b}_{\zeta}^{\prime}: \zeta<\varepsilon\right\} \cup\{b\}\right\}$ is \mathbf{F}_{κ}^{a}-isolated,
($\delta) \operatorname{tp}\left(\bar{b}_{\varepsilon}^{\prime}, M \cup \bigcup\left\{\bar{b}_{\zeta}^{\prime}: \zeta<\varepsilon\right\} \cup\left\{b, a_{k}, \ldots, a_{\ell(*)}\right\}\right.$ is \mathbf{F}_{κ}^{a}-isolated for $k=$ $\ell(*), \ldots, 0$,
($\varepsilon) \operatorname{tp}\left(\bar{a}, M \cup \bigcup\left\{\bar{b}_{\zeta}^{\prime}: \zeta \leq \varepsilon\right\}\right)$ forks over $M \cup \bigcup\left\{\bar{b}_{\zeta}: \zeta<\varepsilon\right\}$ for some $\bar{a} \in{ }^{\omega>}\left(B_{\ell(*)}\right)$ when $\varepsilon>0$.

We are stuck for some $\varepsilon(*)<\kappa$ because $\left|B_{\ell(*)}\right|<\kappa$, and let $B^{\prime}=\bigcup\left\{\bar{b}_{\varepsilon}^{\prime}\right.$: $\varepsilon<\varepsilon(*)\}$. Now we can find an \mathbf{F}_{κ}^{a}-saturated N^{\prime} which is \mathbf{F}_{κ}^{a}-constructible over $M+B^{\prime}$ and \mathbf{F}_{κ}^{a}-saturated $N^{\prime \prime}$ which is \mathbf{F}_{κ}^{a}-constructible over $N^{\prime} \cup B_{\ell(*)}$. By the choice of B^{\prime}, the model N^{\prime} is \mathbf{F}_{κ}^{a}-constructible also over $M \cup B_{\ell(*)} \cup B^{\prime}$ (by the same construction), hence $N^{\prime \prime}$ is \mathbf{F}_{κ}^{a}-constructible over $M+B_{\ell(*)}+B^{\prime}$.

Clearly $N^{\prime \prime}$ is \mathbf{F}_{κ}^{a}-prime over $M+B_{\ell(*)}+B^{\prime}$ and $N_{\ell(*)}$ is \mathbf{F}_{κ}^{a}-prime over $M+B_{\ell(*)}+B^{\prime}\left(\right.$ as $B^{\prime} \subseteq N_{\ell(*)}$, see clause (β) above, and B^{\prime} has cardinality $<\kappa)$. So there is an isomorphism f from $N^{\prime \prime}$ onto $N_{\ell(*)}$ over $M \cup B_{\ell(*)} \cup B$. Renaming, without loss of generality $f=\operatorname{id}_{N^{\prime \prime}}$ so $N^{\prime \prime}=N_{\ell(*)}$.

Lastly, we shall show that $\left(N^{\prime}, b, B^{\prime}\right)$ is a legal choice for $\left(N_{\ell(*)+1}, a_{\ell(*)+1}, B_{\ell(*)+1}\right)$.
Why? The non-obvious clauses are (c) $(\beta),(\gamma)$ and (d) of $\boxplus_{\ell(*)+1}$.
First, for clause (d) obviously $B^{\prime} \subseteq\left|N^{\prime}\right|, b \in N^{\prime}$ and $\left|B^{\prime}\right|<\kappa$, so (d) $(\alpha),(\beta)$, (γ) hold and clause $(\mathrm{d})(\varepsilon)$ holds by the clause $\boxplus_{1.1}(\gamma)$. As for $(\mathrm{d})(\delta)$, assume $q \in \mathbf{S}^{<\omega}\left(M \cup B^{\prime}\right)$ is \mathbf{F}_{κ}^{a}-isolated, let $\bar{c} \in{ }^{\omega>}\left(N^{\prime}\right)$ realize q, and let $B_{q} \subseteq M \cup B^{\prime}$ be of cardinality $<\kappa$ such that $\operatorname{stp}\left(\bar{c}, B_{q}\right) \vdash \operatorname{stp}\left(\bar{c}, M \cup B^{\prime}\right)$. Now we have $\operatorname{stp}\left(\bar{c}, M \cup B^{\prime}\right) \vdash \operatorname{stp}\left(\bar{c}, M \cup B_{\ell(*)} \cup B^{\prime}\right)$, as otherwise we can find \bar{c}_{ℓ}^{\prime} in \mathfrak{C} realizing $\operatorname{stp}\left(\bar{c}, B_{q}\right)$. hence $\operatorname{stp}\left(\bar{c}, M \cup B^{\prime}\right)$ for $\ell=1,2$ such that $\operatorname{stp}\left(\bar{c}_{1}, M \cup B_{\ell(*)} \cup\right.$ $\left.B^{\prime}\right) \neq \operatorname{stp}\left(\bar{c}_{2}, M \cup B_{\ell(*)} \cup B^{\prime}\right)$; so for some finite $\bar{a} \subseteq B_{\ell(*)}, \bar{d} \subseteq M$ we have $\operatorname{stp}\left(\bar{c}, \bar{d} \cup \bar{a} \cup B^{\prime}\right) \neq \operatorname{stp}\left(\bar{c}_{2}, \bar{d} \cup \bar{a} \cup B^{\prime}\right)$. Now without loss of generality \bar{c}_{1}, \bar{c}_{2} are from $N_{\ell(*)}$, contradicting the choice of $\varepsilon(*)$. Let $\overline{\mathbf{b}}$ list B^{\prime} without repetitions, so by the induction hypothesis $\operatorname{stp}\left(\overline{\mathbf{b}}^{\wedge} \bar{c}, M \cup B_{\ell(*)}\right) \vdash \operatorname{stp}\left(\overline{\mathbf{b}}^{\wedge} \bar{c}, M \cup B_{0} \cup \cdots \cup\right.$ $\left.B_{\ell(*)}\right)$, hence $\operatorname{stp}\left(\bar{c}, M \cup B_{\ell(*)} \cup \overline{\mathbf{b}}\right) \vdash \operatorname{stp}\left(\bar{c}, M \cup B_{0} \cup \cdots \cup B_{\ell(*)} \cup \overline{\mathbf{b}}\right)$, so by the choice of $\overline{\mathbf{b}}$ and the previous sentence really clause $(\mathrm{d})(\delta)$ holds for the choice of $\left(N_{\ell(*)+1}, a_{\ell(*)+1}, B_{\ell(*)+1}\right)$ above.

Second, concerning clause (c)(β) of $\boxplus_{\ell(*)+1}$, by the sentence after the choices of B^{\prime}, N^{\prime} above we know that N^{\prime} is \mathbf{F}_{κ}^{a}-constructively over $M \cup B_{\ell(*)} \cup B^{\prime}$, so clearly $\operatorname{stp}\left(N^{\prime}, M \cup B^{\prime}\right) \vdash \operatorname{stp}\left(N^{\prime}, M \cup B^{\prime} \cup B_{\ell(*)}\right)$, hence $\operatorname{stp}\left(B_{\ell(*)}, M \cup B^{\prime}\right) \vdash$ $\operatorname{stp}\left(B_{\ell(*)}, N^{\prime}\right)$, so easily $\operatorname{stp}\left(B_{\ell(*)}, M \cup B^{\prime} \cup\left\{a_{\ell(*)}\right\}\right) \vdash \operatorname{stp}\left(B_{\ell(*)}, N^{\prime}\right)$.

Now $B_{\ell(*)} \cup B^{\prime}$ is \mathbf{F}_{κ}^{a}-atomic over $M \cup\left\{a_{\ell(*)}\right\}$, being $\subseteq N_{\ell(*)}$, recalling $\boxplus_{\ell(*)}$ (b) holds. Therefore hence $B_{\ell(*)}$ is \mathbf{F}_{κ}^{a}-atomic over $M \cup B^{\prime} \cup\left\{a_{\ell(*)}\right\}$, hence by the previous sentence $B_{\ell(*)}$ is \mathbf{F}_{κ}^{a}-atomic over $N^{\prime}+a_{\ell(*)}$; but $\left|B_{\ell(*)}\right|<\kappa$, hence it is \mathbf{F}_{κ}^{a}-constructible over $N^{\prime}+a_{\ell(*)}$. As $N^{\prime \prime}$ is \mathbf{F}_{κ}^{a}-constructible over $B_{\ell(*)} \cup N^{\prime}$ by
its choice (and $a_{\ell(*)} \in B_{\ell(*)}$ by $\left.\boxplus_{\ell(*)}(\mathrm{d})(\beta)\right)$, clearly $N^{\prime \prime}$ is also \mathbf{F}_{κ}^{a}-constructible over $N^{\prime} \cup\left\{a_{\ell(*)}\right\}$ as required in $(\mathrm{c})(\beta)$.

Clause $\boxplus_{\ell}(\mathrm{c})(\gamma)$ means that $N_{\ell(*)}=N^{\prime \prime}$ is \mathbf{F}_{κ}^{a}-constructible over $N^{\prime}+a_{\ell(*)}$. Now $N_{\ell(*)}=N^{\prime \prime}$ is \mathbf{F}_{κ}^{a}-constructible over $B_{\ell(*)} \cup N^{\prime}$ and $\bar{a} \in{ }^{\omega>}\left(N_{\ell(*)}\right)$ implies $\operatorname{stp}\left(\bar{a}, B_{\ell(*)} \cup N^{\prime}\right) \vdash \operatorname{stp}\left(\bar{a}, B_{0} \cup \cdots \cup B_{\ell(*)} \cup N^{\prime}\right)$, hence by monotonicity $\operatorname{stp}\left(\bar{a}, B_{\ell(*)} \cup N^{\prime}\right) \vdash \operatorname{stp}\left(\bar{a}, a_{0}+B_{\ell(*)}+N^{\prime}\right)$, so by the same construction $N_{\ell(*)}=$ $N^{\prime \prime}$ is \mathbf{F}_{κ}^{a}-constructible over $a_{0}+B_{\ell(*)}+N^{\prime}$. As $B_{\ell(*)} \subseteq N_{\ell(*)},\left|B_{\ell(*)}\right|<\kappa$, it is enough to show that $B_{\ell(*)}$ is \mathbf{F}_{κ}^{a}-atomic over $a_{0}+N^{\prime}$, and this is proved as in the proof of clause $(\mathrm{d})(\delta)$ above. So indeed $\left(N^{\prime}, b, B^{\prime}\right)$ is a legal choice for $\left(N_{\ell(*)+1}, a_{\ell(*)+1}, B_{\ell(*)+1}\right)$. But this contradicts the choice of $\ell(*)$, so we have finished proving \boxtimes_{1}.]
\boxtimes_{2} If $\ell=m+1<1+\ell(*)$, then $\operatorname{tp}\left(a_{m}, N_{\ell}\right)$ is not orthogonal to M.
[Why? Toward a contradiction assume $\operatorname{tp}\left(a_{m}, N_{\ell}\right) \perp M$. So we can find $A_{\ell} \subseteq N_{\ell}$ of cardinality $<\kappa$ such that $\operatorname{tp}\left(\left\langle a_{0}, \ldots, a_{m}\right\rangle, A_{\ell}\right)$ is stationary, $\operatorname{tp}\left(\left\langle a_{0}, \ldots, a_{m}\right\rangle, N_{\ell}\right)$ does not fork over A_{ℓ} and $\operatorname{tp}\left(A_{\ell}, M\right)$ does not fork over $C_{\ell}:=A_{\ell} \cap M$ and $\operatorname{tp}\left(A_{\ell}, C_{\ell}\right)$ is stationary, and $a_{\ell} \in A_{\ell}$ and (recalling N_{ℓ} is \mathbf{F}_{κ}^{a}-primary over $\left.M+a_{\ell}\right)$ we have $\operatorname{stp}\left(A_{\ell}, C_{\ell}+a_{\ell}\right) \vdash \operatorname{stp}\left(A_{\ell}, M+a_{\ell}\right)$; it follows that $\operatorname{tp}\left(M, A_{\ell}\right)$ does not fork over C_{ℓ}. As $\operatorname{tp}\left(a_{m}, M+A_{\ell}\right)$ is parallel to $\operatorname{tp}\left(a_{m}, N_{\ell}\right)$ and to $\operatorname{tp}\left(a_{m}, A_{\ell}\right)$ and $\operatorname{tp}\left(a_{m}, N_{\ell}\right) \perp M$ is assumed, we get that all three types are orthogonal to M. It follows that $\operatorname{stp}\left(a_{m}, A_{\ell}\right) \vdash \operatorname{stp}\left(a_{m}, M+A_{\ell}\right)$, but recall $a_{\ell} \in A_{\ell}$, so $\operatorname{stp}\left(a_{m}, A_{\ell}\right) \vdash \operatorname{stp}\left(a_{m}, M+a_{\ell}\right)$. As $\left|A_{\ell}\right|<\kappa$ this implies that $\operatorname{tp}\left(a_{m}, M+A_{\ell}\right)$ is \mathbf{F}_{κ}^{a}-isolated. But recall $\operatorname{stp}\left(A_{\ell}, C_{\ell}+a_{\ell}\right)=$ $\operatorname{stp}\left(A_{\ell},\left(A_{\ell} \cap M\right)+a_{\ell}\right) \vdash \operatorname{stp}\left(A_{\ell}, M+a_{\ell}\right)$. Together $\operatorname{stp}\left(a_{m}+A_{\ell}, C_{\ell}+a_{\ell}\right) \vdash$ $\operatorname{stp}\left(a_{m}+A_{\ell}, M+a_{\ell}\right)$, hence $\operatorname{tp}\left(a_{m}, M+a_{\ell}\right)$ is \mathbf{F}_{κ}^{a}-isolated, contradicting $\boxtimes_{\ell}(c)(\alpha)$.]

To complete the proof by \boxtimes_{1} it suffices to show $\ell(*)<\omega$, so toward a contradiction assume:

$$
\boxtimes_{3} \ell(*)=\omega
$$

As we are assuming \boxtimes_{3}, we can find $\left\langle N_{\ell}^{+}: \ell<\ell(*)=\omega\right\rangle$ such that:
\odot_{1} (a) $N_{\ell} \prec N_{\ell}^{+}$,
(b) N_{ℓ} is saturated, e.g., of cardinality $\|N\|^{|T|}$,
(c) $N_{\ell+1}^{+} \prec N_{\ell}^{+}$,
(d) $\operatorname{tp}\left(N_{\ell}^{+}, N\right)$ does not fork over N_{ℓ},
(e) $\left(N_{\ell}^{+}, c\right)_{c \in N_{\ell} \cup N_{\ell+1}^{+}}$is saturated.
[Why? We can choose N_{ℓ}^{+}by induction on ℓ. For $\ell=0$ it is obvious, and for $\ell=m+1$ we choose N_{ℓ}^{\prime} while satisfying the relevant demands in \odot_{1} on N_{ℓ}^{+}, and then choose N_{m}^{\prime} satisfying the relevant demands on $\left(N_{\ell}^{+}, N_{m}^{+}\right)$. Lastly, by the uniqueness of the saturated model there is an isomorphism f_{ℓ} from N_{m}^{\prime} onto N_{m}^{+}over N_{m}, and let $N_{\ell}=f_{\ell}\left(N_{\ell}^{\prime}\right)$.]

Next, for $\ell<\ell(*)$ we can find \mathbf{I}_{ℓ} such that:
\odot_{2} (a) $\mathbf{I}_{\ell} \subseteq N_{\ell}^{+} \backslash N_{\ell+1}^{+}$,
(b) \mathbf{I}_{ℓ} is independent over $\left(N_{\ell+1}^{+}, M\right)$, (i.e., $c \in \mathbf{I}_{\ell} \Rightarrow \operatorname{tp}\left(c, N_{\ell+1}^{+}\right)$does not fork over M and \mathbf{I} is independent over $\left.N_{\ell+1}^{+}\right)$,
(c) $\operatorname{tp}\left(N_{\ell}^{+}, N_{\ell+1}^{+} \cup \mathbf{I}_{\ell}\right)$ is almost orthogonal to M,
(d) if $c \in \mathbf{I}_{\ell}$, then either $c \in \varphi_{*}\left(\mathfrak{C}, \bar{d}_{*}\right)$ or $\operatorname{tp}(c, M)$ is orthogonal to $\varphi_{*}\left(x, \bar{d}_{*}\right)$, i.e., to every $q \in \mathbf{S}(M)$ to which $\varphi_{*}\left(x, \bar{d}_{*}\right)$ belongs,
(e) if $q \in \mathbf{S}\left(N_{\ell+1}^{+}\right)$does not fork over M and $\varphi_{*}\left(x, \bar{d}_{*}\right) \in q$ or q is orthogonal to $\varphi_{*}\left(x, \bar{d}_{*}\right)$, then the set $\left\{c \in \mathbf{I}_{\ell}: c\right.$ realizes $\left.q\right\}$ has cardinality $\left\|N_{\ell}\right\|$,
(f) we let $\mathbf{I}_{\ell}^{\prime}=\mathbf{I}_{\ell} \cap \varphi_{*}\left(\mathfrak{C}, \bar{d}_{*}\right)$.
[Why possible? As $\left.\left(N_{\ell}^{+}, c\right)_{c \in N_{\ell+1}^{+}}\right)$is saturated.]
Now for $\ell<\ell(*)$,
$\odot_{3} \mathbf{I}_{\ell}$ is not independent over $\left(N_{\ell+1}^{+}+a, N_{\ell+1}^{+}\right)$.
[Why? Recall $a=a_{0}$. Assume toward a contradiction that
$(*)_{3.1} \mathbf{I}_{\ell}$ is independent over $\left(N_{\ell+1}^{+}+a, N_{\ell+1}^{+}\right)$.
As by clause (b) of \odot_{2} we have $\operatorname{tp}\left(\mathbf{I}_{\ell}, N_{\ell+1}^{+}\right)$does not fork over M, it follows that \mathbf{I}_{ℓ} is independent over $\left(N_{\ell+1}^{+}+a, M\right)$. Also, by $(*)_{3.1}$ we know that $\operatorname{tp}\left(a, N_{\ell+1}^{+} \cup \mathbf{I}_{\ell}\right)$ does not fork over $N_{\ell+1}^{+}$. Also, $\operatorname{tp}\left(a, N_{\ell+1}^{+}\right)$does not fork over $N_{\ell+1}$ (because $a \in N$ and $\operatorname{tp}\left(N_{\ell+1}^{+}, N\right)$ does not fork over $N_{\ell+1}$ by $\left.\odot_{1}(\mathrm{~d})\right)$. Together it follows that
$(*)_{3.2} \operatorname{tp}\left(a, N_{\ell+1}^{+}+\mathbf{I}_{\ell}\right)$ does not fork over $N_{\ell+1}$.
Recall that $\operatorname{tp}\left(N_{\ell}, N_{\ell+1}^{+}\right)$does not fork over $N_{\ell+1}$ (by $\odot_{1}\left(\right.$ d) because $N_{\ell} \prec N$ using symmetry) and $\operatorname{tp}\left(a, N_{\ell} \cup N_{\ell+1}^{+}\right)$does not fork over N_{ℓ} similarly, hence $\operatorname{tp}\left(N_{\ell}+a, N_{\ell+1}^{+}\right)$does not fork over $N_{\ell+1}$, hence
$(*)_{3.3} \operatorname{tp}\left(N_{\ell}, N_{\ell+1}^{+}+a\right)$ does not fork over $N_{\ell+1}+a$.
Recall N_{ℓ} is \mathbf{F}_{κ}^{a}-constructible over $N_{\ell+1}+a$ (by $\left.\boxplus_{\ell+1}(\mathrm{c})(\gamma)\right), N_{\ell}$ is \mathbf{F}_{κ}^{a}-saturated and $\operatorname{tp}\left(N_{\ell+1}^{+}, N_{\ell}+a\right)$ does not fork over $N_{\ell+1}$. Clearly
$(*)_{3.4} N_{\ell}$ is also \mathbf{F}_{κ}^{a}-constructible over $N_{\ell+1}^{+}+a$ (even by the same construction).
As $\operatorname{tp}\left(a, N_{\ell+1}^{+}+\mathbf{I}_{\ell}\right)$ does not fork over $N_{\ell+1}$ and $N_{\ell+1}^{+}$is \mathbf{F}_{κ}^{a}-saturated, it follows that
$(*)_{3.5} \operatorname{tp}\left(N_{\ell}, N_{\ell+1}^{+}+\mathbf{I}_{\ell}\right)$ does not fork over $N_{\ell+1}^{+}$, hence over $N_{\ell+1}$.
But by \odot_{2} clause (c), for every $\bar{d} \in{ }^{\omega>}\left(N_{\ell}^{+}\right)$the type $\operatorname{tp}\left(\bar{d}, N_{\ell+1}^{+}+\mathbf{I}_{\ell}\right)$ is almost orthogonal to M, hence recalling $N_{\ell} \subseteq N_{\ell}^{+}$,
$(*)_{3.6} \operatorname{tp}\left(N_{\ell}, N_{\ell+1}^{+}+\mathbf{I}_{\ell}\right)$ is almost orthogonal to M (this does not depend on $\odot_{3.1}-\odot_{3.5}$ so can be used later).
Hence by $(*)_{3.5}+(*)_{3.6}$ we have
$(*)_{3.7} \operatorname{tp}\left(N_{\ell}, N_{\ell+1}\right)$ is almost orthogonal to M.
But $N_{\ell+1}$ is $\mathbf{F}_{\kappa}{ }^{a}$-saturated, so this implies
$(*)_{3.8} \operatorname{tp}\left(N_{\ell}, N_{\ell+1}\right)$ is orthogonal to M.
But by $\boxplus_{\ell}(\mathrm{b})$
$(*)_{3.9} a_{\ell} \in N_{\ell}$.
By \boxtimes_{2} we have
$(*)_{3.10} \operatorname{tp}\left(a_{\ell}, N_{\ell+1}\right)$ is not orthogonal to M.
Together $(*)_{3.8}+(*)_{3.9}+(*)_{3.10}$ give a contradiction, so $(*)_{3.1}$ fails, hence \odot_{3} holds.]

Now (recalling clause (f) of \odot_{2})
$\odot_{4} \mathbf{I}_{\ell}^{\prime}$ is not independent over $\left(N_{\ell+1}^{+}+a, N_{\ell+1}^{+}\right)$.
[Why? By $\odot_{3}+$ clauses $(\mathrm{b})+(\mathrm{d})$ of \odot_{2}, recalling that $a \in \varphi_{*}\left(\mathfrak{C}, \bar{d}_{*}\right)$, by the choice of a in the beginning of the proof of 5.54.]
\odot_{5} For each $n, \operatorname{tp}\left(a, N_{n}^{+}\right)\left(\mathbb{L}\left(\tau_{T}\right), n\right)$-ict ${ }^{3}$-forks over M.
[Why? By 5.55 below, with $\mathbf{I}_{\ell}, N_{n-\ell}^{+}$here standing for $\mathbf{I}_{n-\ell-1}, N_{\ell}$ there, clause (d) there holds by \odot_{3} here; M, A there stand for M, M here, clauses (a),(b),(c) there hold by $(*)_{3.6}$ here (recalling that $(*)_{3.6}$ does not depend on $\odot_{3.1}-\odot_{3.5}$.]
$\odot_{6} \alpha_{*}>$ ict $^{3}-\operatorname{rk}\left(\operatorname{tp}\left(a, N_{n}^{+}\right)\right)$for every $n<\omega$.
[Why? By the choice of $\varphi_{*}\left(x, \bar{d}_{*}\right), a, \alpha_{*}$ in the beginning of the proof we have $\alpha^{*}=$ ict $^{3}-\operatorname{rk}(\operatorname{tp}(a, M))$, and by \odot_{5} and the definition of $\mathrm{ict}^{3}-\operatorname{rk}(-)$ this follows.]
\odot_{7} For each $n, \operatorname{tp}\left(a, N_{n+1}^{+}\right)$is not orthogonal to M.
[Why? By $\odot_{2}(b)+\odot_{4}$.]
Hence we can find $q \in \mathbf{S}(M)$ such (for any n):
\odot_{8} (a) some automorphism of \mathfrak{C} over \bar{d}_{*} maps $\operatorname{tp}\left(a, N_{n}\right)$ to a type parallel to q,
(b) ict $^{3}-\operatorname{rk}(q)<\alpha_{*}$,
(c) q and $\operatorname{tp}\left(a, N_{n+1}\right)$ are not orthogonal,
(d) if $q^{\prime} \subseteq q,\left|q^{\prime}\right|<\kappa$ then $q^{\prime}(N) \nsubseteq M$ [actually clause (d) follows by (c)].

This contradicts the choice of α_{*}; so $\ell(*)<\omega$ and we are done.
5.55. Claim: Assume T is stable. A sufficient condition for

$$
" \operatorname{tp}\left(a, N_{n}\right)(\Delta, n)-\text { ict }^{3} \text {-divides over } A "
$$

is:

* (a) $\left\langle N_{\ell}: \ell \leq n\right\rangle$ is \prec-increasing,
(b) $A \subseteq M \prec N_{0}$,
(c) $\mathbf{I}_{\ell} \subseteq N_{\ell+1} \backslash N_{\ell}$ is independent over $\left(N_{\ell}, M\right)$ for $\ell<n$,
(d) $\operatorname{tp}\left(a, N_{\ell} \cup \mathbf{I}_{\ell}\right)$ forks over $N_{\ell+1}$,
(e) $\operatorname{tp}\left(N_{\ell+1}, N_{\ell}+\mathbf{I}_{\ell}\right)$ is almost orthogonal to M.

Proof. Left to the reader, noting that $\left\langle\mathbf{I}_{\ell}: \ell<n\right\rangle$ are pairwise disjoint (by clauses (a) + (c)) and $\cup\left\{\mathbf{I}_{\ell}: \ell<n\right\}$ is independent). $\quad \mathbf{■}_{5.55}$
5.56. Remark: (1) We may give more details on the last proof and intend to continue the investigation of the theory of regular types (in order to get good theory of weight) in this context somewhere else.
(2) We can use essentially 5.55 to define a variant of the rank for stable theory. So 5.55 can be written to use it and hence 5.57 connects the two ranks.
5.57. Claim: Assume $k \in\{3,4\}$ and ict $^{k}-\mathrm{rk}(T)<\infty$; see Definition 5.46(6).

If $\operatorname{cf}(\kappa) \geq|T|^{+}$or less and $M \prec N$ are κ-saturated, then for some $a, \varphi(x, \bar{a}), n^{*}$ we have:

* (a) $a \in N \backslash M$,
(b) if T is stable, the type $p=\operatorname{tp}(a, M)$ is primely regular,
(c) $\bar{a} \in{ }^{\omega>} M$ and $\varphi(x, \bar{a}) \in p$,
(d) $\omega \times\left(\operatorname{wict}^{k}-\operatorname{rk}(\varphi(x, \bar{a}))\right)+\left(\operatorname{ict}^{k}-\operatorname{wg}(\varphi(x, \bar{a}))\right)$ is minimal.

Proof. We choose $a, \varphi_{*}\left(x, \bar{d}_{*}\right), \alpha, n_{*}$ such that:

* (a) $a \in N \backslash M$,
(b) $\bar{d}_{*} \subseteq M$,
(c) $\mathfrak{C} \models \varphi\left[a, \bar{d}_{*}\right]$,
(d) $\alpha=\operatorname{ict}^{k}-\operatorname{rk}\left(\left\{\varphi_{*}\left(x, \bar{d}_{*}\right)\right\}\right)$,
(e) under clauses (a)-(d), the ordinal α is minimal,
(f) n_{*} witness $\alpha+1 \not \leq$ ict $^{k}-\operatorname{rk}\left(\left\{\varphi\left(x, \bar{d}_{*}\right)\right\}\right)$,
(g) under clauses (a)-(f) the number $n_{*}(<\omega)$ is minimal.

Clearly there are such $a, \varphi_{*}(x, \bar{c}), \alpha$ and n_{*}. Then we try to choose $\left(N_{\ell}, a_{\ell}\right)$ by induction on $\ell<\omega$ such that \boxplus_{ℓ} from the proof of 5.54 holds. But now we can prove similarly that $\ell(*) \leq n_{*}$. However, $\operatorname{still} \operatorname{tp}\left(a, N_{\ell(*)}\right)$ is not orthogonal to M.
[Why? We can choose $N_{0}^{+}, \ldots, N_{\ell(*)}^{+}, \mathbf{I}_{0}, \ldots, \mathbf{I}_{\ell(*)-1}$ as in $\odot_{2}+\odot_{3}$ in the proof of 5.53 and prove \odot_{3} there, which implies the statement above. As $\varphi_{*}\left(x, \bar{d}_{*}\right) \in$ $\operatorname{tp}\left(a, N_{\ell(*)}\right)$, it follows that $\varphi\left(N_{\ell(*)}, \bar{c}\right) \nsubseteq M$ and any $a^{\prime} \in \varphi\left(N_{\ell(*)}, \bar{c}\right) \backslash M$ is as required.]

This is enough. $\quad \mathbf{\Xi}_{5.57}$
Similarly to Definition 5.46:

5.58. Definition: Let T be stable.

(1) For an m-type $p(\bar{x})$ we define $\operatorname{sict}^{3}-\mathrm{rk}^{m}(p(\bar{x}))$ as an ordinal or ∞ by defining when $\mathrm{ict}^{3}-\mathrm{rk}^{m}(p(\bar{x})) \geq \alpha$ for an ordinal α by induction on α : $(*)_{p(\bar{x})}^{\alpha} \operatorname{sict}^{3}-\operatorname{rk}^{m}(p(\bar{x})) \geq \alpha$ iff for every $\beta<\alpha$ and finite $q(\bar{x}) \subseteq p(x)$ and $n<\omega$ we have:
$(* *)_{q(\bar{x})}^{\beta, n}$ we can find $\left\langle M_{\ell}: \ell \leq n\right\rangle,\left\langle\mathbf{I}_{\ell}: \ell<n\right\rangle$ and \bar{a} such that:
(a) $M_{\ell} \prec \mathfrak{C}$ is $\mathbf{F}_{\kappa_{1}(T)}^{a}$-saturated,
(b) $M_{\ell} \prec M_{\ell+1}$,
(c) $q(\bar{x})$ is an m-type over M_{0},
(d) \bar{a} realizes $q(\bar{x})$ and $\beta \leq \operatorname{sict}^{3}-\operatorname{rk}\left(\operatorname{tp}\left(\bar{a}, M_{n}\right)\right) \geq \beta$,
(e) $\mathbf{I}_{\ell} \subseteq{ }^{\omega>}\left(M_{\ell+1}\right)$ is independent over $\left(M_{\ell}, M_{0}\right)$,
(f) \mathbf{I}_{ℓ} is not independent over $\left(M_{\ell}+\bar{a}, M_{0}\right)$ (clearly, without loss of generality, \mathbf{I}_{ℓ} is a singleton).
(2) If $\operatorname{sict}^{3}-\mathrm{rk}^{m}(p(\bar{x}))=\alpha<\infty$, then we let $\operatorname{sict}^{3}-\mathrm{wg}^{m}(p(\bar{x}))$ be the maximal n such that, for every finite $q(\bar{x}) \subseteq p(\bar{x})$, we have $(* *)_{q(\bar{x})}^{\alpha, n}$.
(3) Above instead of $\operatorname{sict}^{3}-\operatorname{rk}(\operatorname{tp}(\bar{a}, A))$ we may write $\operatorname{sict}^{3}-\mathrm{rk}^{m}(\bar{a}, A)$; similarly for $\operatorname{scit}^{3}-\mathrm{wg}^{m}(\bar{a}, A)$; if $m=1$ we may omit it.
5.59. Claim: (1) T is strongly ${ }_{3}$ stable iff T is stable and $\operatorname{sict}^{3}-\mathrm{rk}^{m}(p(\bar{x}))<\infty$ for every m-type $p(\bar{x})$.
(2) For every type $p(\bar{x})$ there is a finite $q(\bar{x}) \subseteq p(\bar{x})$ such that ($\operatorname{sict}^{3}-\operatorname{rk}(p(\bar{x}))$, $\left.\operatorname{sict}^{3}-\operatorname{wg}(p(\bar{x}))=\operatorname{sict}^{3}-\operatorname{rk}(q(\bar{x})), \operatorname{sict}^{3}-\operatorname{wg}(q(\bar{x}))\right)$.
(3) If $p(\bar{x}) \vdash q(\bar{x})$, then $\operatorname{sict}^{3}-\operatorname{rk}(p(\bar{x})) \leq \operatorname{sict}^{3}-\operatorname{rk}(q(\bar{x}))$, and if equality holds then $\operatorname{sict}^{3}-\mathrm{wg}^{m}(p(\bar{x})) \leq \operatorname{sict}^{3}-\mathrm{wg}^{m}(q(\bar{x}))$.
(4) (T stable) If $p(\bar{x}), q(\bar{x})$ are stationary parallel types, then $\operatorname{sict}^{3}-\operatorname{rk}^{m}(p(\bar{x}))=$ $\operatorname{sict}^{3}-\mathrm{rk}^{m}(q(\bar{x}))$, etc. If \bar{a}_{1}, \bar{a}_{1} realizes $p \in \mathbf{S}^{m}(A)$, then sict^{3}-rk $^{m}\left(\operatorname{stp}\left(\bar{a}_{1}, A\right)\right)=$ $\operatorname{sict}^{3}-\mathrm{rk}^{m}\left(\operatorname{stp}\left(\bar{a}_{2}, A\right)\right)$. Similarly for sict ${ }^{3}-\mathrm{wg}^{m}$. Also, automorphisms of \mathfrak{C} preserve sict ${ }^{3}-\mathrm{rk}^{m}$ and sict 3-wg.
5.60. Claim: $p(\bar{x})(\Delta, n)$-ict 3 forks over A for every n when:
\odot (a) G is a definable group over A (in \mathfrak{C}),
(b) $b \in G$ realizes a generic type of G from $\mathbf{S}(A)$, as was proved to exist in [Sh:783, 4.11], or T stable,
(c) $p(\bar{x}) \in \mathbf{S}^{<\omega}(A+b)$ forks over A.

Remark: We may have said it in $\S 5$ F.
Proof of 5.60. Straightforward.
5.61. Conclusion: Assume T is strongly 3_{3} dependent.

If G is a type-definable group in \mathfrak{C}_{T}, then there is no decreasing sequence $\left\langle G_{n}: n<\omega\right\rangle$ of subgroups of G such that $\left(G_{n}: G_{n+1}\right)=\bar{\kappa}$ for every n.
5.62. Remark: (1) In 5.60 we can replace "ict"" by "ict"" and also by suitable variants for stable theories.
(2) Similarly in 5.61 .
(H). T is n-DEPENDENT. On related problems and background see [Sh:702, 2.9-2.20], (but, concerning indiscernibility, it speaks about finite tuples, i.e., $\alpha<\omega$ in 5.71 , which affect the definitions and the picture). On a consequence of " T is 2-dependent" for definable subgroups in \mathfrak{C} (and more, e.g., concerning 5.64), see [Sh:886].
5.63. Definition: (1) A (complete first order) theory T is n-independent when clause $(a)^{n}$ in 5.64 below holds.
(2) The negation is n-dependent.
5.64. Problem: Sort out the relationships between the following candidates for " T is n-independent" (T is order order complete; also, we can fix φ; omitting m we mean 1):
(a) ${ }^{n}$ Some $\varphi\left(\bar{x}, \bar{y}_{0}, \bar{y}_{1}, \ldots, \bar{y}_{n-1}\right)$ is n-independent, i.e., (a) ${ }_{m}^{n}$ for some m.
(a) ${ }_{m}^{n}$ Some $\varphi\left(\bar{x}, \bar{y}_{0}, \bar{y}_{1}, \ldots, \bar{y}_{n-1}\right)$ is n-independent where $\ell g(\bar{x})=m$, where:
$\odot \varphi\left(\bar{x}, \bar{y}_{0}, \bar{y}_{1}, \ldots, \bar{y}_{n-1}\right)$ is n-independent when there are $\bar{a}_{\alpha}^{\ell} \in{ }^{\ell g\left(\bar{y}_{\ell}\right)} \mathfrak{C}$ for $\alpha<\lambda, \ell<n$ and $\left\langle\varphi\left(\bar{x}, \bar{a}_{\eta(0)}^{0}, \ldots, \bar{a}_{\eta(n-1)}^{n-1}\right): \eta \in{ }^{n} \lambda\right.$ is increasing \rangle is an independent (sequence of formulas).
$(\mathrm{b})_{m}^{n}$ There is an indiscernible sequence $\left\langle\bar{a}_{\alpha}: \alpha<\lambda\right\rangle, \varphi=\varphi\left(\bar{x}, \bar{y}_{0}, \ldots, \bar{y}_{n-1}\right)$, $m=\ell g(\bar{x}), \ell g\left(\bar{y}_{\ell}\right)=\ell g\left(\bar{a}_{\alpha}\right)$ for $\ell<n, \alpha<\lambda$ and $\bar{c} \in \ell g(\bar{x}) \mathfrak{C}$ such that: if $k<n$ and $\left\langle R_{\ell}: \ell<\ell(*)\right\rangle$ is a finite sequence of k-place relations on λ, then for some sequence $\bar{t}, \bar{s} \in{ }^{n} \lambda$ realizing the same quantifier free type in $\left(\lambda,<, R_{0}, R_{1}, \ldots, R_{\ell(\alpha)}\right)$ we have $\mathfrak{C} \models \varphi\left[\bar{b}, \bar{a}_{s_{0}}, \ldots, \bar{a}_{s_{n-1}}\right] \wedge$ $\neg \varphi\left[\bar{b}, \bar{a}_{t_{0}}, \ldots, \bar{a}_{t_{n-1}}\right]$.
$(c)_{m}^{n}$ For some $\varphi=\varphi\left(\bar{x}, \bar{y}_{0}, \ldots, \bar{y}_{n-1}\right), \ell g(\bar{x})=m$, for every $j \in[1, \omega)$, for infinitely many k there are $\bar{a}_{i}^{\ell} \in{ }^{\ell g(\bar{y})} \mathfrak{C}$ for $i<k, \ell<n$ such that $\mid\left\{p \cap\left\{\varphi\left(\bar{x}, \bar{a}_{i_{0}}^{0}, \ldots, \bar{a}_{i_{n-1}}^{n-1}\right): i_{\ell}<k\right.\right.$ for $\left.\ell<n\right\}: p \in \mathbf{S}^{m}\left(\bigcup\left\{\bar{a}_{i}^{\ell}:\right.\right.$ $\ell<n, i<k\} \mid\} \mid \geq 2^{k^{n-1} \times m}$.

Remark: We can phrase (b) ${ }_{m}^{n}$, (c) ${ }_{m}^{n}$ as alternative definitions of

$$
\text { " } \varphi\left(\bar{x}, \bar{y}_{0}, \ldots, \bar{y}_{n-1}\right) \text { is } n \text {-independent". }
$$

So in (b) ${ }_{m}^{n}$ it is better to have n indiscernible sequences.
5.65. Observation: If $\varphi\left(\bar{x}, \bar{y}_{0}, \ldots, \bar{y}_{n-1}\right)$ satisfies clause (a) ${ }^{n}$, then it satisfies a strong form of clause (c) ${ }^{n}$ (for every k) and the number is $\geq 2^{k^{n}}$.

Remark: Clearly Observation 5.65 can be read as a sufficient condition for being n-dependent, e.g.:
5.66. Conclusion: T is n-dependent when: for every m, ℓ and finite $\Delta \subseteq \mathbb{L}\left(\tau_{T}\right)$ for infinitely many $k<\omega$ we have $|A| \leq k \Rightarrow\left|\mathbf{S}_{\Delta}^{m}(A)\right|<2^{(k / \ell)^{n}}$.
5.67. Question: (1) Can we get clause (a) from clause (c)?
(2) Can we use it to prove $(\mathrm{a})_{1}^{n} \equiv(\mathrm{a})_{m}^{n}$?
5.68. Observation: In 5.64, if clause (a) then clause (b).
5.69. Question: Does (b) imply (a)?
5.70. Claim: If T satisfies $(a)^{n}$ for every n, then: if $\lambda \nrightarrow(\mu)_{2}^{<\omega}$ then $\lambda \nrightarrow T$ $(\mu)_{\aleph_{0}}$ where:
5.71. Definition: We say that $\lambda \rightarrow_{T}(\mu)_{\alpha}$ when: if $\bar{a}_{i} \in{ }^{\alpha}\left(\mathfrak{C}_{T}\right)$ for $i<\lambda$ then for some $\mathscr{U} \in[\lambda]^{\mu}$ the sequence $\left\langle\bar{a}_{i}: i \in \mathscr{U}\right\rangle$ is an indiscernible sequence in \mathfrak{C}_{T}.

Remark: (1) Note that for $\alpha<\omega$ this property behaves differently.
(2) Of course, if $\theta=2^{|\alpha|+|T|}$ and $\lambda \rightarrow(\mu)_{\theta}^{<\omega}$ then $\lambda \rightarrow_{T}(\mu)_{\alpha}$.
(3) See on the non-2-independent T and definable groups in [Sh:886].
5.72. Conjecture: Assume $\neg(a)^{n}$ (or another variant of n-dependent). Then $Z F C \vdash \forall \alpha \forall \mu \exists \lambda\left(\lambda \rightarrow_{T}(\mu)_{\alpha}\right)$.
5.73. Question: Can we phrase and prove a generalization of the type-decomposition theorems for dependent theories ([Sh:900]) to n-dependent theories T, e.g., when $\left(\lambda_{\ell+1}^{\lambda_{\ell}}\right)=\lambda_{\ell+1}$ for $\ell<n, \mathfrak{B}_{\ell} \prec\left(\mathscr{H}\left(\bar{\kappa}^{+}\right), \in,<_{\bar{\kappa}^{+}}^{*}\right)$ has cardinality λ_{ℓ}, $\left[\mathfrak{B}_{\ell+1}\right]^{\lambda_{\ell}} \subseteq \mathfrak{B}_{\ell},\left\{\mathfrak{C}_{T}, \mathfrak{B}_{\ell+1}, \ldots, \mathfrak{B}_{n}\right\} \in \mathfrak{B}_{\ell}$.

References

[BaSx76] J. T. Baldwin and J. Saxl, Logical stability in group theory, Journal of the Australian Mathematical Society, Ser. A 21 (1976), 267-276.
[Ch78] G. Cherlin, Superstable division rings, in Logic Colloquium '77 (Proc. Conf., Wrocław, 1977), Studies in Logic and the Foundations of Mathematics, Vol. 96, North-Holland, Amsterdam-Newyork, 1978, pp. 99-111.
[ChSh:115] G. Cherlin and S. Shelah, Superstable fields and groups, Annals of Mathematical Logic 18 (1980), 227-270.
[CLR06] R. Cluckers, L. Lipshitz and Z. Robinson, Analytic cell decomposition and analytic motivic integration, Annales Scientifiques de l'École Normale Supérieure, to appear. math.AG/0503722.
[CoSh:919] M. Cohen and S. Shelah, Stable theories and representation over sets, Mathematical Logic Quarterly, submitted. 0906.3050.
[CoSh:E65] M. Cohen and S. Shelah, Ranks for strongly dependent theories, preprint. math.LO/1303.3441.
[FiSh:E50] E. Firstenberg and S. Shelah, Perpendicular indiscernible sequences in real closed fields, preprint. math.LO/1208.1302.
[Gu77] Y. Gurevich, Monadic theory of order and topology. I., Israel Journal of Mathematics 27 (1977), 299-319.
[KpSh:946] I. Kaplan and S. Shelah, A counterexample to existence of indiscernibles and other examples, Journal of Symbolic Logic, accepted. math.LO/1009.5420.
[KpSh:975] I. Kaplan and S. Shelah, A dependent theory with few indiscernibles, Israel Journal of Mathematics, accepted. math.LO/1010.0388.
[KpSh:993] I. Kaplan and S. Shelah, Chain conditions in dependent groups, Annals of Pure and Applied Logic 164 (2013), 1322-1337.
[Ma71] A. Macintyre, On ω_{1}-categorical theories of fields, Fundamenta Mathematicae 71 (1971), 1-25.
[On0x1] A. Onshuus, th-Forking, algebraic independence and examples of Rosy theories, Preprint (2003). math.LO/0306003.
[On0x2] A. Onshuus, Properties and consequences of th-independence, Preprint (2004). math.LO/0205004.
[Pa90] J. Pas, Cell decomposition and local zeta functions in a tower of unramified extensions of a p-adic field, Proceedings of the London Mathematical Society 60 (1990), 37-67.
[Sh:950] S. Shelah, A dependent dream and recounting types, preprint. math.LO/1202.5795.
[Sh:886] S. Shelah, Definable groups for dependent and 2-dependent theories, Journal of Symbolic Logic, submitted. math.LO/0703045.
[Sh:877] S. Shelah, Dependent T and existence of limit models, Tbilisi Mathematical Journal, submitted. math.LO/0609636.
[Sh:900] S. Shelah, Dependent theories and the generic pair conjecture, Communications in Contemporary Mathematics, accepted. math.LO/0702292.
[Sh:906] S. Shelah, No limit model in inaccessibles, CRM Proceedings and Lecture Notes 53 (2011), 277-290. math.LO/0705.4131.
[Sh:839] S. Shelah, Stable frames and weights, preprint.
[Sh:F918] S. Shelah, Theories with EF-equivalent non-isomorphic models II, preprint.
[Sh:93] S. Shelah, Simple unstable theories, Annals of Mathematical Logic 19 (1980), 177-203.
[Sh:197] S. Shelah, Monadic logic: Hanf numbers, in Around Classification Theory of Models, Volume 1182 of Lecture Notes in Mathematics, Springer, Berlin, 1986, pp. 203-223.
[Sh:c] S. Shelah, Classification Theory and the Number of Nonisomorphic Models, Volume 92 of Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1990, xxxiv+705 pp.
[Sh:702] S. Shelah, On what I do not understand (and have something to say), model theory, Mathematica Japonica 51 (2000), 329-377. math.LO/9910158.
[Sh:715] S. Shelah, Classification theory for elementary classes with the dependence property - a modest beginning, Scientiae Mathematicae Japonicae 59, No. 2 (special issue: e9, 503-544), (2004), 265-316. math.LO/0009056.
[Sh:757] S. Shelah, Quite complete real closed fields, Israel Journal of Mathematics 142 (2004), 261-272. math.LO/0112212.
[Sh:876] S. Shelah, Minimal bounded index subgroup for dependent theories, Proceedings of the American Mathematical Society 136 (2008), 1087-1091. math.LO/0603652.
[Sh:897] S. Shelah, Theories with EF-equivalent non-isomorphic models, Tbilisi Mathematical Journal 1 (2008), 133-164. math.LO/0703477.
[Sh:783] S. Shelah, Dependent first order theories, continued, Israel Journal of Mathematic 173 (2009). math.LO/0406440.
[Sh:E63] S. Shelah, Quite complete real closed fields revisited, preprint.
[Sh:F705] S. Shelah, Representation over orders of elementary classes, preprint.

[^0]: * This research was supported by the Israel Science Foundation. Publication 863. I would like to thank Alice Leonhardt for the beautiful typing. Received April 10, 2005 and in revised form December 27, 2009

[^1]: ${ }^{1}$ And of course more than $1.7(2)$, using an indiscernible sequence of m_{*}-tuples, for any $m_{*}<\omega$.

[^2]: ${ }^{2}$ Recall that $\varphi^{1}=\varphi, \varphi^{0}=\neg \varphi$.

[^3]: ${ }^{3}$ Note: $p \in \mathbf{S}^{1}(A, M), A \subseteq M$ is a little more complicated.

[^4]: ${ }^{4}$ This explains why $\ell=7,10$ are missing.

[^5]: ${ }^{5}$ This explains why $\ell=7,10$ are missing.

[^6]: ${ }^{6}$ We may prefer the local version: for every finite $\Delta \subseteq \mathbb{L}\left(\tau_{T}\right)$ and finite $A^{\prime} \subseteq A$ (or $A^{\prime}=A$) there are $\mathbf{I}^{\prime}, \mathbf{J}^{\prime}$ realizing the Δ-type over A^{\prime} of \mathbf{I}, \mathbf{J}, respectively, such that $\mathbf{I}^{\prime}, \mathbf{J}^{\prime}$ are (infinite) indiscernible sequences over A^{\prime} (or A) and have distance over A^{\prime}.

[^7]: ${ }^{7}$ Easily, if $\Delta_{1} \subseteq \Delta_{2} \subseteq \mathbb{L}\left(\tau_{T}\right)$ are finite and $p_{2} \in \mathbf{S}_{\Delta_{2}}^{m}(A)$ and $p_{1}=p_{2} \upharpoonright \Delta_{1}$ then lc$\mathrm{rk}^{m}\left(p_{1}\right) \geq \mathrm{lc}_{\mathrm{c}} \mathrm{rk}^{m}\left(p_{2}\right)$. So lc-rk ${ }^{m}(p, \lambda)$ is well defined.

[^8]: 8 We may consider replacing δ by a linear order and ask for $<\kappa$ cuts.

[^9]: 9 Because N is κ-prime over $M+\bar{a}+\bar{c}$ whenever $\bar{c} \in{ }^{\kappa>} N$.

