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ABSTRACT

We further investigate the class of models of a strongly dependent (first

order complete) theory T , continuing [Sh:715], [Sh:783] and related works.

Those are properties (= classes) somewhat parallel to superstability among

stable theory, though are different from it even for stable theories. We

show equivalence of some of their definitions, investigate relevant ranks

and give some examples, e.g., the first order theory of the p-adics is

strongly dependent. The most notable result is: if |A| + |T | ≤ μ, I ⊆ C

and |I| ≥ �|T |+ (μ), then some J ⊆ I of cardinality μ+ is an indiscernible

sequence over A.

Annotated contents

§0 Introduction, p. 3

§1 Strongly dependent: Basic variant, p. 6

We define κict(T ) and strongly dependent (= strongly1 dependent ≡
κict(T ) = ℵ0), (1.2), note preservation passing from T to T eq, preser-

vation under interpretation (1.4), equivalence of some versions of “ϕ̄
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2 S. SHELAH Isr. J. Math.

witness κ < κict(T )” (1.5), and we deduce that without loss of gen-

erality m = 1 in (1.7). An observation (1.10) will help to prove the

equivalence of some variants. To some extent, indiscernible sequences

can replace an element and this is noted in 1.8, 1.9 dealing with the

variant κicu(T ). We end with some examples, in particular (as promised

in [Sh:783]) the first order theory of the p-adic is strongly dependent

and this holds for similar fields and for some ordered abelian groups

expanded by subgroups. Also, there is a (natural) strongly stable not

strongly2 stable T .

§2 Cutting indiscernible sequence and strongly� dependent, p. 26

We give equivalent conditions to strongly dependent by cutting indis-

cernibles (2.1) and recall the parallel result for T dependent. Then

we define κict,2(T ) (in 2.3) and show that it always almost is equal to

κict(T ) in 2.8. The exceptional case is “T is strongly dependent but not

strongly2 dependent” for which we give equivalent conditions (2.3 and

2.10).

§3 Ranks, p. 39

We define M0 ≤A M1,M0 ≤A,p M2 (in 3.2) and observe some basic

properties in 3.3. Then in 3.5 for most � = 1, . . . , 12 we define <�

, <�at, <
�
pr,≤�, explicit Δ̄-splitting, and last but not least the ranks dp-

rkΔ̄,�(x). Easy properties are in 3.7, the equivalence of “rank is infinite”

is ≥ |T |+, T is strongly dependent in 3.7 and more basic properties in

3.9. We then add more cases (� > 12) to the main definition in order

to deal with (a version of) strong dependency and then have parallel

claims.

§4 Existence of indiscernibles, p. 48

We prove that if μ ≥ |A|+ |T | and aα ∈ mC for α < �μ+ then for some

u ⊆ �μ+ of cardinality μ+, 〈aα : α ∈ u〉 is indiscernible over A.

§5 Concluding Remarks, p. 52

We consider shortly several further relatives of strongly dependent.

(A) Ranks for dependent theories, p. 52

We redefine explicitly Δ̄-splitting and dp-rkΔ̄,� for more cases, i.e. more

�’s and for the case of finite Δ�’s in a way fitting dependent T (in 5.9),

point out the basic equivalence (in 5.9), consider a variant (5.11) and

questions (5.10, 5.12).

(B) Minimal theories (or types), p. 57
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We consider minimality, i.e., some candidates are parallel to ℵ0-stable

theories which are minimal. It is hoped that some such definition will

throw light on the place of o-minimal theories. We also consider content

minimality of types.

(C) Local ranks for super dependent and indiscernibiles, p. 60

We deal with local ranks, giving a wide family parallel to superstable

and then define some ranks parallel to those in §3.
(D) Strongly2 stable fields, p. 62

We comment on strongly2 dependent/stable fields. In particular for

every infinite non-algebraically closed field K,Th(K) is not strongly2

stable.

(E) Strongly3 dependent, p. 65

We introduce strong(3,∗) dependent/stable theories and remark on them.

This is related to dimension

(F) Representability and stronglyk dependent, p. 67

We define and comment on representability and 〈b̄t : t ∈ I〉 being

indiscernible for I ∈ k.

(G) Strongly3 stable and primely minimal types, p. 71

We prove the density of primely regular types (for strongly3 stable T )

and we comment how definable groups help.

(H) T is n-dependent, p. 79

We consider strengthenings n-independent of “T is independent”.

References p. 81

0. Introduction

Our motivation is trying to solve the equations

“x/dependent = superstable/ stable”

(e.g., among complete first order theories). In [Sh:783, §3] mainly two ap-

proximate solutions are suggested: strongly� dependent for � = 1, 2; here we

try to investigate them not relying on [Sh:783, §3]. We define κict(T ) gener-

alizing κ(T ); the definition has the form “κ < κict(T ) iff there is a sequence

〈ϕi(x̄, ȳi) : i < κ〉 of formulas such that ...”.

Now T is strongly dependent (= strongly1 dependent) iff κict(T ) = ℵ0; proto-

typical examples are: the theory of dense linear orders, the theory of real closed
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fields, the model completion of the theory of trees (or trees with levels), and the

theory of the p-adic fields (and related fields with valuations). (The last one is

strongly1 not strongly2 dependent, see 1.17.)

For T superstable, if 〈āt : t ∈ I〉 is an indiscernible set over A and C is

finite, then for some finite I∗ ⊆ I, 〈āt : t ∈ I\I∗〉 is indiscernible over A ∪ C,
moreover over A∪C ∪{āt : t ∈ I∗}. In §2 we investigate the parallel here, when

I is a linear order, complete for simplicity (see more and history in [Sh:950,

§1C, 1.37]). But we get two versions: strongly� dependent � = 1, 2 according

to whether we like to generalize the first version of the statement above or the

“moreover”.

Next, in §3, we define and investigate rank, not of types but of related objects

x = (p,M,A) where, e.g., p ∈ Sm(M ∪ A); but there are several variants. For

some of them we prove “T is strongly dependent iff the rank is always < ∞ iff

the rank is bounded by some γ < |T |+”. We first deal with the ranks related to

“strongly1 dependent” and then for the ones related to “strongly2 dependent”.

Further serious evidence for those ranks being of interest is in §4, where we

use them to get indiscernibles. Recall that if T is stable, |A| ≤ λ = λ|T |, aα ∈ C

for α < μ := λ+, then for some stationary S ⊆ μ, 〈aα : α ∈ S〉 is indiscernible

over A, |S| = μ; we can write this as λ → (λ)<ωT,μ; We can get similar theorems

from set theoretic assumptions: e.g., μ a measurable cardinal, very interesting

and important but not for the present model theoretic investigation.

We may wonder: Can we classify first order theories by λ →T (μ)κ, as was

asked by Grossberg and the author (see on this question [Sh:702, 2.9–2.20]).

A positive answer appears in [Sh:197], but under a very strong assumption on

T : not only T is dependent but for every subset P1, . . . , Pn of |M | the theory

Th(M,P1, . . . , Pn) is dependent, i.e., being dependent is preserved by monadic

expansions.

Here we prove that if T is strongly stable and μ ≥ |T |, then �μ+ →T (μ+)<ωμ+ .

We certainly hope for a better result (using �n(|T |) for some fixed n or even

(2μ)+ instead of �μ+) and weaker assumptions, say “T is dependent” (or less)

instead of “T is strongly dependent”. But still it seems worthwhile to prove

4.1, particularly having waited so long for something.

Let strongly� stable mean strongly� dependent and stable. As it happens

(for T ), being superstable implies strong2 stable implies strong1 stable, but the

inverses fail. So strongly� dependent does not really solve the equation we have
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started with. However, this is not necessarily bad; the notion “strongly� stable”

seems interesting in its own right. This applies to the further variants.

We give a “simplest” example of a theory T which is strongly1 stable and

not strongly2 stable at the end of §1 as well as prove that the (theories of the)

p-adic field is strongly stable (for any prime p) as well as similar enough fields.

In §5 we comment on some further properties and ranks. Such further prop-

erties hopefully will be crucial in [Sh:F705], if it materializes; it tries to deal

mainly with Kor-representable theories and contains other beginnings as well.

We comment on ranks parallel to those in §3 suitable for all dependent theories.

We further try to look at theories of fields. Also, we deal with the search

for families of dependent theories T which are unstable but “minimal”, much

more well behaved. For many years it seems quite bothering that we do not

know how to define o-minimality as naturally arising from a parallel to stability

theory rather than as an analog to minimal theories or to generalize examples

related to the theory of the field of the reals and its expansions. Of course,

the answer may be a somewhat larger class. This motivates Firstenberg–Shelah

[FiSh:E50] (on Th(R), specifically on “perpendicularly is simple”), and some

definitions in §5. Another approach to this question is of Onshuus in his very

illuminating works on th-forking [On0x1] and [On0x2].

A result from [Sh:783, §3,§4] used in [FiSh:E50] says that

0.1. Claim: Assume T is strongly2 dependent.

(a) If G is a definable group in CT and h is a definable endomorphism of G

with finite kernels then h is almost onto G, i.e., the index (G : Rang(h)) is

finite.

(b) It is not the case that: there are a definable (with parameters) subset

ϕ(C, ā1) of C, an equivalence relation Eā2 = E(x, y, ā2) on ϕ(C, ā1) with

infinitely many equivalence classes and ϑ(x, y, z, ā3) such that E(c, c, ā2) ⇒
ϑ(x, y, c, ā3) is a one-to-one function from (a co-finite subset of) ϕ(C, ā1)

into c/Eā2 .

We continue investigating dependent theories in [Sh:900], [Sh:877], [Sh:906],

more recently [Sh:950] and Kaplan–Shelah [KpSh:946], [?] and concerning de-

finable groups in [Sh:876], [Sh:886] and [KpSh:993].

We thank Moran Cohen, Itay Kaplan, Aviv Tatarski and a referee for pointing

out deficiencies.
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0.2. Notation: (1) Let ϕt be ϕ if t = 1 or t = true and ¬ϕ if t = 0 or t = false.

(2) Sα(A,M) is the set of complete types over A in M (i.e., finitely satisfiable

in M) in the free variables 〈xi : i < α〉.

1. Strongly dependent: Basic variant

1.1. Convention: (1) T is complete first order fixed.

(2) C = CT a monster model for T .

Recall, see [Sh:783]:

1.2. Definition: (1) κict(T ) = κict,1(T ) is the minimal κ such that for no

ϕ̄ = 〈ϕi(x̄, ȳi) : i < κ〉 is Γλ = Γϕ̄λ consistent with T for some (≡ every)

λ, where �g(x̄) = m, �g(ȳim) = �g(ȳi) and

Γλ = {ϕi(x̄η, ȳiα)if(η(i)=α) : η ∈ κλ, α < λ and i < κ}.

(1A) We say that ϕ̄ = 〈ϕi(x̄, ȳi) : i < κ〉 witness κ < κict(T ) (with m =

�g(x̄)) when it is as in part (1).

(2) T is strongly dependent (or strongly1 dependent) when κict(T ) = ℵ0.

Easy (or see [Sh:783]):

1.3. Observation: If T is strongly dependent then T is dependent.

1.4. Observation: (1) κict(T
eq) = κict(T ).

(2) If T� = Th(M�) for � = 1, 2, then κict(T1) ≤ κict(T2) when:

(∗) M1 is (first order) interpretable in M2.

(3) If T ′ = Th(C, c)c∈A, then κict(T ′) = κict(T ).

(4) If M is the disjoint sum of M1,M2 (or the product) and Th(M1),

Th(M2) are dependent, then so is Th(M); so M1,M2,M has the same

vocabulary.

(5) In Definition 1.2, for some λ,Γϕ̄λ is consistent with T iff for every λ, Γϕ̄λ
is consistent with T .

Remark: Concerning Part (4) for “strongly dependent”, see Cohen–Shelah

[CoSh:E65, Th.24].

Proof. Easy. 1.4
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1.5. Observation: Let �g(x̄)=m, ϕ̄=〈ϕi(x̄, ȳi) : i<κ〉 and let ϕ̄′=〈ϕ̄′
i(x̄, ȳ

′
i) : i<κ〉

where ϕ′
i(x̄, ȳ

′
i) = [ϕi(x̄, ȳ

1
i ) ∧ ¬ϕi(x̄, ȳ2i )], and let ϕ̄′′ = 〈ϕ′′

i (x̄, ȳ
′′
i ) : i < κ〉

where ϕ̄′′
i (x̄, ȳ

′′
i ) = [ϕ̄i(x̄, ȳ

1
i ) ≡ ¬ϕi(x̄, ȳ2i )]. Then �1

ϕ̄ ⇒ �2
ϕ̄ ⇔ �3

ϕ̄ ⇔ (∃η ∈
κ2)�2

ϕ̄[η] ⇔ (∃η ∈ κ2)�3
ϕ̄[η] and ��ϕ̄ ⇔ ��ϕ̄′ ⇔ ��ϕ̄′′ for � = 2, 3 and �3

ϕ̄ ⇔ �1
ϕ̄′ ⇔

�1
ϕ′′ where ϕ̄[η] = 〈ϕi(x̄, ȳi)η(i) : i < κ〉 and

�1
ϕ̄ ϕ̄ witness κ < κict(T ),

�2
ϕ̄ we can find 〈āik : k<ω, i<κ〉 in C such that �g(āik)= �g(ȳi), 〈āik : k<ω〉

is indiscernible over ∪{ājk : j < κ, j �= i, k < ω} for each i < κ and

{ϕi(x̄, āi0) ∧ ¬ϕi(x̄, āi1) : i < κ} is consistent, i.e., finitely satisfiable in

C,

�3
ϕ̄ like �2

ϕ̄ but in the end {ϕi(x̄, āi0) ≡ ¬ϕi(x̄, āi1) : i < κ} is consistent.

1.6. Remark: (1) We could have added the indiscernibility condition to �1
ϕ̄,

i.e., to 1.2(1), as this variant is equivalent to �1
ϕ̄.

(2) Similarly we could have omitted the indiscernibility condition

in �2
ϕ̄ but demand in the end: “if ki < �i < ω for i < κ then

{ϕi(x̄, āiki) ∧ ¬ϕi(x̄, ai�i) : i < κ} is consistent” and get an equivalent

condition.

(3) Similarly we could have omitted the indiscernibility condition in �3
ϕ̄

but demand in the end “if ki < �i < ω for i < κ then {ϕi(x̄, āiki) ≡
¬ϕi(x̄, ā1�i) : i < κ} is consistent” and get an equivalent condition.

(4) We could add �3
ϕ̄ ⇔ �1

ϕ̄′ .

(5) In �2
ϕ̄,�3

ϕ̄ (and the variants above) we can replace ω by any λ (see 1.7).

(6) What about �2
ϕ̄ ⇒ �1

ϕ̄? We shall now describe a model whose theory

is a counterexample to this implication. We define a model M with

τM = {P, Pi, Ri : i < κ}, P a unary predicate, Pi a unary predicate, Ri

a binary predicate, as follows:

(a) |M | the universe of M is (κ×Q) ∪ κQ,

(b) PM = κQ,

(c) PMi = {i} ×Q,

(d) RMi = {(η, (i, q)) : η ∈ κQ, q ∈ Q and Q |= η(i) ≥ q},
(e) ϕi(x, y) = P (x) ∧ Pi(y) ∧Ri(x, y) for i < κ.

Now

(α) Why (for Th(M̄)) do we have �2
ϕ̄?

For i < κ, k < ω let aik = (i, k) ∈ PMi recalling ω ⊆ Q.
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Easily 〈aik : k < ω, i < κ〉 are as required in �2
ϕ̄; e.g., the unique η ∈ κQ

realizing the type. Also, for each i < κ, the sequence 〈aik : k < ω〉 is indiscernible
over {ajm : j < κ, j �= i and m < ω}.
Why? Because for every automorphism π of the rational order (Q, <), for

the given i < κ we can define a function π̂i with domain M by

(∗)1 for j < κ and q ∈ Q we let π̂i((j, q)) be (j, q) if j �= i and (j, π(q)) if j = i,

(∗)2 for η, ν ∈ χQ we have π̂i(η) = ν iff (∀j < κ)(j �= i ⇒ η(j) = ν(j)) and

ν(i) = πi(η(i)).

So π̂i is an automorphism of M over
⋃
j �=i P

M
j which includes the function

{(aiq, aiπ(q)) : q ∈ Q}
(β) Why (for Th(M)) do we not have �1

ϕ̄?

BecauseM |= (∀y1, y2)[Pi(y1)∧Pi(y2)∧y1 �= y2 → ∨2
�=1(∀x)(ϕi(x, y�)∧P (x) →

ϕi(x, y3−�))].

(γ) T is dependent. Why? Left to the reader (use restriction to any finite

τ ⊆ τM ).

Proof. The following series of implications clearly suffices.

�1
ϕ̄ implies �2

ϕ̄

Why? As �1
ϕ̄, clearly for any λ ≥ ℵ0 we can find āiα ∈ �g(ȳi)C for i < κ, α < λ

and 〈c̄η : η ∈ ωλ〉, c̄η ∈ �g(x̄)C such that |= ϕi[c̄η, ā
i
α] iff η(i) = α. By some

applications of the Ramsey theorem (or polarized partition relations), without

loss of generality 〈āiα : α < λ〉 is indiscernible over
⋃{ājβ : j < κ, j �= i, β < λ}

for each i < ω. Now those āiα’s witness �2
ϕ̄ as c̄η witness the consistency of the

required type when η ∈ κ{0}.
�2
ϕ̄ ⇒ �3

ϕ̄ (hence in particular �2
ϕ̄′ ⇒ �3

ϕ̄′ and �2
ϕ̄′′ ⇒ �3

ϕ̄′′).

Trivial; read the definitions.

�3
ϕ̄ ⇒ �2

ϕ̄ (hence in particular �3
ϕ̄′ ⇒ �3

ϕ̄′ and �2
ϕ̄′′ ⇒ �3

ϕ̄′′).

By compactness, for the dense linear order R we can find āit for i < κ, t ∈ R

such that for each i < κ the sequence 〈āit : t ∈ R〉 is indiscernible over⋃{ājs : j �=
i, j < κ, s ∈ R} and for any s0 <R s1 the set {ϕi(x̄, āis0) ≡ ¬ϕi(x̄, āis1) : i < κ}
is consistent, say realized by c̄ = c̄s0,s1 . Now let u = {i < κ : C |= ϕi[c̄, ā

i
s0 ]},

and for n < ω define b̄in as āis0+n(s1−s0) if i ∈ u and as āis1−n(s1−s0) if i ∈ κ\u.
Now 〈b̄in : n < ω, i < κ〉 exemplifies �2

ϕ̄.

�2
ϕ̄ implies �1

ϕ̄′ (hence by the above �2
ϕ̄ ⇒ �2

ϕ̄′ and �3
ϕ̄ ⇒ �3

ϕ̄′).
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Let 〈āiα : α<ω, i < κ〉 witness �2
ϕ̄ and c̄ realizes {ϕi(x̄, ai0)∧¬ϕi(x̄, āi1) : i<κ}.

Without loss of generality ait is well defined for every t ∈ Z not just t ∈ ω (and

i < κ), and 〈ait :t∈Z〉 is an indiscernible sequence over {ajs : j∈κ\{i} and s∈Z}.
Also, without loss of generality for each i < κ, 〈āiα : α ∈ [2, ω)〉 as well as

〈ai−1−n : n ∈ ω〉 are indiscernible sequences over

⋃
{ājt : j < κ, j �= i and t ∈ Z} ∪ {c̄}.

For t ∈ Z, i < κ let b̄it = āi2tˆā
i
2t+1, so C |= ϕ′

i[c̄, b̄
i
0] (as this just means

C |= ϕi(c̄, ā
i
0)∧¬ϕi[c̄, āi1]) and C |= ¬ϕ′

i[c̄, b̄
i
s] when s ∈ Z\{0} (as the sequences

c̄ˆāi2s and c̄ˆāi2s+1 realize the same type). So 〈b̄iα : α < ω, i < κ〉 witness �1
ϕ̄′ .

�3
ϕ̄′ implies �3

ϕ̄′′ .

Read the definitions.

�3
ϕ̄′′ implies that for some η ∈ κ2 we have �1

ϕ̄[η] .

As in the proof of �2
ϕ ⇒ �1

ϕ̄′ ; but we elaborate: let
〈〈āiαˆb̄iα : α < ω〉 : i < κ

〉
witness �3

ϕ̄′′ noting ϕ̄′′ = 〈ϕ′′
i (x̄, ȳ

i
1, ȳ

i
2) : i < κ〉 where �g(ȳi1) = �g(ȳi) =

�g(ȳi2). Let c̄ realize {ϕ′′
i (x̄, ā

i
0, b̄

i
0) ≡ ¬ϕ′′

i (x̄, ā
i
1, b̄

i
1) : i < κ}. Without loss of

generality, for each i < κ the sequence 〈āiαˆb̄iα : 2 ≤ α < ω〉 is indiscernible over⋃{ājαˆb̄jα : j ∈ κ\{i} and α < ω} ∪ c̄.
By this extra indiscernibility assumption, for each i < κ we can find

�0(i), �1(i) ∈ {0, 1} such that n ≥ 2 ⇒ C |= ϕi[c̄, ā
i
n]
�0(i) ∧ ϕi[c̄, b̄

i
n]
�1(i). By

the choice of c̄ we have C |= ϕ′′
i (c̄, ā

i
0, b̄

i
0) ≡ ϕ′′

i (c̄, ā
i
1, b̄

i
1), hence by the choice of

ϕ′′
i we cannot have C |= ϕi[c̄, ā

i
0]
�0(i)∧ϕi[c̄, ā, b̄i0]�1(i)∧ϕi[c̄, āi1]�0(i)∧ϕi[c̄, b̄i1]�1(i).

Hence there are �3(i), �4(i) ∈ {0, 1} such that

• �4(i) = 0 ⇒ C |= ϕi[c̄, ā
i
�3(i)

]1−�0(i),
• �4(i) = 1 ⇒ C |= ϕi[c̄, b̄

i
�3(i)

]1−�1(i).

Lastly, choose η = 〈1 − ��4(i)(i) : i < κ〉 and we choose 〈d̄iα : α < ω, i < κ〉 as

follows:

• if �4(i) = 0 and n = 0 then d̄in = āi�3(i),

• if �4(i) = 0 and n > 0 then d̄in = āi1+n,

• if �4(i) = 1 and n = 0 then d̄in = b̄i�3(i),

• if �4(i) = 1 and n > 0 then d̄in = b̄i1+n.

Now check that 〈d̄iα : α < ω and i < κ〉 witness �1
ϕ̄[η] .

�3
ϕ̄[η] ,�3

ϕ̄ are equivalent where η ∈ κ2.
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10 S. SHELAH Isr. J. Math.

Why? Because the formula (ϕi(x, ā
i
0) ≡ ¬ϕi(x, āi1)) is equivalent to

(ϕi(x, a
i
0)
η(i) ≡ ¬ϕi(x, āi1)η(i)). 1.5

1.7. Observation: (1) In Definition 1.2, without loss of generality m(= �g(x̄))

is 1.

(2) For any κ we have: κ < κict(T ) iff for some infinite linear order Ii (for

i < κ) and 〈āit : t ∈ Ii, i < κ〉 such that 〈āit : t ∈ Ii〉 is indiscernible over⋃{ājs : s ∈ Ij and j �= i, j < κ} ∪ A and finite C, for κ ordinals i < κ, the

sequence 〈āit : t ∈ Ii〉 is not indiscernible over A ∪ C.
(3) In 1.5, for any λ(≥ ℵ0), from the statement �2

ϕ̄ we get an equivalent one if

we replace ω by λ; similarly for �3
ϕ̄.

Proof. (1) For some m, there is ϕ̄ = 〈ϕi(x̄, ȳi) : i < κ〉, �g(x̄) = m witnessing

κ < κict(T ); without loss of generality m is minimal. Fixing ϕ̄ by 1.5 we know

that �2
ϕ̄ from observation 1.5 holds. Let 〈āiα : i < κ, α < λ〉 exemplify �2

ϕ̄ with

λ instead ω and let c̄ = 〈ci : i < m〉 realize {ϕi(x̄, āi0) ∧ ¬ϕi(x̄, āi1) : i < κ}.
Case 1: For some u ⊆ κ, |u| < κ for every i ∈ κ\u the sequence 〈āiα : α < λ〉

is an indiscernible sequence over
⋃{ājβ : j ∈ κ\u\{i}} ∪ {cm−1}.

In this case for i ∈ κ\u let ψi(x̄
′, ȳ′i) := ϕi(x̄ � (m − 1), 〈xm−1〉ˆȳi) and

ψ̄ = 〈ψi(x̄′, ȳ′i) : i ∈ κ\u〉 and b̄iα = 〈cm−1〉ˆāiα for α < λ, i ∈ κ\u and ϕ̄ =

〈ψi(x̄′, ȳ′i) : i ∈ κ\u〉. Now 〈b̄iα : α < λ, i ∈ κ\u〉 witness that (abusing our

notation) �2
ψ̄
holds (the consistency is exemplified by c̄ � (m−1)), hence (in the

notation of 1.5) �1
ψ̄[η] holds for some η ∈ κ\u2, contradiction to the minimality

of m.

Case 2: Not Case 1.

We choose vζ by induction on ζ < κ such that⊗
ζ (a) vζ ⊆ κ\⋃{vε : ε < ζ},
(b) vζ is finite,

(c) for some i ∈ vζ , 〈āiα : α < λ〉 is not indiscernible over

⋃
{ājβ : j ∈ vζ\{i}, β < λ} ∪ {cm−1},

(d) under (a)+(b)+(c),|vζ | is minimal.

In the induction step, the set uζ = ∪{vε : ε < ζ} cannot exemplify Case 1, so

for some ordinal i(ζ) ∈ κ\uζ the sequence 〈āi(ζ)α : α < λ〉 is not indiscernible

over
⋃{ājβ : j ∈ κ\uζ\{i(ζ)} and β < λ} ∪ {cm−1}, so by the finite character of

indiscernibility, there is a finite v ⊆ κ\uζ\{i(ζ)} such that 〈āi(ζ)α : α < λ〉 is not
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indiscernible over
⋃{ājβ : j ∈ v, β < λ} ∪ {cm−1}. So v′ = {i(ζ)} ∪ v satisfies

(a)+(b)+(c), hence some finite vζ ⊆ κ\uζ satisfies clauses (a),(b),(c) and (d).

Having carried the induction let i∗(ζ) ∈ vζ exemplify clause (c). We can find

a sequence d̄ζ from
⋃{ājβ : j ∈ vζ\{i∗(ζ)} and β < λ} such that 〈āi∗(ζ)α : α < λ〉

is not indiscernible over 〈cm−1〉ˆd̄ζ .
Also, we can find n(ζ) < ω and ordinals βζ,�,0 < βζ,�,1 < · · · < βζ,�,n(ζ)−1 < λ

for � = 1, 2 such that the sequences

d̄ˆā
i∗(ζ)
βζ,1,0

ˆ · · · ˆāi∗(ζ)βζ,1,n(ζ)−1 and d̄ˆā
i∗(ζ)
βζ,2,0

ˆ · · · ˆāi∗(ζ)βζ,2,n(ζ)−1

realize different types over cm−1.

Now we consider ā
i∗(ζ)
β ˆ · · · ˆāi∗(ζ)β+n(ζ)−1 where

β := max{βζ,1,n(ζ)−1 + 1, βζ,2,n(ζ)−1 + 1},
so renaming, without loss of generality βζ,1,n(ζ)−1 < βζ,2,0. Omitting some

a
i∗(ζ)
β ’s, without loss of generality ββζ ,1,m = m,βζ,2,m = n(ζ)+m for m < n(ζ).

Now we define b̄ζβ := d̄ζˆā
i∗(ζ)
n(ζ)βˆ · · · ˆāi∗(ζ)n(ζ)β+n(ζ)−1 for β < λ, ζ < κ.

By the indiscernibility of 〈āiζ(∗)γ : γ < λ〉 over d̄ζ ∪
⋃{ājβ : j ∈ κ\vζ , β < λ} ⊆⋃{ajβ : j ∈ κ\{iζ(∗)}, β < λ} we can deduce that 〈b̄ζβ : β < λ〉 is an indiscernible

sequence over
⋃{b̄εβ : ε ∈ κ\{ζ}, α < γ and β < λ}. But by an earlier sentence

b̄ζ0, b̄
ζ
1 realizes different types over cm−1, so we can choose ϕ′

ζ(x, ȳζ) such that

C |= ϕ′
ζ(cm−1, b̄

ζ
0) ∧ ¬ϕ′

i(cm−1, b̄
i
1) for i < κ.

So 〈b̄ζα : α < ω, ζ < κ〉 and ϕ̄′ = 〈ϕ′
ζ(x, ȳζ) : ζ < κ〉 satisfy the demands on

〈āik : k < ω, i < κ〉, 〈ϕi(x, ȳi) : i < κ〉 in �2
ϕ̄ for m = 1 (by 1.5’s notation), so by

1.5 also �1
ϕ̄[η] holds for some η ∈ κ2, so we are done.

(2) Implicit in the proof of part (1) (and see Case 1 in the proof of 2.1).

(3) Trivial. 1.7

A relative of κict(T ) is

1.8. Definition: (1) κicu(T ) = κicu,1(T ) is the minimal κ such that for no m < ω

and ϕ̄ = 〈ϕi(x̄i, ȳi) : i < κ〉 with �g(x̄i) = m × ni can we find āiα ∈ �g(ȳi)C for

α < λ, i < κ and c̄η,n ∈ mC for η ∈ κλ such that:

(a) 〈c̄η,n : n < ω〉 is an indiscernible sequence over
⋃{āiα : α < λ, i < κ},

(b) for each η ∈ κλ, α < λ and i < κ we have C |= ϕi(c̄η,0ˆ · · · ˆc̄η,ni−1, ā
i
α)

if(α=η(i)).

(2) If ϕ̄ is as in (1), then we say that it witnesses κ < κicu(T ).

(3) T is strongly1,∗ dependent if κicu(T ) = ℵ0.
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1.9. Claim: (1) κicu(T ) ≥ κict(T ).

(2) If cf(κ) > ℵ0 then κicu(T ) > κ⇔ κict(T ) > κ.

(3) The parallels of 1.4, 1.5, 1.7(2) hold.1

Proof. (1) Trivial.

(2) As in the proof of 1.7.

(3) Similar. 1.9

∗ ∗ ∗
To translate a statement on several indiscernible sequences to one (e.g., in

2.1), one notes:

1.10. Observation: Assume that for each α < κ, Iα is an infinite linear order,

the sequence 〈āt : t ∈ Iα〉 is indiscernible over A ∪ ∪{āt : t ∈ Iβ and β ∈
κ\{α}} (and for notational simplicity 〈Iα : α < κ〉 are pairwise disjoint) and

let I = Σ{Iα : α < κ}, t ∈ Iα ⇒ �g(āt) = ζ(α), and lastly for α ≤ κ we let

ξ(α) = Σ{ζ(β) : β < α}.
Then there is 〈b̄t : t ∈ I〉 such that

(a) �g(b̄t) = ξ(κ),

(b) 〈b̄t : t ∈ I〉 is an indiscernible sequence over A,

(c) t ∈ Iα ⇒ āt = b̄t � [ξα, ξα + ζα),

(d) if C ⊆ C and P is a set of cuts of I such that [J is a convex subset of

I not divided by any member of P ⇒ 〈b̄t : t ∈ J〉 is indiscernible over

A ∪ C] then we can find 〈Pα : α < κ〉,Pα is a set of cuts of Iα such that

Σ{|Pα| : α < κ} = |P| and, if α < κ, J is a convex subset of Iα not divided

by any member of Pα, then 〈āt : t ∈ J〉 is indiscernible over A ∪ C,
(e) if C ⊆ C and P is a set of cuts of I such that [J is a convex subset of

I not divided by any member of P ⇒ 〈b̄t : t ∈ J〉 is indiscernible over

A ∪ C ∪ {bs : s ∈ I\J}] then we can find 〈Pα : α < κ〉,Pα is a set of cuts

of Iα such that Σ{|Pα| : α < κ} = |P| and, if α < κ, J is a convex subset

of Iα not divided by any member of Pα, then 〈āt : t ∈ J〉 is indiscernible

over A ∪ C ∪ {āt : t ∈ I\J},
(f) moreover, in clauses (d), (e) we can choose Pα as the set of non-trivial cuts

of Iα induced by P, i.e., {(J ′∩Iα, J ′′∩Iα) : (J ′, J ′′) ∈ P}\{(Iα, ∅), (∅, Iα)}.

1 And of course more than 1.7(2), using an indiscernible sequence of m∗-tuples, for any

m∗ < ω.
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Proof. Straightforward; e.g.:

Without loss of generality 〈Iα : α < κ〉 are pairwise disjoint and let I =

Σ{Iα : α < κ}. We can find b̄αt ∈ ζ(α)C for t ∈ I, α < κ such that: if n < ω,

α0 < · · · < αn−1 < κ, t�0 <I · · · <I t�k�−1 and s�0 <Iα�
· · · <Ia�

s�k�−1 for � < n,

then the sequence (b̄α0

t00
ˆ · · · ˆb̄α0

t0k0−1

)ˆ · · · ˆ(b̄αn−1

tn−1
0

ˆ · · · ˆb̄αn−1

tn−1
kn−1−1

) realizes the same

type as the sequence (āα
s00
ˆ · · · ˆāα0

s0kn−1

)ˆ · · · ˆ(āαn−1

sn−1
0

ˆ · · · ˆāαn−1

sn−1
kn−1−1

); this is pos-

sible by compactness. Using an automorphism of C, without loss of generality

t ∈ Iα ⇒ b̄αt = āαt . Now for t ∈ I let ā∗t be (ā0t ˆā
1
tˆ · · · ˆā1α · · · )α<κ.

Clauses (a)+(b)+(c) hold trivially and clauses (d), (e), (f) follow. 1.10

∗ ∗ ∗
In the following we consider “natural” examples which are strongly depen-

dent; see more in 2.5.

1.11. Claim: (1) Assume T is a complete first order theory of an ordered

abelian group expanded by some individual constants and some unary pred-

icates Pi(i < i(∗)) which are subgroups and T has elimination of quantifiers.

T is strongly dependent iff we cannot find in < i(∗) and ιn ∈ Z\{0} for

n < ω such that:

(∗) we can find bn,� ∈ C for n, � < ω such that

(a) �1 < �2 ⇒ ιn(bn,�2 − bn,�1) /∈ PC
in
,

(b) for every η ∈ ωω there is cη such that cη − bn,η(n) ∈ PC
in

for n < ω.

(2) Let M be (Z,+,−, 0, 1, <, Pn) where Pn = {na : a ∈ Z}, so we know that

T = Th(M) has elimination of quantifiers. Then T is strongly dependent,

hence Th(Z,+,−, 0, <) is strongly dependent.

1.12. Remark: (1) This generalizes the parallel theorem for stable abelian

groups.

(2) Note that if G is the ordered abelian group with sets of elements Z[x],

addition of Z[x] and p(x) > 0 iff the leading coefficient is > 0, in Z, Pn
as above (so definable), then Th(G) is not strongly dependent using Pn

for n prime.

(3) On elimination of quantifiers for ordered abelian groups, see Gurevich

[Gu77].

Proof. (1) The main point is the if direction. We use the criterion from 2.1(2),(4)

below. So let 〈āt : t ∈ I〉 be an infinite indiscernible sequence and c ∈ C
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(with āt not necessarily finite). Without loss of generality C |= “c > 0” and

āt = 〈at,α : α < α∗〉 list the members ofMt, a model and even a |T |+-saturated
model (see 2.1(4)), and let pt = tp(c,Mt).

Note that

(∗)1 if as,i = at,j and s �= t, then 〈ar,i : r ∈ I〉 is constant.
Obviously, without loss of generality, c /∈ ⋃{Mt : t ∈ I} but C is torsion free

(as an abelian group because it is ordered), hence

(∗)2 ι ∈ Z\{0} ⇒ ιc /∈ ⋃{Mt : t ∈ I},
(∗)3 for t ∈ I, a ∈Mt and ι ∈ Z\{0}, let ηιa ∈ i(∗)+12 be such that [ηιa(i(∗)) =

1 ⇔ ιc > a] and, for i < i(∗), [ηιa(i) = 1 ⇔ ιc− a ∈ PC
i ],

(∗)4 for t ∈ I and a ∈ Mt let pa :=
⋃
ι∈Z\{0}(p

ι
a ∪ qιa) where 2 pιa(x) :=

{ιx �= a, (ιx > a)η
ι
a(i(∗))} and qιa(x) := {Pi(ιx− a)η

ι
a(i) : i < i(∗)}.

Now

�0 for ι ∈ Z\{0} and α < α∗ let Iια = {t ∈ I : at,α < ιc};
�1 〈u−1, u0, u1〉 is a partition of α∗, where

(a) u−1 = {α < α∗: for every s <I t we have C |= at,α < as,α},
(b) u0 = {α < α∗: for every s <I t we have C |= as,α = at,α},
(c) u1 = {α < α∗: for every s <I t we have C |= as,α < at,α};

�2 if ι ∈ Z\{0} then

(a) Iια is an initial segment of I when α ∈ u1,

(b) Iια is an end segment of I when α ∈ u−1,

(c) Iια ∈ {∅, I} when α ∈ u0,

(d) {Iια : α ∈ u1}\{∅, I} has at most 2 members.

[Why? Recall <C is a linear order. So for each ι ∈ Z\{0}, α ∈ u1, by the

definition of u1 the set Iια := {t ∈ I : at,α < ιc} is an initial segment of I, also

t ∈ I\Iια ⇒ ιc <C at,α as c /∈ ⋃{Ms : s ∈ I} by (∗)2.
Now suppose α, β ∈ u1 and |Iιβ\Iια| > 1 and Iια, I

ι
β /∈ {∅, I}; then choose

t1 <I t2 from Iιβ\Iια and t0 ∈ Iια, t3 ∈ I\Iιβ . As Iια, I
ι
β are initial segments and

t0 <I t1 <I t2 <I t3, necessarily C |= “at0,α < ιc < at1,α ∧ at2,β < ιc < at3,β”.

If at1,α ≤C at2,β we can deduce a contradiction (C |= “ιc < at1,α ≤ at2,β < ιc”).

Otherwise, by the indiscernibility of the sequence 〈(at,α, at,β) : t ∈ I〉 we get

C |= at3,β < at0,α and a similar contradiction. So |Iιβ\Iια| ≤ 1.

2 Recall that ϕ1 = ϕ,ϕ0 = ¬ϕ.
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So Iια, I
ι
β /∈ {∅, I} ⇒ |Iιβ\Iια| ≤ 1 and by symmetry |Iια\Iιβ | ≤ 1. So |{Iια : α ∈

u1}\{∅, I}| ≤ 2, i.e., clause (d) of �2 holds; the other clauses should be clear.]

Now clearly

�3 if α, β < α(∗), ι ∈ Z\{0} and at,α = −at,β (for some equivalently for

every t ∈ I) then:

(a) (α ∈ u1) ≡ (β ∈ u−1),

(b) ((ιc) < at,α) ≡ (at,β < ((−ι)c)) recalling ιc, (−ι)c /∈ ⋃
t∈IMt,

(c) Iια = I\Iιβ .
Also

�4 if ι1, ι2 are from {1, 2, . . .} and ι1at,α = ι2at,β then

(a) [α ∈ u−1 ≡ β ∈ u−1], [α ∈ u0 ≡ β ∈ u0] and [α ∈ u1 ≡ β ∈ u1],

(b) (t ∈ Iι2α ) ⇔ (t ∈ Iι1β ), hence Iι2α = Iι1β .

[Why? Clause (a) is obvious. For clause (b) note that t ∈ Iι2α ⇔ at,α < ι2c ⇔
ι1at,α < ι1(ι2c) ⇔ ι2at,β < ι2(ι1c) ⇔ at,β < ι1c⇔ t ∈ Iι1β .]

By symmetry, i.e., by �3, clearly

�5 the statement (d) in �2 holds for α ∈ u−1.

Obviously

�6 if α ∈ u0 then Iια ∈ {∅, I}.
Together

�7 {Iια : α < α∗ and ι ∈ Z\{0}}\{∅, I}, hence has ≤ 4 members.

Hence

�0 There are initial segments J� of I for � < �(∗) ≤ 4 such that: if s, t belongs

to I and � < �(∗) ⇒ [s ∈ J� ≡ t ∈ J�] then ηιat,α(i(∗)) = ηιas,α(i(∗)).
[Why? By the above and the definition of ηιat,α(i(∗)) we are done.]

�1 For each t ∈ I we have
⋃{pa(x) : a ∈Mt} � pt(x).

[Why? Use the elimination of quantifiers and the closure properties of

Mt. That is, every formula in pt(x) is equivalent to a Boolean combi-

nation of quantifier free formulas. So it suffices to deal with the cases

ϕ(x, ā) ∈ pt(x) which is atomic or negation of atomic and x appear. As for

b1, b2 ∈ C, exactly one of the possibilities b1 < b2, b1 = b2, b2 < b1 holds,

and, by symmetry, it suffices to deal with σ1(x, ā) > σ2(x, ā), σ1(x, ā) =

σ2(x, ā), Pi(σ(x, ā)),¬Pi(σ(x, ā)) where σ(x, ȳ), σ1(x, ȳ), σ2(x, ȳ) are terms

in L(τT ). As we can substract, it suffices to deal with σ(x, ā) > 0, σ(x, ā) =

0, Pi(σ(x, ā)),¬Pi(σ(x, ā)). By linear algebra, as Mt is closed under the
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operations, without loss of generality σ(x, ā) = ιx− at,α for some ι ∈ Z and

α < α∗, and without loss of generality ι �= 0. The case ϕ(x) = (ιx− at,α =

0) ∈ p(x) implies c ∈ Mt (as M is torsion free), which we assume does

not hold. In the case ϕ(x, ā) = (ιx − at,α > 0) use pιat,α(x), in the case

ϕ(x, ā) = Pi(ιx− at,α) or ϕ(x, ā) = ¬Pi(ιx− at,α) use q
ι
at,α(x) for η

ι
at,α(i).]

�2 If ι ∈ Z\{0}, n < ω and a0, . . . , an−1 ∈ Mt, then for some a ∈ Mt we have

� < n ∧ i < i(∗) ∧ ηιa�(i) = 1 ⇒ ηιa(i) = 1.

[Why? Let a′ ∈ Mt realize pt � {a0, . . . , an−1}, exist as Mt was chosen

as |T |+-saturated; less is necessary. Now ιc − a� ∈ PC
i ⇒ ιa′ − a� ∈ PC

i ⇒
(ιc− ιa′) = ((ιc − a�)− (ιa′ − a�)) ∈ PC

i and let a := ιa′.]
�3 Assume ι ∈ Z\{0}, i < i(∗), α < α∗, s1 <I s2 and t ∈ I\{s1, s2}; then:

(a) if ηιas1,α
(i) = 1 and ηιas2,α

(i) = 0, then ηιat,α(i) = 0,

(b) if ηιas1,α
(i) = 0 and ηιas2,α

(i) = 1, then ηιat,α(i) = 0.

[Why? As we can invert the order of I it is enough to prove clause (a).

By the choice of a �→ ηιa we have ιc − as1,α ∈ PC
i , ιc − as2,α /∈ PC

i , hence

as1,α − as2,α /∈ PC
i , hence also as2,α − as1,α /∈ PC

i .

By the indiscernibility we have at,α − as1,α /∈ PC
i and as ιc− as1,α ∈ PC

i

we can deduce ιc− at,α /∈ PC
i , hence η

ι
at,α(i) = 0. So we are done.]

�4 For each ι ∈ Z\{0}, i < i(∗) and α < α∗, the set Iιi,α := {t : ηιat,α(i) = 1} is

∅, I or a singleton.

[Why? By �3.]

�5 if I∗ =
⋃{Iιi,α : ι ∈ Z\{0}, i < i(∗), α < α∗ and Iιi,α is a singleton} is infinite,

then (possibly inverting I) we can find tn ∈ I and βn < α∗, ιn ∈ Z\{0} and

in < i(∗) for n < ω such that

(a) t ∈ I, then [ιnc− at,βn ∈ PC
in
] ⇔ t = tn for every n < ω,

(b) 〈at,βn − as,βn : s �= t ∈ I〉 are pairwise not equal mod PC
in
,

(c) tn < tn+1 for n < ω.

[Why? Should be clear.]

�6 If I∗ =
⋃{Iιi,α : ι ∈ Z\{0}, α < α∗, i < i(∗) and Iιi,α is a singleton} is finite

and J�(� < �(∗) ≤ 4) are as in �0, then tp(ās, {c}) = tp(āt, {c}) whenever
(s, t ∈ I\I∗) ∧

∧
�<�(∗)(s ∈ J� ≡ t ∈ J�) recalling āt list the elements of Mt.

[Why? By �4 and �1 (and �0) recalling the choice of pa in (∗)4.]

Assume c, 〈āt : t ∈ I〉 exemplify T is not strongly dependent; then I∗ cannot be

finite (by �6) hence I∗ is infinite, so by �5 we can find 〈(tn, βn, ιn, in) : n < ω〉
as there.
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That is, for n < ω, � < ω let bn,� := at�,βn . So

�7 ιnc− bn,� ∈ PC
in

iff ιnc− at�,βn ∈ PC
in

iff t� = tn iff � = n,

�8 if �1 < �2 then bn,�2 − bn,�2 /∈ PC
in
.

[Why? By clause (b) of �5.]

Now

�9 if η ∈ ωω is increasing, then there is cη ∈ C such that n < ω

⇒ ιncη − bn,η(n) ∈ PC
in
.

[Why? As 〈āt : t ∈ I〉 is an indiscernible sequence, there is an automorphism

f = fη of C which maps ātn to ātη(n)
for t ∈ I, so fη(bη,n) = bn,η(n). Hence

cη = fη(c) satisfies n < ω ⇒ ιnf(c)− bη,η(n) ∈ PC
in .]

Now 〈bn,� : n, � < ω〉 almost satisfies (∗) of 1.11. Clause (a) holds by �8

and clause (b) holds for all increasing η ∈ ωω. By compactness we can find

〈b̄′n,� : n, � < ω〉 satisfying (a) + (b) of (∗) of 1.11.
[Why? Let Γ = {Pin(ιnxη−yn,η(n)) : η∈ωω, n<ω}∪{¬Pin(ιnxn,�1−ιnxn,�2) :

n < ω, �1 < �2 < ω}. If Γ is satisfied in C we are done, otherwise there is a finite

inconsistent Γ′ ⊆ Γ. Let n∗ be such that: if yn,� appear in Γ′ then n, � < n∗.
But the assignment yn,� �→ bnn∗+� for n < n∗, � < n∗ exemplified that Γ′ is
realized, so we have proved half of the claim. The other direction should be

clear, too.]

(2) The first assertion (on T ) holds by part (1); the second holds as the set

of terms {0, 1, 2, . . . , n− 1} is provably a set of representatives for Z/Pn which

is finite. 1.11

1.13. Example: Th(M) is not strongly stable when M satisfies the following:

(a) it has universe ωQ

(b) it is an abelian group as a power of (Q,+),

(c) it PMn = {f ∈M : f(n) = 0}, a subgroup.

We now consider the p-adic fields and more generally valued fields.

1.14. Definition: (1) We define a valued field M as one in the Denef–Pas lan-

guage, i.e., a model M such that:

(a) the elements of M are of three sorts:

(α) the field PM0 which (as usual) we callKM , soK = KM is the field ofM

and has universe PM0 , so we have appropriate individual constants (for

0, 1), and the field operations (including the inverse which is partial),
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(β) the residue field PM1 which (as usual) is called kM , so k = kM is a field

with universe PM1 , so with the appropriate 0, 1 and field operations,

(γ) the valuation ordered abelian group PM2 which (as usual) we call ΓM ,

so Γ = ΓM is an ordered abelian group with universe PM2 , so with 0,

addition, subtraction and the order;

(b) the functions (and individual constants) of KM , kM ,ΓM and the order of

ΓN (actually mentioned in clause (a));

(c) valM : KM → ΓM , the valuation;

(d) acM : KM → kM , the function giving the “leading coefficient” (when, as in

natural cases, the members of K are power series);

(e) of course, satisfying the sentences saying that the following hold:

(α) ΓM is an ordered abelian group,

(β) k is a field,

(γ) K is a field,

(δ) val,ac satisfies the natural demands.

(1A) Above we replace “language” by ω-language when: in clause (b), i.e.,

(a)(γ), ΓM has 1Γ (the minimal positive elements) and we replace (d) by

(d)−ω acMn : KM → kM satisfies:
∧
�<n acM� (x) = acMk (y) ⇒ valM (x− y) >

valm(x) + n.

(2) We say that such M (or Th(M)) has elimination of the field quantifier

when: every first order formula (in the language of Th(M)) is equivalent to a

Boolean combination of atomic formulas, formulas about kM (i.e., all variable,

free and bounded vary on PM1 ) and formulas about ΓM ; note this definition

requires clause (d) in part (1).

The following is well known (on 1.15 and 1.16 see, e.g., [Pa90], [CLR06]).

1.15.Claim: (1) Assume Γ is a divisible ordered abelian group and k is a perfect

field of characteristic zero. Let K be the field of power series for (Γ, k), i.e.,

{f : f ∈ Γk and supp(f) is well ordered} where supp(f) = {s ∈ Γ : f(s) �= 0k}.
Then the model defined by (K,Γ, k) has elimination of the field quantifiers.

(2) For p prime, we can consider the p-adic field as a valued field in the

Denef–Pas ω-language and its first order theory has elmination of the field

quantifiers (this version of the p-adics and the original one are (first-order) bi-

interpretable; note that the field k here is finite and formulas speaking on Γ

which is the ordered abelian group Z are well understood).
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We will actually be interested only in valuation fields M with elimination of

the field quantifiers. The following is well known.

1.16. Claim: Assume C = CT is a (monster, i.e., quite saturated) valued field

in the Denef–Pas language (or in the ω-language) with elimination of the field

quantifiers. If M ≺ C then:

(a) it satisfies the cellular decomposition of Denef which implies 3: if p ∈
S1(M) and P0(x) ∈ p then p is equivalent to p[∗] :=

⋃{p[∗]c : c ∈ PM0 }
where p

[∗]
c = p

[∗,1]
c ∪ p

[∗,2]
c and p

[∗,1]
c = {ϕ(val(x − c), d̄) ∈ p : ϕ(x, ȳ)

is a formula speaking on ΓM only so d̄ ⊆ ΓM , c ∈ PM0 } and p
[∗,2]
c =

{ϕ(ac(x − c), d̄) ∈ p : ϕ speaks on kM only}, but for the ω-language we

should allow ϕ(ac0(x− c), . . . , acn(x− c), d̄) for some n < ω;

(b) if p ∈ S1(M), P0(x) ∈ p and c1, c2 ∈ PM0 and valM (x−c1) <ΓM

valM (x−c2)
belongs to p(x) then p

[∗]
c2 (x) � p[∗]c1 (x) and even {val(x− c1) < val(x− c2)} �

p
[∗]
c1 (x);

(c) for c̄ ∈ ω>(kM ), the type tp(c̄, ∅, kM ) determines tp(c̄, ∅,M), and similarly

for ΓM .

1.17. Claim: (1) The first order theory T of the p-adic field is strongly depen-

dent.

(2) For the theory T of a valued field F which has elimination of the field quan-

tifier we have: T is strongly dependent iff the theory of the valued ordered

group and the theory of the residue fields of F are strongly dependent.

(3) Like (2), when we use the ω-language and we assume kM is finite.

1.18. Remark: (1) In 1.17 we really get that T is strongly dependent over the

residue field + the valuation ordered abelian group.

(2) We had asked in a preliminary version of [Sh:783, §3]: show that the

theory of the p-adic field is strongly dependent. Udi Hrushovski has noted

that the criterion (St)2 presented there (and repeated in 0.1 here from [Sh:783,

3.10=ss.6]) apply, so T is not strongly2 dependent. Namely, take the following

equivalence relation E on Zp:val(x− y) ≥ val(c), where c is some fixed element

with infinite valuation. Given x, the map y �→ (x + cy) is a bijection between

Zp and the class x/E.

(3) By [Sh:783, §3], the theory of real closed fields, i.e., Th(R) is strongly

dependent. Onshuus shows that also the theory of the field of the reals is not

3 Note: p ∈ S1(A,M), A ⊆ M is a little more complicated.
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strongly2 dependent (e.g., though Claim [Sh:783, 3.10=ss.6] does not apply but

its proof works using pairwise, not too near b̄’s, in general just an uncountable

set of b̄’s).

(4) See more in §5.
Of course,

1.19. Observation: (1) For a field K, Th(K) being strongly dependent is pre-

served by finite extensions in the field theoretic sense by 1.4(2).

(2) In 1.17, if we use the ω-language and kN is infinite, the theory is not

strongly dependent.

Proof. (1) Recall that by 1.11(2), the theory of the valued group (which is an

ordered abelian group) is strongly dependent, and this holds trivially for the

residue field being finite. So by 1.15(2) we can apply part (3).

(2) We consider the models of T as having three sorts: PM0 the field, PM1 the

ordered abelian group (like value of valuations) and PM2 the residue field.

Let

�1 (a) I be an infinite linear order, without loss of generality complete

and dense (and with no extremal members),

(b) 〈āt : t ∈ I〉 be an indiscernible sequence, āt ∈ αC and let c ∈ C (a

singleton!),

and we shall prove

�2 for some finite J ⊆ I we have: if s, t ∈ I\J and (∀r∈J)(r<I s ≡ r<I t),

then ās, āt realizes the same type over {c}.
This suffices by 2.1 and, as there, by 2.1(4) without loss of generality

�3 āt = 〈at,i : i < α〉 list the elements of an elementary submodel Mt

of C = CT (we may assume Mt is ℵ1-saturated; alternatively we could

have assumed that it is quite complete).

It easily follows that it suffices to prove (by the L.S.T. argument, but not used)

�′
2 for every countable u ⊆ α there is a finite J ⊆ I which is O.K. for

〈āt � u : t ∈ I〉.
Let ft,s be the mapping as,i �→ at,i for i < α; clearly it is an isomorphism from

Ms onto Ms.

Now

�4 pt = tp(c,Mt), so (pt)
[∗]
a for a ∈Mt is well defined in 1.16(a).
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The case P2(x) ∈ ⋂
t pt is easy and the case P1(x) ∈ ⋂

t pt is easy, too, by an

assumption (and clause (c) of 1.16), so we can assume P0(x) ∈
⋂
t pt(x).

Let U = {i < α : as,i ∈ PC
0 for every (≡ some) s ∈ I}.

Now for every i ∈ U :

(∗)1i The function (s, t) �→ valC(at,i − as,i) for s <I t satisfies one of the

following:

Case (a)1i : it is constant.

Case (b)1i : it depends just on s and is a strictly monotonic (increas-

ing, by <Γ) function of s.

Case (c)1i : it depends just on t and is a strictly monotonic (decreas-

ing, by <Γ) function of t.

[Why? This follows by inspection or see the proof of (∗)2i,j below.]

For � = −1, 0, 1 let U� := {i ∈ U : if � = 0, 1,−1 then case (a)1i , (b)
1
i , (c)

1
i

respectively of (∗)1i holds}, so 〈U−1,U0,U1〉 is a partition of U .

For i, j ∈ U1 we shall prove more:

(∗)2i,j We have i, j ∈ U1, and the function (s, t) �→ valC(at,j − as,i) for s <I t

satisfies one of the following:

Case (a)2i,j : val
C(at,j − as,i) is constant.

Case (b)2i,j : valC(at,j − as,i) depends only on s and is a monotonic

(increasing) function of s and is equal to valC(as1,i−as,i) when s <I s1.
Case (c)2i,j : valC(at,j − as,i) depends only on t and is a monotonic

(increasing) function of t and is equal to valC(at,j − at1,j) when t <I t1.

[Why does (∗)2i,j hold? In this case we give a full check.

First, assume: for some (equivalently every) t∈I the sequence 〈valC(at,j−as,i) :
s satisfies s <I t〉 is <Γ-decreasing with s recalling that we have assumed I is

a linear order with neither first nor last element. Choose s1 <I s2 <I t, so

by the present assumption we have valC(at,j − as2,i) <Γ valC(at,j − as1,i),

hence valC((at,j − as2,i) − (at,j − as1,i)) = valC(at,j − as2,i), which means

valC(at,j − as2,i) = valC(−(as2,i − as1,i)) = valC(as2,i − as1,i). So in the right

side t does not appear, in the left side s1 does not appear, hence by the equal-

ity the left side, valC(at,j − as2,i), does not depend on t and the right side,

valC(as2,i − as1,i), does not depend on s1, but as i ∈ U1 it does not depend

on s2. Together, by the indiscernibility for s <I t we have valC(at,i − as,i) is

constant, i.e., case (a)2i,j holds. So we can from now on assume: for each t ∈ I
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the sequence 〈valC(at,j − as,i) : s satisfies s <I t〉 is constant or for each t ∈ I

it is <Γ-increasing with s.

Second, assume: for some (equivalently every) s ∈ I the sequence

〈valC(at,j − as,i) : t satisfies s <I t〉 is <Γ-decreasing with t. As above in

the “first” situation, we can show that case (a)2i,j holds. So from now on we can

assume that for every s ∈ I the sequence 〈valC(at,j − as,i) : t satisfies s <I t〉 is
constant or for every s ∈ I the sequence is <Γ-increasing with s.

Third, assume: for some (equivalently every) t ∈ I the sequence

〈valC(at,j − as,i) : s satisfies s <I t〉 is constant. This implies that s <I t ⇒
valC(at,j − as,i) = et for some ē = 〈et : t ∈ I〉. If for some (equivalently every)

s ∈ I the sequence 〈valC(at,j − as,i) : t satisfies s <I t〉 is constant, then clearly

case (a)2i,j holds, so we can assume this fails; so by the end of the “second”

situation this sequence is <Γ-increasing, hence 〈et : t ∈ I〉 is <Γ-increasing.

So most of the requirements in case (c)2i,j hold; still we have to show that

t <I t1 ⇒ val(at,j − at1,j) = et.

Let s<I t<I t1. We know that et<Γ et1 , which means that valC(at,j−as,i)<Γ

valC(at1,j−as,i). This implies that valC((at,j−as,i)−(at1,j−as,i))= valC(at,j−as,i),
which means that valC(at,j − at1,j) = valC(at,j − as,i) = et as required; so case

(c)2i,j holds and we are done (if the “third” situation holds).

Fourth, assume that for some (equivalently every) s ∈ I the sequence

〈valC(at,j − as,i) : t satisfies s <I t〉 is constant. Then we proceed as in the

“third” situation, getting case (b)2i,j instead of case (c)2i,j .

So assume that none of the above occurs. Hence for every (equivalently some)

t ∈ I the sequence 〈valC(at,j −as,i) : s satisfies s <I t〉 is <Γ-increasing (with s,

by the “first” and “third” situations above), and for every (equivalently some)

s ∈ I the sequence 〈valC(at,j − as,i) : t satisfies s <I t〉 is <Γ-increasing (with

t, by the “second” and “fourth” situations above).

Hence we have s <I t1 <I t2 ⇒ valC(at1,j − as,i) <Γ valC(at2,j − as,i) ⇒
valC(at1,j − as,i) = valC((at2,j − as,i)− (at1,j − as,i)) = val(at2,j − at1,j), hence

valC(at1,j − as,i) does not depend on s as s does not appear on the left side;

but (see above) it is <Γ-increasing with s, contradiction. So we have finished

proving (∗)2i,j .]

(∗)3i For each i ∈ U1, for some t∗i ∈ {−∞} ∪ I ∪ {+∞} we have:

(a)3i valC(c− as,i) = valC(at,i − as,i) when s <I t and s ∈ I<t∗i ,

(b)3i 〈valC(c − as,i) : s ∈ I>t∗i 〉 is constant, and if r ∈ I>t∗i and s <I t
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are from I>t∗i then valC(c− ar,i) <Γ valC(at,i − as,i),

(c)3i acC(c− as,i) = acC(at,i − as,i) when s <I t and s ∈ I<t∗i ,

(d)3i 〈acC(c− as,i) : s ∈ I>t∗i 〉 is constant.
[Why? Recall the definition of U1 which appeared just after (∗)1i , recalling that

we are assuming I is a complete linear order; see �1(a).]

(∗)4 The set J1 = {t∗i : i ∈ U1} has at most one member in I.

[Why? Otherwise we can find i, j from U1 such that t∗i �= t∗j are from I. Now

apply (∗)2i,j + (∗)3i + (∗)3j .]
So without loss of generality

(∗)5 J1 is empty.

[Why? If not, let J0 = {t∗} and we can get enough to prove the claim for I<t∗
and for I>t∗ .]

Now:

�1 If i ∈ U1 and t∗i = ∞ then for every s0 <I s1 <I s2 <I s3 we have

(a) {valC(x− as3,i) > valC(as2,i − as1,i)} � p[∗]as0,i and

(b) c satisfies the formula in the left side; on p
[∗]
as0,j , see �4.

[Why? By clause (b) of 1.16 and (∗)3i and reflect.]

Hence:

�2 If W1 = {i ∈ U1 : t∗i = ∞} then �W1 , where for W ⊆ U we let:

�W if s <I t then �s,tW , where for U ′ ⊆ U :

�s,tU ′ U ′⊆α, s, t∈I and ft,s maps
⋃{p[∗]as,i : i∈U ′} onto⋃{p[∗]at,i : i∈U ′}.

[Why? Should be clear as J1 = ∅ and the indiscernibility of 〈āt : t ∈ I〉 and

�1.]

�3 Assume that: we have i ∈ U1 satisfying t∗i = −∞, and j ∈ U1 is such

that t∗j = −∞ and s, t ∈ I ⇒ valC(c− at,j) > valC(c− as,i). Then:

�3 if s0 <I s1 <I s2, then {valC(x− as2,j) > valC{(c− as1,i)} � p[∗]as0,i

and the formula on the left is satisfied by c.

[Why? Should be clear.]

Hence:

�4 If for every i ∈ U1 satisfying t∗i = −∞ there is j as in the assumption

of �3 then �W2 holds for W2={i∈U1 :t
∗
i =−∞}.

[Why? As in �2.]

Consider the assumption:
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�5 The hypothesis of �4 fails and let j(∗) ∈ U1 exemplify this (so, in

particular, t∗j(∗)=−∞). Let W3={i∈U1 :t
∗
i =−∞ and valC(c−as,j(∗)) >

valC(c−at,i) for any s, t ∈ I} and W4 = {i ∈ U1 : t∗i = −∞ and i /∈ W3},
so j(∗) ∈ W4

�6 If �5 then �W3 .

[Why? Similarly to the proof of �2.]

�7 If �5 then:

(a) 〈valC(c− as,j) : s ∈ I and j ∈ W4〉 is constant,
(b) valC(c−ar,j(∗)) <Γ valC(at,i−as,i), hence (ps)[∗]as,j(∗) � (ps)

[∗]
as,i when

i ∈ W4 and s <I t ∧ r ∈ I,

(c) for some finite J1 ⊆ I we have: if s, t∈J\J1 and (∀r∈J1)(s<I s≡
r <I t)) then tp(valC(c−as,j(∗)),Ms)= fs,t(tp(val

C(c−at,j(∗)),Mt)),

(d) for some finite J2 ⊆ I we have: if s, t ∈ I\J2 and (∀r ∈ Jr)(r <I s ≡
r <I t) then tp(acC(c− as,j(∗)),Ms) = fs,t(tp(ac

C(c− at,j(∗)),Mt),

(e) for some finite J3 ⊆ I we have: if s, t ∈ I\J3 and (∀r ∈ J)(r <I

s ≡ r <I t, then �s,tW4
.

[Why? Let i ∈ W4; so i ∈ W2, hence i ∈ U1, which means that case (b)1i
of (∗)1i holds, so for each t ∈ I the sequence 〈valC(at,i−as,i) : s satisfies
s <I t〉 is <Γ-increasing. Also, as i ∈ W2 clearly t∗i = −∞, hence by

(∗)3i (b)3i we have 〈valC(c− as,i) : s ∈ I〉 is constant; call it ei. All this
applies to j(∗), too. Now as i ∈ W4, we know that for some s1, t1 ∈ I

we have valC(c − as1,j(∗)) ≤Γ valC(c − at1,i), i.e., ej(∗) ≤Γ ei. By the

choice of j(∗), for every j ∈ U1 such that t∗j = −∞, i.e., for every

j ∈ W2 for some (equivalently every) s, t ∈ I, we have valC(c− as,j) ≤
valC(c − at,j(∗)). In particular, this holds for j = i, hence for some

s2, t2 ∈ I we have valC(c − as2,i) ≤ valC(c − at2,j(∗)), i.e., ei ≤Γ ej(∗),
so together with the previous sentence, ei = ej(∗), so clause (a) of �7

holds. Also, the first phrase in clause (b) is easy (using (∗)3i (b)3i ,

second phrase); the second phrase of (b) follows because ei = ej(∗).
For clause (c) note that it means tp(ej(∗),Ms) = fs,t(tp(ej(∗),Mt)) is

strongly stable; for clause (d) note that (∗)3i (d)3i and Th(kM ) is strongly

dependent.

Lastly, for clause (e) combine the earlier clauses.]

�8 For some finite J ⊆ I, if s, t ∈ I\J and (∀r ∈ J)(r <I s ≡ r <I t) then

�s,tU1
.
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[Why? If the hypothesis of �3 holds let J = ∅, and if it fails (so

�5,�6,�7 apply) let J be as in �7(e), so it partitions I to finitely

many intervals. It is enough to prove �s,tW for several W ⊆ U1 which

covers U1. Now by �2 this holds for W1 = {i ∈ U1 : t∗i = ∞}. If the

assumption of �3 holds we get the same for W2 by �4, and if it fails

we get it for W3 by �6 and for W4 by �7(e) and the choice of J . Using

U1 = W1 ∪ W2,W2 = W3 ∪ W4 we are done.]

As we can replace I by its inverse:

�9 For some finite J ⊆ I, if s, t ∈ I\J and (∀r)(r <I s ≡ r <I t) then

�s,tU−1
.

So we are left with U0. For i ∈ U0 let e0,i = val(at,i − as,i) for s <I t, well

defined by the definition of U0. Let W5 := {i ∈ U0: for every (equivalently

some) s �= t ∈ I, valC(c− as,i) < val(at,i − as,i)} and let W6 := U0\W5.

Obviously:

�10 We have �W5 .

Easily:

�11 If i, j ∈ W6 then case (a)2i,j of (∗)2i,j holds.

[Why? By (∗)2i,j and as i, j ∈ W6 ⇒ (∗)1i (a)1i + (∗)1j(a)ij .]
�12 If i, j ∈ W6 and s �= t ∈ I, then valC(at,j − as,i) = e0,i.

[Why? As W6 = U0\W5.]

Hence:

�13 〈e0,i : i ∈ W6〉 is constant. Call the constant value e∗, so s �= t ∈
I ∧ i, j ∈ W6 ⇒ valC(at,j − as,i) = e∗.

Easily:

�14 For every i ∈ W6 the set Ii,c := {s ∈ I : valC(c− as,i) > e∗} has at most

one member.

�15 Let W7 := {i ∈ W6 : Ii,c �= ∅} and let {t∗∗i } = Ii,c for i ∈ W7.

�16 If i, j ∈ W7 then t∗∗i = t∗∗j .

[Why? Otherwise without loss of generality t∗∗i < t∗∗j and let t ∈ I be such

that t∗∗i < t ∧ t∗∗j < t. Now valC(c − at∗∗i ,j) > valC(at,i − at∗∗i ,i) = e∗ and

valC(c − at∗∗j ,j) > valC(at,j − at∗∗j ,j) = e∗, hence e∗ < valC((c − at∗∗i ,i) − (c −
at∗∗j ,j)) = valC(at∗∗j ,j − at∗∗i ,i); but the last one is e∗ by �12, contradiction.]

�17 Without loss of generality W7 = ∅.

Sh:863



26 S. SHELAH Isr. J. Math.

[Why? E.g., as otherwise we can prove separately for I<t∗∗i and for I>t∗∗i for

any i ∈ W7.]

�18 If i, j∈W6 and s �= t∈I then acC(c−at,j)− acC(c−as,i)= acC(as,i−at,j).
[Why? As valC(c− at,j), val

C(c− as,i) and valC(cs,i − (ct,j) are all equal to e∗.]
The rest should be clear.

(3) For the ω-language the proof is similar. 1.17

2. Cutting indiscernible sequence and strongly+ dependent

2.1. Observation: (1) The following conditions on T are equivalent, for α ≥ ω.

(a) T is strongly dependent, i.e., ℵ0 = κict(T ).

(b)α If I is an infinite linear order, āt ∈ αC for t ∈ I, I = 〈āt : t ∈ I〉
is an indiscernible sequence and C ⊆ C is finite, then there is a convex

equivalence relation E on I with finitely many equivalence classes such that

sEt⇒ tp(ās, C) = tp(āt, C).

(c)α If I = 〈āt : t ∈ I〉 is as above and C ⊆ C is finite, then there is a convex

equivalence relation E on I with finitely many equivalence classes such that:

if s ∈ I then 〈āt : t ∈ (s/E)〉 is an indiscernible sequence over C.

(2) We can add to the list in (1)

(b)′α like (b)α, but C a singleton;

(c)′α like (c)α, but the set C is a singleton.

(3) We can, in parts (1) and (2), clauses (c)α, (b)α, (b)
′
α, (c)

′
α, restrict our-

selves to well order I.

(4) In parts (1), (2) and (3), given κ = κ<θ, θ > |T |, in clauses (b)κ, (c)κ and

their parallels, we can add that “āα is the universe of a θ-saturated model”;

moreover, we allow I to be:

(i) I = 〈āu : u ∈ [I]<ℵ0〉 is indiscernible over A (see Definition 5.45(2)),

(ii) ā{t} = āt,

(iii) each āt is the universe of a θ-saturated model,

(iv) for some infinite linear orders I−1, I1 and some I′=〈ā′u : u∈ [I−1+I+I1]
<ℵ0〉

indiscernible over A = Rang(ā∅), we have:

(α) u ∈ [I]<ℵ0 ⇒ ā′u = āu,

(β) for every B ⊆ A of cardinality < θ, every subtype of the type of

〈āu : u ∈ [I−1 + I1]
<ℵ0〉 over 〈āu : u ∈ [I]<ℵ0〉 of cardinality < θ is

realized in A (we can use only A and 〈āt : t ∈ I〉, of course).
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Remark: (1) Note that 2.8 below says more for the cases κict(T ) > ℵ0, so there

is no point in dealing with it here.

(2) We can, in 2.1, add in (b)α, (c)α, (bα)
′, (cα)′ “over a fixed A” by 1.4(3).

(3) By 1.10 we can translate this to the case of a family of indiscernible

sequences.

Proof. (1) Let κ = ω (to serve in the proof of a subsequence observation).

¬(a) ⇒ ¬(b)α
Let λ > ℵ0; as in the proof of 1.5, because we are assuming ¬(a), there are

ϕ̄ = 〈ϕi(x̄, ȳi) : i < κ〉 and 〈āiα : i < ω, α < λ〉 witnessing �2
ϕ̄ from there.

For α < λ let ā∗α ∈ C be the concatenation of 〈āiα : i < κ〉, possibly with

repetitions, so it has length κ.

Let η = 〈ωn : n < ω〉 and b̄∗ realizes {ϕn(x, ānωn) ∧ ¬ϕn(x, ānωn+1) : n < ω}.
So for each n, tp(ānωn, b̄

∗) �= tp(anωn+1, b̄
∗), hence tp(ā∗ωn, b̄

∗) �= tp(ā∗ωn+1, b̄
∗).

So any convex equivalence relation on λ as required (i.e., such that αEβ ⇒
tp(ā∗α, b̄

∗) = tp(ā∗β , b̄
∗)) satisfies n < ω ⇒ ¬(ωn)E(ωn+ 1); it certainly shows

¬(b)α.
¬(b)α ⇒ ¬(c)α
Trivial.

¬(c)α ⇒ ¬(a)
Let 〈āt : t ∈ I〉 and C exemplify ¬(c)α, and assume toward a contradiction

that (a) holds. Without loss of generality I is a dense linear order (hence with

neither first nor last element) and is complete and let c̄ list C.

So

(∗) for no convex equivalence relation E on I with finitely many equivalence

classes do we have s ∈ I ⇒ 〈āt : t ∈ (s/E)〉 is an indiscernible sequence

over C.

We now choose (En, In,Δn, Jn) by induction on n such that

� (a) En is a convex equivalence relation on I such that each equivalence

class is dense (so with no extreme member!) or is a singleton;

(b) Δn is a finite set of formulas (each of the form ϕ(x̄0, . . . , x̄m−1, ȳ),

�g(x̄�) = α, for some m, �g(ȳ) = �g(c̄));

(c) I0 = I, E0 is the equality, Δ0 = ∅;
(d) In+1 is one of the equivalence classes of En and is infinite;
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(e) Δn+1 is a finite set of formulas such that 〈āt : t ∈ In+1〉 is not

Δn+1-indiscernible over C;

(f) En+1 � In+1 is a convex equivalence relation with finitely many

classes, each dense (no extreme member) or singleton; if J is an

infinite equivalence class of En+1 � In+1 then 〈āt : t ∈ J〉 is Δn+1-

indiscernible over C and |In+1/En+1| is minimal under those con-

ditions;

(g) En+1 � (I\In+1) = En � (I\In+1), so En+1 refines En;

(h) we choose (Δn+1, En+1) such that, if possible, In+1/En+1 has ≥ 4

members.

There is no problem in carrying the induction as T is dependent (see 2.2(1)

below, which says more, or see [Sh:715, 3.4+Def. 3.3]).

For n > 0, En � In is an equivalence relation on In with finitely many equiv-

alence classes, each convex; so as I is a complete linear order clearly

(∗)1 for each n > 0 there are tn1 <I · · · < tnk(n)−1 from In such that s1 ∈
In ∧ s2 ∈ In ⇒ [s1Ens2 ≡ (∀k)(s1 < tnk ≡ s2 < tnk ∧ s1 > tnk ≡ s2 > tnk )].

As n > 0 ⇒ En �= En−1, clearly

(∗)2 k(n) ≥ 2 and |In/En| = 2k(n)− 1,

(∗)3 {In,� : � < k(n)} ∪ {{tn� } : 0 < � < k(n)} are the equivalence classes of

En � In, where
(∗)4 for non-zero n < ω, � < k(i) we define In,�:

if 0 < � < k(n)− 1 then In,� = (tn� , t
n
�+1)In ,

if 0 = � then In,� = (−∞, tn� )In ,

if � = k(n)− 1 then In,� = (tn� ,∞)In .

As (see end of clause (f))) we cannot omit any tn� (� < k(n)) and transitivity of

equality of types, clearly

(∗)5 for each � < k(n) − 1 for some m and ϕ = ϕ(x0, . . . , x̄m−1, ȳ) ∈ Δn

there are s0 <I · · · <I sm−1 from In,� and s′0 <I · · · <I s′m−1 from

In,� ∪ {tn�+1} ∪ In,�+1 such that C |= ϕ[ās0 , . . . , c̄] ≡ ¬ϕ[as′0 , . . . , c̄].
Hence easily

(∗)6 J ∈ {In,� : � < k(n)} iff J is a maximal open interval of In such that

〈āt : t ∈ J〉 is Δn-indiscernible over C.

By clause (h) and (∗)6,
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(∗)7 if k(n) < 4 and � < k(n), then 〈at : t ∈ In,�〉 is an indiscernible sequence

over C, hence

(∗)8 if k(n) < 4, then for at most one m > n do we have Im ⊆ In.

Note that

(∗)9 m < n⇒ In ⊂ Im ∨ In ∩ Im = 0.

Case 1: There is an infinite u ⊆ ω such that 〈In : n ∈ u〉 are pairwise

disjoint.

For each n ∈ u we can find c̄n ∈ ω>C and kn < ω (no connection to k(n)

from above!) and ϕ(x̄0, . . . , x̄kn−1, ȳ) ∈ Δn such that 〈āt : t ∈ In〉 is not

ϕn(x̄0, . . . , x̄kn−1, c̄)-indiscernible (so �g(x̄�) = α). So we can find t�n,0 < · · · <
t�n,kn−1 in In for � = 1, 2 such that |= ϕn[ān,t�0 , . . . , ān,t�kn−1

, c̄n]
if(�=2). By minor

changes in Δn, ϕn, without loss of generality c̄n is without repetitions, hence

without loss of generality n < ω ⇒ c̄n = c̄∗.
Without loss of generality Δn is closed under negation and, without loss of

generality, t1kn−1 <I t
2
0. We can choose tmk ∈ In (m < ω,m /∈ {1, 2}, k < kn)

such that, for every m < ω, k < kn, we have tmk <I t
m
k+1, t

m
kn−1 <I t

m+1
0 ; let

ā∗n,m = ātm0 ˆ · · · ˆātm
kn−1

and let x̄ = 〈xi : i < �g(c̄∗)〉. So for every η ∈ ωω the

type {¬ϕn(ā∗n,η(n), x̄) ∧ ϕn(ā∗n,η(n)+1, x̄) : n < ω} is consistent. This is enough

for showing κict(T ) > ℵ0.

Case 2: There is an infinite u ⊆ ω such that 〈In : n ∈ u〉 is decreasing.
For each n ∈ u,En � In has an infinite equivalence class Jn (so Jn ⊆ In) such

that n < m∧ {n,m} ⊆ u⇒ Im ⊆ Jn. By (∗)8, clearly for each n ∈ u, k(n) ≥ 4,

hence we can find �(n) < k(n) such that I ′n = (In,�(n) ∪ {tn�,n} ∪ In,�(n)+1) is

disjoint to Jm. Now 〈I ′n : n ∈ u〉 are pairwise disjoint and we continue as in

Case 1.

By the Ramsey theorem at least one of the two cases occurs, so we are done.

(2) By induction on |C|.
(3), (4) Easy by now. 2.1

Recall

2.2. Observation: (1) Assume that T is dependent, 〈āt : t ∈ I〉 is an indis-

cernible sequence, Δ a finite set of formulas, C ⊆ C finite. Then for some convex

equivalence relation E on I with finitely many equivalence classes, each equiv-

alence class in an infinite open convex set or is a singleton such that, for every

s ∈ I, 〈āt : t ∈ s/E〉 is an Δ-indiscernible sequence over
⋃{āt : t ∈ I\(s/E)}∪C.
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(2) If I is dense and complete, there is the least fine such E. In fact, for

J an open convex subset of I we have: J is an E-equivalence class iff J is a

maximal open convex subset of I such that 〈āt : t ∈ J〉 is Δ-indiscernible over

C ∪⋃{āt : t ∈ I\J}.
(3) Assume that I is dense (with no extreme elements) and complete. Then

there are t1 <I · · · < tk−1 such that, stipulating t0 = −∞, tk = ∞, I� =

(t�, t�+1)I , we have

(a) 〈āt : t ∈ I�〉 is indiscernible over C,

(b) if � ∈ {1, . . . , k − 1}) and t−� <I t� <I t
+
� , then 〈at : t ∈ (t−� , t

+
� )I〉 is not

Δ-indiscernible over C.

Proof. (1) See clause (b) of [Sh:715, Claim 3.2].

(2), (3) Done within the proof of 2.1 and see the proof of 2.10. 2.2

2.3. Definition: (1) We say that ϕ̄ = 〈ϕi(x̄, ȳi) : i < κ〉 witnesses κ < κict,2(T )

when there are a sequence 〈āi,α : α < λ, i < κ〉 and 〈b̄i : i < κ〉 such that

(a) 〈āi,α : α < λ〉 is an indiscernible sequence over ∪{āj,β : j ∈ κ\{i} and

β < λ} for each i < κ,

(b) b̄i ⊆ ∪{āj,α : j < i, α < λ},
(c) p = {ϕi(x̄, āi,0ˆb̄i),¬ϕi(x̄, āi,1ˆb̄i) : i < κ} is consistent (= finitely satisfi-

able in C).

(2) κict,2(T ) is the first κ such that there is no witness for κ < κict,2(T ).

(3) T is strongly2 dependent (or strongly+ dependent) if κict,2(T ) = ℵ0.

(4) T is strongly2 stable if it is strongly2 dependent and stable.

2.4. Observation: IfM is a valued field in the sense of Definition 2.3 and |ΓM | >
1, then T := Th(M) is not strongly2 dependent.

Proof. Let a ∈ ΓM be positive, ϕ0(x, a) := (val(x) ≥ a), E(x, y, a) :=

(val(x, y) ≥ 2a) and F (x, y) = x2 + y (squaring in KM ). Now for b ∈ ϕ0(M, ā),

the function F (−, b) is a (≤ 2)-to-1 function from ϕ0(M,a) to b/E. So we can

apply [Sh:783, §4].
Alternatively, let an ∈ ΓM , an <ΓM an+1 for n < ω be such that there are

bn,α ∈ KM for α < ω such that α < β < ω ⇒ an+1 > valM (bn,α − bn,β) > an

and val(bn,α) > an. Without loss of generality, for each n < ω the sequence

〈bn,α : α < ω〉 is indiscernible over {bn1,α1 : n1 ∈ ω\{n}, α < ω} ∪ {an1 : n1 <
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ω}. Now for η ∈ ωω clearly pη = {val(x − Σ{am,η(m) : m < n}) > an : n < ω};
it is consistent, and we have an example. 2.4

Note that the definition of strongly2 dependent here (in 2.3) is equivalent to

the one in [Sh:783, 3.7(1)] by (a)⇔(e) of Claim 2.9 below.

The following example shows that there is a difference even among the stable

T .

2.5. Example: There is a strongly1 stable not strongly2 stable T (see Definition

2.3).

Proof. Fix λ large enough. Let F be a field, let V be a vector space over F of

infinite dimension, let 〈Vn : n < ω〉 be a decreasing sequence of subspaces of V

with Vn/Vn+1 having infinite dimension λ and V0 = V and Vω =
⋂{Vn : n < ω}

have dimension λ. Let 〈xnα + Vn+1 : α < λ〉 be a basis of Vn/Vn+1 and let

〈xω,iα : i ∈ Z and α < λ〉 be a basis of Vω . Let M =Mλ be the following model:

(a) universe: V ,

(b) individual constants: 0V ,

(c) the vector space operations: x+ y, x− y and cx for c ∈ F,

(d) functions: FM1 , a linear unary function: FM1 (xnα) = xn+1
α , FM1 (xω,iα ) =

xω,i+1
α ,

(e) FM2 , a linear unary function:

FM2 (x0α) = x0α, F
M
2 (xn+1

α ) = xnα and FM2 (xω,iα ) = xω,i−1
α ,

(f) predicates: PMn = Vn, so Pn unary.

Now

(∗)0 for any models M1,M2 of Th(Mλ) with uncountable
⋂{PM�

n : n < ω}
for � = 1, 2, the set F exemplifies M1,M2 are L∞,ℵ0 -equivalent where:

F is the family of partial isomorphisms f from M1 into M2 such that,

for some n, 〈Ni : i < n ∨ i = ω〉 we have:

(a) Dom(f) =
⊕

i<nNi ⊕Nω,

(b) Ni ⊆ PM1

i is a subspace when i < n ∨ i = ω,

(c) Ni is of finite dimension,

(d) (α) Ni ∩ PM1

i+1 if i < n and FM1
1 (Ni) = Ni+1 if i+ 1 < n.

(β) Ni∩
∑

m>0Ni,m = {0} when i = w andNi,0 := Ni, Ni,m+1 :=

FM1
2 (Ni,m),

(e) similar conditions on N ′
i = f(Ni) for i < n ∨ i = ω.

(∗)1 T = Th(Mλ) has elimination of quantifiers

Sh:863



32 S. SHELAH Isr. J. Math.

[Why? Easy.]

Hence

(∗)2 T does not depend on λ,

(∗)3 T is stable.

[Why? Because if N1 is ℵ1-saturated, N1 ≺ N2, then {tp(a,N1, N2) : a ∈ C}
has cardinality ≤ ‖N1‖ℵ0 by (∗)0.]

Now

(∗)4 T is not strongly2 dependent.

[Why? By 0.1. Alternatively, define a term σn(y) by induction on

n : σ0(y) = y, σn+1(y) = F1(σn(y)), and for η ∈ ωλ increasing let

pη(y) = {P1(y − σ0(x
0
η(0))), P2(y − σ0(x

0
η(0))− σ1(x

1
η(1))), . . . ,

Pn(y − Σ{σ�(x�η(�)) : � < n}), . . .}.
Clearly each pη is finitely satisfiable in Mλ. Easily this proves that

T is not strongly2 stable I.]

So it remains to prove

(∗)5 T is strongly stable.

Why does this hold? We work in C = CT . Let λ ≥ (2κ)+ be large enough

and κ = κℵ0 . We shall prove κict(T ) = ℵ0 by the variant of (b)′ω from 2.1(3);

this suffices. Let 〈āα : α < λ〉 be an indiscernible sequence over a set A such

that �g(āα) ≤ κ. By 1.10, without loss of generality each āα enumerates the

set of elements of an elementary submodel Nα of C which includes A and is

ℵ1-saturated.

Without loss of generality (I ∩ Z = ∅ and):

�1 for some ā′n(n ∈ Z), A ⊇ c�(A′ ∪ ⋃{ā′i : i ∈ Z}), and 〈ā′n : n <

0〉ˆ〈āα : α < λ〉ˆ〈ā′n : n ≥ 0〉 is an indiscernible sequence over A′ and
〈āα : α < λ〉ˆ〈A〉 is linearly independent over A′, A is the universe of

N,N is ℵ1-saturated and N ∩Nα is ℵ1-saturated (and does not depend

on α).

Hence by (∗)0
�2 (a) α �= β ∧ aα,i = aβ,j ⇒ aα,i = aβ,i ∈ A,

(b) if u ⊆ λ then c�(
⋃{āα : α ∈ u} ∪ A}) is ≺ C,

(c) if u ⊆ λ is finite we get an ℵ1-saturated model (not really used).

(We can use the stronger 2.1(4).) Easily
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�3 if a ∈ Nα, b ∈ c�(
⋃{Nβ : β < α} ∪ A) then:

(a) a = b⇒ a ∈ A,

(b) a− b ∈ PC
n ⇒ (∃c ∈ A)(a− c ∈ PC

n ∧ b− c ∈ PC
n ).

[Why? Let b=σC(āβ0 , . . . , āβm−1 , ā), ā∈ω>A, σ a term, β0<β1< · · ·<βm−1 <

α; then for every k <ω large enough b′ := σC(a′k, ā
′
k+1, . . . , āk+m−1, ā) belongs

to A (recalling (∗)3 + �1) and, in Case (a), a = b⇒ a = b′, and in Case (b),

a− b ∈ PC
n ⇒ a− b′ ∈ PC

n .]

�4 If a� ∈ c�(
⋃{Nα : α ∈ u�} ∪ A) and u� ⊆ λ for � = 1, 2 then:

(a) if a1 = a2, then for some b ∈ c�(
⋃{Nα : α ∈ u1 ∩ u2} ∪ A) we have

a1 − b = a2 − b ∈ A;

(b) if a1 − a2 ∈ PC
n , then for some b ∈ c�({Nα : α ∈ u1 ∩ u2} ∪ A) and

c ∈ A we have a2 − b− c ∈ PC
n and a2 − b− c ∈ PC

n .

[Why? Similarly to �3.]

Now let c ∈ C; the proof splits into cases.

Case 1: c ∈ c�(
⋃{āβ : β < λ} ∪ A).

So for some finite u ⊆ λ, c ∈ c�(
⋃{āβ : β ∈ u}); easily 〈āβ : β ∈ λ\u〉 is an

indiscernible set over A ∪ {c}, and we are done.

Case 2: For some finite u⊆λ, for every n for some cn∈c�(
⋃{āβ :β∈u} ∪A)

we have c− cn ∈ PMn (but not case 1).

Clearly u is as required. (In fact, easily c�({āβ : β ∈ u} ∪ A) is ℵ1-saturated

(as u is finite, by �2(c)), hence there is c∗ ∈ c�(
⋃{aβ : β ∈ u} ∪ A) such that

n < ω ⇒ c∗ − cn ∈ PMn .)

Case 3: Neither case 1 nor case 2 (less is needed).

Let n(1) < ω be maximal such that, for some cn(1) ∈ A, we have c− cn(1) ∈
PMn(1) (for n = 0 every c′ ∈ A is O.K.; by not Case 2 such n(1) exists).

Subcase 3A: There is n(2) ∈ (n(1), ω) and cn(2) ∈ c�({āβ : β < λ}∪A) such
that c− cn(2) ∈ PMn(2).

Let u be a finite subset of λ such that cn(2) ∈ c�({āβ : β ∈ u} ∪ A); now u is

as required (by �3 +�4 above).

Subcase 3B: Not subcase 3A.

Choosing u = ∅ works, because neither Case 1 nor Case 2 holds with

u = ∅ and subcase 3A fails. 2.5

2.6. Remark: We can prove a claim parallel to 1.11, i.e., replacing strong de-

pendent by strongly2 dependent.
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2.7. Claim: (1) κict,2(T
eq) = κict,2(T ).

(2) If T� = Th(M�) for � = 1, 2, then κict,2(T1) ≥ κict,2(T2) when:

(∗) M1 is (first order) interpretable in M2.

(3) If T ′ = Th(C, c)c∈A, then κict,2(T
′) = κict,2(T ).

(4) IfM is the disjoint sum ofM1,M2 (or the product) and Th(M1), Th(M2)

are strongly2 dependent, then so is Th(M).

Proof. Similar to 1.11. 2.7

Now κict(T ) is very close to being equal to κict,2(T ).

2.8. Claim: (1) If κ = κict,2(T ) �= κict(T ) then:

(a) κict,2(T ) = ℵ1 ∧ κict(T ) = ℵ0,

(b) there is an indiscernible sequence 〈āt : t ∈ I〉 with āt ∈ ωC and c ∈ C, I is

dense complete for clarity, such that

(∗) for no finite u ⊆ I do we have: if J is a convex subset of I disjoint to

u then 〈āt : t ∈ J〉 is indiscernible over
⋃{āt : t ∈ I\J} ∪ {c}.

(2) If T is strongly+ dependent then T is strongly dependent.

(3) In the definition of κict,2(T ), without loss of generality m = 1.

Proof. (1) We use Observation 1.5. Obviously κict(T ) ≤ κict,2(T ); the rest is

proved together with 2.10 below.

(2) Easy.

(3) Similar to the proof of 1.7, or better use 2.10(1), (2). 2.8

2.9. Claim: The following conditions on T are equivalent:

(a) κict,2(T ) > ℵ0,

(b) we can find A and an indiscernible sequence 〈āt : t ∈ I〉 over A satisfying

āt ∈ ωC and tn ∈ I increasing with n and c̄ ∈ ω>C such that, for every n,

tn <I t⇒ tp(ātn , A ∪ c̄ ∪ {ātm : m < n}) �= tp(āt, A ∪ c̄ ∪ {ātm : m < n}),
(c) similarly to (b), but tn <I t ⇒ tp(ātm , A ∪ c̄ ∪ {ās : s <I tn}) �= tp(at, A ∪

c̄ ∪ {ās : s <I tn}),
(d) we can find A and a sequence 〈ānt : t ∈ In〉, In an infinite order, such that

〈ānt : t ∈ In〉 is indiscernible over A ∪ ⋃{āmt : m �= n,m < ω, t ∈ In}
and, for some c̄ ∈ ω>C for each n, 〈ānt : t ∈ In〉 is not indiscernible over

A ∪ c̄ ∪⋃{āmt : t ∈ Im,m < n},
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(e) we can find a sequence 〈ϕn(x, ȳn, . . . , ȳ0) : n < ω〉 and 〈ānα : α < λ, n < ω〉
such that: for every η ∈ ωλ the set

pη = {ϕn(x̄, ānα, ān−1
η(n−1), . . . , ā

0
η(0))

if(α=η(n)) : n < ω, α < λ}
is consistent.

Proof. Should be clear from the proof of 2.1 (more in 2.3). 2.9

2.10. Observation: (1) For any κ and ζ ≥ κ we have (d)⇔(c)ζ ⇒(b)ζ ⇔(a); if,

in addition, we assume ¬(ℵ0 = κict(T ) < κ = ℵ1 = κict,2(T )) then we have also

(c)ζ ⇔(b)ζ , so all the following conditions on T are equivalent;

(a) κ ≥ κict(T ),

(b)ζ if 〈āt : t ∈ I〉 is an indiscernible sequence, I a linear order, āt ∈ ζC and

C ⊆ C is finite, then for some set P of < κ initial segments of I we have:

(∗) if s, t ∈ I and (∀J ∈ P)(s ∈ J ≡ t ∈ J), then ās, āt realizes the same

type over C (if I is complete this means: for some J ⊆ I of cardinality

< κ, if s, t ∈ I realizes the same quantifier free type over J in I, then

ās, āt realizes the same type over C),

(c)ζ like (b), but strengthening the conclusion to: if n < ω, s0 <I · · · <I
sn−1, t0 <I · · · <I tn and (∀� < n)(∀k < n)(∀J ∈ P)[s� ∈ J = tk ∈ J ],

then ās0ˆ · · · ˆātn−1 and āt0ˆ · · · ˆātn−1 realize the same type over C,

(d) κ ≥ κict,2(T ).

(2) We can, in clauses (b)ζ and (c)ζ , add |C| = 1 and/or demand I is well

ordered (for the last, use 1.10).

Proof. We shall prove various implications, which together obviously suffice (for

2.10 and 2.8(1) and 2.8(3)).

¬(a)⇒ ¬(b)ζ
Let λ ≥ κ. As in the proof of 1.5 there are ϕ̄ = 〈ϕi(x̄, ȳi) : i < κ〉,m =

�g(x̄) and 〈āiα : i < κ, α < λ〉 exemplifying �2
ϕ̄ from 1.5, so necessarily ā�α

is non-empty. Recall that �g(āiα) is finite for i < κ, α < λ. Let ā∗α ∈ ζC be

ā0αˆā
1
αˆ · · · ˆā′α where ā′α has length ζ − Σ�<κ�g(ā

i
α) and is constantly the first

member of ā0α. Let c̄ realize p = {ϕi(x̄, ā2i) ∧ ¬ϕi(x̄, ā2i+1) : i < κ}.
Easily c̄ (or pedantically Rang(c̄)) and 〈ā∗α : α < λ〉 exemplify ¬(b)ζ .
(a)⇒(b)ζ .

If κ = ℵ0, this holds by 2.1(1); in general, this holds by the proof of 2.1(1)

and this is why there we use κ.
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¬(b)ζ ⇒ ¬(c)ζ
Obvious.

¬(a)⇒ ¬(d)
The witness for ¬(a) is a witness for ¬(d).
¬(d)⇒ ¬(c)ζ
Let 〈ϕi(x̄, ȳi) : i < κ〉 witness ¬(d), i.e., witness κ < κict,2(T ), so there are

〈āi,α : α < λ, i < κ〉 and 〈b̄i : i < κ〉 satisfying clauses (a), (b), (c) of Definition

2.3. By Observation 1.10 we can find an indiscernible sequence 〈ā∗α : α <

λ × κ〉, �g(ā∗α) = ζκ, where ζj := Σ{�g(ȳi) : i < j} such that i < κ ∧ α < λ ⇒
ā∗i � [ζi, ζi+1) = āiα. Now 〈ā∗α : α < λ× κ〉, c̄ witness ¬(c)ζκ , because if P is as

required in (c)ζκ then easily (∀i < κ)(∃J ∈ P)(J∩[λi, λi+λ) /∈ {∅, [λi, λi+λ)},
hence |P| ≥ κ. Now clearly ζκ ≤ ζ, hence repeating the first element (ζ − κ)

times we get 〈b̄iα : α < λκ〉, which together with c̄ exemplify ¬(c)ζ .
It is enough to prove:

(∗) assume ¬(c)ζ ; then
(i) ¬(d),
(ii) ¬(a) except possibly when (a) + (b) of 2.8(1) holds, in particular

ℵ0 = κict(T ) < κ = ℵ1 = κict,2(T ).

Toward this we can assume that

� T is dependent and C, 〈āt : t ∈ I〉 form a witness to ¬(c)ζ .
Let c̄ list C without repetitions and, without loss of generality, I is a dense

complete linear order (so with no extreme elements). Let �g(x̄�) = ζ for � < ω

be pairwise disjoint with no repetitions, of course, �g(ȳ) = �g(c̄) < ω (pairwise

disjoint), and let ϕ̄ = 〈ϕi = ϕi(x̄0, . . . , x̄n(i)−1, ȳ) : i < |T |〉 list all such formulas

in L(τT ). For each i < |T |, by 2.2(1), (2) there are m(i) < ω and ti,1 <I · · · <I
ti,m(i)−1 as there and m(i) is minimal, so stipulating ti,0 = −∞, ti,m(i) = ∞ we

have:

(∗)1 if s′0 <I · · · <I s′m(i)−1 and s′′0 <I · · · <I s′′m(i)−1 and s′�, s
′′
� real-

ize the same quantifier free type over {ti,1, . . . , ti,m(i)−1} in the lin-

ear order I for each � < m(i), then C |= “ϕi[ās′0 , . . . , ās′m(i)−1
, c̄] ≡

ϕi[ās′′0 , . . . , ās′′m(i)−1
c̄]”.

For each i < |T |, for each � ∈ {1, . . . ,m(i)} we can find wi,� such that

(∗)2 (a) wi,� ⊆ I\{ti,�},
(b) wi,� is finite,
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(c) if s1 < ti,�(i) < s2 then 〈āt : t ∈ (s1, s2)I〉 is not {ϕi}-indiscernible
over C ∪ {āt : t ∈ wi}. Moreover for some n∗

i < m(i), letting

Πi : {0, . . . ,m(i)− 1} → {0, . . . ,m(i)− 1} be Πi(0) = n∗
i ,Πi(n

∗
i ) =

0 and Πi(n) = n otherwise and letting ϕ′
i(x̄0, . . . x̄m(i)−1, ȳ) =

ϕ(x̄Πi(0), . . . , x̄Πi(m(i)−1)) for some t∗i,n ∈ wi,�(i) for n = 1, . . . , n(i)−
1 if s1 <I ti,�(i) < s2 then for some t′ ∈ (s1, s2)I\{t} we have

|= ϕ′
i[āt′ , āt∗i,1 , . . . , āt∗i,n(i)−1

, c̄] ≡ ¬ϕ′
i[āti,�(i) , āt∗i,1 , . . . , āt∗i,n(i)−1

, c̄].

If the set {ti,k : i < |T |, k = 1, . . . ,m(i) − 1} has cardinality < κ we are done,

so assume that

(∗)3 {ti,� : i < |T | and � ∈ [1,m(i)]} has cardinality ≥ κ.

Case 1: κ > ℵ0 (so we have to prove ¬(a)).
By the Hajnal free subset theorem and by (∗)3 there is u0 ⊆ |T | of order

type κ such that i ∈ u0 ⇒ {ti,� : � = 1, . . . ,m(i) − 1} � {tj,� : j ∈ u0\{i} and

� = 1, . . . ,m(j)− 1} ∪⋃{wj,� : j ∈ u\{i} and � ∈ (1,m(i))}.
There are u ⊆ u0 of cardinality κ and a sequence 〈�(i) : i ∈ u〉, 0 < �(i) < m(i)

such that 〈ti,�(i) : i ∈ u〉 is with no repetitions and disjoint to {ti,� : i ∈ u and

� �= �(i)} ∪⋃{wi,�(i) : i ∈ u}. We shall now prove κ < κict(T ); this gives ¬(a),
¬(d) so it suffices.

Clearly by 1.5 it suffices to show (λ any cardinality≥ ℵ0; we can easily change

the āi�’s to have finite length preserving (a) + (b) below):

�u there are āiα ∈ ζC for i ∈ u, α < λ and set A such that

(a) 〈āiα : α < λ〉 is an indiscernible sequence over
⋃{ājβ : j ∈ u, j �=

i, α < λ} ∪A,
(b) 〈āiα : α < λ〉 is not {ϕi}-indiscernible over A ∪ c̄.

By compactness it suffices to prove �v for any finite v ⊆ u and λ = ℵ0; also,

we can replace λ by any infinite linear order.

We can find 〈(s1,i, s2,i) : i ∈ v〉 such that

(∗)4 s1,i <I ti,�(i) <I s2,i (for i ∈ v),

(∗)5 (s1,i, s2,i)I is disjoint to
⋃{(s1,j, s2,j) : j ∈ v\{i}} ∪⋃{wj,�(j) ∈ v}.

So 〈〈ajt : t ∈ (s1,j , s2,j)I〉 : j ∈ v〉 and choosing A =
⋃{āt : t ∈ wi,�(i), i ∈ v} are

as required above. Thus we are done.

Case 2: κ = ℵ0 so we have to prove ¬(d) and clause (ii) of (∗) and (for

proving part (2) of the present 2.10) that, without loss of generality, |C| = 1.

We can find A and u:
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�1 (a) A ⊆ C,

(b) u ⊆ I is finite,

(c) if n < ω and t�0 <I · · · <I t�n−1 for � = 1, 2 and (∀k < n)(∀s ∈ u)

(t1k=s≡ t2k=s∧t1k<I s≡ t2k<I s), then āt10ˆ · · · ˆāt1n−1
, āt20ˆ · · · ˆāt2n−1

realize the same type over A,

(d) if A′, u′ satisfies (a)+(b)+(c), then |A′| ≤ |A|.

This is possible because C is finite and the empty set satisfies clauses (a), (b),

(c) for A. By our present assumption A �= C, so let c ∈ C\A. Now we try to

choose (ik, �k, wk) by induction on k < ω:

� (a) ik < κ,

(b) 1 ≤ �k ≤ m(ik)− 1,

(c) tik,�k ∈ I\wk,
(d) wk ⊇ u ∪ w0 ∪ · · · ∪ wk−1 ∪ {ti0,k0 , . . . , tik−1,�k−1

},
(e) wk ⊆ I\{tik,�k} is finite,

(f) if s′ <I tik,�k <I s
′′, then 〈āt : t ∈ (s′, s′′)I〉 is not indiscernible over

{ās : s ∈ wk} ∪ {c} moreover the parallel of (∗)2(c) holds.

If we are stuck in k, then wk−1 ∈ [I]<ℵ0 when k > 0 and u when k = 0 show

that 〈āt : t ∈ I〉, A ∪ {c} contradict the choice of A recalling we are assuming

¬(c)ζ . If we succeed, then we prove as in Case 1 that κict,2(Th(C, a)a∈A) > ℵ0,

so by 1.4 we get κict,2(T ) > ℵ0. So we have proved clause (d) completing

the proof of 2.10; also clearly (∗)(b) holds hence we complete also the proof of

2.8 2.10.

2.11. Conclusion: T is strongly2 dependent by Definition 2.3 iff T is strongly2

dependent by [Sh:783, §3,3.7], which means we say T is strongly2 (or strongly+)

dependent when: if 〈āt : t ∈ I〉 is an indiscernible sequence over A, t ∈ I ⇒
�g(āt) = α and b̄ ∈ ω>(C) then we can divide I into finitely many convex sets

〈I� : � < k〉 such that, for each �, the sequence 〈āt : t ∈ I�〉 is an indiscernible

sequence over {ās : s ∈ I\I�} ∪A ∪ b̄.
∗ ∗ ∗

Discussion: Now we define “T is strongly2,∗ dependent”, parallel to 1.8, 1.9 at

the end of §1.
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2.12. Definition: (1) κicu,2(T ) is the minimal κ such that, for no m < ω and

ϕ̄ = 〈ϕi(x̄i, ȳi) : i < κ〉 with �g(x̄i) = m × ni, can we find āiα ∈ �g(ȳi)C for

α < λ, i < κ and c̄η,n ∈ mC for η ∈ κλ such that:

(a) 〈c̄η,n : n < ω〉 is an indiscernible sequence over
⋃{āiα : α < λ, i < κ},

(b) for each η ∈ κλ and i < κ we have C |= ϕi(c̄η,0ˆ · · · ˆc̄η,ni−1, ā
i
α)

if (α=η(i)).

(2) If ϕ̄ is as in (1), then we say that it witnesses κ < κicu,2(T ).

(3) T is strongly1,∗ dependent if κicu(T ) = ℵ0.

2.13. Claim: (1) κicu,2(T ) ≤ κict,2(T ).

(2) If cf(κ) > ℵ0 then κicu,2(T ) > κ⇔ κict,2(T ) > κ.

(3) The parallel of 1.4, 1.5, 1.7(2) holds.

3. Ranks

3A. Rank for strongly dependent T .

3.1. Explanation/Thesis: (a) For stable theories we normally consider not just

a model M (and, say, a type in it), but all its elementary extensions; we

analyze them together.

(b) For dependent theories we should be more liberal, allowing one to replace

M by N [a] when M ≺ N ≺ N1, ā ∈ �g(ā)(N1) (N [ā] is the expansion of N

by restrictions of the relation in N1 definable with parameters from ā);

(c) this motivates some of the ranks below.

Such ranks relate to strongly1 dependent, they have relatives for strongly2

dependent.

Note that we can represent the x ∈ K ′
�,m (and ranks) close to [Sh:783, §1],

particularly � = 9.

3.2. Definition: (1) Let M0 ≤A M1 for M0,M1 ≺ C and A ⊆ C mean that:

(a) M0 ⊆M1 (equivalently M0 ≺M1),

(b) for every b̄ ∈ M1, the type tp(b̄,M0 ∪ A) is f.s. (= finitely satisfiable) in

M0.

(2) Let M0 ≤A,p M1 for M0,M1 ≺ C, A ⊆ C and p ∈ S<ω(M1 ∪ A), or p is

just a (< ω)-type over M1 ∪A, means that

(a) M0 ⊆M1;

(b) if b̄ ∈ M1, c̄ ∈ M0, ā1 ∈ A, ā2 ∈ A,C |= ϕ1[b̄, ā1, c̄] and ϕ2(x̄, b̄, ā2, c̄) ∈ p or

is just a (finite) conjunction of members of p (e.g., empty), then for some
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b̄′ ∈ M0 we have C |= ϕ1[b̄
′
1, ā1, c̄] and ϕ2(x̄, b̄

′, ā2, c̄) ∈ p, or is just a finite

conjunction of members of p.

3.3. Observation: (1) M0 ≤A,p M1 implies M0 ≤A M1.

(2) If p = tp(b̄,M1∪A) ∈ Sm(M1∪A), then M0 ≤A,p M1 iffM1 ≤A∪b̄ M2.

(3) If M0 ≤A M1 ≤A M2, then M0 ≤A M2.

(4) If M0 ≤A,p�(M1∪A) M1 ≤A,p M2, then M0 ≤A,p M2.

(5) If the sequences 〈M1,α : α ≤ δ〉, 〈Aα : α ≤ δ〉 are increasing continuous,

δ a limit ordinal and M0 ≤Aα M1,α for α < δ, then M0 ≤Aδ
M1,δ.

Similarly using <Aα,pα .

(6) If M1 ⊆ M2 and p is an m-type over M1 ∪ A, then M1 ≤A M2 ⇔
M1 ≤A,p M2.

Proof. Easy.

3.4. Discussion: (1) Note that the ranks defined below are related to [Sh:783,

§1]. An alternative presentation (for � ∈ {3, 6, 9, 12}) is that we define

MA as (M,a)a∈A and TA = Th(C, a)a∈A, and we consider p ∈ S(MA),

and in the definition of ranks to extend A and p we use appropriate q ∈
S(NB),MA ≺ NA, A ⊆ B. Originally, we prsented here many variants, but

now we present only two (� = 8, 9), retaining the others in §5A.
(2) We may change the definition, each time retaining from p only one formula

with little change in the claims.

(3) We can define x ∈ K�,m such that it has also N x, where M x ⊆ N x(≺ CT )

and:

(A) change the definition of x ≤�at y to:

(a) Ny ⊆ N x,

(b) Ax ⊆ Ay ⊆ Ax ∪N x,

(c) M x ⊆My ⊆ N x,

(d) py ⊆ px;

(B) change “y explicitly Δ̄-split �-strongly over x” according to, and re-

placing in Def 3.5(4) or Def. 5.1(4) clauses (e), (e)′ the type px
′
by

px,

(C) dp-rkm
Δ̄,�

is changed accordingly.

So now dp-rkm
Δ̄

may be any ordinal, hence 3.7 may fail, but the result in §4
becomes stronger, covering also some models of non-strongly dependent T .

Sh:863



Vol. 204, 2014 STRONGLY DEPENDENT THEORIES 41

3.5. Definition: (1) For � = 8, 9 let

Km,� =
{
x :x = (p,M,A),M a model ≺ CT , A ⊆ CT ,

p ∈ Sm(M ∪A), and if � = 9 then p is finitely satisfiable in M
}
.

If m = 1 we may omit it.

For x ∈ Km,� let x = (px,M x, Ax) = (p[x],M [x], A[x]) and m = m(x), recalling

px is an m-type.

(2) For x ∈ Km,� let Nx be M x expanded by Rϕ(x̄,ȳ,ā) = {b̄ ∈ �g(ȳ)M :

ϕ(x̄, b̄, ā) ∈ p} for ϕ(x̄, ȳ, z̄) ∈ L(τT ), ā ∈ �g(z̄)A and Rϕ(ȳ,ā) = {b̄ ∈ �g(ȳ)M :

C |= ϕ[b̄, ā]} for ϕ(ȳ, z̄) ∈ L(τT ), ā ∈ �g(ȳ)C; let τx = τNx .

(2A) In parts (1) and (2): if we omit p we mean p = tp(〈〉,M ∪A), therefore
we can write NA, a τA-model, so in this case p = {ϕ(b̄, ā) : b̄ ∈ M, ā ∈ M and

C |= ϕ[b̄, ā]}.
(3) For x, y ∈ Km,� let

(α) x ≤�pr y means that x, y ∈ Km,� and

(a) Ax = Ay,

(b) M x ≤A[x] M
y,

(c) px ⊆ py,

(d) M x ≤A[x],p[y] M
y;

(β) x ≤� y means that for some n and 〈xk : k ≤ n〉, xk ≤�at xk+1 for k < n

and (x, y) = (x0, xn), where

(γ) x ≤�at y iff (x, y ∈ Km,� and) for some x′ ∈ Km,� we have

(a) x ≤�pr x′,
(b) Ax ⊆ Ay ⊆ Ax ∪M x′ ,

(c) My ⊆M x′ ,

(d) py = px
′ � (My ∪Ay).

(4) For x, y ∈ Km,� we say that y explicitly Δ̄-splits �-strongly over x when:

Δ̄ = (Δ1,Δ2),Δ1,Δ2 ⊆ L(τT ), and for some x′ and ϕ(x̄, ȳ) ∈ Δ2 we have

clauses (a),(b),(c),(d) of part (3)(γ) and

(e) there are b̄, ā such that

(α) ā = 〈āi : i < ω + 1〉 is Δ1-indiscernible over Ax ∪My,

(β) Ay\Ax =
⋃{āi : i < ω}; yes ω not ω + 1! (note that “Ay\Ax = ”

and not “Ay\Ax ⊇ ” as we use it in (e)(γ) in the proof of 3.7),

(γ) āi ∈M x′ for i < ω + 1 and b̄ ∈ ω>(Ax),

(δ) ϕ(x̄, ākˆb̄) ∧ ¬ϕ(x̄, āωˆb̄) belongs to px′ for k < ω.
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(5) We define dp-rkm
Δ̄,�

: Km,� → Ord ∪ {∞} by

(a) dp-rkmΔ̄,�(x) ≥ 0 always,

(b) dp-rkmΔ̄,�(x)≥ α+1 iff there is y ∈ Km,� which explicitly Δ̄-splits �-strongly

over x and dp-rkΔ̄,�(y) ≥ α,

(c) dp-rkmΔ̄,�(x) ≥ δ iff dp-rkmΔ̄,�(x) ≥ α for every α < δ when δ is a limit ordinal.

This is clearly well defined. We may omit m from dp-rk as x determines it.

(6) Let dp-rkm
Δ̄,�

(T ) =
⋃{dp-rkΔ̄,�(x) : x ∈ Km,�}; if m = 1 we may omit it.

(7) If Δ1 = Δ2 = Δ we may write Δ instead of (Δ1,Δ2). If Δ = L(τT ) then

we may omit it.

Remark: There are obvious monotonicity and inequalities.

3.6. Observation: (1) ≤�pr is a partial order on Km,�.

(2) Km,9 ⊆ Km,8.

(3) if x, y ∈ Km,9 then x ≤8
pr y ⇔ x ≤9

pr y.

(4) if x, y ∈ Km,9 then x ≤8
at y ⇔ x ≤9

at y.

(5) if x, y ∈ Km,9 then y explicitly Δ̄-splits 8-strongly over x iff y explicitly

Δ̄-splits 9-strongly over x.

(6) If x ∈ Km,9, then dp-rkm
Δ̄,9

(x) ≤ dp-rkmΔ̄,8(x).

(7) If ā ∈ mC and x = (tp(ā,M ∪A),M,A), then x ∈ Km,8.

(8) In part (7), if tp(ā,M∪A) is finitely satisfiable inM then also y ∈ Km,9.

(9) If x ∈ Km,� and κ > ℵ0, then there is y ∈ Km,� such that x ≤�pr y andMy

is κ-saturated; moreover, My
A[y],p[y] is κ-saturated (hence in Definition

3.2(4), without loss of generality, M x′ is (|M x ∪Ax|+)-saturated).
Proof. Easy.

3.7. Claim: (1) For each � = 8, 9 we have dp-rk�(T ) = ∞ iff dp-rk�(T ) ≥ |T |+
iff κict(T ) > ℵ0.

(2) For each m ∈ [1, ω), the latter holds similarly using dp-rkm� (T ), hence the

properties do not depend on such m.

3.8. Remark: In the implications in the proof we allow more cases of �.

Proof. Part (2) has the same proof as part (1) when we recall 1.7(1).

κict(T ) > ℵ0 implies dp-rk�(T ) = ∞:

By the assumption there is a sequence ϕ̄ = 〈ϕn(x, ȳn) : n < ω〉 exemplifying

ℵ0 < κict(T ). Let λ > ℵ0 and I be λ × Z ordered lexicographically, and let
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Iα = {α} × Z and I≥α = [α, λ) × Z. As in 1.5, by the Ramsey theorem and

compactness we can find 〈ānt : t ∈ I, n < ω〉 (in CT ) such that

� (a) �g(ānt ) = �g(ȳn),

(b) 〈ānt : t ∈ I〉 is an indiscernible sequence over
⋃{āmt : m < ω,m �= n

and t ∈ I},
(c) for every η ∈ ωI, pη = {ϕn(x, ānt )if(η(n)=t) : n < ω, t ∈ I} is consis-

tent (i.e., finitely satisfiable in C).

Choose a complete T1 ⊇ T with Skolem functions, and M∗ |= T1 expanding

C be such that in it 〈ānα : t ∈ I, n < ω〉 satisfies � also in M∗; this exists by

the Ramsey theorem. Let M∗
n be the Skolem hull in M∗ of

⋃{āmt : m < n, t ∈
I1}∪{āmt : m ∈ [n, ω) and t ∈ I} and letMn =M∗

n � τ(T ). So we haveMn ≺ C,

which includes {āmt : t ∈ I,m ∈ [n, ω)} such thatMn+1 ≺Mn and 〈ānt : t ∈ I≥2〉
is an indiscernible sequence overMn+1∪{āmt : m < n, t ∈ I1}, hence 〈ant : t ∈ I2〉
is an indiscernible sequence over Mn+1 ∪An; the indiscernibility holds even in

M∗, where An = {āmt : m < n and t ∈ I1}. We delay the case � = 9. Let η ∈ ωI

be chosen as 〈(2, i) : i < ω〉. Let p ∈ S(M0) be such that it includes pη.

Lastly, let xn = x′n = (pn,Mn, An), where pn = p � (An ∪Mn). By 3.6(7)

clearly xn ∈ K�.

It is enough to show that dp-rk�(xn) < ∞ ⇒ dp-rk�(xn) > dp-rk�(xn+1), as

by the ordinals being well ordered this implies that dp-rk�(xn) = ∞ for every

n. By Definition 3.5(5) clause (b), it is enough to show (fixing n < ω) that

xn+1 explicitly splits �-strongly over xn using 〈ān(1,i) : i < ω〉ˆ〈ān(2,n)〉. To show

this, see Definition 3.5(4); we use x′n := xn, clearly xn ≤�pr x′n as xn = x′n ∈ K�,

so clause (a), of Definition 3.5(3)(γ) holds. Also, Axn ⊆ Axn+1 ⊆ Axn ∪M x′n

as Axn+1 = Axn ∪ {ānt : t ∈ I1} and
⋃{ānt : t ∈ I1} ⊆ M xn , so clause (b) of

Definition 3.5(3)(γ) holds. Also,M xn+1 ⊆M x′n and pxn+1 ⊇ px
′
n � (Axn∪M xn+1)

and even pxn+1 = px
′
n � (Axn+1 ∪M xn+1) hold trivially, so also clause (c),(d) of

Definition 3.5(3)(γ) holds.

Lastly, ¬ϕn(x, ān(1,i)) for i < ω, ϕn(x, ā(2,n)) belongs to pη, hence to pxn+1,

hence by renaming also clause (e) from Definition 3.5(4) holds. So we are done.

We are left with the case � = 9. For the proof above to work we need just

that p(∈ S(M0)) satisfies n < ω ⇒ p � (Mn ∪ An) is finitely satisfiable in Mn.

Toward this, without loss of generality, for each n there is a function symbol

Fn ∈ τ(M∗) such that: if η ∈ nI then cη := FM
∗

n (ā0η(0), . . . , ā
n−1
η(n−1)) realizes

{ϕm(x, āmt )if(t=η(m)) : m < n and α < λ}, so Fn has arity Σ{�g(ȳm) : m < n}.
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Let D be a uniform ultrafilter on ω and let cω ∈ C realize p∗ = {ψ(x, b̄) :

b̄ ⊆ M0, ψ(x, ȳ) ∈ L(τM∗ ) and {n : C |= ψ(cη�n, b̄)} ∈ D}, so clearly p =

tp(cω ,M0,C) ∈ S(M0) extends {ϕn(x, āmt )if(t=η(n)) : n < ω and t ∈ I}. There-
fore we have just to check that pn = p � (An ∪Mn) is finitely satisfiable in Mn,

so let ϑ(x̄, b̄) ∈ pn; thus we can find k(∗) < ω(⊆ Z) such that b̄ is included in

the Skolem hull M∗
n,k(∗) of ∪{ām(1,a) : m < n and a ∈ Z ∧ a < k(∗)} ∪ {āmt : m ∈

[n, ω), t ∈ I} inside M∗.
Let ν ∈ ωλ be defined by

ν(m) = η(m) for m ∈ [n, ω)

ν(m) = (1, k(∗) +m) for m < n.

By the indiscernibility:

(∗)1 for every n,C |= ψ(cη�n, b̄) ≡ ψ(cν�n, b̄),

and by the choice of p

(∗)2 {n : C |= ψ(cη�n, b̄)} is infinite, but clearly

(∗)3 cη�m ∈Mn for m < ω.

Together we are done.

dp-rk�(T ) = ∞ implies dp-rk�(T ) ≥ |T |+:
Trivial.

dp-rk�(T ) ≥ |T |+ ⇒ κict(T ) > ℵ0:

We choose by induction on n sequences ϕ̄n and 〈xnα : α < |T |+〉, 〈ānα, Anα : α <

|T |+〉 such that:

�n (a) ϕ̄n = 〈ϕm(x, ȳm) : m < n〉; that is ϕ̄n = 〈ϕnm(x, ȳnm) : m < n〉 and
ϕnm(x, ȳnm) = ϕn+1

m (x, ȳm+1
m ) for m < n, so we call it ϕm(x, ȳm).

(b) xnα ∈ K� and dp-rk�(x
n
α) ≥ α.

(c) ānα = 〈ān,mα,k : k < ω,m < n〉, where the sequence ān,mα,k is from Axnα .

(d) For each α < |T |+ and m < n the sequence 〈ān,mα,k : k < ω〉 is

indiscernible over
⋃{ān,iα,k : i < n, i �= m, k < ω} ∪M xnα ∪Anα.

(e) We have b̄n,mα ⊆ Axnα =
⋃{ān,iα,k : i < m, k < ω}∪Anα for m < n such

that: if η ∈ nω and m < n ⇒ b̄n,mα ⊆ ⋃{ān,iα,k : i < m, k < η(i)} ∪
Anα, then (px

n
α �M xnα)∪{¬ϕm(ān,mα,η(m), b̄

n,m
α )∧ϕm(x̄, ān,mα,η(m)+1, b̄

n,m
α ) :

m < n} is finitely satisfiable in C.

For n = 0 this is trivial by the assumption rk-dp�(T ) ≥ |T |+; see Definition

3.5(6) (and 3.5(7)).
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For n + 1, for every α < |T |+ (as rk-dp�(x
n
α+1) > α by Definition 3.5(5))

we can find znα, y
n
α, ϕ

n
α(x, ȳ

n
α), 〈ān,∗α,k : k < ω〉 such that Definition 3.5(4) is

satisfied, with (xnα+1, z
n
α, y

n
α, ϕ

n
α(x, ȳα), 〈ān,∗α,k : k < ω〉) here standing for

(x, x′, y, ϕ(x, ȳ), 〈āk : k < ω〉) there such that rk-dp�(y
n
α) ≥ α, and we also

have ān,∗α,ω, b̄
n,∗
α here standing for āω, b̄ there. So for some formula ϕn(x, ȳn) the

set Sn = {α < |T |+ : ϕnα(x, ȳ
n
α) = ϕn(x, ȳn)} is unbounded in |T |+, so ϕ̄n+1 is

well defined, hence clause (a) of �n+1 holds.

For α < |T |+, let βn(α) = Min(Sn\α) and let xn+1
α = ynβ(α) so clause (b)

of �n+1 holds. Let 〈ān+1,m
α,k : k < ω〉 be 〈ān,mβ(α)+1,k : k < ω〉 if m < n and

〈ān,∗β(α),k : k < ω〉 if m = n, and let An+1
α = Anβ(α)+1, so clauses (c) + (d) from

�n+1 hold. Also, we let b̄n+1,m
α be b̄n,mβ(α)+1 if m < n and b̄n,∗β(α) if m = n. Next,

we check clause (e) of �n+1.

Let η ∈ n+1ω be as required in sub-clause (γ) of clause (e) of �n+1 and let α

be any member of S. By the induction hypothesis

(px
n
α+1 �M xnα+1) ∪ {¬ϕ(x, ān,mα,η(m)), b̄

n,m
α ) ∧ ϕ(x, ān,mα,η(m)+1, b̄

n,m
α ) : m < n}

is finitely satisfiable in C.

By clause (d) of 3.5(3)(α) it follows that

(pz
n
α �M znα) ∪ {¬ϕ(x, ān,mα+1,η(m)), b

n,m
α ) ∧ ϕ(x, ān,mα+1,η(m)+1) : m < n}

is finitely satisfiable in C (i.e., we use M xnα+1 ≤A[znα],p[z
n
α]�M [znα]

M znα , which suf-

fices; we use freely the indiscernibility).

Hence, by monotonicity, the set

(pz
n
α � (Myn

α ∪ {ān+1,m
α,k : k ≤ η(n) or k = ω} ∪ Anα+1)

∪ {¬ϕ(x̄, ān+1,m
α,η(m), b̄

m,n
α ) ∧ ϕ(x, ān+1,m

α,η(m)+1; b̄
n,m
α ) : m < n}

is finitely satisfiable in C.

Similarly,

(pz
n
α � (Myn

α) ∪ {¬ϕ(x, ān+1,m
α,η(n) , b̄

n+1,n
α ) ∧ ϕ(x, ān+1,n

α,ω )}
∪ {¬ϕ(x, ān+1,n

α,η(m), b̄
n+1,m
α ) ∧ ϕ(x, ān+1,m

α,η(m)+1, b̄
n+1,m
α ) : m < n}

is finitely satisfiable in C.

But ān+1,m
α,ω , ān+1,n

α,η(n)+1 realize the same type over a set including all the relevant

elements, so we can replace above the first (ān+1,n
α,ω ) by the second (ān+1,n

α,η(m)+1),

so we are done proving clause (e) of �n+1.
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Having carried out the induction it suffices to show that ϕ̄ = 〈ϕn(x, ȳn) : n <
ω〉 exemplifies that κict(T ) > ℵ0; for this it suffices to prove the assertion �2

ϕ̄

from 1.5(1). By compactness, it suffices for each n to find 〈ān,mk : k < ω〉 for

m < n in C such that �g(ān,mk ) = �g(ȳn), 〈ān,mk : k < ω〉 is indiscernible over⋃{ān,ik : k < ω, i < n, i �= m} for eachm < n and C |= (∃x)[∧m<n(¬ϕ(x, ān,m0 )∧
ϕ(x, ān,m1 )].

We choose ān,mk = ān,mα,k(∗)+kˆb̄
n,m
α , where k(∗) is large enough such that⋃{b̄n,mα : m < n} ⊆ ⋃{ān,mα,k : m < n and k < k(∗)} and let α = 0; clearly

we are done. 3.7

3.9. Observation: (1) If x ∈ K� and |T |+ |Ax| ≤ μ < ‖M x‖, then for some

M0 ≺M x we have ‖M0‖ = μ and for every y ≤�pr x satisfying M0 ⊆My

we have dp-rk�(y) = dp-rk�(x).

(1A) If dp-rk�(x) < ∞ then it is < |T |+. Similarly, dp-rk�(T ) (with (2|T |)+

this is easier).

(1B) If dp-rkΔ̄,�(x) <∞ then it is < |Δ1 ∪Δ2|+ + ℵ1.

(2) If x ≤�pr y then dp-rk�(x) ≥ dp-rk�(y).

(3) If x ≤�pr y and z explicitly splits �-strongly over y, then z explicitly splits

�-strongly over x.

(4) The previous parts hold for m > 1, too.

Proof. (1) We do not need a really close look at the rank for this. First, fix an

ordinal ζ.

We can choose a vocabulary τζ,α,m of cardinality |A|+ |ζ|+ |T | such that:

�1 for any set A fixing a sequence ā = 〈aβ : β < α〉 listing the elements of

A,M ≺ C and p ∈ Sm(M ∪ {aβ : β < α}),MA,p, or more exactly Mā,p,

is a τζ,α,m-model;

we let

�2 (a) ds(ζ) = {η : η a decreasing sequence of ordinals < ζ},
(b) Γζ = {u : u is a subset of ds(ζ) closed under initial segments} and

Γ∞ =
⋃{Γζ : ζ an ordinal},

(c) for u ∈ Γζ let Ξmu = {ϕ̄ : ϕ̄ has the form 〈ϕn(x̄, ȳη) : η ∈ u〉 where
x̄ = 〈x� : � < m〉, ϕη(x̄, ȳn) ∈ L(τT )}, and

�3 there are functions Φα,m for m < ω,α an ordinal, satisfying:

(a) if u ∈ Γ∞, α ∈ Ord and ϕ̄ ∈ Ξmu , then Φα,m(u) is a set of first order

sentences,
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(b) Φα,m(u) is a set of first order sentences,

(c) if x ∈ Km,� and ā = 〈aβ : β < α〉 list Ax, then dp-rk�(x) ≥ ζ iff

Th(Mā,p[x]) ∪ Φα,m(ϕ̄) is consistent for some ϕ̄ ∈ Ξmds(ζ),

(d) if ϕ̄, ψ̄ are isomorphic (see below), then Φα,m(ϕ̄) is consistent iff

Φα,m(ψ̄) is,

where

�4 ϕ̄ = 〈ϕn(x̄, ȳη) : η ∈ u〉, ψ̄ = 〈ψη(x̄, z̄η) : η ∈ v〉 are isomorphic when

there is a one-to-one mapping function h from u onto v preserving

lengths, being initial segments, and its negation such that ϕη(x̄, ȳη) =

ψh(η)(x̄, z̄h(η)) for η ∈ u.

[Why �3? Just reflect on the definition.]

Now if ζ = dp-rk�(x) has cardinality ≤ μ (e.g., ζ < |T |+), part (1) should be

clear. In the remaining case, if μ ≥ |T |+, by (1A) we are done and otherwise

use the implicit characterization of “∞ = dp-rk�(x)”.

(1A) Now the proof is similar to the third part of the proof of 3.7(1) and is

standard. We choose by induction on n a formula ϕn(x̄, ȳn) < |T |+ for some

decreasing sequence η∗m,α of ordinals > α of length n; we have

⊙
Φn,α(ϕ̄

n) is consistent with Th(M
xnα
ā[xnα],p[x

n
α]) where Dom(ϕ̄n,α) =

{η∗n,α � � : � ≤ n} and ϕn,αηn,α��(x̄, ȳ
n,α
ηn,α��) = ϕ�(x̄, ȳ�) for � < n.

The induction should be clear and clearly is enough.

(1B) Similarly.

(2) We prove by induction on the ordinal ζ that dp-rk�(y) ≥ ζ ⇒ dp-rk�(x) ≥
ζ. For ζ = 0 this is trivial, and for ζ a limit ordinal this is obvious. For ζ

successor order, let ζ = ξ+1 so there is z ∈ K� which explicitly splits �-strongly

over y by part (3) and the definition of dp-rk�; we are done.

(3) Easy, as ≤pr
� is transitive.

(4) Similarly. 3.9

∗ ∗ ∗

3B. Ranks for strongly
+

dependent T . We now deal with a relative of

Definition 3.5 relevant for “strongly+ dependent”.

3.10. Definition: (1) For � ∈ {14, 15} we define Km,� = Km,�−6 (and if m = 1

we may omit it and ≤�pr=≤�−6
pr ,≤�at=≤�−6

at ,≤�=≤�−6).
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(2) For x, y ∈ Km,� we say that y explicitly Δ̄-splits �-strongly over x when

Δ̄ = (Δ1,Δ2),Δ1,Δ2 ⊆ L(τT ) and for some x′ and ϕ(x̄, ȳ) ∈ Δ2 with �g(x̄) = m

we have clauses (a),(b),(c),(d) of clause (γ) of Definition 3.5(3), and

(e)′′ there are b̄, ā such that

(α) ā = 〈āi : i < ω〉 is Δ1-indiscernible over Ax ∪My,

(β) Ay ⊇ Ax ∪ {āi : i < ω},
(γ) b̄ ⊆ Ax and āi ∈M x for i < ω,

(δ) ϕ(x̄, ā0ˆb̄) ∧ ¬ϕ(x̄, ā1ˆb̄) ∈ px
′
.

(3) dp-rkm� (T ) =
⋃{dp-rk�(x) + 1 : x ∈ K�}.

(4) If Δ1 = Δ = Δ2 we may write Δ instead of Δ̄, and if Δ = L(τT ) we may

omit Δ. Lastly, if m = 1 we may omit it.

Similarly to 3.6.

3.11. Observation: (1) If x, y ∈ K15, then “y explicitly Δ̄-splits 15-strongly over

x” iff “y explicitly Δ̄-splits 14-strongly over x”.

(2) If x ∈ Km,15 then dp-rkm
Δ̄,15

(x) ≤ dp-rkmΔ̄,14(x).

Proof. Easy by the definition.

3.12. Claim: (1) For � = 14 we have dp-rk�(T ) = ∞ iff dp-rk�(T ) ≥ |T |+ iff

κict,2(T ) > ℵ0.

(2) For each m ∈ [1, ω), similarly using dp-rkm� (T ).

(3) The parallel of 3.9 holds (for � = 14, 15).

Proof. (1) κict,2(T ) > ℵ0 implies dp-rk�(T ) = ∞.

As in the proof of 3.7.

dp-rk�(T ) = ∞ ⇒ dp-rk�(T ) ≥ |T |+ for any �.

Trivial.

dp-rk�(T ) ≥ |T |+ ⇒ κict,2(T ).

We repeat the proof of the parallel statement in 3.7, and we choose b̄ but not

ān+1,n
α,ω .

(2) By part (1) and 2.8(3).

(3) A similar proof. 3.12

4. Existence of indiscernibles

Now we arrive at our main result.
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4.1. Theorem: (1) Assume

(a) � ∈ {8, 9},
(b) ∞ > ζ(∗) = dp-rkm� (T ) so ζ(∗) < |T |+,
(c) λ∗ = �2×(ζ(∗)+1)(μ),

(d) āα ∈ CT for α < λ+∗ , �g(āα) = m,

(e) A ⊆ CT , |A|+ |T | ≤ μ.

Then for some u ∈ [λ+∗ ]μ
+

, the sequence 〈āα : α ∈ u〉 is an indiscernible sequence

over A.

(2) If T is strongly dependent, then for some ζ(∗) < |T |+ part (1) holds, i.e.,

if clauses (c),(d),(e) from there hold, then the conclusion there holds.

4.2. Remark: (0) This works for � = 14, 15, 17, 18, too; see §5A.
(1) A theorem in this direction is natural as small dp-rk points to definability

and if the relevent types increase with the index and are definable, say over the

first model, then it follows that the sequence is indiscernible.

(2) The �2×(ζ+1)(μ) is more than needed; we can use λ+ζ(∗) where we define

λζ = μ+Σ{(2λξ)+ : ξ < ζ} by induction on ζ.

(3) We may like to have a one-model version of this theorem. This will be

dealt with elsewhere.

Proof. (1) Clearly x ∈ Km,� ⇒ px ∈ Sm(Ax ∪M x) and we shall use clause (e) of

Definition 3.5(4).

By 3.6(6), it is enough to prove this for � = 9, but the proof is somewhat

simpler for � = 8, so we carry the proof for � = 8 but say what more is needed

for � = 9. We prove by induction on the ordinal ζ that (note that the Mα’s

are increasing but not necessarily the pα’s; this is not an essential point as by

decreasing somewhat the cardinals we can regain it):

(∗)ζ if the sequence I = 〈āα : α < λ+〉 satisfies �ζ below, then for some

u ∈ [λ+]μ
+

the sequence 〈āα : α ∈ u〉 is an indiscernible sequence

over A where (below, the 2 is an overkill, in particular for successor of

successor, but for limit ζ we “catch our tail”):

�ζ there are λ,B, M̄ , p̄ such that

(a) λ = λ�2(ξ+1)(μ) for every ξ < ζ,

(b) M̄ = 〈Mα : α < λ+〉 and Mα ≺ CT is increasing continuous (with

α),

(c) Mα has cardinality ≤ λ,
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(d) āα ∈ m(Mα+1) for α < λ+,

(e) pα = tp(āα,Mα ∪A ∪B),

(f) B ⊆ C, |B| ≤ ℵ0,

(g) xα = (pα,Mα, A∪B) belongs to Km,� and satisfies dp-rkm� (xα) < ζ.

[Why is this enough? We apply (∗) for the case ζ = ζ(∗) so λ = λ∗, and

we choose Mα ≺ C of cardinality λ by induction on α < λ+ such that Mα is

increasing continuous, {āβ : β < α} ⊆Mα.]

If � = 8, fine; if � = 9, it seems that we have a problem with clause (g). That

is, in checking xα ∈ Kn,� we have to show that “pα is finitely satisfiable inMα”.

But this is not a serious one: in this case note that for some club E of λ+, for

every α ∈ E, the type we have tp(aα,Mα ∪A ∪B) is finitely satisfiable in Mα.

So letting M ′
α =Mα′ , a′α = āα′ when α < λ+, α′ ∈ E and otp(C ∩ α′) = α and

similarly p′α = tp(āα′ ,Mα,C) we can use 〈(a′α,M ′
α, p

′
α) : α < λ+〉, so we are

done.

So let us carry the induction; arriving at ζ we let θ� = �2×ζ+�(μ), for � <
3; note that θθ��+1 = θ� and λθ2 = λ. Let χ be large enough and let B ≺
(H (χ),∈, <∗

χ) be of cardinality λ such that C, M̄ , p̄, ā, B,A belong to B and

λ + 1 ⊆ B and Y ⊆ B ∧ |Y | ≤ θ2 ∧ λ|Y | = X ⇒ Y ∈ B. Let δ(∗) =

B ∩ λ+ so, without loss of generality, cf(δ(∗)) satisfies λcf(δ(∗)) > λ. Let ζ∗ =

dp-rk(pδ(∗),Mδ(∗), A ∪B) and θ = θ1, hence λ = λθ
+

. We try by induction on

ε ≤ θ+ + θ+ to choose (Nαε , αε) such that:

�ε (a) αε < δ(∗) is increasing with ε,

(b) Nε <A∪B,pα(∗) Mδ(∗) is increasing continuous with ε,

(c) Nε has cardinality θ,

(d) ξ < ε⇒ aαξ
∈ Nαε ,

(e) āαε realizes pδ(∗) � (Nαε ∪A ∪B)

(f) if pδ(∗) splits over Nε ∪ A ∪ B, then pδ(∗) � (Nαε+1 ∪ A ∪ B) splits

over Nε ∪A ∪B,

(g) (pαε � (Nαε ∪A∪B), Nαε , A∪B) <pr (pδ(∗),Mδ(∗), A∪B) and they

(have to) have the same dp-rk,

(h) Nε ⊆Mαε (but not used).

Clearly we can carry the definition. Now the proof splits into two cases.

Case 1: For ξ = θ+, pδ(∗) does not split over Nαξ
∪A ∪B.

By clause (e) of �ε clearly ε ∈ [ξ, ξ + θ+) ⇒ tp(āαε , Nε ∪ A ∪ B) does not

split over Nαξ
∪A∪B and increases with ε. As 〈Nξ+ε : ε < θ〉 is increasing and
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āαε ∈ Nε+1, it follows that tp(āαε , Nθ+ ∪ {āβ : β ∈ [θ+, ε)} ∪ A ∪ B} does not

split over Nθ+1
∪A∪B. Hence by [Sh:c, I,§2] the sequence 〈āαj : j ∈ [ξ, ξ+ θ+)〉

is an indiscernible sequence over Nαξ
∪A ∪B so, as M+ ≤ θ+, we are done.

Case 2: For ξ = θ+, pδ(∗) splits over Nαξ
∪A ∪B.

So we can find ϕ(x, ȳ) ∈ L(τT ) and b̄, c̄ ∈ �g(ȳ)(Mδ(∗) ∪ A ∪ B) realizing the

same type over Nαξ
∪ A ∪ B and ϕ(x̄, b̄),¬ϕ(x̄, c̄) ∈ pδ(∗). So, without loss of

generality, b̄ = b̄′ˆd̄, c̄ = c̄′ˆd̄ where d̄ ∈ ω>(A ∪ B) and b̄′, c̄′ ∈ m(∗)(Mδ(∗)) for

some m(∗). As Nαξ
<A∪B Mδ(∗) (see clause (b) of �ξ) clearly there is D, an

ultrafilter on m(∗)(Nξ) such that Av(Nξ ∪ A ∪ B,D) = tp(b̄′, Nξ ∪ A ∪ B) =

tp(c̄′, Nξ ∪A ∪B).

Without loss of generality {b̄′′ ∈ m(∗)(Nαξ
) : ¬ϕ(x̄, b̄′′, d̄) ∈ pδ(∗)} belongs to

D, as otherwise we can replace ϕ, b̄′, c̄′ by ¬ϕ, c̄′, b̄′.
Let M∗ = (Mδ(∗))A∪B∪{āδ(∗)} and let M+ ≺ C be such that Mδ(∗) ⊆ M+

and, moreover, (M∗)A∪B∪{āδ(∗)} ≺M+
A∪B∪{āδ(∗)} and the latter is λ+-saturated.

Clearly, letting p+δ = (tp(āδ(∗),M+∪A∪B) and x+δ(∗) = (p+δ(∗),M
+
δ(∗), A∪B) we

have xδ(∗) ≤pr x
+
δ(∗). Note that ε < ξ ⇒ (pαε � (Nαε ∪ A ∪ B), Nαε , A ∪B) ≤pr

xδ(∗).
We can find 〈b̄α : α < ω+ω〉 such that b̄α ∈ m(∗)(M+) realizes Av(Nαξ

∪A∪
B ∪ {b̄β : β < α}, D) and, without loss of generality, b̄ω = b̄′.

We would like to apply the induction hypothesis to ζ′ = dp-rk(xδ(∗)), so let:

� (a) λ′ = θ,

(b) a′ε = aαε for ε < θ+,

(c) M ′
ε = Nε,

(d) p′ε = tp(āαε , Nε),

(e) B′ = B ∪ {b̄α : α < ω + ω},
(f) A′ = A.

We can apply the induction hypothesis to ζ′, i.e., use (∗)ζ′ : for some u′ ⊆ θ+

of cardinality μ+ the sequence 〈a′ε : ε ∈ u′〉 is indisernible over A, hence the

set u := {αε : ε ∈ u′} has cardinality μ+ and the sequence 〈aα : α ∈ u〉 is

indiscernible over A, so we are done.

But we have to check that the demands from �ζ′ hold (for θ+), M̄ ′ = 〈M ′
ε :

ε < θ+〉, p̄′ = 〈p′ε : ε < θ+〉.
Clause (a): As θ = �2×ζ∗+1(μ), clearly for every ξ < ζ∗ we have θ =

θ�2×(ξ+1) , hence θ = θ�2×(ξ+1) .

Clause (b): By �ε(b), M̄ is increasing continuous.
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Clause (c): By �ε(c).
Clause (d): By �ε(d).
Clause (e): By the choice of p′ε.
Clause (f): By the choice of B′.
Clause (g): Clearly x′ε ∈ Km,�, but why do we have dp-rk(x′ε) < ζ∗? This is

equivalent to dp-rk(x′ε) < dp-rk(xδ(∗)).
Recall xδ(∗) ≤pr x

+
δ(∗) and x′ε explicitly split �-strongly over xδ(∗), hence by the

definition of dp-rk we get dp-rk(x′ε) < dp-rk(xδ(∗)).
What about the finitely satisfiable property of p′ when � = 9? For some club

E of θ+, ε ∈ E ⇒ tp(āαε , Nαε ∪A ∪B′) is finitely satisfiable in Nαε .

(2) By 3.7, dp-rkm� (T ) < |T |+ for � = 8, so we can apply part (1). 4.1

5. Concluding remarks

We comment on some things here which we intend to continue elsewhere, so the

various parts ((A),(B),...) are not so connected.

(A). Ranks for dependent theories. We note some generalizations of §3,
so Definition 3.5 is replaced by

5.1. Definition: (1) For � = 1, 2, 3, 4, 5, 6, 8, 9, 11, 12 (but not 7, 10), let

Km,� =
{
x :x = (p,M,A),M a model ≺ CT , A ⊆ CT ,

if � ∈ {1, 4} then p ∈ Sm(M), if � /∈ {1, 4} then

p ∈ Sm(M ∪A), and if � = 3, 6, 9, 12 then

p is finitely satisfiable in M
}
.

If m = 1 we may omit it.

For x ∈ Km,� let x = (px,M x, Ax) = (p[x],M [x], A[x]) and m = m(x), recalling

px is an m-type.

(2) For x ∈ Km,� let Nx be M expanded by Rϕ(x̄,ȳ,ā) = {b̄ ∈ �g(ȳ)M :

ϕ(x̄, b̄, ā) ∈ p} for ϕ(x̄, ȳ, z̄) ∈ L(τT ), ā ∈ �g(z̄)A and � = 1, 4 ⇒ ā = 〈〉 and

Rϕ(ȳ,ā) = {b̄ ∈ �g(ȳ)M : C |= ϕ[b̄, ā]} for ϕ(ȳ, z̄) ∈ L(τT ), ā ∈ �g(ȳ)C}; let

τx = τNx .

(2A) If we omit p we mean p = tp(〈〉,M∪A) so we can write NA, a τA-model,

so in this case p = {ϕ(b̄, ā) : b̄ ∈M, ā ∈M and C |= ϕ[b̄, ā]}.
(3) For x, y ∈ Km,� let
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(α) x ≤�pr y means that x, y ∈ Km,� and

(a) Ax = Ay,

(b) M x ≤A[x] M
y,

(c) px ⊆ py,

(d) if � = 1, 2, 3, 8, 9 then M x ≤A[x],p[y] M
y (for � = 1 this follows from

clause (b)).

(β) x ≤� y means that for some n and 〈xk : k ≤ n〉, xk ≤�at xk+1 for k < n

and (x, y) = (x0, xn) where

(γ) x ≤�at y iff (x, y ∈ Km,� and) for some x′ ∈ Km,� we have

(a) x ≤�pr x′,
(b) Ax ⊆ Ay ⊆ Ax ∪M x′ ,

(c) My ⊆M x′ ,

(d) � ∈ {1, 4} ⇒ py = px
′ �My and � /∈ {1, 4} ⇒ py = px

′ � (My ∪Ay).

(4) For x, y ∈ Km,� we say that y explicitly Δ̄-splits �-strongly over x when:

Δ̄ = (Δ1,Δ2),Δ1,Δ2 ⊆ L(τT ) and, for some x′ and ϕ(x̄, ȳ) ∈ Δ2, we have

clauses (a),(b),(c),(d) of part (3)(γ) and

(e) when � ∈ {1, 2, 3, 4, 5, 6}, in Ay there is a Δ1-indiscernible sequence

〈āk : k < ω〉 overAx∪My such that āk ∈ ω>(M x′) and ϕ(x̄, ā0),¬ϕ(x̄, ā1) ∈
px

′
and āk ⊆ Ay for k < ω,

(e)′ when � = 8, 9, 11, 12 there are b̄, ā such that

(α) ā = 〈āi : i < ω + 1〉 is Δ1-indiscernible over Ax ∪My,

(β) Ay\Ax = {āi : i < ω}; yes ω not ω + 1! (note that “Ax = ” and

not “Ay\Ax ⊇ ” as we use it in (e)(γ) in the proof of 3.7),

(γ) b̄ ⊆ Ax and āi ∈M x′ for i < ω + 1,

(δ) ϕ(x̄, ākˆb̄) ∧ ¬ϕ(x̄, āωˆb̄)) belongs 4 to px
′
for k < ω.

(5) We define dp-rkm
Δ̄,�

: Km,� → Ord ∪ {∞} by

(a) dp-rkmΔ̄,�(x) ≥ 0 always,

(b) dp-rkmΔ̄,�(x)≥α+1 iff there is y∈Km,� which explicitly Δ̄-splits �-strongly

over x and dp-rkΔ̄,�(y) ≥ α,

(c) dp-rkmΔ̄,�(x) ≥ δ iff dp-rkmΔ̄,�(x) ≥ α for every α < δ when δ is a limit ordinal.

These are clearly well defined. We may omit m from dp-rk as x determines it.

(6) Let dp-rkm
Δ̄,�

(T ) =
⋃{dp-rkΔ̄,�(x) : x ∈ Km,�}; if m = 1 we may omit it.

4 This explains why � = 7, 10 are missing.
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(7) If Δ1 = Δ2 = Δ we may write Δ instead of (Δ1,Δ2). If Δ = L(τT ) then

we may omit it.

(8) For x ∈ Km,� let x
[∗] = (px �M x,M x, Ax).

So Observation 3.6 is replaced by

5.2. Observation: (1) ≤�pr is a partial order on K�.

(2) Km,�(1) ⊆ Km,�(2) when �(1), �(2) ∈ {1, 2, 3, 4, 5, 6, 8, 9, 11, 12} and

�(1)∈{1, 4}⇔�(2)∈{1, 4} and �(2)∈{3, 6, 9, 12}⇒�(1)∈{3, 6, 9, 12}.
(2A) Km,�(1)⊆{x[∗] :x∈Km,�(2)} when �(1)∈{1, 4}, �(2)∈{1, . . . ,6, 8, 9, 11, 12}.
(2B) In (2A) equality holds if x(�(1), �(2)) ∈ {(1, 2), (1, 3), (4, 5), (4, 6)}.
(3) x ≤�(1)pr y⇒x ≤�(2)pr y when (�(1), �(2)) is as in (2) and �(2)∈{2, 3, 8, 9}⇒

�(1) ∈ {2, 3, 8, 9}.
(3A) x ≤�(1)pr y ⇒ x[∗] ≤�(1)pr y[∗] when the pair (�(1), �(2)) is as in (2B).

(4) x ≤�(1)at y ⇒ x ≤�(2)at y when (�(1), �(2)) are as in part (3) (hence (2)).

(4A) x ≤�(1)at y ⇒ x[∗] ≤�(2)at y if (�(1), �(2)) are as in part (2A).

(5) y explicitly Δ̄-splits �(1)-strongly over x implies y explicitly Δ̄-splits

�(2)-strongly over x when the pair (�(1), �(2)) is as in parts (2),(3) and

�(1) ∈ {1, 2, 3, 4, 5, 6} ⇔ �(2) ∈ {1, 2, 3, 4, 5, 6}.
(6) Assume (�(1), �(2)) is as in parts (2),(3),(5). If x ∈ Km,�(1) then dp-

rkm
Δ̄,�(1)

(x) ≤ dp-rkmΔ̄,�(2)(x), i.e.,

{�(1), �(2)) ∈ {(3, 2), (2, 5), (3, 5), (6, 5), (3, 6)}
∪ {(9, 8), (8, 11), (9, 11), (12, 11), (9, 12)}.

(7) Assume ā ∈ mC and y = (tp(ā,M ∪ A),M,A) and x = (tp(ā,M ∪
A),M,A). Then

(a) x[∗] = y[∗],
(b) x ∈ Km,1 ∩Km,4,

(c) y ∈ Km,2 ∩Km,5 ∩Km,8 ∩Km,11,

(d) if tp(ā,M ∪ A) is finitely satisfiable in M then also y ∈ Km,3 ∩
Km,6 ∩Km,9 ∩Km,12.

(8) If x ∈ Km,�(2), then dp-rk�m(2)(x
[∗]) ≤ dp-rk�m(2)(x) when the pair

(�(1), �(2)) is as in part (2A).

(9) If x ∈ Km,� and κ > ℵ0, then there is y ∈ Km,� such that x ≤�pr y andMy

is κ-saturated; moreover, My
A[y],p[y] is κ-saturated (hence in Definition

3.2(4), without loss of generality, M x′ is (|M x ∪Ax|+)-saturated).
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5.3. Claim: In 3.7 we can allow � = 1, 2, 5 (in addition to � = 8, 9).

Proof. Similar but:

κict(T ) > ℵ0 implies dp-rk�(T ) = D when � ∈ {1, 2, 4, 5, 8, 9, 11, 12}:
(A) Let An = ∪{āmt : m < n, t ∈ I2} if � < 7 and, if � > 7, An = {āmt : m < n

and t ∈ I1}.
(B) “xn+1 explicitly split �-strongly over xn” using 〈ān(2,n+i) : i < ω〉 if � < 7

and 〈an(1,i) : i < ω〉ˆ〈ān2,n〉 if � > 7.

(C) Similarly in “Lastly...”: Lastly, if � < 7, ϕn(x, ā
n
(1,n)), ¬ϕn(x, ān(1,n+1))

belongs to px
′
n and even pxn+1, and if � > 7, ϕn(x, ā

n
(1,n)) for n < ω,

¬ϕn(x, ā(2,n)) belongs to pη, hence to pxn+1, so by renaming also clause

(e) or (e)− from Definition 3.5(4) holds. Thus we are done.

dp-rk�(T ) ≥ |T |+ ⇒ κict(T ) > ℵ0 when � = 1, 2, 3, 5, 6, 8, 9:

(D) In �n(e) we use

(E) (α) if � ∈ {2, 3, 5, 6} and m < n, k < ω, then ϕm(x, ān,mα,k ) ∈ px
n
α ⇔ k = 0

hence ¬ϕm(x, ān,mα,k ) ∈ px
n
α ⇔ k �= 0 for k < 2;

(β) if � = 1 then px
n
α ∪ {ϕm(x, ān,mα,k )if(k=0) : m < n, k < 2} is consistent,

(γ) if � = 8, 9 we also have b̄n,mα ⊆ Axnα =
⋃{ān,iα,k : i < m, k < ω} ∪ Anα

for m < n such that: if η ∈ nω and m < n ⇒ b̄n,mα ⊆ ⋃{ān,iα,k :

i < m, k < η(i)} ∪ Anα, then (px
n
α � M xnα) ∪ {ϕm(ān,mα,η(m), b̄

n,m
α ) ∧

¬ϕm(x̄, ān,mα,η(m)+1, b̄
n,m
α ) : m < n} is finitely satisfiable in C.

(F) In checking clause (e) of �n+1

Case � = 1: We know that

px
n
α+1 ∪ {ϕm(x, ān,mα,k )

if(k=0) : m < n and k < 2}

is consistent. As xnα+1 ≤�pr znα by clause (α)(d) of Definition 3.5(3), we

know that qn+1
α := pz

n
α ∪ {ϕm(x, ān,mα+1,k)

if(k=0) : m < n and k < 2} is

consistent. But ϕn(x, ā
n+1,m
α,k ) = ϕn(x, ā

n,m
α+1,k) ∈ qn+1

α for k < 2,m < n

and ϕn(x, ā
n+1,mα,k)

if(k=0) = ϕn(x, ā
n,∗
α,k)

if(k=0) ∈ qn+1
α and px

n+1
α ⊆ pz

n
α ⊆

qn+1
α , hence px

n+1
α ∪ {ϕ(x, ān,mα,k )if(k=0) : m ≤ n and k < 2}, being a subset

of qn+1
α , is consistent, as required (this argument does not work for � = 4).

Case 2: � ∈ {2, 3, 5, 6}. Straightforward.
Case 3: � ∈ {8, 9}.

As before
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5.4. Observation: Like 3.9 for � = 1, 2, 3, 4, 5, 6, 8, 9, 11, 12.

5.5. Definition: In Definition 3.10 we allow � = 17, 18.

5.6. Observation: (1) If “y explicitly Δ̄-splits �(1)-strongly over x”, then “y

explicitly Δ̄-splits �(2)-strongly over x” when

(�(1), �(2)) ∈ {(15, 14), (14, 17), (18, 17), (15, 18)}∪{(�, �+12) : � = 2, 3, 5, 6}.

(2) If x ∈ Km,�(1), then dp-rkm
Δ̄,�(1)

(x) ≤ dp-rkmΔ̄,�(2)(x) when (�(1), �(2)) is as

above.

Proof. Easy by the definition.

5.7. Claim: (1) In 3.12(3) we allow � = 17, 18.

(2) “dp-rk�(T ) ≥ |T |+ ⇒ κict(T ) ≥ ℵ1”; we allow � = 14, 15, 17, 18.

5.8. Theorem: In 4.1 we can allow

(a) � ∈ {8, 9, 11, 12} and even � ∈ {14, 15, 17, 18}.
Proof. Similar to 4.1. 5.8

We can try to use ranks as in §3 for T which are just dependent. In this case

it is natural to revise the definition of the rank to make it more “finitary”, say

in Definition 3.5(4), clauses (e),(e)′ replace 〈āk : k < ω〉 by a finite long enough

sequence.

Meanwhile just note

5.9. Claim: Let � = 1, 2, 3, 5, 6 [and even � = 14, 15, 17, 18]. For any finite

Δ ⊆ L(τT ) we have: for every finite Δ1, rkΔ1,Δ,�(T ) = ∞ iff for every finite Δ1,

rkΔ1,Δ,�(T ) ≥ ω iff some ϕ(x, ȳ) ∈ Δ has the independence property.

Proof. Similar proof to 3.7, 5.3.

Let 〈āα : α < ω〉 ⊆M be indiscernible.

Let ϕ(x̄, ā0),¬ϕ(x̄, ā1) ∈ p exemplify “p splits strongly over Aε =
⋃{Mαε :

ζ < ε} ∪ A ∪B so tp(ā0, Aε) = tp(ā1, Aε). Let A+ = A ∪ ā0 ∪ a1 and we find

u ⊆ {αε : ε < θ+1 } as required:

(∗) there is N+ ≺ M, ‖N∗‖ ≤ θ such that N∗ ≺ N ≺ M ⇒ dp-rk(A, p �
(N∗ ∪A), N∗) = dp-rk(A, p,M). 5.9
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5.10. Question: (1) Can such local ranks help us prove some weak versions of

“every p ∈ Sϕ(M) is definable”? (Of course, the first problem is to define such

“weak definability”; see [Sh:783, §1]).
(2) Does this help for indiscernible sequences?

5.11. Definition: We define Kx
m,� and dx-rkmΔ̄,� for x = {p, c, q} as follows:

(A) for x = p: as in Definition 3.5(4),(5), 5.1(4),(5),

(B) for x = c: as in Definition 3.5(4),(5), 5.1(4),(5) but we demand that in

clause (e),(e)′ of part (4) that {ϕ(x̄, b̄n) : n < ω} is contradictory;

(C) for x = q: as in Definition 3.5(4),(5), 5.1(4),(5) but in clauses (e),(e)′ of
part (4) we have āα from Ay for α < ω + ω such that {ϕ(x, aα)if(α<ω) :

α < ω + ω} ⊆ px
′
and in (e′) we have ān from Ay and aω+n from M x′ . In

detail:

(e) when � ∈ {1, 2, 3, 4, 5, 6}, in Ay there is a Δ1-indiscernible sequence

〈āk : k < ω〉 over Ax ∪ My such that āk ∈ ω>(M x′) for α < ω and

ϕ(x̄, āk),¬ϕ(x̄, āω+k) ∈ px
′
and āk, āω+k ⊆ Ay for k < ω,

(e)′ when � = 8, 9, 11, 12 there are b̄, ā such that

(α) ā = 〈āi : i < ω + ω〉 is Δ1-indiscernible over Ax ∪My,

(β) Ay ⊇ Ax ∪ {āi : i < ω + ω},
(γ) b̄ ⊆ Ax and āi ∈M x′ for i < ω + ω,

(δ) ϕ(x̄, ākˆb̄) ∧ ¬ϕ(x̄, āωˆb̄) belongs 5 to px
′
for k < ω.

5.12. Question: Does Definition 5.11 help concerning Question 5.10?

5.13. Discussion: We can imitate §3 with dc-rk or dq-rk instead of dp-rk and

use appropriate relatives of κict(T ). But compare with §4.
∗ ∗ ∗

(B). Minimal theories (or types). It is natural to look for the parallel of

minimal theories (see end of the introduction).

A subsequent work of E. Firstenberg and the author [FiSh:E50], using [Sh:757]

(see better [Sh:E63]), considered a generalization of “uni-dimensional stable T ”.

The generalization says (see 5.22(1)):

5.14. Definition: (1) T is uni-dp-dimensional when: (T is a dependent theory

and) if I,J are infinite non-trivial indiscernible sequences of singletons, then I,J

5 This explains why � = 7, 10 are missing.
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have finite distance, see below, or I and J∗ do, recalling J∗ is the inverse of J

(i.e., we invert the order).

(2) (From [Sh:93]) For indiscernible sequences I,J over A we say that they

are immediate A-neighbours if I + J is an indiscernible sequence over A or

J + I is an indiscernible sequence over A. They have distance ≤ n if there are

I0, . . . , In such that I = I0,J = In and I�, I�+1 are immediate A-neighbors (so

indiscernible over A) for � < n. They are neighbors 6 if they have distance ≤ n

for some n.

(3) If I is an infinite indiscernible sequence over A, then CA(I) =
⋃{I′ : I′, I

have finite A-distance.

Discussion: Note that for Th(Q, <), the first order theory of the rational order,

any two increasing infinite sequences of elements are of distance 2. If we forget

above to have the “or I,J∗ of finite distance”, we shall get two classes up to the

relevant equivalence.

5.15. Problem: (1) Does uni-dp-dimensional theories have a dimension theory?

(2) Can we characterize them?

(3) If p ∈ Sm(A), is there an indiscernible sequence I ⊆ p(C) based on A?,

i.e., such that {F (CA(I)) : F an automorphism of C over A} has cardinality

< C (equivalently ≤ 2|T |+|A|) as is the case for simple theories.

We can try another generalization.

5.16. Hypothesis (till 5.23): Let � be as in Definitions 3.5 and 5.1.

5.17. Definition: T is dp�-minimal when dp-rk�(x) ≤ 1 for every x ∈ K�, i.e.,

Km,� for m = 1.

5.18. Remark: For this property, T and T eq may differ. Probably, if we add

only finitely many sorts, the “finite rank, i.e., dp-rk�(x) < n∗ < ω for every

x ∈ K�”, is preserved.

5.19. Observation: T is dp�-minimal when: for every infinite indiscernible se-

quence 〈āt : t ∈ I〉, I complete, āt ∈ αC and element c ∈ C there is {t} ⊆ I as

6 We may prefer the local version: for every finite Δ ⊆ L(τT ) and finite A′ ⊆ A (or

A′ = A) there are I′,J′ realizing the Δ-type over A′ of I,J, respectively, such that I′,J′

are (infinite) indiscernible sequences over A′ (or A) and have distance over A′.
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in 2.1 (i.e., a singleton or the empty set if you like) when � ≤ 12, and as in 2.9

when � ∈ {14, . . .}.
Proof. Should be clear. 5.19

5.20. Claim: (1) For � = 1, 2 we have T is dp�-minimal when: there are no

〈āin : n < ω〉 and ϕi(x, ȳi) such that

(a) for i = 1, 2, 〈āin : n < ω〉 is an indiscernible sequence over
⋃{ā3−in : n < ω},

(b) for some b ∈ C we have |= ϕ1(b, ā
1
0) ∧ ¬ϕ2(b, ā

1
1) ∧ ϕ2(b, ā

2
0) ∧ ¬ϕ2(b, ā

2
1).

(2) Similarly for rk-dp�(x) ≤ n(< ω), i.e., if we replace 1 by n in Definition

5.17.

Proof. Straightforward.

5.21. Problem: (1) Are dp�-minimal theories T similar to o-minimal theories?

(2) Characterize the dp�-minimal theories of fields.

(3) What are the implications between “dp�-minimal” for the various �?

(4) As above also for uni-dp-dimensionality.

5.22. Claim: (1) For � = 1, 2 the theory T , Th(R), the theory of real closed

fields is dp�-minimal; similarly for any o-minimal theory.

(2) Th(R) is dp�-minimal for � = 1, 2, similarly for any o-minimal theory.

(3) For prime p, the first order theory of the p-adic field is dp1-minimal.

Proof. (1) As in [FiSh:E50].

(2) Repeat the proof in [Sh:783, 3.3](6).

(3) By the proof of 1.17. 5.22

5.23. Remark: If T is a theory of valued fields with elimination of field quantifier

(see Definition 1.14(1),(2)) and kCT is infinite, this fails. However, if ΓCT , kCT

are dp1-minimal then the dp-rk for T are ≤ 2.

Another direction is:

5.24. Definition: (1) We say that a type p(x̄) is content minimal when:

(a) p(x̄) is not algebraic,

(b) if q(x̄) extends p(x̄) and is not algebraic then Φq(x̄) = Φp(x̄); see below.

(2) Φp(x̄) = {ϕ(x̄0, . . . , x̄n−1) :
⋃{p(x̄�) : � < n}∪{ϕ(x̄1, . . . , x̄n)} is consistent

(see [Sh:93]).
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5.25. Question: Can we define a reasonable dimension for such types, at least

for T dependent or even strongly dependent?

∗ ∗ ∗

(C). Local ranks for super dependent and indiscernibles. Note that

the original motivation of introducing “strongly dependent” in [Sh:783] was to

solve the equation: X/dependent = superstable/stable. However, (the various

variants of) strongly dependent, when restricted to the family of stable theories,

gives classes which seem to be interesting but are not the class of superstable

T . So the original question remains open. Now returning to the search for

“super-dependent” we may consider another generalization of superstable.

5.26. Definition: (1) We define lc-rkm(p, λ) = lc0-rk
m(p, λ) for types p which

belong to SmΔ(A) for some A(⊆ C) and finite Δ(⊆ L(τT )).

It is an ordinal or infinity and

(a) lc-rkm(p, λ) ≥ 0 always,

(b) lc-rkm(p, λ) ≥ α = β+1 iff for every μ < λ there are finite Δ1 ⊇ Δ

and pairwise distinct qi ∈ SmΔ1
(A) extending p such that i < 1+μ⇒

lc-rkm(qi, λ) ≥ β,

(c) lc-rkm(p, λ) ≥ δ, δ a limit ordinal iff lc-rkm(p) ≥ α for every α < δ.

(2) For p ∈ Sm(A) let7 lc-rkm(p, λ) be min{lc-rkm(p, λ) � Δ : Δ ⊆ L(τT )

finite}.
(3) Let lc-rkm(T, λ) =

⋃{lc-rkm(p, λ) + 1 : p ∈ Sm(A), A ⊂ C}.
(4) If we omit λ we mean λ = |T |++.

5.27. Discussion: There are other variants and they are naturally connected to

the existence of indiscernibles (for subsets of mC, concerning subsets of |T |C);
probably representability is also relevant ([CoSh:919], [Sh:F705]).

5.28. Claim: (1) The following conditions on T are equivalent (for all λ >

|T |+):
(a)λ for every A and p ∈ SmΔ(A) we have lc-rkm(p, λ) <∞,

(b)λ for some α∗ < |T |+, for every A and p ∈ SmΔ(A) we have lc-rkm(p, λ) <

α∗,

7 Easily, if Δ1 ⊆ Δ2 ⊆ L(τT ) are finite and p2 ∈ Sm
Δ2

(A) and p1 = p2 � Δ1 then lc-

rkm(p1) ≥ lc-rkm(p2). So lc-rkm(p, λ) is well defined.
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(c)λ there is no increasing chain 〈Δn : n < ω〉 of finite subsets of L(τT ) and
A and 〈pη : η ∈ ω>λ〉 such that pη ∈ SmΔ�g(η)

(A) and ν � η ⇒ pν ⊆ pη,

and if η1 �= η2 are from nλ then pη1 �= pη2 ,

(c)ℵ0 like (c)λ with 〈pη : η ∈ ω>ω〉.
(2) Similarly restricting ourselves to A = |M |.
Proof. Easy. 5.28

Closely related is

5.29. Definition: (1) We define lc1 − rkm(p, λ) for types p ∈ Sm(A) for

A ⊆ C as an ordinal or infinitely by:

(a) lc1 − rkm(p, λ) ≥ 0 always,

(b) lc1−rkm(p, λ) ≥ α = β+1 iff for every μ < λ and finite Δ ⊆ L(τT )

we can find pairwise distinct qi ∈ Sm(A) for i < 1 + μ such that

p � Δ ⊆ qi and lc1 − rkm(qi, λ) ≥ β,

(c) lc1−rkm(p, λ) ≥ δ for δ a limit ordinal iff lc1−rkm(p) ≥ α for every

α < δ.

(2) If λ = �2(|T |)++ we may omit it.

5.30. Claim: (1) The following conditions on T are equivalent when

μ > λ = �2(|T |)+:
(a)μ for every A and p ∈ Sm(A) we have lc1 − rkm(p, μ) <∞,

(b)μ for some α∗ < �2(|T |)+, for every A and p ∈ Sm(A) we have

lc1 − rkm(p, μ) < α∗,
(c)λ for no A do we have a non-empty set P ⊆ Sm(A) such that, for every

p ∈ P and finite Δ ⊆ L(τT ), for some finite Δ1 the set {q � Δ1 : q ∈ P

and q � Δ = p � Δ} has cardinality ≥ λ,

(d)λ letting Ξ =
⋃{Ξn : n < ω},Ξn = {Λ̄ : Λ̄ is a sequence of length

n of finite sets of formulas ϕ(x̄, ȳ) ∈ L(τT ), �g(x̄) = m} there is no

〈ΔΛ̄ : Λ̄ ∈ Ξ〉, where ΔΛ̄ is a finite set of formulas such that: for every

λ we can find A and 〈pΛ̄,η : Λ̄ ∈ Ξ and η ∈ �g(Λ̄)λ〉 such that:

(α) pΛ̄,η̄ ∈ Sm(A),

(β) if Λ̄ ∈ Ξn, η ∈ nλ and Λ̄′ = Λ̄ˆ〈Λn〉 ∈ Ξn+1, then pΛ̄′,ηˆ〈α〉 �
Λn = pΛ̄,η � Λn for α < λ and 〈pΛ̄′,ηˆ〈α〉 � ΔΛ̄′ : α < λ〉 are

pairwise distinct,

(e)λ for some 〈ΔΛ̄ : Λ̄ ∈ Ξ〉 as above the set T ∪ Γλ is inconsistent, where

Γ is non-empty and:
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(α) if Λ̄ = Ξn+1, η ∈ n+1λ and ϕ(x̄, ȳ) ∈ Λn, then

(∀ȳ)
[ ∧
�<�g(ȳ)

P (y�) → (ϕ(x̄Λ̄,η, ȳ) ≡ ϕ(x̄Λ̄�n,η�n, ȳ))
]
,

(β) if Λ̄ ∈ Ξn+1, η ∈ nλ and α < β < λ, then

∨
ϕ(x,ȳ)∈ΔΛ̄

(∃ȳ)
( ∧
�<�g(ȳ)

P (y�) ∧ (ϕ(xΛ̄,ηˆ〈α〉 : ȳ)) ≡ ¬ϕ(x̄Λ̄,ηˆ〈β〉, ȳ)
)
.

(2) Similarly restricting ourselves to the cases A = |M |, i.e., A is the universe

of some M ≺ C.

Proof. We will elaborate elsewhere, using [893, Th 2.16, 335]. 5.30

5.31. Definition: (1) We define lc2 − rkm(p, λ) and lc3 − rkm(p, λ) like

lc0 − rkm(p, λ) and lc1 − rkm(p, λ), respectively, replacing “Δ ⊆ L(τT ) is fi-

nite” by “Δ ⊆ L(τT ) and arity(Δ) < ω” where:

(2) arity(ϕ) = the number of free variables of ϕ, arity(Δ) = sup{arity(ϕ) :

ϕ ∈ Δ} (if we use the objects ϕ(x̄) we may use arity(ϕ(x̄)) = �g(x̄)).

5.32. Claim: The parallel of 5.28, 5.30 for Definition 5.31.

Remark: In particular, the rank lc3 − rkm seems related to the existence of

indiscernibility, i.e.,

5.33. Conjecture: (1) Assume lc�-rk
m(T ) <∞ for some � ≤ 3. We can prove

(in ZFC!) that for every cardinal μ, for some λ we have λ→ (μ)T .

(2) Moreover, λ is not too large, say is less than �ω+1(μ + |T |)++ (or just

< �(2μ)+).

∗ ∗ ∗

(D). Strongly
2
stable fields. A reasonable aim is to generalize the char-

acterization of the superstable complete theories of fields. Macintyre [Ma71]

proved that every infinite field whose first order theory is ℵ0-stable, is alge-

braically closed. Cherlin [Ch78] proves that every infinite division ring whose

first order theory is superstable, is commutative, i.e., is a field so algebraically

closed. Cherlin and Shelah [ChSh:115] prove “any superstable theory Th(K), K

an infinite field, is the theory of algebraically closed fields” (and this is true even
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for division rings). More generally, we would like to replace stable by depen-

dent and/or superstable by strongly dependent or at least strongly2 stable (or

another variant).

Of course, for strongly dependent we should allow at least the following cases

(in addition to the algebraically closed fields): the first order theory of the real

field (not problematic, as it is the only one with finite non-trivial Galois groups),

the p-adic field for any prime p and the first order theories covered by 1.17(2),

i.e., Th(KF) for such F.

Hence

5.34. Conjecture: (a) If K is an infinite field and T = Th(K) is strongly2

dependent (i.e., κict,2(T ) = ℵ0), then K is an algebraically closed field (not

strongly!!).

(b) Similarly for division rings.

(c) If K is an infinite field and T = Th(K) is strongly1 dependent, then K is

finite or algebraically closed or real closed or elementary equivalent to KF

for some F as in 1.17(2) (like the p-adics) or a finite algebraic extension of

such a field.

(d) Similar to (c) for division rings.

Of course it is even better to answer 5.35(1):

5.35. Question: (1) Characterize the fields with dependent first order theory.

(2) At least “strongly dependent” (or another variant; see (E), (F) below).

(3) Suppose M is an ordered field and T = Th(M) is dependent (or strongly

dependent). Can we characterize?

Remark: But we do not know this even for stability. So adopting strongly

dependent as our context we look to what we can do.

5.36. Claim: For a dependent T and group G interpreted in the monster model

C of T , for every ϕ(x, ȳ) ∈ L(τT ) there is nϕ < ω such that, if α is finite,

〈āi : i < α〉 is such that G ∩ ϕ(C, āi) is a subgroup of G, then their intersection

is the intersection of some ≤ nϕ of them.

Remark: If T is stable this holds also for infinite α by the Baldwin–Saxl theorem

[BaSx76].

Proof. See Kaplan-Shelah [KpSh:993].
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5.37. Claim: If the complete theory T is strongly2 dependent, then “finite

kernel implies almost surjectivity”, which means that if in C, G is a definable

group, π a definable homomorphism from G into G with finite kernel, then

(G : Rang(π)) is finite.

Proof. By a general result from [Sh:783, 3.8, 4.5] quoted here as 0.1. 5.37

5.38. Claim: Being strongly� dependent is preserved under interpretation.

Proof. By 1.4, 2.7. 5.38

Hence the proof in [ChSh:115] works “except” the part on “translating the

connectivity”, which relies on ranks not available here.

However, if T is stable this is fine, hence we deduce

5.39. Conclusion: If K is an infinite field and Th(K) is strongly2 stable, then

T is algebraically closed.

5.40. Claim: Let p be a prime. Then T is not strongly dependent if T is the

theory of differentially closed fields of characteristic p or T is the theory of some

separably closed fields of characteristic p which is not algebraically closed.

Proof. The second case implies the first because, if τ1 ⊆ τ1, T2 a complete L(τ2)-

theory which is strongly dependent, then so is T1 = T2 ∩ L(τ1). So let M be a

ℵ1-saturated separably closed field of characteristic p which is not algebraically

closed. Let ϕn(x) = (∃y)(ypn = x) and p∗(x) = {ϕn(x) : n < ω} and let xEny

mean ϕn(x− y), so EMn is an equivalent relation.

Let 〈aα : α < ω1〉 be an indiscernible set such that α < β < ω1 ⇒ aβ − aα /∈
ϕ1(M).

Let ψn(x, y0, y1, . . . , yn−1) = (∃z)[ϕn(z) ∧ x = y0 + yp1 + · · ·+ yp
n−1

n−1 + z].

Now by our understanding of Th(M):

� (a) if b� ∈M for � < n then M |= (∃x)ψn(x, b0, . . . , bn−1),

(b) in M we have ψn+1(x, y0, . . . , yn) � ψn(x, y0, . . . , yn−1),

(c) in M we have, if ψn(b, aα0 , . . . , aαn−1) ∧ ψn(b, aβ0 , . . . , aβn−1), then∧
�<n α� = β�.

[Why? Clause (a) holds because, if b� ∈M for � < n, then a = b0+b
p
1+· · ·+bpn−1

n−1

exemplifies “∃x”. Clause (b) holds because if M |= ψn+1[a, b0, . . . , bn−1, bn]

as witnessed by z �→ d, then M |= ψn[a, b0, . . . , bn−1] as witnessed by z �→
d + bp

n

n , which ∈ ϕn(M) as ϕn(M) is closed under addition, and d ∈ ϕn(M)
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by d ∈ ϕn+1(M) ⊆ ϕn(M) and bp
n

n ∈ ϕn(M) as bn witnesses it. Lastly, to

prove clause (c) assume that for � = 1, 2 we have d� = dp
n

� ∈ ϕn(M), b =

aα0 + apα1
+ ap

2

α2
+ · · ·+ ap

n−1

αn−1
+ dp

n

1 and b = aβ0 + apβ1
+ ap

2

β2
+ · · ·+ ap

n−1

βn−1
+ dp

n

2 .

We prove this by induction on n. For n = 0 this is trivial, n = m+1 substituting,

etc., we get aα0−aβ0 = (apβ1
−apα1

)+· · ·+(ap
n−1

βn−1
−apn−1

αn−1
)+(dp

n

2 −dpn1 ) ∈ ϕ1(M),

so by an assumption on 〈aγ : γ < ω1〉 it follows that α0 = β0. As there are

unique p-th roots the original equation implies aα1 + apα2
+ · · ·+ ap

n−2

αn−2
+ dp

n

1 =

aβ1 + apβ2
+ · · ·+ ap

n−2

βn−2
+ dp

n

2 , and we use the induction hypothesis.]

So together:

� for every η ∈ ω(ω1), there is bη ∈M such that

(α) M � ψn(bη, aη(0), . . . , aη(n−1)), hence

(β) if n<ω, ν∈n(ω1), ν �= η � n then M |=¬ψn(bη, aν(0), . . . , aν(m−1)).

This suffices. 5.40

∗ ∗ ∗

(E). Strongly
3
dependent. It is still not clear which versions of strong de-

pendent (or stable) will be most interesting. Another reasonable version is

strongly3 dependent, but see more below. It has parallel properties and is nat-

ural. Hopefully, at least some of those versions allows us to generalize weight

(see [Sh:c, V,§3]); we intend to return to it elsewhere. Meanwhile, note:

5.41. Definition: (1) T is strongly3 dependent if κict,3(T ) = ℵ0 (see below).

(2) κict,3(T ) is the first κ such that the following 8 holds:

if γ is an ordinal, āα ∈ γ(Mα+1) for α < δ, 〈āα : α ∈ [β, δ)〉 is an indiscernible

sequence over Mβ for β < δ and β1 < β2 ⇒ Mβ1 ≺ Mβ2 ≺ C and c̄ ∈ ω>C and

cf(δ) ≥ κ, such that if n < ω, α�,0 < · · ·α�,n−1 < k for � = 1, 2, α1,i ≤ α2,i for

1 < n and b̄1 ⊆Mα∗
1,n−1

there is b̄2 ⊆Mα∗
2,n−1

such that āα1,0 ∧· · ·∧ āα1,n−1 ∧ b̄1
and āα2,0 ∧ · · · ∧ āα2,n−1 ∧ b̄2 realize the same type, then for some β < κ, 〈āα :

α ∈ [β, δ)〉 is an indiscernible sequence over Mβ ∪ c̄.
(3) We say T is strongly� stable if T is strongly� dependent and is stable.

(4) We define κict,3,∗(T ) and strongly3,∗ dependent and strongly3,∗ stable as

in the parallel cases (see Definitions 1.8 and 2.12), i.e., above we replace c̄ by

〈c̄n : n < ω〉 indiscernible over
⋃{Mβ : β < δ}.

8 We may consider replacing δ by a linear order and ask for < κ cuts.
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5.42. Claim: (1) If T is strongly�+1 dependent then T is strongly� dependent

for � = 1, 2.

(2) T is strongly� dependent iff T eq is; moreover, κict,�(T ) = κict,�(T
eq).

(3) If T1 is interpretable in T2 then κict,�(T1) ≤ κict,�(T2).

(4) If T2 = Th(BM,MA) (see [Sh:783, §1]) and T1 = Th(M) then κict,�(T2) =

κict,�(T1).

(5) T is not strongly3 dependent iff we can find ϕ̄= 〈ϕn(x̄0, x̄1, ȳn) : n < ω〉,
m = �g(x̄0), and for any infinite linear order I we can find an indiscernible

sequence 〈āt, b̄η : t ∈ I, η ∈ ω>I increasing〉 (see Definition 5.45 below) such

that for any increasing sequence η ∈ ωI, the set {ϕn(x̄0, ās, b̄η�n)if(s=η(n)) :

n < ω and η(n− 1) <I s ∈ I if n > 0} of formulas is consistent (or use just

s = η(n), η(n) + 1 or η(n) ≤I s, it does not matter).

(6) The parallel of parts (1)–(5) hold with strongly3,∗ instead of strongly3.

In particular, (parallel to part (5)) we have T is not strongly3,∗ depen-

dent iff we can find ϕ̄ = 〈ϕn(x̄0, . . . , x̄k(n), ȳn) : n < ω〉,m = �g(x̄),

and for any infinite linear order I we can find an indiscernible sequence

〈āt, b̄η,t : t ∈ I, η ∈ ω>I increasing〉 (see 5.45) such that for any increasing

η ∈ ωI,

{ϕ(x̄0, ās, b̄η�n)if(s=η(n)) : n < ω and η(n− 1) <I s if n > 0}
∪ {ψ(x̄i0 , . . . , x̄im−1 , c̄) = ψ(x̄j0 , . . . , x̄jm−1 , c̄) : m < ω, i0 < · · · < im−1 < ω,

j0 < · · · < jm−1 < ω and c̄ ⊆
⋃

{ās, bρ : s ∈ I, ρ ∈ ω>I increasing}}
is consistent.

Proof. (1)–(4). Easy.

(5), (6) Easy, see [Sh:F918]. 5.42

Recall that this definition applies to stable T (i.e., Definition 5.41(3)).

5.43. Observation: The theory T is strongly3 stable iff : T is stable and we

cannot find 〈Mn : n < ω〉, c̄ ∈ ω>C and ān ∈ ω(Mn+1) such that:

(a) Mn is Faκ-saturated,

(b) Mn+1 is Faκ-prime over Mn ∪ ān,

(c) tp(ān,Mn) does not fork over M0,

(d) tp(c̄,Mn ∪ ān) forks over Mn.

Proof. Easy. 5.43
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5.44.Conjecture: For strongly3 stable T we have dimension theory (including

weight) close to the one for superstable theories (as in [Sh:c, V]). We may try

to deal with it in [Sh:839]; it is related to §5 G below.

(F). Representability and strongly4 dependent. In [Sh:897] we deal

with T being fat or lean. We say a class K of models is fat when, for every

ordinal α, there are a regular cardinal λ and non-isomorphic modelsM,N ∈ Kλ

which are EF+
α,λ-equivalent, where EF

+
α,λ is a strong version of “the isomorphism

player has a winning strategy in a strong version of the Ehrenfuecht–Frässe game

of length λ”. We prove there that, consistently, if T is not strongly stable and

T1 ⊇ T , then PC(T1, T ) is fat (in a work in preparation [Sh:F918] we show that

it suffices to assume “T is not strongly4-stable”; see below).

Cohen-Shelah [CoSh:919] deals with the stable case [Sh:F705], a work in

preparation, we hope to deal with representability. The weakest form (for k

a class of index models, e.g., linear orders) is, e.g., first order T is weakly k-

represented when for every model M of T and, say, a finite set Δ ⊆ L(τT ) we

can find an index model I ∈ k and sequence 〈āt : t ∈ I〉 of finite sequences

from MC (or just singletons) which is Δ-indiscernible, i.e., (see below) such

that |M | ⊆ {at : t ∈ I}.
This is a parallel to stable and superstable when we play with essentially the

arity of the functions of k and the size of Δ’s considered. The thesis is that T

is stable iff it, essentially, can be represented for essentially k the class of sets

and parallel representability for k derived for order characterize versions of the

class of dependent theories. We also define k-forking, i.e., replace linear orders

by other index sets. Meanwhile, [CoSh:919], has fulfilled those hopes for stable

T but [KpSh:975] shows that for general dependent T the hopes fail. We define

5.45. Definition: (1) For any structure I we say that 〈āt : t ∈ I〉 is indis-

cernible (in C over A) when: �g(āt) depends only on the quantifier type

of t in I and: if n < ω and s̄ = 〈s0, s1, . . . , sn−1〉, t̄ = 〈t0, . . . , tn−1〉
realize the same quantifier-free type in I then āt̄ := āt0ˆ · · · ˆātn−1 and

ās̄ = ās0ˆ · · · ˆāsn−1 realize the same type (over A) in C.

(2) We say that 〈b̄u : u ∈ [I]<ℵ0〉 is indiscernible (in C) (over A) similarly:

if n < ω,w0, . . . , wm−1 ⊆ {0, . . . , n − 1} and s̄ = 〈s� : � < n〉, t̄ =

〈t� : � < n〉 realize the same quantifier-free types in I and u� =

{sk : k ∈ w�}, v� = {tk : k ∈ w�} then āu0ˆ · · · ˆāun−1 , āv0ˆ · · · ˆāvn−1

realize the same type in C (over A).
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(3) We may use incr(< ω, I) instead of [I]<ℵ0 , where incr(αI) = incrα(I) =

incr(α, I) = {ρ : ρ is an increasing sequence of length α of members of

I}. We can use < α or ≤ α; clearly the difference between incr(< ω, I)

and [I]<ℵ0 is notational only (when we have order).

5.46. Definition: (1) We say that the m-type p(x̄) does (Δ, n)-ict divide

over A (or (Δ, n)-ict1 divide over A) when: there are an indiscernible

sequence 〈āt : t ∈ I〉, I an infinite linear order and s0 <I t0 ≤I s1 <I
t1 <I · · · ≤I sn−1 <I tn−1 such that

�1 p(x̄) � “tpΔ(x̄ˆās� , A) �= tpΔ(x̄ˆāt� , A)” for � < n.

(2) We say that the m-type p(x̄) (Δ, n)-ict2-divides over A when, above, we

replace �1 by:

�2 p(x̄) � “tpΔ(x̄ˆās� ,
⋃{āsk : k < �} ∪ A) �= tpΔ(x̄ˆāt� ,

⋃{āsk : k <

�} ∪ A)” for � < n.

(3) We say that the m-type p(x̄) (Δ, n)-ict3-divides over A when, above,

(〈āt : t ∈ I ∪ incr(< n, I)〉 is indiscernible over A and we replace �1 by

�3 p(x̄) � “tpΔ(x̄ˆās� , ā〈s0,...,s�−1〉 ∪A) �= tpΔ(x̄ˆāt� , ā〈s0,...,s�−1〉 ∪A)”
for � < n.

(4) We say that the m-type p(x̄) (Δ, n)-ict4-divides over A when there are

n∗ < ω and sequence 〈āη : η ∈ inc(≤ n∗, I)〉 indiscernible over A such

that (where comp(I) is the completion of the linear order I):

if c̄ realizes p(x̄), then for no set J ⊆ comp(I) with ≤ n members

is the sequence 〈āη : η ∈ inc(≤ n∗, I+)〉 Δ-indiscernible over A, where

I+ = (I, Pt)t∈J and Pt := {s ∈ I : s < t}. Note that if T is stable, we

can equivalently require J ⊆ I and use Pt := {t}.
(5) For k ∈ {1, 2, 3, 4} we say that the m-type p(x̄) (Δ, n)-ictk-forks over A

when for some sequence 〈ψ�(x̄, ā�) : � < �(∗) < ω〉 we have

(a) p(x̄) � ∨
�<�(∗) ψ�(x̄, āi),

(b) ψ�(x̄, ā�) (Δ, n)-ict
k-divides over A.

If k = 1 we may omit it; if Δ = L(τT ) we may omit it.

(6) We define ictk−rkm(p), an ordinal or∞, as follows (easily well defined):

ictk − rkm(p) ≥ α iff p is an m-type and, for every finite q ⊆ p, finite

A ⊆ Dom(p) and n < ω and β < α, there is an m-type r extending

q which (L(τT ), n) − ictk-forks over A with ictk-rkm(r) ≥ β. If ictk-

rkm(r) � β + 1, we say that n witnesses this if the demand above for

this n fails. If n+ 1 is the minimal witness, let n = ictk − wgn(r).
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(7) κmk,ict(T ) is the first κ ≥ ℵ0 such that, for every p ∈ Sm(B), B ⊆ C, there

is a set A ⊆ B of cardinality < κ such that p does not ictk-fork over

A. Omitting m means for some m < ω; note that we write κk,ict(T ) to

distinguish it from Definition 2.3 of κict,2.

(8) T is stronglyk dependent [stable] if κk,ict(T ) = ℵ0 [and T is stable].

(9) We define κk,ict,∗(T ) in a parallel way, i.e., now p(x̄) is the type of

an indiscernible sequence of m-tuples and T is stronglyk,∗ dependent

[stable] if it is dependent [stable] and κk,ict,∗(T ) = ℵ0.

5.47. Claim: (1) For dependent T , the following conditions are equivalent:

(a) κ4,ict,∗(T ) > ℵ0; see Definition 5.46(4),(7),(9).

(b) There are m, 〈(Δ�, n�) : � < ω〉, I,J such that:

(α) Δ� ⊆ L(τT ) finite and n� < ω and n� > � for � < ω,

(β) I is an infinite linear order with increasing ω-sequence of members,

(γ) J = 〈āρ : ρ ∈ inc<ω(I)〉 is an indiscernible sequence with āρ ∈ ωC,

(δ) for η ∈ ωI an increasing sequence, for some c̄� ∈ mC(� < ω) we have:

(i) 〈c̄� : � < ω〉 is an indiscernible sequence over
⋃{āρ : ρ ∈ incr(I,<

ω)},
(ii) if J is the completion of the linear order I, then for no finite J0 ⊆

J do we have: if n < ω and ρ�0, . . . , ρ
�
n−1 ∈ incr(I,< ω) for � = 1, 2

are such that �g(ρ1m) = �g(ρ2m) for m < n and ρ10ˆ · · · ˆρ1n−1 and

ρ20ˆ · · · ˆρ2n−1 realize the same quantifier free type over J0 in J ,

then āρ10ˆ · · · ˆāρ1n−1
, āρ20ˆ · · · ˆāρ2n−1

realize the same Δ�-type over⋃{c̄� : � < ω} in C.

(c) The natural rank is always <∞.

(2) For dependent T the following conditions are equivalent:

(a) κm4,ict(T ) > ℵ0,

(b) like (b) is part (1), only 〈c̄� : � < ω〉 is replaced by one m-tuple c̄,

(c) ict4 − rkm(x̄ = x̄) = ∞,

(d) ict4 − rkm(x̄ = x̄) ≥ |T |+.

(3) Similarly (just simpler) for k = 1, 2, 3 instead 4.

Proof. Straightforwad, but for part (2) see details in Cohen and Shelah [CoSh:E65,

§2]. 5.47
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5.48. Question: (1) Can we characterize the T such that the ictk-rk1 rank of

the formula x = x is 1?

(2) Do we have ict�-rkm(x̄ = x̄) = ∞ iff ict�-rk1(x = x) = ∞, i.e., can we in

part (2) say that the properties do not depend on m? The positive answer will

appear in Cohen and Shelah [CoSh:E65].

Now

5.49. Observation: (1) For k = 1, 2, 3, if p(x̄) (Δ, n)-ictk forks over A, then

p(x̄) (Δ, n)-ictk+1 forks over A.

(2) If T is stronglyk+1 dependent/stable, then T is stronglyk dependent/

stable.

(3) For k ∈ {1, 2, 3, 4}, if T is strongly k dependent/stable, then T is

strongly k dependent/stable; if T1 is interpretable in T2 and T2 is

stronglyk dependent/stable, then so is T1.

(4) Assume T is stable. If p ∈ Sm(B) does not fork over A ⊆ B, then

ictk-rkm(p) = ictk − rkm(p � A).

Remark: Also, the natural inequalities concerning ictk-rk
n(−) follow by 5.49(1).

The parallel of 5.49 holds for types of indiscernible sequences over A.

Proof. Straightforward. Details on the proof of part (3) for k = 1, see [CoSh:E65,

12] 5.49

5.50. Example: (1) There is a stable NDOP, NOTOP, not multi-dimensional

countable complete theory which is not strongly2 dependent.

(2) T = Th(ω1(Z2), En)n<ω is as above, where Z2 = Z/2Z as an additive

group; En = {(η, ν) : η, ν ∈ ω1(Z2)} are such that η � (ωn) = ν � (ωn).
(3) As in part (1) but T is not strongly dependent.

Remark: This is [Sh:897, 0.2]. It shows that the theorem there adds more cases.

Proof. (1) By part (2).

(2) So let M0 be the additive group (ω1(Z2),+) where + is coordinatewise

addition and, for α ≤ ω, let Mα = (ω1(Z2), Pn)n<α, where Pn = {η ∈ ω1(Z2) :

η � (ωn)} is constantly zero and En = {(η, ν) : η, ν ∈ ω1(Z2) are such that

η � (ωn) = ν � (ωn)} and M ′
α = (ω1(Z2), En)n<α. Hence M ′

α,Mα are bi-

interpretable, so we shall use Mα. Let T = Th(Mω) and let Tα = Th(Mα).

So for a model N of Tα is just an abelian group in which every element has

Sh:863



Vol. 204, 2014 STRONGLY DEPENDENT THEORIES 71

order 2, with distinguished subgraph PNn for n < α, hence a vector space over

the field Z2 and PNn decrease with n.

T is stable:

For n < ω, a model of Tn is determined by finitely many dimensions: (PNk :

PNk+1) for k < n (where EN0 is interpreted as the equality), so Tn is superstable

not multi-dimensional.

Hence T necessarily is stable.

T is strongly dependent not strongly2 dependent:

As in 2.5; in fact it is strongly dependent.

T is not multi-dimensional:

If N is an ℵ1-saturated model of T , then it is determined by the following

dimension as vector spaces over Z2, for n < ω:

(∗)1 PNn /P
N
n+1,

(∗)2
⋂
n<ω P

N
n .

Each corresponds to a regular type (in Ceq
T ).

T has NDOP:

Follows from non-multi-dimensionality.

T has NOTOP:

Assume N� ≺ CT is ℵ1-saturated, N0 ≺ N� for � = 0, 1, 2 such that tp(N1, N2)

does not fork over N0. Let A be the subgroup of C generated by N1 ∪N2 and

let N3 = CT � A. Easily N3 ≺ CT ; moreover, N3 is ℵ1-saturated.

By [Sh:c, XII] this suffices.

(3) Expand Mα by Qm = {η ∈ ω1(Z2) : η � [ωm,ωm+ ω) is constantly zero}
for m < n. 5.50

(G). Strongly3 stable and primely minimal types.

5.51. Hypothesis: T is stable (throughout §5 G).

5.52. Definition: [T stable] We say p ∈ Sα(A) is primely regular (usually α < ω)

when: if κ > |T | + |α| is a regular cardinal, the model M is κ-saturated, the

type tp(ā,M) is parallel to p (or just a stationarization of it) and N is κ-prime

over M + ā and b̄ ⊆ κ>N\κ>M , then tp(ā,M + b̄) is κ-isolated; equivalently 9

N is κ-prime over M + b̄.

5.53. Claim: (1) Definition 5.52 is equivalent to: there are κ,M, ā,N as there.

9 Because N is κ-prime over M + ā+ c̄ whenever c̄ ∈ κ>N .
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(2) We can in part (1) replace “κ > |T |+ |α| regular, κ-prime” by “cf(κ) ≥
κ(T ),Faκ-prime”, respectively.

Proof. Straightforward. 5.53

Now (recalling Definition 5.41 and Observation 5.43)

5.54. Claim (T is strongly3 stable): If cf(κ) ≥ κr(T ) and M ≺ N are Faκ-

saturated, then for some a ∈ N\M the type tp(a,M) is primely regular.

Proof. The reader can note that by easy manipulations, without loss of gener-

ality κ = cf(κ) > |T |; in fact, by this we can use tp instead of stp, etc.

Let α∗ = min{ict3 − rk(tp(a,M)) : a ∈ N\M}, and let a ∈ N\M and

ϕ∗(x, d̄∗) ∈ tp(a,M) be such that α∗ = ict3 − rk({ϕ∗(x, d̄∗)}).
We try to choose N�, a�, B� by induction on � < ω such that

�� (a) M ≺ N� ≺ N and a� ∈ N�\M ;

(b) N� is F
a
κ-primary over M + a� and a0 = a;

(c) if � = m+ 1 then

(α) N� ≺ Nm and tp(am,M + a�) is not F
a
κ-isolated,

(β) Nm is Faκ-primary over N� + am,

(γ) N� is F
a
κ-constructible over N�+1 + a0;

(d) (α) B� ⊆ N�,

(β) a� ∈ B�,

(γ) |B�| < κ,

(δ) every Faκ-isolated type q ∈ S<ω(M ∪B�) has no extension in

S<ω(M ∪⋃{Bm : m ≤ �}) which forks over M ∪B�,
(ε) B� is F

a
κ-atomic over M + a�.

Let (N�, a�) be defined iff � < 1 + �(∗) ≤ ω; clearly �(∗) ≥ 0.

�1 If �(∗) < ω, then tp(a�(∗),M) is primely regular.

[Why? If not, then for some b ∈ N�(∗)\M we have tp(a�(∗),M + b) is not

Faκ-isolated.

We try to choose b̄′ε by induction on ε < κ such that

(�1.1) (α) b̄′0 = 〈b〉,
(β) b̄′ε ∈ ω>(N�(∗)),
(γ) tp(b̄′ε,M ∪⋃{b̄′ζ : ζ < ε} ∪ {b}} is Faκ-isolated,

(δ) tp(b̄′ε,M ∪⋃{b̄′ζ : ζ < ε} ∪ {b, ak, . . . , a�(∗)} is Faκ-isolated for k =

�(∗), . . . , 0,

Sh:863



Vol. 204, 2014 STRONGLY DEPENDENT THEORIES 73

(ε) tp(ā,M ∪⋃{b̄′ζ : ζ ≤ ε}) forks over M ∪ ⋃{b̄ζ : ζ < ε} for some

ā ∈ ω>(B�(∗)) when ε > 0.

We are stuck for some ε(∗) < κ because |B�(∗)| < κ, and let B′ =
⋃{b̄′ε :

ε < ε(∗)}. Now we can find an Faκ-saturated N
′ which is Faκ-constructible over

M +B′ and Faκ-saturated N
′′ which is Faκ-constructible over N

′∪B�(∗). By the

choice of B′, the model N ′ is Faκ-constructible also over M ∪B�(∗) ∪B′ (by the

same construction), hence N ′′ is Faκ-constructible over M +B�(∗) +B′.
Clearly N ′′ is Faκ-prime over M + B�(∗) + B′ and N�(∗) is Faκ-prime over

M + B�(∗) + B′ (as B′ ⊆ N�(∗), see clause (β) above, and B′ has cardinality

< κ). So there is an isomorphism f from N ′′ onto N�(∗) over M ∪ B�(∗) ∪ B.

Renaming, without loss of generality f = idN ′′ so N ′′ = N�(∗).
Lastly, we shall show that (N ′,b,B′) is a legal choice for (N�(∗)+1,a�(∗)+1,B�(∗)+1).

Why? The non-obvious clauses are (c)(β), (γ) and (d) of ��(∗)+1.

First, for clause (d) obviously B′ ⊆ |N ′|, b ∈ N ′ and |B′| < κ, so (d)(α), (β),

(γ) hold and clause (d)(ε) holds by the clause �1.1(γ). As for (d)(δ), assume

q ∈ S<ω(M ∪B′) is Faκ-isolated, let c̄ ∈ ω>(N ′) realize q, and let Bq ⊆M ∪B′

be of cardinality < κ such that stp(c̄, Bq) � stp(c̄,M ∪ B′). Now we have

stp(c̄,M ∪B′) � stp(c̄,M ∪B�(∗)∪B′), as otherwise we can find c̄′� in C realizing

stp(c̄, Bq). hence stp(c̄,M ∪ B′) for � = 1, 2 such that stp(c̄1,M ∪ B�(∗) ∪
B′) �= stp(c̄2,M ∪ B�(∗) ∪ B′); so for some finite ā ⊆ B�(∗), d̄ ⊆ M we have

stp(c̄, d̄∪ ā∪B′) �= stp(c̄2, d̄∪ ā∪B′). Now without loss of generality c̄1, c̄2 are

from N�(∗), contradicting the choice of ε(∗). Let b̄ list B′ without repetitions,
so by the induction hypothesis stp(b̄ˆc̄,M ∪ B�(∗)) � stp(b̄ˆc̄,M ∪ B0 ∪ · · · ∪
B�(∗)), hence stp(c̄,M ∪B�(∗) ∪ b̄) � stp(c̄,M ∪B0 ∪ · · · ∪B�(∗) ∪ b̄), so by the

choice of b̄ and the previous sentence really clause (d)(δ) holds for the choice

of (N�(∗)+1, a�(∗)+1, B�(∗)+1) above.

Second, concerning clause (c)(β) of ��(∗)+1, by the sentence after the choices

of B′, N ′ above we know that N ′ is Faκ-constructively over M ∪ B�(∗) ∪ B′, so
clearly stp(N ′,M ∪ B′) � stp(N ′,M ∪ B′ ∪ B�(∗)), hence stp(B�(∗),M ∪ B′) �
stp(B�(∗), N ′), so easily stp(B�(∗),M ∪B′ ∪ {a�(∗)}) � stp(B�(∗), N ′).
Now B�(∗)∪B′ is Faκ-atomic overM∪{a�(∗)}, being ⊆ N�(∗), recalling ��(∗)(b)

holds. Therefore hence B�(∗) is Faκ-atomic over M ∪B′ ∪ {a�(∗)}, hence by the

previous sentence B�(∗) is Faκ-atomic over N ′+a�(∗); but |B�(∗)| < κ, hence it is

Faκ-constructible over N ′ + a�(∗). As N ′′ is Faκ-constructible over B�(∗) ∪N ′ by
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its choice (and a�(∗) ∈ B�(∗) by ��(∗)(d)(β)), clearly N ′′ is also Faκ-constructible

over N ′ ∪ {a�(∗)} as required in (c)(β).

Clause ��(c)(γ) means that N�(∗) = N ′′ is Faκ-constructible over N ′ + a�(∗).
Now N�(∗) = N ′′ is Faκ-constructible over B�(∗) ∪ N ′ and ā ∈ ω>(N�(∗)) im-

plies stp(ā, B�(∗) ∪ N ′) � stp(ā, B0 ∪ · · · ∪ B�(∗) ∪ N ′), hence by monotonicity

stp(ā, B�(∗)∪N ′) � stp(ā, a0+B�(∗)+N ′), so by the same construction N�(∗) =
N ′′ is Faκ-constructible over a0 + B�(∗) + N ′. As B�(∗) ⊆ N�(∗), |B�(∗)| < κ, it

is enough to show that B�(∗) is Faκ-atomic over a0 + N ′, and this is proved as

in the proof of clause (d)(δ) above. So indeed (N ′, b, B′) is a legal choice for

(N�(∗)+1, a�(∗)+1, B�(∗)+1). But this contradicts the choice of �(∗), so we have

finished proving �1.]

�2 If � = m+ 1 < 1 + �(∗), then tp(am, N�) is not orthogonal to M .

[Why? Toward a contradiction assume tp(am, N�)⊥M . So we can find A�⊆N�
of cardinality<κ such that tp(〈a0, . . . , am〉, A�) is stationary, tp(〈a0, . . . , am〉, N�)
does not fork over A� and tp(A�,M) does not fork over C� := A� ∩ M and

tp(A�, C�) is stationary, and a� ∈ A� and (recalling N� is Faκ-primary over

M + a�) we have stp(A�, C� + a�) � stp(A�,M + a�); it follows that tp(M,A�)

does not fork over C�. As tp(am,M + A�) is parallel to tp(am, N�) and

to tp(am, A�) and tp(am, N�) ⊥ M is assumed, we get that all three

types are orthogonal to M . It follows that stp(am, A�) � stp(am,M + A�),

but recall a� ∈ A�, so stp(am, A�) � stp(am,M + a�). As |A�| < κ this

implies that tp(am,M +A�) is Faκ-isolated. But recall stp(A�, C� + a�) =

stp(A�, (A� ∩M) + a�) � stp(A�,M + a�). Together stp(am + A�, C� + a�) �
stp(am+A�,M+a�), hence tp(am,M+a�) is F

a
κ-isolated, contradicting��(c)(α).]

To complete the proof by �1 it suffices to show �(∗) < ω, so toward a con-

tradiction assume:

�3 �(∗) = ω.

As we are assuming �3, we can find 〈N+
� : � < �(∗) = ω〉 such that:

�1 (a) N� ≺ N+
� ,

(b) N� is saturated, e.g., of cardinality ‖N‖|T |,
(c) N+

�+1 ≺ N+
� ,

(d) tp(N+
� , N) does not fork over N�,

(e) (N+
� , c)c∈N�∪N+

�+1
is saturated.
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[Why? We can choose N+
� by induction on �. For � = 0 it is obvious, and for

� = m + 1 we choose N ′
� while satisfying the relevant demands in �1 on N+

� ,

and then choose N ′
m satisfying the relevant demands on (N+

� , N
+
m). Lastly, by

the uniqueness of the saturated model there is an isomorphism f� from N ′
m onto

N+
m over Nm, and let N� = f�(N

′
�).]

Next, for � < �(∗) we can find I� such that:

�2 (a) I� ⊆ N+
� \N+

�+1,

(b) I� is independent over (N
+
�+1,M), (i.e., c ∈ I� ⇒ tp(c,N+

�+1) does

not fork over M and I is independent over N+
�+1),

(c) tp(N+
� , N

+
�+1 ∪ I�) is almost orthogonal to M ,

(d) if c ∈ I�, then either c ∈ ϕ∗(C, d̄∗) or tp(c,M) is orthogonal to

ϕ∗(x, d̄∗), i.e., to every q ∈ S(M) to which ϕ∗(x, d̄∗) belongs,
(e) if q ∈ S(N+

�+1) does not fork over M and ϕ∗(x, d̄∗) ∈ q or q is

orthogonal to ϕ∗(x, d̄∗), then the set {c ∈ I� : c realizes q} has

cardinality ‖N�‖,
(f) we let I′� = I� ∩ ϕ∗(C, d̄∗).

[Why possible? As (N+
� , c)c∈N+

�+1
) is saturated.]

Now for � < �(∗),
�3 I� is not independent over (N

+
�+1 + a,N+

�+1).

[Why? Recall a = a0. Assume toward a contradiction that

(∗)3.1 I� is independent over (N
+
�+1 + a,N+

�+1).

As by clause (b) of �2 we have tp(I�, N
+
�+1) does not fork overM , it follows that

I� is independent over (N
+
�+1+a,M). Also, by (∗)3.1 we know that tp(a,N+

�+1∪I�)
does not fork over N+

�+1. Also, tp(a,N+
�+1) does not fork over N�+1 (because

a ∈ N and tp(N+
�+1, N) does not fork over N�+1 by �1(d)). Together it follows

that

(∗)3.2 tp(a,N+
�+1 + I�) does not fork over N�+1.

Recall that tp(N�, N
+
�+1) does not fork over N�+1 (by �1(d) because N� ≺ N

using symmetry) and tp(a,N� ∪ N+
�+1) does not fork over N� similarly, hence

tp(N� + a,N+
�+1) does not fork over N�+1, hence

(∗)3.3 tp(N�, N
+
�+1 + a) does not fork over N�+1 + a.

Recall N� is F
a
κ-constructible over N�+1+a (by ��+1(c)(γ)), N� is F

a
κ-saturated

and tp(N+
�+1, N� + a) does not fork over N�+1. Clearly
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(∗)3.4 N� is also Faκ-constructible over N+
�+1 + a (even by the same construc-

tion).

As tp(a,N+
�+1+I�) does not fork over N�+1 and N+

�+1 is Faκ-saturated, it follows

that

(∗)3.5 tp(N�, N
+
�+1 + I�) does not fork over N+

�+1, hence over N�+1.

But by �2 clause (c), for every d̄ ∈ ω>(N+
� ) the type tp(d̄, N+

�+1 + I�) is almost

orthogonal to M , hence recalling N� ⊆ N+
� ,

(∗)3.6 tp(N�, N
+
�+1 + I�) is almost orthogonal to M (this does not depend on

�3.1 −�3.5 so can be used later).

Hence by (∗)3.5 + (∗)3.6 we have

(∗)3.7 tp(N�, N�+1) is almost orthogonal to M .

But N�+1 is Faκ-saturated, so this implies

(∗)3.8 tp(N�, N�+1) is orthogonal to M .

But by ��(b)
(∗)3.9 a� ∈ N�.

By �2 we have

(∗)3.10 tp(a�, N�+1) is not orthogonal to M .

Together (∗)3.8 + (∗)3.9 + (∗)3.10 give a contradiction, so (∗)3.1 fails, hence �3

holds.]

Now (recalling clause (f) of �2)

�4 I′� is not independent over (N
+
�+1 + a,N+

�+1).

[Why? By �3 + clauses (b)+(d) of �2, recalling that a ∈ ϕ∗(C, d̄∗), by the

choice of a in the beginning of the proof of 5.54.]

�5 For each n, tp(a,N+
n ) (L(τT ), n)-ict3-forks over M .

[Why? By 5.55 below, with I�, N
+
n−� here standing for In−�−1, N� there, clause

(d) there holds by �3 here; M,A there stand for M,M here, clauses (a),(b),(c)

there hold by (∗)3.6 here (recalling that (∗)3.6 does not depend on �3.1 −�3.5.]

�6 α∗ > ict3 − rk(tp(a,N+
n )) for every n < ω.

[Why? By the choice of ϕ∗(x, d̄∗), a, α∗ in the beginning of the proof we have

α∗ = ict3 − rk(tp(a,M)), and by �5 and the definition of ict3 − rk(−) this

follows.]

�7 For each n, tp(a,N+
n+1) is not orthogonal to M .
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[Why? By �2(b) +�4.]

Hence we can find q ∈ S(M) such (for any n):

�8 (a) some automorphism of C over d̄∗ maps tp(a,Nn) to a type parallel

to q,

(b) ict3 − rk(q) < α∗,
(c) q and tp(a,Nn+1) are not orthogonal,

(d) if q′ ⊆ q, |q′| < κ then q′(N) � M [actually clause (d) follows by

(c)].

This contradicts the choice of α∗; so �(∗) < ω and we are done. 5.54

5.55. Claim: Assume T is stable. A sufficient condition for

“tp(a,Nn) (Δ, n)− ict3-divides over A”

is:

� (a) 〈N� : � ≤ n〉 is ≺-increasing,

(b) A ⊆M ≺ N0,

(c) I� ⊆ N�+1\N� is independent over (N�,M) for � < n,

(d) tp(a,N� ∪ I�) forks over N�+1,

(e) tp(N�+1, N� + I�) is almost orthogonal to M .

Proof. Left to the reader, noting that 〈I� : � < n〉 are pairwise disjoint (by

clauses (a) +(c)) and ∪{I� : � < n} is independent). 5.55

5.56. Remark: (1) We may give more details on the last proof and intend to

continue the investigation of the theory of regular types (in order to get good

theory of weight) in this context somewhere else.

(2) We can use essentially 5.55 to define a variant of the rank for stable theory.

So 5.55 can be written to use it and hence 5.57 connects the two ranks.

5.57. Claim: Assume k ∈ {3, 4} and ictk-rk(T ) <∞; see Definition 5.46(6).

If cf(κ) ≥ |T |+ or less andM ≺ N are κ-saturated, then for some a, ϕ(x, ā), n∗

we have:

� (a) a ∈ N\M ,

(b) if T is stable, the type p = tp(a,M) is primely regular,

(c) ā ∈ ω>M and ϕ(x, ā) ∈ p,

(d) ω × (wictk-rk(ϕ(x, ā))) + (ictk − wg(ϕ(x, ā))) is minimal.

Proof. We choose a, ϕ∗(x, d̄∗), α, n∗ such that:
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� (a) a ∈ N\M ,

(b) d̄∗ ⊆M ,

(c) C |= ϕ[a, d̄∗],
(d) α = ictk − rk({ϕ∗(x, d̄∗)}),
(e) under clauses (a)–(d), the ordinal α is minimal,

(f) n∗ witness α+ 1 � ictk − rk({ϕ(x, d̄∗)}),
(g) under clauses (a)–(f) the number n∗(< ω) is minimal.

Clearly there are such a, ϕ∗(x, c̄), α and n∗. Then we try to choose (N�, a�) by

induction on � < ω such that �� from the proof of 5.54 holds. But now we can

prove similarly that �(∗) ≤ n∗. However, still tp(a,N�(∗)) is not orthogonal to

M .

[Why? We can chooseN+
0 , . . . , N

+
�(∗), I0, . . . , I�(∗)−1 as in �2+�3 in the proof

of 5.53 and prove �3 there, which implies the statement above. As ϕ∗(x, d̄∗) ∈
tp(a,N�(∗)), it follows that ϕ(N�(∗), c̄) � M and any a′ ∈ ϕ(N�(∗), c̄)\M is as

required.]

This is enough. 5.57

Similarly to Definition 5.46:

5.58. Definition: Let T be stable.

(1) For an m-type p(x̄) we define sict3-rkm(p(x̄)) as an ordinal or ∞ by

defining when ict3-rkm(p(x̄)) ≥ α for an ordinal α by induction on α:

(∗)αp(x̄) sict3-rkm(p(x̄)) ≥ α iff for every β < α and finite q(x̄) ⊆ p(x)

and n < ω we have:

(∗∗)β,nq(x̄) we can find 〈M� : � ≤ n〉, 〈I� : � < n〉 and ā such that:

(a) M� ≺ C is Faκ1(T )-saturated,

(b) M� ≺M�+1,

(c) q(x̄) is an m-type over M0,

(d) ā realizes q(x̄) and β ≤ sict3 − rk(tp(ā,Mn)) ≥ β,

(e) I� ⊆ ω>(M�+1) is independent over (M�,M0),

(f) I� is not independent over (M� + ā,M0) (clearly, without loss

of generality, I� is a singleton).

(2) If sict3-rkm(p(x̄)) = α <∞, then we let sict3-wgm(p(x̄)) be the maximal

n such that, for every finite q(x̄) ⊆ p(x̄), we have (∗∗)α,nq(x̄).
(3) Above instead of sict3-rk(tp(ā, A)) we may write sict3-rkm(ā, A); simi-

larly for scit3-wgm(ā, A); if m = 1 we may omit it.
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5.59. Claim: (1) T is strongly3 stable iff T is stable and sict3-rkm(p(x̄)) <∞
for every m-type p(x̄).

(2) For every type p(x̄) there is a finite q(x̄) ⊆ p(x̄) such that (sict3-rk(p(x̄)),

sict3-wg(p(x̄)) = sict3 − rk(q(x̄)), sict3-wg(q(x̄))).

(3) If p(x̄) � q(x̄), then sict3-rk(p(x̄)) ≤ sict3-rk(q(x̄)), and if equality holds

then sict3-wgm(p(x̄)) ≤ sict3-wgm(q(x̄)).

(4) (T stable) If p(x̄), q(x̄) are stationary parallel types, then sict3-rkm(p(x̄)) =

sict3-rkm(q(x̄)), etc. If ā1, ā1 realizes p∈Sm(A), then sict3-rkm(stp(ā1, A))=

sict3-rkm(stp(ā2, A)). Similarly for sict3-wgm. Also, automorphisms of C

preserve sict3-rkm and sict3-wg.

5.60. Claim: p(x̄) (Δ, n)-ict3 forks over A for every n when:

� (a) G is a definable group over A (in C),

(b) b ∈ G realizes a generic type of G from S(A), as was proved to exist

in [Sh:783, 4.11], or T stable,

(c) p(x̄) ∈ S<ω(A+ b) forks over A.

Remark: We may have said it in §5 F.

Proof of 5.60. Straightforward.

5.61. Conclusion: Assume T is strongly3 dependent.

If G is a type-definable group in CT , then there is no decreasing sequence

〈Gn : n < ω〉 of subgroups of G such that (Gn : Gn+1) = κ̄ for every n.

5.62. Remark: (1) In 5.60 we can replace “ict3” by “ict4” and also by suitable

variants for stable theories.

(2) Similarly in 5.61.

(H). T is n-dependent. On related problems and background see [Sh:702,

2.9–2.20], (but, concerning indiscernibility, it speaks about finite tuples, i.e.,

α < ω in 5.71, which affect the definitions and the picture). On a consequence

of “T is 2-dependent” for definable subgroups in C (and more, e.g., concerning

5.64), see [Sh:886].

5.63. Definition: (1) A (complete first order) theory T is n-independent when

clause (a)n in 5.64 below holds.

(2) The negation is n-dependent.
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5.64. Problem: Sort out the relationships between the following candidates for

“T is n-independent” (T is order order complete; also, we can fix ϕ; omitting

m we mean 1):

(a)n Some ϕ(x̄, ȳ0, ȳ1, . . . , ȳn−1) is n-independent, i.e., (a)
n
m for some m.

(a)nm Some ϕ(x̄, ȳ0, ȳ1, . . . , ȳn−1) is n-independent where �g(x̄) = m, where:

� ϕ(x̄, ȳ0, ȳ1, . . . , ȳn−1) is n-independent when there are ā�α ∈ �g(ȳ�)C

for α < λ, � < n and 〈ϕ(x̄, ā0η(0), . . . , ān−1
η(n−1)) : η ∈ nλ is increasing〉

is an independent (sequence of formulas).

(b)nm There is an indiscernible sequence 〈āα : α < λ〉, ϕ = ϕ(x̄, ȳ0, . . . , ȳn−1),

m = �g(x̄), �g(ȳ�) = �g(āα) for � < n, α < λ and c̄ ∈ �g(x̄)C such that:

if k < n and 〈R� : � < �(∗)〉 is a finite sequence of k-place relations

on λ, then for some sequence t̄, s̄ ∈ nλ realizing the same quantifier

free type in (λ,<,R0, R1, . . . , R�(α)) we have C |= ϕ[b̄, ās0 , . . . , āsn−1 ] ∧
¬ϕ[b̄, āt0 , . . . , ātn−1 ].

(c)nm For some ϕ = ϕ(x̄, ȳ0, . . . , ȳn−1), �g(x̄) = m, for every j ∈ [1, ω),

for infinitely many k there are ā�i ∈ �g(ȳ)C for i < k, � < n such that

|{p ∩ {ϕ(x̄, ā0i0 , . . . , ān−1
in−1

) : i� < k for � < n} : p ∈ Sm(
⋃{ā�i :

� < n, i < k}|}| ≥ 2k
n−1×m.

Remark: We can phrase (b)nm, (c)nm as alternative definitions of

“ϕ(x̄, ȳ0, . . . , ȳn−1) is n-independent”.

So in (b)nm it is better to have n indiscernible sequences.

5.65. Observation: If ϕ(x̄, ȳ0, . . . , ȳn−1) satisfies clause (a)n, then it satisfies a

strong form of clause (c)n (for every k) and the number is ≥ 2k
n

.

Remark: Clearly Observation 5.65 can be read as a sufficient condition for being

n-dependent, e.g.:

5.66. Conclusion: T is n-dependent when: for every m, � and finite Δ ⊆ L(τT )

for infinitely many k < ω we have |A| ≤ k ⇒ |SmΔ(A)| < 2(k/�)
n

.

5.67. Question: (1) Can we get clause (a) from clause (c)?

(2) Can we use it to prove (a)n1 ≡(a)nm?

5.68. Observation: In 5.64, if clause (a) then clause (b).

5.69. Question: Does (b) imply (a)?
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5.70. Claim: If T satisfies (a)n for every n, then: if λ � (μ)<ω2 then λ �T

(μ)ℵ0 where:

5.71. Definition: We say that λ→T (μ)α when: if āi ∈ α(CT ) for i < λ then for

some U ∈ [λ]μ the sequence 〈āi : i ∈ U 〉 is an indiscernible sequence in CT .

Remark: (1) Note that for α < ω this property behaves differently.

(2) Of course, if θ = 2|α|+|T | and λ→ (μ)<ωθ then λ→T (μ)α.

(3) See on the non-2-independent T and definable groups in [Sh:886].

5.72. Conjecture: Assume ¬(a)n (or another variant of n-dependent). Then

ZFC � ∀α∀μ∃λ(λ →T (μ)α).

5.73. Question: Can we phrase and prove a generalization of the type-decompo-

sition theorems for dependent theories ([Sh:900]) to n-dependent theories T ,

e.g., when (λλ�

�+1) = λ�+1 for � < n,B� ≺ (H (κ̄+),∈, <∗
κ̄+) has cardinality λ�,

[B�+1]
λ� ⊆ B�, {CT ,B�+1, . . . ,Bn} ∈ B�.
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appear. math.AG/0503722.

[CoSh:919] M. Cohen and S. Shelah, Stable theories and representation over sets, Mathemat-

ical Logic Quarterly, submitted. 0906.3050.

[CoSh:E65] M. Cohen and S. Shelah, Ranks for strongly dependent theories, preprint.

math.LO/1303.3441.

[FiSh:E50] E. Firstenberg and S. Shelah, Perpendicular indiscernible sequences in real closed

fields, preprint. math.LO/1208.1302.

[Gu77] Y. Gurevich, Monadic theory of order and topology. I., Israel Journal of Mathe-

matics 27 (1977), 299–319.

[KpSh:946] I. Kaplan and S. Shelah, A counterexample to existence of indiscernibles and

other examples, Journal of Symbolic Logic, accepted. math.LO/1009.5420.

[KpSh:975] I. Kaplan and S. Shelah, A dependent theory with few indiscernibles, Israel Jour-

nal of Mathematics, accepted. math.LO/1010.0388.

Sh:863



82 S. SHELAH Isr. J. Math.

[KpSh:993] I. Kaplan and S. Shelah, Chain conditions in dependent groups, Annals of Pure

and Applied Logic 164 (2013), 1322–1337.

[Ma71] A. Macintyre, On ω1–categorical theories of fields, Fundamenta Mathematicae

71 (1971), 1–25.

[On0x1] A. Onshuus, th-Forking, algebraic independence and examples of Rosy theories,

Preprint (2003). math.LO/0306003.

[On0x2] A. Onshuus, Properties and consequences of th-independence, Preprint (2004).

math.LO/0205004.

[Pa90] J. Pas, Cell decomposition and local zeta functions in a tower of unramified

extensions of a p-adic field, Proceedings of the London Mathematical Society 60

(1990), 37–67.

[Sh:950] S. Shelah, A dependent dream and recounting types, preprint.

math.LO/1202.5795.

[Sh:886] S. Shelah, Definable groups for dependent and 2-dependent theories, Journal of

Symbolic Logic, submitted. math.LO/0703045.

[Sh:877] S. Shelah, Dependent T and existence of limit models, Tbilisi Mathematical Jour-

nal, submitted. math.LO/0609636.

[Sh:900] S. Shelah, Dependent theories and the generic pair conjecture, Communications

in Contemporary Mathematics, accepted. math.LO/0702292.

[Sh:906] S. Shelah, No limit model in inaccessibles, CRM Proceedings and Lecture Notes

53 (2011), 277–290. math.LO/0705.4131.

[Sh:839] S. Shelah, Stable frames and weights, preprint.

[Sh:F918] S. Shelah, Theories with EF-equivalent non-isomorphic models II, preprint.

[Sh:93] S. Shelah, Simple unstable theories, Annals of Mathematical Logic 19 (1980),

177–203.

[Sh:197] S. Shelah, Monadic logic: Hanf numbers, in Around Classification Theory of

Models, Volume 1182 of Lecture Notes in Mathematics, Springer, Berlin, 1986,

pp. 203–223.

[Sh:c] S. Shelah, Classification Theory and the Number of Nonisomorphic Models, Vol-

ume 92 of Studies in Logic and the Foundations of Mathematics, North-Holland,

Amsterdam, 1990, xxxiv+705 pp.

[Sh:702] S. Shelah, On what I do not understand (and have something to say), model

theory, Mathematica Japonica 51 (2000), 329–377. math.LO/9910158.

[Sh:715] S. Shelah, Classification theory for elementary classes with the dependence prop-

erty — a modest beginning, Scientiae Mathematicae Japonicae 59, No. 2 (special

issue: e9, 503–544), (2004), 265–316. math.LO/0009056.

[Sh:757] S. Shelah, Quite complete real closed fields, Israel Journal of Mathematics 142

(2004), 261–272. math.LO/0112212.

[Sh:876] S. Shelah, Minimal bounded index subgroup for dependent theories, Pro-

ceedings of the American Mathematical Society 136 (2008), 1087–1091.

math.LO/0603652.

[Sh:897] S. Shelah, Theories with EF-equivalent non-isomorphic models, Tbilisi Mathe-

matical Journal 1 (2008), 133–164. math.LO/0703477.

Sh:863



Vol. 204, 2014 STRONGLY DEPENDENT THEORIES 83

[Sh:783] S. Shelah, Dependent first order theories, continued, Israel Journal of Mathematic

173 (2009). math.LO/0406440.

[Sh:E63] S. Shelah, Quite complete real closed fields revisited, preprint.

[Sh:F705] S. Shelah, Representation over orders of elementary classes, preprint.

Sh:863




