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ABSTRACT 

We solve the problem of the elementary e:luivalence (definability) of the 
permutation groups over cardinals N~. We show that it suffices to solve the 
problem of elementary equivalence (definability) for the ordinals a in certain 
second order logic, and this is reduced to the case ofa < (2so) +. We solve a 
problem of Mycielski and McKenzie on embedding of free groups in permuta- 
tion groups, and discuss some weak second-order quantifiers. 

0. Introduction 

Let ( P , ; o ) b e  the group of  permutations of R~, i .e. , the set of  ordinals <N,  

(which is isomorphic to the group of permutations of A if I A I = N,). The question 

as to the elementary theories of permutation groups was raised by Fajtlowicz, 

and Isbell showed that those over uncountable sets and those over sets of car- 

dinality __< 2 ~~ can be characterized. The two specific problems are 

1) when is (P~ ;o )  = (P~;o),~ 

2) when can (P~; o )  be characterized by a sentence ~, (or set of sentences F) 

that  is, (Pp; o ) ~  ~ iff fl = ~. (We ignore for simplicity the permutation groups 

over finite sets.) McKenzie [9] shows that in (Pp ; o )  we can interpret (fl, < ) and 

derive from it some partial answers to questions (1) and (2). We give a necessary 

and sufficient condition for the elementary equivalence. 

Our work was done independently of Pinus [12] who proved that we can 

interpret in (P~ ;o) ,  (~, < ) with variables ranging over countable one-place 

functions and can derive more information on (1) and (2). We prove here that 

variables over relations ofcardinality __< continuum over (0e, < ) can be interpreted 

(w and also that a "converse" is true (w Other connected works are Ershov 
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150 S. SHELAH Israel J. Math., 

[5] and ['6], and Vazhenin and Rasin [16]. McKenzie [9] and [10] and Pinus 

[12] also contain more information. 

In w we show that by Kino [8] we can reduce the general problem to the case 

< (2~~ in w we discuss some related problems and possible generaliza- 

tions, and improve a result of McKenzie [10] on embedding free groups in 

permutation groups. 

Let P~ be the family of permutations of N, which move < N# elements. For 

example, for f l=N1,  De Bruijn [1,2] proves that the free group with 

2 s~ generators can be embedded (in P~), McKenzie [10] shows that the free group 

with ~1 ~- cannot be embedded, and we prove that the free group with ~1 + = (2t~~ § 

cannot be embedded. Theorem 5.1 gives the solution of the general problem. 

In conclusion, we improve results and answers to particular questions of 

McKenzie [9] and Pinus [12]. 

Let 91 = (2s~ +, I u=l = min(2S~ �9 (g, u ;  < )  is the two-sorted model with 

domain ~, U and the relation < on ~. 

CONCLUSION 0.1. (P, ;  o )  = (P# ; o )  iff the followin 9 conditions are satisfied 

where ~ =91`o~,, + ... +~q"~, + ... + ~o, fl=91~'fl`o + "'" + 91~fl,+ "'" +/30, ~,,/~, < 91 

1) ~ < n  iff~<n 
2) i f  ot < O, (%, U,o; < ) = L~ (flo, UtJo; < ) (L2 is second order logic) 

3) <>----L, <#o,U*, <> (Iu*I =2 
4) for 0 < n < co (~,,U*; < )  --L2 (ft,,U*; < )  

5) cf(f~`o~`o) > fl iffcf(91'~ > 91 

6) ifcf(91`o~`o) < ~ then (cf(f~`oc%),U*; < )  =Z~ (cf(f~`ofl,o), U*; < ) .  

PROOF. Immediate by Lemma 1.3, Conclusion 3.3, and Theorem 4.6. 

CONCLUSION 0.2. ( P , ; o )  is definable by a sentence (set of  sentences)iff 

(i) ~ = fl"~, + ... + fll~x + ~o, ~ < fl and ~ > fl; (~i, U*; < )  are definable by a 

sentence (set of sentences) of  L2; or (ii) ~ < 91 and (~o, U,o;<)  is definable by a 

sentence (set of  sentences) of L2. 

PROOF. By Lemma 1.3, Conclusion 3.3 and Theorem 4.6. 

CONCLUSION 0.3. 

a) (Po,~;o~, (P~;o~, (Po,; o )  (n < co) are definable by a sentence, and for no 

~t >__ 91,o is (P~;o)  definable by a set of sentences. 

b) I f  (P~; o) ,  (P~; o )  are definable by a sentence then also (P~+#; o),(P~#;o) 

are definable, and if  ~t, fl < 91, also (P~#; o )  is definable. 
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C) It is consistent with ZFC that there are ~, fl where 2 ~ =  Np such that 

( P ~ ; o )  is definable by a sentence, but ( P p ; o )  is not definable even by a set of 

sentences. 

d) The set of N~for which ( P ~ ; o )  is definable by (a first-order) sentence, is 

not identical to the set of ~ for which ( N ~ ; )  is definable by a second order 

sentence. 

PROOF. By Conclusion 0.2. 

We can consider our main results as determining the strength of the quantifier 

ranging over permutation. On possible quantifiers of  this sort, see [14, 151 from 

which it follows that the permutational quantifier is very natural. 
I would like to thank J. Stavi for an interesting discussion and for de- 

tecting many errors. 

1. Notation 

By using multisorted models we can add a set of subsets, relations etc., as 

another sort of elements, and thus use first-order logic only. Cardinals are rep- 

resented by 2,/~,x; ordinals by ~,f l ,7,~, i , j ,k;  and N~ is the ~-th cardinal. We 

identify ~ with {fl: fl < ~}, and N~ with the first ordinal of  that power. Let P~ be 

the set of  permutations of N~, E~ the set of  equivalence relations over N~ with 

each equivalence class having a cardinality < x (if r > N, we omit it), and 

R~(A)[F~(A)] be the set of  n-place relations (partial functions) with domain of 

cardinality < x. The domain of an n-place relation r is U {{x i, "", xn} : r(xl,'",xn)}. 

A one-place relation is identified with the set it represents. IAI is the cardinality of A. 

L e t x , y , z ~ N ~ ,  f ,  gEP~, e ~ E ~  ~, A,B~RI(N~).  

M and N are models. These are of the form 

M = ,A 1 A 2 ,. 1 ~, \ ~, ~,...,A~, Q , . . . ,Q ), where Q1,...,Q~, 

are relations and the A~ d~mains (e.g. ~, N~, E~, ...). The equality between ele- 

ments of the same sort and natural relations and operations will not be mentioned 

(e.g. x e y for e ~ E~, x, y s N~). K ~ denotes an indexed class {M~: ~ an ordinal} of 

the same type; L(K ~) is the corresponding first-order logic. The subsequent 

definitions can be naturally restricted to a subclass of ordinals (usually 

{~: N~ >= 2'~~ 
DEFINITION 0.1. K" can be interpreted in K m (for czE C) if there is a recursive 
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function F: L(K")~ L(K m) such that for any sentence ~, ~ L(K") and ordinal 

~, (~ ~ C) 

M~ V ~b iff M m ~ F(~). 

DEFINITION 0.2. K" can be explicitly interpreted in K '~ if 

M~" = <A2, ...,A,k; Q*, ... Q'>, M~ = <B~, ... ,B 2. R t, ...,RJ>, 

and there are formulae 4h(x*), "", qSk(Xk), ~k,(0~ t, )~t), "",  ~)k(02k,)Tk), and 

0,, . . . ,0,  from L(K =) and functions Ft~,...,F~ such that: for l < f l < k ,  F~ 

is a function from {d: d from M~',M"~V r onto A~, such that F~[d] = F~[b] 

iff M2 ~ $#[d, b] and M"= ~ Q r[..., F=[d],...] iff M~ } 0 r [..., d, . . .]  (all the sequences 

are of appropriate sorts). 

LEMMA 1.1. I f  K" can be explicitly interpreted in K m then K" can be 

interpreted in K". 

LEMMA 1.2. Interpretability and explicit interpretability are transitive and 

reflexive relations. 

LEMMA 1.3. I f  K ~, K m are bi-interpretable (i.e. each can be interpreted in 

the other) then 

a) M : -  M~ iff M ~ =  M~ 
b) M? is definable in K" by a sentence (set of sentences) iff M~ is definable in 

K m by a sentence (set of sentences). 
In defining interpretations, we shall be informal. 

2. Interpretation in the permutation groups 

We shall define indexed classes K ~ and prove that K ~ + ~ can be explicitly in- 

terpreted in K ~. In the next section we shall close the circle by interpreting K ~ in 

K s, and thus get the desired result. Lemmas 2.1 to 2.3 were proved by McKenzie 

[9]. 

LEMMA 

PROOF. 

N~ is defined by two 2-cycles. 

LEMMA 2.2. K a can be explicitly interpreted in 

M~ a = (P~,N~,Rt(N~); o) ,  

2.1. K 2 can be explicitly interpreted in K 1 where 

M~ = (P~;o>, M 2 = (P~,N~;o>. 

(Hinted) The 2-cycles in P~ can be defined; therefore, an element of 

K 2 where 
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and there is a formula qbsln(v ) ~ L(K a) defining the finite sets of RI(N~). 

PROOF. When f ranges over P~, {x:f(x)  = x} ranges over the subsets of R~, 

except those whose complement has just one element. Therefore, 

Af,g = {x : f (x)  = x V g(x) = x} 

ranges over the subsets of N~ and x e As,g can be expressed in L(K2). A set 

A s Rt(N~) is finite iff there is no f ~  P~ which maps it into a B c A, B r A. 

LEMMA 2.3. K 4 can be explicitly interpreted in K 3 where 

M 2 = (P, ,  N~, RI(N~), CRy; % < ), 

CR~ is the set of(finite and infinite) cardinals < N~, < is the order on the car- 

dinals, and cr (A) = 2 is considered as one of the natural relations of M~, where 

cr (A) is the cardinality of the set A. 

PRoov. We interpreted ), ~ CR~ by A ~ RI(N~) of cardinality 2. Equality can 

be expressed in L(K s) as cr (A) = cr (B) iff there is a permutation of N~ mapping 

A onto B; or cr(A) = cr(B) = N,, which is equivalent to the existence of f ,  g ~ P 

such that A U {f(x): x e A) -- B I,.) {g(x): x ~ A} = ~ .  The order cr (A) < cr (B) 

can be expressed by " c r ( A ) ~  cr(B)" and there is f~P~ which maps A into B. 

LEMMA 2.4. K s can be explicitly interpreted in K 4 where 

M f  = (P~,N~,RI(N~),CR~,E~';o, <).  

PROOF. Every permutation f s  P~ divides N~ into its cycles, which are all of 

cardinality _< N o. More formally, for f eP~,  e(f) is defined by: xe(f)z iff for 

every A c N ~ ,  xEA,  (VyeN0 [ y e A ~ f ( y )  eA]  implies z~A.  Clearly 

e(f) s E~ 1, and if e ~ E~ 1, we define fe as follows: for each e-equivalence class A, 

if A is finite let A = {al, "", an} and fe is defined byf~(ai) = ai+l (i = 1, ..., n - 1 ) ,  

fe(a,) = al ; if A is infinite let A = {an : n integer} andf~ is defined by f~(a,) = an+ i. 

Clearly e(L)= e; therefore, when f ranges over P~, e(f) ranges over E,~, ~ and 

xe(f)y can be expressed in L(K*). 

THEOREM 2.5. K 6 can be explicitly interpreted in K s where 

M~ (P~,N, ,RI(RJ,  ~, o = CR~,E~ ,. . . ,R,(CR~),. . .;o < ). 

PRoof. For simplicity we shall interpret RQ2(CR~) only. By pairing functions 

we can encode R,~(CR~) for n > 2. We shall prove that various notions can be 

expressed in L(KS). Let [y],  (y s N~, e e Eft ') be the e-equivalence class of y. 
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1) x e [y]~ =d:xey.  

Let [y]~,r be the model ([y]~; f ' ) ,  where f e  P~ and f '  = f  I (z :zey A f (z)ey} .  

We can express isomorphism between such models. 

2) ([Yl]e,,:, = [Y2],,,:~) ~ (3g) [(Yx) [xe,yx ~ g(x)e2Y2] 

^ (Vx) [xe ly l  --, ( f l ( x )e l y l  -*f2(a(x))e2Y2)] 

^ (Vx)[xely l  ^ f , ( x ) e i y  1 --*f2(g(x)) = 9(fl(x))]].  

This proof applies only for a > 0, but we can correct this by quantifying over 

one-to-one unary functions instead of permutations, and these can be reduced to 

the sum of two permutations. 

We can also express for fixed e,f, y, "the number of [z]~,. r isomorphic to 

[ Y ] e , f  i s  4 " .  

3) [Pow (y, e , f )  = 2] d=/ (3A e R,(N,)) [(Yx, z) 

(x e A ^ z ~ A ^ x ~ z ~ 7 xez) ^ cr (A) = 2 ^ (Vx) (x ~ A ~ [x], , :  ~ [y], , :)  

A (u ([x]e,: -- [Y]e.: -~ (3Z) (Z e A A zex))]. 

Now define a 2-place relation r = r(e , f ,A;  e l , fx ,A1;  9) over CR, as follows: 

r(A,/~) holds iff there are x, y e A such that Pow (x, e , f )  = 2, Pow (y, e , f )  = #, 

and there is z e A1, such that [z]e,,:, ~- [x]~.: and [9(z)]~,.:, ~- [y]~.:. Clearly 

this can be expressed in L(Kh). 

4) r ( e , f , A ; e x , f i , A i ; g  ) [4,#] d~ (3xyz)  ( P o w ( x , e , f )  = 4 6 x e A  ^ y e A  

(Y f )  [ ] " [  ] [g( )] ~ [y] ) A Pow , e, = p A z e A 1 A z e t , f t  ~-- X e , f  ^ Z e l . f l  = e , f  �9 

To finish the proof we need to prove only that for any r e R~(CR~) we can find 

e,f, A,  e t , f l ,  A1, g such that r = r (e,f, A; ex,f l ,  A a ; g). Let B be the domain of r so 

IB I___< 2 .,o IB I =< 14 + _-- an5 B = {2i: i < io < 2"~ each i < io choose a mod- 

el ( A~ f~ A is a permutation of A, ~ I A~ ] = No; and for i e j, (A ~ ; f  o )  ;~ 
O. 0 

(Aj ;f) ) (this is possible because for each set I of natural numbers n >0  there is such 

a model ( A ; f ) w h i c h  has an n-cycle iff n e l ;  an n-cycle is {xi, ...,x,} _cA, the x~ 

distinct and f(x~) = xt+l, f ( x , )  = xO. As ]~i<io 4~ < N~N~ = N~ and NoN~ = N~, 

we can easily find eeE ,~ land  f e P ,  such that for i <  io [ {[x]~.:: x e N , ,  Ix]e,: 

~-(A~ = )-i (the other e-equivalence classes may be chosen isomorphic to 
0 0 (Aio;flo)). For each i <  io choose x~e~r such that [xl]~.:_~ ( A ~ 1 7 6  let 

A = {xi: i < io}. For each pair (2 , / l )  such that r(2, p) holds, choose two disjoint 
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C 1 �9 countable subsets of N~; C l<x,~>, and C2~> and z a ~> e ,a,>, and choose them 

so that the C's are disjoint also for different pairs. Now define f l  so that when 

r0.~, 2j) 

C 2 2 < <a,,xj,;ft ~ <AO; fjo>, t" C<~,,~j>) 

and At = {z<~,v>: r(~.,p)}, and let g bc such that g(z<~,v>) e C<~,v > . 2  It is easy to 

check that r = r(e, f ,A;et , f t ,A1;g),  where el is chosen accordingly. 

LEMMA 2.6. K 7 can be explicitly interpreted in K 6 where 

M~ = (~, U~,..., Rn(~ U V ~),..., ; <)  

where U~ is any set disjoint from ct of cardinality min(N~,2 t~~ and < is the 

natural order of ordinals. 

PROOF. We interpret the element fl of g by Np. All we need to prove is that 

{).: No < 2 < N~} is definable in M 6. This is true because N~ e RI(N~) is definable, 

hence 2 < cr(N~) is definable; and by Lemma 2.2 the finite sets are definable, 

hence also the finite and infinite cardinals. Interpret u e U~ as isomorphism types 

of [x]~,s when N~ > 2 s~ and as elements of N~ otherwise. We leave R~(g U U~) 

to the reader. 

LEMMA 2.7. K s can be interpreted explicitly in K 7 where 

Ms~ = (CRy, U~, ...,R~(CR~ 1.3 U~), ..., ...,F~(CR~ 1.3 U~),-..,P(U~); <,  E )  

where for F: U~CR~,  E(F)- -  E,~u F(u), and P(U~) is the set of permutations 

of U,. 

PROOF. Interpret Np, fl < ~ by fl; interpret 2 < N O by the subsets of U~ of 

cardinality 2; and interpret N~ by U~. 

3. Interpreting the permutation groups 

THEOREM 3.1. K t can be interpreted in K 8. 

PROOF. For a sequence f - -  ( f l ,  "" , f , )  of permutations (of a set A*) define the 

equivalence relation eq ( f )  as follows: an eq(f)-equivalence class A is a minimal 

set such that x ~ A ~f~(x )e  A for any 1 _ i <_ n. Let the eq (f)-equivalence class 

of  x be A(x,f),  and N(x , f )=  (A(x,f);.. . ,f~ F'A(x,f),..7). Clearly each eq( f ) -  

equivalence class has cardinality ~ No. The characteristic function ch = c h [ f ]  of  
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f ,  gives for any model N = (A,f~ ...,fn ~ (where fo is a permutation of A, and 

eq (fo, ...,fo) has one equivalence class) the cardinality of ( N ( x , f ) : x  ~ A*, N(x, f )  

-~ N}. 

A representation ( f * ,F )  of a sequence f =  (fl ,  "" , f , ) ,  fi~P~ consists of 

f *  = (f*, . . . ,f*),  where fi* is a permutation of U~, and F is a function from U~ 

into CR, such that ch[ f*]  has the values cr(U~) or 0 and for u ~ U, F(u)= 

ch [ f ]  (N(u, f*)) and for each x e N~, ch [ f* ]  (N(x,f)) > 0. Clearly each f has 

a representation. Notice that if f l ,  f2  have a common representation, then 

(N~; ..., fl 1, . . . ) ~  (N~; ...fi 2, ...). It suffices to prove: 

LEMMA 3.2. For each formula ~b ~ L(K1), ~9= ~ (vl,...,vn) (that is vl , . . . ,v n 

include all its free variables) we can define inductively (in a uniform way) a 

formula ~ EL(KS), @ = @(vl, ...,Vn, V), v t (i = 1, ...,n) range over P(U~), and v 

ranges over functions from U~ to CRy, such that if f l , . . . , f ~P~ ,  and ( f * , F )  is 

any representation o f f=  (ft ,  "",f~), then M~ ~ d~[fD...,f~] iffM8~ ~ ~[fl,'"* , f  ~*,F]. 

PROOF OF THE LEMMA. There is a formula q~o ~ L(K8) such that M8~ ~bg [ f ' F ,  ] 

iff ( f* ,  F)  is a representation of some f This formula says that ~ > 0 ~ e q ( f )  

has N, equivalence classes, i.e., 

(3F 1) (3A _~ U~) [(Vx ~ U~) (3! y ~A) (N(x,f*) ~- N(y,f*)) ^ ~ F  1 = N~ 

^ Vx(x ~ A - ,  F~(x) = F(x))  ^ (Vx ~ U~) (x ~ A --, F~(x) = 0)]; 

and that each eq(f*)-equivalence class is isomorphic to ]U~] others, F is a function 

from U, into CRy, and F(u) depends only on the isomorphism type of N(u,f*). 

REMARKS. 

1) Clearly No is definable here. 

2) We should say more for the case where ~ = 0. 

There is a formula ~b~ ~ L(K s) such that ifJ~ ~are  sequences of length n from 

P~, and ( f * , F ) ,  (~*, G) are the corresponding representations then M~ 

~b"a[f*,F,g*, G] iff (N~,f) --- (N~,~). ~ says that N(u,,f*) ~ n(u2, ~*) implies 

F(ul )= G(u2), and (Vul) IF(u1) > 0--~(3u2) (N(ul,f*) ~- N(u2, ~*))] and 
(Vu~) [6(u~) > 0 - ,  (3u,) 2V(uz, g*) -~ N(u~,/*)].  

Also, there is a formula ~b~ eL(K s) such that i f f  = (fl ,  "",f~), where fi~P~, 

(f*, F )  is a representation of J~ and g = (fl,  " " , f~ - l ) ,  then for any 
G, Ma~ ~ -. = .. r  ,F,G] iff (~*,G) represents ~, where g* ( f* ,  . ,f*_l).Hence, 

~ defines G uniquely by f* ,  F. ~ says for u ~ U~ G(u) = E {F(ux): ul eA} 
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where A ~ U, and for each u 1 ~ U,, if N(ul ,  ~*) -~ N(u, ~*) then there is a unique 

u2 ~ A for which N(uz, f*)  ~ N (ul,f*).  

Continuing the proof of the lemma, we notice that ~ depends on q~ and on 

{Vl, "", v,}. We prove the existence of ~ by induction on ~b simultaneously for 

any suitable {vl,.. ' ,v,}. 

If r is atomic, that is Iv, = vii or [viov j = Vk], then ~, = (Vx ~ U~) Iv(x) > 0 

vi(x) = vi(x)] or ff = (Vx e U~) Iv(x) > 0 ~ vi(vj(x)) = Vk(X)] will do (where 

the v's now range over P(U~). 

If for tk, {vl ," ' ,  v,} we choose if, then for --n ~, {vl, "", v,} we shall choose -n ~. 

If {vl, "",Vn} includes the free variables of ~1 A ~2, and for r {vl, "",v,} we 

choose ffl (i = 1,2), then for ~1 A r we choose #It A ~2. 

If ~ * =  (Ivy) r {v~, ...,v,_l} includes the free variables of ~b*, and 

for ~, {v~,..., v,} we have chosen r then for tk* we choose 

= D o ( V , ,  " " ,  Vn, Vb =(3Vl, '",VnV V )  , ~ 1 ~J* ~ * ( V , , ' " , V . _ ~ , V )  ~ ~ ' 

n ' V ' ) ] .  , , ~ n , V . ' , V ' , V b ^ ~ ( V ~ , ' " , V . ,  ^ 61(v,,  . . . , v . _ l , v ;  v~, " . , v , _ l , v  ) ^ gpz(v~, "", 

Clearly it is suitable. 

CONCLUSION 3.3. Any two of K i, i= 1, ..., 8 are bi-interpretable. In particular 

the permutation groups <P~;o> and the @,U~; <> in the logic L2(fOare 

bi-interpretable. (For a definition of  L 2 (Q), see below.) 

PRooF. By 2.1-2.7 and 3.1, remembering 1.1, 1.2. 

4. The L 2 (~)  theories of ordinals 

L2(~ ) is the second order logic where the higher type variables range over 

relations (functions) with domain of power < f~. 

Note the following lemma (Feferman and Vaught [7]): 

L~MStA 4.1. 

A) I f  y~ = ~ j < t ~ ,  i = O, 1 and 

J J 

for  every j < fl, then <~'o, U~o; <> -L~(a) <7,, U~,; < ) .  

B) For every n < co we can replace the ful l  L2(O) by the set of ~ e La(fl) with 

quantifier depth [dr(O)] < n. 
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REMARK. 

1) Elementary equivalence for this set will be denoted by -=~.2(n). 

2) Let us define df(~k). When ~b is an atomic formula, df(~) is 0; when ~ -- --1 ~b, 

df(~) is df(~b); when ~ -- q~l ^ tk2, df(~) is max(df(~bl), df(~b2)}; and when 

~, = (3x)~b, df(~) is 1 + df(~). 

LEMMA 4.2. a) For o~ >_ 2 ~~ K 7 and K 9 are bi-interpretable explicitly where 

M 9 = (~,...,gn,(oO ...; < )  (this is the same as L2(~ ) on @, <)) ,  

b) For ct < f~ [ =  (2t%)+], L2(~ ) is the same as second order logic, that is 

M 9 = ( ~ , . . . ,  R o ( ~ ) , . . .  ; < ). 

It is clear that every sentence ~k in L2(f~) is equivalent to a sentence ~* in La,n 

of finite depth df(ff) (Lo, a is the infinitary logic with conjunctions over continuum 

many formulae, and quantification (3 or V) over strings of < 2 "~ variables). From 

King 1-8] it is clear that if the ordinal ~ has cofinality > f~, and is divisible by 

f~df(r ( ~ ; < 7  ~ ~* iff (Or ;  < ) ~ *  (where Or is the class of ordinals). 

If ~,fl have cofinality __>f~ and are divisible by f~nyt~) then (~; < ) ~ f f *  iff 

(fl; < ) ~  ~,*. Hence if ~,fl > 0 are divisible by f~,o and have cofinality => f~ then 

this holds for any ~,* (~k ~Lz(~)); therefore (~; < )  =L2(n) (fl; <)"  If ~,fl are 

divisible by f~,o, and have cofinality x < l), then for any n, ~ = ~ i<~ i ,  fl= ~i<~fl~, 

and ~i, fli have cofinality => f / and  are divisible f~"; hence, (cq; < )  =--"L~(n) (fli; < ) .  

Hence by Lemma 4.1 (B), (~; <)-L"~(m ( f l , < ) .  As this holds for any n, 

This discussion proves 

LEMMA 4.3. I f  ~,fl > 0 are divisible by f~,o, and their cofinalities are equal 

or >= ~) then (~, < )  -z~(n) (fl; < ) ,  or equivalently (~, U~; < )  = ~ t m  (fl, Ua; < )  

(necessarily ~,fl >= f~). 

Let U* be any set of  cardinality 2 ~~ so for N, > 2 ~~ without loss of generality, 

U~ = U*. We would like to weaken the demand on the equality of cofinalities. 

We can easily generalize Lemma 4.1 to multiplication. 

LEMMA 4.4. For any n < go there is m such that if  cq = fl,7~, i = 1,2, 
(/h, U*; < )  _m ~--'L2(fl) (fl2, U*; <), and (7~,U*; < ) _ m  =L2(m (v2,U*; < )  then 

( ~ ,  U*; < ) - "  = c~n) (~2, U*; < ). 
From the above follows 

LEMMA 4.5. I f  ~, f l> 0 are divisible by fY', and cf(~), cf(f l)> f~ or 
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(cf(~), U*; < )  -L~(n)(cf(fl), U*; < )  then (:t, U~; < )  -t.~(n)(fl, U#; < )  (U, 
= u#  = u * ) .  

THEOREM 4.6. For any ordinals ~,p we have a unique representation 

Og = ~ '~r176  "-1- " '"  "]- ~'~no~ n "[- " ' "  "]- ~'~10~ 1 -]- 0~0, (Xn< f~ for n < o9, and only finitely many 

~, are ~ 0; fl = ~~ , + ... + ~"fl, + ... + f~afll + flo, ft, < f~for n < o9 and only 

finitely many ft, are ~ O. 

Now (~ ,U, ;  <)=L~(n)  (fl, U#; < )  iff the followin9 conditions are satisfied: 

2) ifo~ < f2, (~o, U~o; < )  --L2 (flo, U#o; < )  

3) if c( >__ f2, (~o, U* ; < ) - L~ (flo, U* ; < ) 

4) for 0 < n < 09 (~., U* ; < ) - i.~ (ft., U*; < ) 

5) cf(f2'~ > f~ (~ cf(fg~ > f~ 

6) /f cf(f~'~ < fl then (cf(fY'~,), U*; < )  =L~ (cf(f~/~,o), U*; < ) .  

We have proven the sufficiency of the conditions. Their necessity is easy to 

prove, e.g., c~ < ~ iff (~; < ) ~ ( 3 A )  (Vx) (x~A) .  

5. Discussion 

a) Clearly we can interpret in the group of permutations of N,: (1)one-to-one 

functions from N~ into N,, (2) equivalence relations with < 2 ~~ equivalence class, 

(3) the lattice of E~ 1 and (4) E~ 1 partially ordered. Except for (2) also the con- 

verses are true. 

b) Let P~be the group of permutations f e  P~, ]{x: f (x)  ~ x}] < Na. It is easy to 

see by Vaught's test that if fl < ~ < 7 then (P~  o )  is an elementary submodel of 

(P~;o) ,  and we can, with no difficulty, describe the elementary theories of 

(P~; o)  in a way parallel to the description for (P~, o) .  

McKenzie [10], solving the question of Mycielski [11], asks when FG(2) (the 

free group with ).-generators) can be embedded in Pfl By De Bruijn [1, Th. 4.2], if 

there is y < fl such that 2 ~ > 2, and ~ < ~ then there is such an embedding. 

McKenzie [10] shows that if). is big enough relative to N~, then this cannot be done. 

Let {xi: i < 2} be the generators of FG().), and F an embedding of FG(2) into 

((2)  )2~from P~. McKenzie ([10] p. 57) shows, using a partition relation # ~ ~ + 3 

Erd6s, Hajnal and Rado [3], that for ). big enough there is I __ 2, 1I] > ]E~<~# 2 ~ 

such that 

(*) for il <Jx < kl El,  i2 <J2 < k2 ~I,  there is a permutation of N. which 
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takes (F(xil),F(xy~),F(Xkl)) to (F(xt2), F(xj2 ), F(Xk2)) 

and from this he gets a contradiction. Now if 2 > ~ < ~ 2  ~, let 

Ai = {y: y ~ N~, F(xi) [y] ~ y} (F(xi) ~ P~); 

therefore [At]< Np. Hence, by Erd6s and Rado [4] there is I ~ 2, 1I[> ~ , < ~ 2  r 

such that for i # j ~ I, As A Aj = A (i.e., any two As have the same intersection) ; 

therefore, IAI < Na. Hence there is J < I, [Jt > Y~<~a 2r such that for i ~ j ~J, 

(Aj;F(xi) ,a)a~t  ~-(Ai;F(x~),a)a~a. Clearly (*) is satisfied, which McKenzie 

shows is impossible. Therefore, ifFG(2) can be embedded in P~ then 2 =< ~ < ~ 2  ~, 

and 

The remaining problem is for fl a limit ordinal, fl < a, 2=  Gr<p 2~r but 

y < fl-* 2~r< 2. Let gk = F(xk) ~ F(xo)~ - 1. Then {ga: 0 < 6 < 2, a 

a limit ordinal} generates a free subgroup of cardinality 2, and [{x: g~(x) ~ x} 

< I {Y: F(xo) (y) # y} [ + No -< N~ < Na, so we get a contradiction as before. 

THEOREM 5.1. The free group of cardinality 2 is isomorphic to a subgroup of 

P~ (i.e., the group of permutations of N, which moves < Np elements) iff for some 

N~ < Rp 2~  > 2. 

c) In the same way we prove Conclusion 3.3, we can prove 

THEOREM 5.2. K 10, K 11 are bi-interpretable where 

1) M~ ~ = (N~,E~;) 

2) M~ 1 = (a, U,, "",Rn(a (.J U~),'" ; <)  where < is the order of ordinals and 

[U~I = min(N~,(~Eu<,2 ~) + 2~~ (x is any regular cardinal; the interpretation 

is independent of K). 

The essential property of E~ we used is that for any e ~ E~ ~, (N,; e) is the direct 

sum of models, each of cardinality < x. Thus, there are many variants of our 

theorems. 

As an easy corollary of Theorem 5.2 we have a well-known theorem of Rabin [17] 

that allowing quantifications over arbitrary equivalence relations is equivalent 

to full second order logic. (In fact, more is proved there). 

We can seek another generalization by allowing some extrastructure over N~, 

e.g. some equivalence relation; then in K instead ofM~ a set.,g~ of models appear, 

and in the definition of interpretation ~'~ ~ ~k means M ~ ./t/, implies M ~ ~. 

However, if we allow (in the case of equivalence relations) quantification over 
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permutations, we get  full second order theory. But we can allow quantification 

only over automorphisms of N~ with the extrastructure. Even for a one-place 

function this is equivalent to a full second-order theory. Contrast this with the 

decidability of the monadic second-order theory of a one-place function, which 

is shown by Le Tourneau to follow from Rabin [13]. But for equivalence relations 

ordered by refinement, we get: 

THEOREM 5.3. K t2'n, K 13'n are bi . interpretable,  where 

,/A r = {<N~, Aut~(~); E>: E = ( e t, " " ,  e,), el ~ E ~ ~+ ', el refines el+ 1}, 

M~ 3 = (~,U~; < )  where < is the order o f  ordinals and ]u ~ -- min(2~~ 

1u:+l I = min([ llU2!  ) where Auto(6) is the set o f  au tomorph isms  of  (N~,e). 

We could have generalized Theorem 5.3 in the direction of Theorem 5.2, 

replacing (or adding to) the automorphisms by appropriate sets of equivalence 

relations. 

For M~4=  {(N~,Aut(<);  < 5 :  < linearly orders N~} K 14 is in fact bi-in- 

terpretable with second order logic. On the other hand, by Rabin [13], the 

monadic second-order theory of  countable orders is decidable; and for not 

necessarily countable orders, the decidability is conjectured. 

We can look also a t / ~ ,  i.e., the set of equivalence relations over N, with < 

(N~,E~,) we can interpret equivalence classes. It is not hard to see that in ~" 

/~  when (~,<~2") + = 2. However, the converse is not true. If N~ > N B > to, tc 

regular (or Na > ~c) then (N~, /~ ; )  is an elementary extension of (N~,/~;) .  The 

theory of  the natural numbers with addition and multiplication, and the theory of  

(No,/~o~~ are bi-interpretable (one recursive in the other), 
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