FIRST ORDER THEORY OF PERMUTATION GROUPS

BY

SAHARON SHELAH

ABSTRACT

We solve the problem of the elementary equivalence (definability) of the permutation groups over cardinals \aleph_{α} . We show that it suffices to solve the problem of elementary equivalence (definability) for the ordinals α in certain second order logic, and this is reduced to the case of $\alpha < (2\aleph_0)^+$. We solve a problem of Mycielski and McKenzie on embedding of free groups in permutation groups, and discuss some weak second-order quantifiers.

0. Introduction

Let $\langle P_{\alpha}; \circ \rangle$ be the group of permutations of \aleph_{α} , i.e., the set of ordinals $\langle \aleph_{\alpha}$ (which is isomorphic to the group of permutations of A if $|A| = \aleph_{\alpha}$). The question as to the elementary theories of permutation groups was raised by Fajtlowicz, and Isbell showed that those over uncountable sets and those over sets of cardinality $\leq 2^{\aleph_0}$ can be characterized. The two specific problems are

1) when is $\langle P_{\alpha}; \circ \rangle \equiv \langle P_{\beta}; \circ \rangle$,

2) when can $\langle P_{\alpha}; \circ \rangle$ be characterized by a sentence ψ (or set of sentences Γ) that is, $\langle P_{\beta}; \circ \rangle \models \psi$ iff $\beta = \alpha$. (We ignore for simplicity the permutation groups over finite sets.) McKenzie [9] shows that in $\langle P_{\beta}; \circ \rangle$ we can interpret $\langle \beta, \langle \rangle$ and derive from it some partial answers to questions (1) and (2). We give a necessary and sufficient condition for the elementary equivalence.

Our work was done independently of Pinus [12] who proved that we can interpret in $\langle P_{\alpha}; \circ \rangle$, $\langle \alpha, \langle \rangle$ with variables ranging over countable one-place functions and can derive more information on (1) and (2). We prove here that variables over relations of cardinality \leq continuum over $\langle \alpha, \langle \rangle$ can be interpreted (§2), and also that a "converse" is true (§3). Other connected works are Ershov

Received June 22, 1972 and in revised form August 30, 1972

[5] and [6], and Vazhenin and Rasin [16]. McKenzie [9] and [10] and Pinus [12] also contain more information.

In §4 we show that by Kino [8] we can reduce the general problem to the case $\alpha < (2^{\aleph_0})^+$ and in §5 we discuss some related problems and possible generalizations, and improve a result of McKenzie [10] on embedding free groups in permutation groups.

Let P_{α}^{β} be the family of permutations of \aleph_{α} which move $\langle \aleph_{\beta}$ elements. For example, for $\beta = \aleph_1$, De Bruijn [1,2] proves that the free group with 2^{\aleph_0} generators can be embedded (in P_{α}^1), McKenzie [10] shows that the free group with \beth_3^+ cannot be embedded, and we prove that the free group with $\beth_1^+ = (2^{\aleph_0})^+$ cannot be embedded. Theorem 5.1 gives the solution of the general problem.

In conclusion, we improve results and answers to particular questions of McKenzie [9] and Pinus [12].

Let $\Omega = (2^{\aleph_0})^+$, $|U_{\alpha}| = \min(2^{\aleph_0}, \aleph_{\alpha})$. $\langle \alpha, U; \langle \rangle$ is the two-sorted model with domain α, U and the relation \langle on α .

CONCLUSION 0.1. $\langle P_{\alpha}; \circ \rangle \equiv \langle P_{\beta}; \circ \rangle$ iff the following conditions are satisfied where $\alpha = \Omega^{\omega} \alpha_{\omega} + \dots + \Omega^{n} \alpha_{n} + \dots + \alpha_{0}, \beta = \Omega^{\omega} \beta_{\omega} + \dots + \Omega^{n} \beta_{n} + \dots + \beta_{0}, \alpha_{n}, \beta_{n} < \Omega$

- 1) $\alpha < \Omega$ iff $\beta < \Omega$
- 2) if $\alpha < \Omega$, $\langle \alpha_0, U_{\alpha_0}; < \rangle \equiv L_2 \langle \beta_0, U_{\beta_0}; < \rangle$ (L₂ is second order logic)
- 3) if $\alpha \geq \Omega$, $\langle \alpha_0, U^*; \langle \rangle \equiv_{L_2} \langle \beta_0, U^*; \langle \rangle \quad (|U^*| = 2^{\aleph_0})$
- 4) for $0 < n < \omega \langle \alpha_n, U^*; < \rangle \equiv_{L_2} \langle \beta_n, U^*; < \rangle$
- 5) $\operatorname{cf}(\Omega^{\omega}\alpha_{\omega}) \geqq \Omega \operatorname{iff} \operatorname{cf}(\Omega^{\omega}\beta_{\omega}) \geqq \Omega$

6) if $\operatorname{cf}(\Omega^{\omega}\alpha_{\omega}) < \Omega$ then $\langle \operatorname{cf}(\Omega^{\omega}\alpha_{\omega}), U^*; < \rangle \equiv_{L_2} \langle \operatorname{cf}(\Omega^{\omega}\beta_{\omega}), U^*; < \rangle$.

PROOF. Immediate by Lemma 1.3, Conclusion 3.3, and Theorem 4.6.

CONCLUSION 0.2. $\langle P_{\alpha}; \circ \rangle$ is definable by a sentence (set of sentences) iff (i) $\alpha = \Omega^n \alpha_n + \cdots + \Omega^1 \alpha_1 + \alpha_0$, $\alpha_i < \Omega$ and $\alpha \ge \Omega$; $\langle \alpha_i, U^*; < \rangle$ are definable by a sentence (set of sentences) of L_2 ; or (ii) $\alpha < \Omega$ and $\langle \alpha_0, U_{\alpha_0}; < \rangle$ is definable by a sentence (set of sentences) of L_2 .

PROOF. By Lemma 1.3, Conclusion 3.3 and Theorem 4.6.

CONCLUSION 0.3.

a) $\langle P_{\omega_1}; \circ \rangle$, $\langle P_{\Omega}; \circ \rangle$, $\langle P_{\Omega^n}; \circ \rangle$ $(n < \omega)$ are definable by a sentence, and for no $\alpha \ge \Omega^{\omega}$ is $\langle P_{\alpha}; \circ \rangle$ definable by a set of sentences.

b) If $\langle P_{\alpha}; \circ \rangle$, $\langle P_{\beta}; \circ \rangle$ are definable by a sentence then also $\langle P_{\alpha+\beta}; \circ \rangle$, $\langle P_{\alpha\beta}; \circ \rangle$ are definable, and if $\alpha, \beta < \Omega$, also $\langle P_{\alpha}^{\beta}; \circ \rangle$ is definable.

c) It is consistent with ZFC that there are α , β where $2^{\aleph \alpha} = \aleph_{\beta}$ such that $\langle P_{\alpha}; \circ \rangle$ is definable by a sentence, but $\langle P_{\beta}; \circ \rangle$ is not definable even by a set of sentences.

d) The set of \aleph_{α} for which $\langle P_{\alpha}; \circ \rangle$ is definable by (a first-order) sentence, is not identical to the set of α for which $\langle \aleph_{\alpha}; \rangle$ is definable by a second order sentence.

PROOF. By Conclusion 0.2.

We can consider our main results as determining the strength of the quantifier ranging over permutation. On possible quantifiers of this sort, see [14, 15] from which it follows that the permutational quantifier is very natural.

I would like to thank J. Stavi for an interesting discussion and for detecting many errors.

1. Notation

By using multisorted models we can add a set of subsets, relations etc., as another sort of elements, and thus use first-order logic only. Cardinals are represented by λ, μ, κ ; ordinals by $\alpha, \beta, \gamma, \delta, i, j, k$; and \aleph_{α} is the α -th cardinal. We identify α with $\{\beta: \beta < \alpha\}$, and \aleph_{α} with the first ordinal of that power. Let P_{α} be the set of permutations of \aleph_{α} , E_{α}^{κ} the set of equivalence relations over \aleph_{α} with each equivalence class having a cardinality $< \kappa$ (if $\kappa > \aleph_{\alpha}$ we omit it), and $R_{n}^{\kappa}(A)[F_{n}^{\kappa}(A)]$ be the set of *n*-place relations (partial functions) with domain of cardinality $< \kappa$. The domain of an *n*-place relation *r* is $\bigcup \{\{x_{1}, \dots, x_{n}\}: r(x_{1}, \dots, x_{n})\}$. A one-place relation is identified with the set it represents. |A| is the cardinality of A.

Let $x, y, z \in \aleph_{\alpha}$, $f, g \in P_{\alpha}$, $e \in E_{\alpha}^{\aleph_1}$, $A, B \in R_1(\aleph_{\alpha})$.

M and N are models. These are of the form

$$M_{\alpha} = \langle A_{\alpha}^{1}, A_{\alpha}^{2}, \cdots, A_{\alpha}^{n}; Q^{1}, \cdots, Q^{m} \rangle$$
, where Q^{1}, \cdots, Q^{m}

are relations and the A_{α}^{n} domains (e.g. α , $\aleph_{\alpha}, E_{\alpha}^{\kappa}, \cdots$). The equality between elements of the same sort and natural relations and operations will not be mentioned (e.g. x e y for $e \in E_{\alpha}^{\kappa}$, $x, y \in \aleph_{\alpha}$). K^{n} denotes an indexed class $\{M_{\alpha}^{n}: \alpha \text{ an ordinal}\}$ of the same type; $L(K^{n})$ is the corresponding first-order logic. The subsequent definitions can be naturally restricted to a subclass of ordinals (usually $\{\alpha: \aleph_{\alpha} \ge 2^{\aleph_{0}}\}$).

DEFINITION 0.1. K^n can be interpreted in K^m (for $\alpha \in C$) if there is a recursive

function $F: L(K^n) \to L(K^m)$ such that for any sentence $\psi \in L(K^n)$ and ordinal $\alpha, (\alpha \in C)$

$$M^n_{\alpha} \models \psi$$
 iff $M^m_{\alpha} \models F(\psi)$.

DEFINITION 0.2. K^n can be explicitly interpreted in K^m if

$$M^n_{\alpha} = \langle A^1_{\alpha}, \cdots, A^k_{\alpha}; Q^1, \cdots Q^l \rangle, \ M^m_{\alpha} = \langle B^1_{\alpha}, \cdots, B^i_{\alpha}, R^1, \cdots, R^j \rangle,$$

and there are formulae $\phi_1(\bar{x}^1), \dots, \phi_k(\bar{x}^k), \psi_1(\bar{x}^1, \bar{y}^1), \dots, \psi_k(\bar{x}^k, \bar{y}^k)$, and $\theta_1, \dots, \theta_l$ from $L(K^m)$ and functions $F^1_{\alpha}, \dots, F^k_{\alpha}$ such that: for $1 \leq \beta \leq k$, F^{β}_{α} is a function from $\{\bar{a}: \bar{a} \text{ from } M^m_{\alpha}, M^m_{\alpha} \models \phi_{\beta}[\bar{a}]\}$ onto A^{β}_{α} , such that $F^{\beta}_{\alpha}[\bar{a}] = F^{\beta}_{\alpha}[\bar{b}]$ iff $M^m_{\alpha} \models \psi_{\beta}[\bar{a}, \bar{b}]$ and $M^n_{\alpha} \models Q^{\gamma}[\dots, F_{\alpha}[\bar{a}], \dots]$ iff $M^m_{\alpha} \models \theta_{\gamma}[\dots, \bar{a}, \dots]$ (all the sequences are of appropriate sorts).

LEMMA 1.1. If K^n can be explicitly interpreted in K^m then K^n can be interpreted in K^m .

LEMMA 1.2. Interpretability and explicit interpretability are transitive and reflexive relations.

LEMMA 1.3. If K^n , K^m are bi-interpretable (i.e. each can be interpreted in the other) then

a) $M_{\alpha}^{n} \equiv M_{\beta}^{n}$ iff $M_{\alpha}^{m} \equiv M_{\beta}^{m}$

b) M_{α}^{n} is definable in K^{n} by a sentence (set of sentences) iff M_{α}^{m} is definable in K^{m} by a sentence (set of sentences).

In defining interpretations, we shall be informal.

2. Interpretation in the permutation groups

We shall define indexed classes K^i and prove that K^{i+1} can be explicitly interpreted in K^i . In the next section we shall close the circle by interpreting K^1 in K^8 , and thus get the desired result. Lemmas 2.1 to 2.3 were proved by McKenzie [9].

LEMMA 2.1. K^2 can be explicitly interpreted in K^1 where

$$M^1_{\alpha} = \langle P_{\alpha}; \circ \rangle, \ M^2_{\alpha} = \langle P_{\alpha}, \aleph_{\alpha}; \circ \rangle.$$

PROOF. (Hinted) The 2-cycles in P_{α} can be defined; therefore, an element of \aleph_{α} is defined by two 2-cycles.

LEMMA 2.2. K^3 can be explicitly interpreted in K^2 where

 $M^{3}_{\alpha} = \langle P_{\alpha}, \aleph_{\alpha}, R_{1}(\aleph_{\alpha}); \circ \rangle,$

and there is a formula $\phi_{fin}(v) \in L(K^3)$ defining the finite sets of $R_1(\aleph_{\alpha})$.

PROOF. When f ranges over P_{α} , $\{x: f(x) = x\}$ ranges over the subsets of \aleph_{α} , except those whose complement has just one element. Therefore,

$$A_{f,g} = \{x \colon f(x) = x \ \lor \ g(x) = x\}$$

ranges over the subsets of \aleph_{α} and $x \in A_{f,g}$ can be expressed in $L(K^2)$. A set $A \in R_1(\aleph_{\alpha})$ is finite iff there is no $f \in P_{\alpha}$ which maps it into a $B \subset A$, $B \neq A$.

LEMMA 2.3. K^4 can be explicitly interpreted in K^3 where

$$M_{\alpha}^{4} = \langle P_{\alpha}, \aleph_{\alpha}, R_{1}(\aleph_{\alpha}), CR_{\alpha}; \circ, \langle \rangle,$$

 CR_{α} is the set of (finite and infinite) cardinals $\leq \aleph_{\alpha}$, < is the order on the cardinals, and cr (A) = λ is considered as one of the natural relations of M_{α}^{4} , where cr (A) is the cardinality of the set A.

PROOF. We interpreted $\lambda \in CR_{\alpha}$ by $A \in R_1(\aleph_{\alpha})$ of cardinality λ . Equality can be expressed in $L(K^3)$ as $\operatorname{cr}(A) = \operatorname{cr}(B)$ iff there is a permutation of \aleph_{α} mapping A onto B; or $\operatorname{cr}(A) = \operatorname{cr}(B) = \aleph_{\alpha}$, which is equivalent to the existence of $f, g \in P$ such that $A \cup \{f(x) : x \in A\} = B \cup \{g(x) : x \in A\} = \aleph_{\alpha}$. The order $\operatorname{cr}(A) < \operatorname{cr}(B)$ can be expressed by " $\operatorname{cr}(A) \neq \operatorname{cr}(B)$ " and there is $f \in P_{\alpha}$ which maps A into B.

LEMMA 2.4. K^5 can be explicitly interpreted in K^4 where

$$M_{\alpha}^{5} = \langle P_{\alpha}, \aleph_{\alpha}, R_{1}(\aleph_{\alpha}), CR_{\alpha}, E_{\alpha}^{\aleph_{1}}; \circ, < \rangle.$$

PROOF. Every permutation $f \in P_{\alpha}$ divides \aleph_{α} into its cycles, which are all of cardinality $\leq \aleph_0$. More formally, for $f \in P_{\alpha}$, e(f) is defined by: xe(f)z iff for every $A \subseteq \aleph_{\alpha}$, $x \in A$, $(\forall y \in \aleph_{\alpha})$ $[y \in A \leftrightarrow f(y) \in A]$ implies $z \in A$. Clearly $e(f) \in E_{\alpha}^{\aleph_1}$, and if $e \in E_{\alpha}^{\aleph_1}$, we define f_e as follows: for each *e*-equivalence class A, if A is finite let $A = \{a_1, \dots, a_n\}$ and f_e is defined by $f_e(a_i) = a_{i+1}$ $(i = 1, \dots, n-1)$, $f_e(a_n) = a_1$; if A is infinite let $A = \{a_n: n \text{ integer}\}$ and f_e is defined by $f_e(a_n) = a_{n+1}$. Clearly $e(f_e) = e$; therefore, when f ranges over P_{α} , e(f) ranges over $E_{\alpha}^{\aleph_1}$ and xe(f)y can be expressed in $L(K^4)$.

THEOREM 2.5. K^6 can be explicitly interpreted in K^5 where

$$M_{\alpha}^{6} = \langle P_{\alpha}, \aleph_{\alpha}, R_{1}(\aleph_{\alpha}), CR_{\alpha}, E_{\alpha}^{\aleph_{1}}, \cdots, R_{n}^{\Omega}(CR_{\alpha}), \cdots; 0 < \rangle.$$

PROOF. For simplicity we shall interpret $R_2^{\Omega}(CR_{\alpha})$ only. By pairing functions we can encode $R_n^{\Omega}(CR_{\alpha})$ for n > 2. We shall prove that various notions can be expressed in $L(K^5)$. Let $[y]_e$ $(y \in \aleph_{\alpha}, e \in E_{\alpha}^{\aleph_1})$ be the *e*-equivalence class of *y*.

1) $x \in [y]_e = {}^{df} x e y$.

154

Let $[y]_{e,f}$ be the model $\langle [y]_e; f' \rangle$, where $f \in P_x$ and $f' = f \upharpoonright \{z: zey \land f(z)ey\}$. We can express isomorphism between such models.

2)
$$([y_1]_{e_1,f_1} \cong [y_2]_{e_2,f_2}) \stackrel{df}{=} (\exists g) [(\forall x) [xe_1y_1 \leftrightarrow g(x)e_2y_2]$$
$$\land (\forall x) [xe_1y_1 \rightarrow (f_1(x)e_1y_1 \rightarrow f_2(g(x))e_2y_2)]$$
$$\land (\forall x) [xe_1y_1 \land f_1(x)e_1y_1 \rightarrow f_2(g(x)) = g(f_1(x))]].$$

This proof applies only for $\alpha > 0$, but we can correct this by quantifying over one-to-one unary functions instead of permutations, and these can be reduced to the sum of two permutations.

We can also express for fixed e, f, y, "the number of $[z]_{e,f}$ isomorphic to $[y]_{e,f}$ is λ ".

3)
$$[\operatorname{Pow}(y, e, f) = \lambda] \stackrel{df}{=} (\exists A \in R_1(\aleph_a)) [(\forall x, z) \\ (x \in A \land z \in A \land x \neq z \to \neg xez) \land \operatorname{cr}(A) = \lambda \land (\forall x) (x \in A \to [x]_{e,f} \cong [y]_{e,f}) \\ \land (\forall x) ([x]_{e,f} \cong [y]_{e,f} \to (\exists z) (z \in A \land zex))].$$

Now define a 2-place relation $r = r(e, f, A; e_1, f_1, A_1; g)$ over CR_{α} as follows: $r(\lambda, \mu)$ holds iff there are $x, y \in A$ such that $Pow(x, e, f) = \lambda$, $Pow(y, e, f) = \mu$, and there is $z \in A_1$, such that $[z]_{e_1, f_1} \cong [x]_{e, f}$ and $[g(z)]_{e_1, f_1} \cong [y]_{e, f}$. Clearly this can be expressed in $L(K^5)$.

4) $r(e,f,A;e_1,f_1,A_1;g) [\lambda,\mu] \stackrel{df}{=} (\exists xyz) (\operatorname{Pow}(x,e,f) = \lambda \land x \in A \land y \in A$

 $\wedge \operatorname{Pow}(y, e, f) = \mu \wedge z \in A_1 \wedge [z]_{e_1, f_1} \cong [x]_{e, f} \wedge [g(z)]_{e_1, f_1} \cong [y]_{e, f}).$

To finish the proof we need to prove only that for any $r \in R_2^4(CR_\alpha)$ we can find $e, f, A, e_1, f_1, A_1, g$ such that $r = r(e, f, A; e_1, f_1, A_1; g)$. Let *B* be the domain of *r* so $|B| \leq 2^{\aleph_0} |B| \leq |\alpha| + \aleph_0 \leq \aleph_\alpha$, and $B = \{\lambda_i: i < i_0 \leq 2^{\aleph_0}\}$. For each $i \leq i_0$ choose a model $\langle A_i^0; f_i^0 \rangle$ where f_i is a permutation of $A_i^0, |A_i^0| = \aleph_0$; and for $i \neq j, \langle A_i^0; f_i^0 \rangle \not\cong \langle A_j^0; f_j^0 \rangle$ (this is possible because for each set *I* of natural numbers n > 0 there is such a model $\langle A; f \rangle$ which has an *n*-cycle iff $n \in I$; an *n*-cycle is $\{x_1, \dots, x_n\} \subseteq A$, the x_i distinct and $f(x_i) = x_{i+1}, f(x_n) = x_1$). As $\sum_{i < i_0} \lambda_i \leq \aleph_\alpha \aleph_\alpha = \aleph_\alpha$ and $\aleph_0 \aleph_\alpha = \aleph_\alpha$, we can easily find $e \in E_\alpha^{\aleph_1}$ and $f \in P_\alpha$ such that for $i < i_0 |\{[x]_{e,f}: x \in \aleph_\alpha, [x]_{e,f}\} \cong \langle A_{i_0}^0; f_i^0 \rangle$). For each $i < i_0$ choose $x_i \in \aleph_\alpha$, such that $[x_i]_{e,f} \cong \langle A_i^0; f_i^0 \rangle$ and let $A = \{x_i: i < i_0\}$. For each $j < \lambda_i \neq \lambda_\alpha$ such that $r(\lambda, \mu)$ holds, choose two disjoint

countable subsets of \aleph_{α} ; $C^{1}_{\langle\lambda,\mu\rangle}$, and $C^{2}_{\langle\lambda,\mu\rangle}$ and $z_{\langle\lambda,\mu\rangle} \in C^{1}_{\langle\lambda,\mu\rangle}$; and choose them so that the C's are disjoint also for different pairs. Now define f_1 so that when $r(\lambda_i, \lambda_j)$

$$\begin{split} &\langle C^{1}_{\langle\lambda_{i},\lambda_{j}\rangle};f_{1} \upharpoonright C^{1}_{\langle\lambda_{i},\lambda_{j}\rangle} \rangle \cong \langle A^{0}_{i};f^{0}_{i}\rangle, \\ &\langle C^{2}_{\langle\lambda_{i},\lambda_{j}\rangle};f_{1} \upharpoonright C^{2}_{\langle\lambda_{i},\lambda_{j}\rangle} \rangle \cong \langle A^{0}_{j};f^{0}_{j}\rangle, \end{split}$$

and $A_1 = \{z_{\langle \lambda, \mu \rangle} : r(\lambda, \mu)\}$, and let g be such that $g(z_{\langle \lambda, \mu \rangle}) \in C^2_{\langle \lambda, \mu \rangle}$. It is easy to check that $r = r(e, f, A; e_1, f_1, A_1; g)$, where e_1 is chosen accordingly.

LEMMA 2.6. K^7 can be explicitly interpreted in K^6 where

$$M_{\alpha}^{7} = \langle \alpha, U_{\alpha}, \cdots, R_{n}^{\Omega}(\alpha \bigcup U_{\alpha}), \cdots, ; \langle \rangle$$

where U_{α} is any set disjoint from α of cardinality $\min(\aleph_{\alpha}, 2^{\aleph_0})$ and < is the natural order of ordinals.

PROOF. We interpret the element β of α by \aleph_{β} . All we need to prove is that $\{\lambda:\aleph_0 \leq \lambda < \aleph_{\alpha}\}$ is definable in M_{α}^6 . This is true because $\aleph_{\alpha} \in R_1(\aleph_{\alpha})$ is definable, hence $\lambda < \operatorname{cr}(\aleph_{\alpha})$ is definable; and by Lemma 2.2 the finite sets are definable, hence also the finite and infinite cardinals. Interpret $u \in U_{\alpha}$ as isomorphism types of $[x]_{e,f}$ when $\aleph_{\alpha} \geq 2^{\aleph_0}$, and as elements of \aleph_{α} otherwise. We leave $R_n^{\Omega}(\alpha \cup U_{\alpha})$ to the reader.

LEMMA 2.7. K^8 can be interpreted explicitly in K^7 where

 $M_{\alpha}^{8} = \langle CR_{\alpha}, U_{\alpha}, \cdots, R_{n}^{\Omega}(CR_{\alpha} \bigcup U_{\alpha}), \cdots, \cdots, F_{n}^{\Omega}(CR_{\alpha} \bigcup U_{\alpha}), \cdots, P(U_{\alpha}); <, \Sigma \rangle$

where for $F: U_{\alpha} \to CR_{\alpha}$, $\Sigma(F) = \sum_{u \in U_{\alpha}} F(u)$, and $P(U_{\alpha})$ is the set of permutations of U_{α} .

PROOF. Interpret \aleph_{β} , $\beta < \alpha$ by β ; interpret $\lambda < \aleph_0$ by the subsets of U_{α} of cardinality λ ; and interpret \aleph_{α} by U_{α} .

3. Interpreting the permutation groups

THEOREM 3.1. K^1 can be interpreted in K^8 .

PROOF. For a sequence $f = \langle f_1, \dots, f_n \rangle$ of permutations (of a set A_0^*) define the equivalence relation eq (f) as follows: an eq(f)-equivalence class A is a minimal set such that $x \in A \leftrightarrow f_i(x) \in A$ for any $1 \leq i \leq n$. Let the eq(f)-equivalence class of x be A(x, f), and $N(x, f) = \langle A(x, f); \dots, f_i \upharpoonright A(x, f), \dots \rangle$. Clearly each eq(f)-equivalence class has cardinality $\leq \aleph_0$. The characteristic function ch = ch[f] of

S. SHELAH

 \bar{f} , gives for any model $N = (A, f_1^0, \dots, f_n^0)$ (where f_i^0 is a permutation of A, and eq (f_1^0, \dots, f_n^0) has one equivalence class) the cardinality of $\{N(x, \bar{f}) : x \in A_0^*, N(x, \bar{f}) \cong N\}$.

A representation $\langle f^*, F \rangle$ of a sequence $\tilde{f} = \langle f_1, \dots, f_n \rangle$, $f_i \in P_\alpha$ consists of $\tilde{f}^* = \langle f_1^*, \dots, f_n^* \rangle$, where f_i^* is a permutation of U_α , and F is a function from U_α into CR_α such that $ch[f^*]$ has the values $cr(U_\alpha)$ or 0 and for $u \in U$, $F(u) = ch[\tilde{f}](N(u, \tilde{f}^*))$ and for each $x \in \aleph_\alpha$, $ch[\tilde{f}^*](N(x, \tilde{f})) > 0$. Clearly each \tilde{f} has a representation. Notice that if \tilde{f}^1 , \tilde{f}^2 have a common representation, then $\langle \aleph_\alpha; \dots, f_i^1, \dots \rangle \cong \langle \aleph_\alpha; \dots f_i^2, \dots \rangle$. It suffices to prove:

LEMMA 3.2. For each formula $\phi \in L(K^1)$, $\phi = \phi(v_1, \dots, v_n)$ (that is v_1, \dots, v_n include all its free variables) we can define inductively (in a uniform way) a formula $\psi \in L(K^8)$, $\psi = \psi(v_1, \dots, v_n, v)$, v_i ($i = 1, \dots, n$) range over $P(U_\alpha)$, and vranges over functions from U_α to CR_α , such that if $f_1, \dots, f_n \in P_\alpha$, and $\langle \bar{f}^*, F \rangle$ is any representation of $\bar{f} = \langle f_1, \dots, f_n \rangle$, then $M^1_\alpha \models \phi[f_1, \dots, f_n]$ iff $M^8_\alpha \models \psi[f_1^*, \dots, f_n^*F]$.

PROOF OF THE LEMMA. There is a formula $\phi_0 \in L(K^8)$ such that $M^8_{\alpha} \models \phi^n_0[f^*, F]$ iff $\langle \tilde{f}^*, F \rangle$ is a representation of some \tilde{f} . This formula says that $\alpha > 0 \rightarrow eq(\tilde{f})$ has \aleph_{α} equivalence classes, i.e.,

$$(\exists F^1) (\exists A \subseteq U_{\alpha}) [(\forall x \in U_{\alpha}) (\exists ! y \in A) (N(x, f^*) \cong N(y, f^*)) \land \Sigma F^1 = \aleph_{\alpha} \land \forall x (x \in A \to F^1(x) = F(x)) \land (\forall x \in U_{\alpha}) (x \notin A \to F^1(x) = 0)];$$

and that each eq (f^*) -equivalence class is isomorphic to $|U_{\alpha}|$ others, F is a function from U_{α} into CR_{α} , and F(u) depends only on the isomorphism type of $N(u, \bar{f}^*)$.

REMARKS.

1) Clearly \aleph_0 is definable here.

2) We should say more for the case where $\alpha = 0$.

There is a formula $\phi_1^n \in L(K^8)$ such that if $\overline{f}, \overline{g}$ are sequences of length *n* from P_{α} , and $\langle \overline{f^*}, F \rangle$, $(\overline{g^*}, G)$ are the corresponding representations then $M_{\alpha}^8 \models \phi_1^n[\overline{f^*}, F, g^*, G]$ iff $\langle \aleph_{\alpha}, \overline{f} \rangle \cong \langle \aleph_{\alpha}, \overline{g} \rangle$. ϕ_1^n says that $N(u_1, \overline{f^*}) \cong N(u_2, \overline{g^*})$ implies $F(u_1) = G(u_2)$, and $(\forall u_1) [F(u_1) > 0 \rightarrow (\exists u_2) (N(u_1, \overline{f^*}) \cong N(u_2, \overline{g^*}))]$ and $(\forall u_2) [G(u_2) > 0 \rightarrow (\exists u_1) N(u_2, \overline{g^*}) \cong N(u_1, \overline{f^*})].$

Also, there is a formula $\phi_2^n \in L(K^8)$ such that if $\bar{f} = \langle f_1, \dots, f_n \rangle$, where $f_i \in P_\alpha$, $\langle f^*, F \rangle$ is a representation of \bar{f} , and $\bar{g} = \langle f_1, \dots, f_{n-1} \rangle$, then for any $G, M_\alpha^8 \models \phi_2^n[\bar{f}^*, F, G]$ iff $\langle \bar{g}^*, G \rangle$ represents \bar{g} , where $\bar{g}^* = \langle f_1^*, \dots, f_{n-1}^* \rangle$. Hence, ϕ_2^n defines G uniquely by $f^*, F. \phi_2^n$ says for $u \in U_\alpha$ $G(u) = \sum \{F(u_1): u_1 \in A\}$ where $A \subseteq U_{\alpha}$ and for each $u_1 \in U_{\alpha}$, if $N(u_1, \bar{g}^*) \cong N(u, \bar{g}^*)$ then there is a unique $u_2 \in A$ for which $N(u_2, \bar{f}^*) \cong N(u_1, \bar{f}^*)$.

Continuing the proof of the lemma, we notice that ψ depends on ϕ and on $\{v_1, \dots, v_n\}$. We prove the existence of ψ by induction on ϕ simultaneously for any suitable $\{v_1, \dots, v_n\}$.

If ϕ is atomic, that is $[v_i = v_j]$ or $[v_i o v_j = v_k]$, then $\psi = (\forall x \in U_{\alpha}) [v(x) > 0 \rightarrow v_i(x) = v_j(x)]$ or $\psi = (\forall x \in U_{\alpha}) [v(x) > 0 \rightarrow v_i(v_j(x)) = v_k(x)]$ will do (where the v's now range over $P(U_{\alpha})$.

If for ϕ , $\{v_1, \dots, v_n\}$ we choose ψ , then for $\neg \phi$, $\{v_1, \dots, v_n\}$ we shall choose $\neg \psi$. If $\{v_1, \dots, v_n\}$ includes the free variables of $\phi_1 \land \phi_2$, and for ϕ_i , $\{v_1, \dots, v_n\}$ we choose ψ_i (i = 1, 2), then for $\phi_1 \land \phi_2$ we choose $\psi_1 \land \psi_2$.

If $\phi^* = (\exists v_n) \phi(v_1, \dots, v_n)$, $\{v_1, \dots, v_{n-1}\}$ includes the free variables of ϕ^* , and for ϕ , $\{v_1, \dots, v_n\}$ we have chosen ψ , then for ϕ^* we choose

$$\psi^* = \psi^*(v_1, \dots, v_{n-1}, v) = (\exists v_1^1, \dots, v_n^1 v^1 v^2) \left[\phi_0^n(v_1^1, \dots, v_n^1, v^1) \right]$$

$$\wedge \phi_1^n(v_1, \dots, v_{n-1}, v; v_1^1, \dots, v_{n-1}^1, v^2) \wedge \phi_2^n(v_1^1, \dots, v_n^1, v^1, v^2) \wedge \psi(v_1^1, \dots, v_n^1, v^1) \right].$$

Clearly it is suitable.

CONCLUSION 3.3. Any two of K^i , i=1, ..., 8 are bi-interpretable. In particular the permutation groups $\langle P_{\alpha}; \circ \rangle$ and the $\langle \alpha, U_{\alpha}; < \rangle$ in the logic $L_2(\Omega)$ are bi-interpretable. (For a definition of $L_2(\Omega)$, see below.)

PROOF. By 2.1–2.7 and 3.1, remembering 1.1, 1.2.

4. The $L_2(\Omega)$ theories of ordinals

 $L_2(\Omega)$ is the second order logic where the higher type variables range over relations (functions) with domain of power $< \Omega$.

Note the following lemma (Feferman and Vaught [7]):

LEMMA 4.1.

A) If $\gamma_i = \sum_{i < \beta} \alpha_i^i$, i = 0, 1 and

$$\langle \alpha_{j}^{0}, U_{\alpha_{j}^{0}}; \langle \rangle \equiv {}_{L_{2}(\Omega)} \langle \alpha_{j}^{1}, U_{\alpha_{j}^{1}}; \langle \rangle$$

for every $j < \beta$, then $\langle \gamma_0, U_{\gamma_0}; < \rangle \equiv_{L_2(\Omega)} \langle \gamma_1, U_{\gamma_1}; < \rangle$.

B) For every $n < \omega$ we can replace the full $L_2(\Omega)$ by the set of $\psi \in L_2(\Omega)$ with quantifier depth $[df(\psi)] \leq n$.

REMARK.

158

1) Elementary equivalence for this set will be denoted by $\equiv_{L_2(\Omega)}^n$.

2) Let us define df(ψ). When ψ is an atomic formula, df(ψ) is 0; when $\psi = \neg \phi$, df(ψ) is df(ϕ); when $\psi = \phi_1 \land \phi_2$, df(ψ) is max {df(ϕ_1), df(ϕ_2)}; and when $\psi = (\exists x)\phi$, df(ψ) is 1 + df(ϕ).

LEMMA 4.2. a) For $\alpha \ge 2^{\aleph_0}$, K^7 and K^9 are bi-interpretable explicitly where $M^9_{\alpha} = \langle \alpha, \dots, R^{\Omega}_n(\alpha) \dots; \langle \rangle$ (this is the same as $L_2(\Omega)$ on $\langle \alpha, \langle \rangle$).

b) For $\alpha < \Omega$ $[=(2^{\aleph_0})^+]$, $L_2(\Omega)$ is the same as second order logic, that is $M^9_{\alpha} = \langle \alpha, \dots, R_n(\alpha), \dots; < \rangle$.

It is clear that every sentence ψ in $L_2(\Omega)$ is equivalent to a sentence ψ^* in $L_{\Omega,\Omega}$ of finite depth df(ψ) ($L_{\Omega,\Omega}$ is the infinitary logic with conjunctions over continuum many formulae, and quantification (\exists or \forall) over strings of $\leq 2^{\aleph_0}$ variables). From Kino [8] it is clear that if the ordinal α has cofinality $\geq \Omega$, and is divisible by $\Omega^{df(\psi)}$ then $\langle \alpha; \langle \rangle \models \psi^*$ iff $\langle Or; \langle \rangle \models \psi^*$ (where Or is the class of ordinals).

If α, β have cofinality $\geq \Omega$ and are divisible by $\Omega^{df(\psi)}$ then $\langle \alpha; \langle \rangle \models \psi^*$ iff $\langle \beta; \langle \rangle \models \psi^*$. Hence if $\alpha, \beta > 0$ are divisible by Ω^{ω} and have cofinality $\geq \Omega$ then this holds for any ψ^* ($\psi \in L_2(\Omega)$); therefore $\langle \alpha; \langle \rangle \equiv_{L_2(\Omega)} \langle \beta; \langle \rangle$. If α, β are divisible by Ω^{ω} , and have cofinality $\kappa < \Omega$, then for any $n, \alpha = \sum_{i < \kappa} \alpha_i, \beta = \sum_{i < \kappa} \beta_i$, and α_i, β_i have cofinality $\geq \Omega$ and are divisible Ω^n ; hence, $\langle \alpha_i; \langle \rangle \equiv_{L_2(\Omega)}^n \langle \beta_i; \langle \rangle$. Hence by Lemma 4.1 (B), $\langle \alpha; \langle \rangle \equiv_{L_2(\Omega)}^n \langle \beta, \langle \rangle$. As this holds for any n, $\langle \alpha; \langle \rangle \equiv_{L_2(\Omega)} \langle \beta; \langle \rangle$.

This discussion proves

LEMMA 4.3. If $\alpha, \beta > 0$ are divisible by Ω^{ω} , and their cofinalities are equal or $\geq \Omega$ then $\langle \alpha, \langle \rangle \equiv_{L_2(\Omega)} \langle \beta; \langle \rangle$, or equivalently $\langle \alpha, U_{\alpha}; \langle \rangle \equiv_{L_2(\Omega)} \langle \beta, U_{\beta}; \langle \rangle$ (necessarily $\alpha, \beta \geq \Omega$).

Let U^* be any set of cardinality 2^{\aleph_0} so for $\aleph_{\alpha} \ge 2^{\aleph_0}$, without loss of generality, $U_{\alpha} = U^*$. We would like to weaken the demand on the equality of cofinalities. We can easily generalize Lemma 4.1 to multiplication.

LEMMA 4.4. For any $n < \omega$ there is m such that if $\alpha_i = \beta_i \gamma_i$, i = 1, 2, $\langle \beta_1, U^*; < \rangle \equiv_{L_2(\Omega)}^m \langle \beta_2, U^*; < \rangle$, and $\langle \gamma_1, U^*; < \rangle \equiv_{L_2(\Omega)}^m \langle \gamma_2, U^*; < \rangle$ then $\langle \alpha_1, U^*; < \rangle \equiv_{L_2(\Omega)}^m \langle \alpha_2, U^*; < \rangle$.

From the above follows

LEMMA 4.5. If $\alpha, \beta > 0$ are divisible by Ω^{ω} , and $cf(\alpha)$, $cf(\beta) \ge \Omega$ or

Vol. 14, 1973

 $\langle \mathrm{cf}(\alpha), U^*; < \rangle \equiv_{L_2(\Omega)} \langle \mathrm{cf}(\beta), U^*; < \rangle \quad then \quad \langle \alpha, U_{\alpha}; < \rangle \equiv_{L_2(\Omega)} \langle \beta, U_{\beta}; < \rangle \quad (U_{\alpha} = U_{\beta} = U^*).$

THEOREM 4.6. For any ordinals α, β we have a unique representation $\alpha = \Omega^{\omega} \alpha_{\omega} + \cdots + \Omega^{n} \alpha_{n} + \cdots + \Omega^{1} \alpha_{1} + \alpha_{0}, \alpha_{n} < \Omega$ for $n < \omega$, and only finitely many α_{n} are $\neq 0$; $\beta = \Omega^{\omega} \beta_{\omega} + \cdots + \Omega^{n} \beta_{n} + \cdots + \Omega^{1} \beta_{1} + \beta_{0}, \beta_{n} < \Omega$ for $n < \omega$ and only finitely many β_{n} are $\neq 0$.

Now $\langle \alpha, U_{\alpha}; \langle \rangle \equiv_{L_2(\Omega)} \langle \beta, U_{\beta}; \langle \rangle$ iff the following conditions are satisfied:

- 1) $\alpha < \Omega$ iff $\beta < \Omega$
- 2) if $\alpha < \Omega$, $\langle \alpha_0, U_{\alpha_0}; \langle \rangle \equiv_{L_2} \langle \beta_0, U_{\beta_0}; \langle \rangle$
- 3) if $\alpha \geq \Omega$, $\langle \alpha_0, U^*; \langle \rangle \equiv_L, (\beta_0, U^*; \langle \rangle$
- 4) for $0 < n < \omega \langle \alpha_n, U^*; < \rangle \equiv_{L_2} \langle \beta_n, U^*; < \rangle$
- 5) $\operatorname{cf}(\Omega^{\omega}\alpha_{\omega}) \geq \Omega$ iff $\operatorname{cf}(\Omega^{\omega}\beta_{\omega}) \geq \Omega$
- 6) if $cf(\Omega^{\omega}\alpha_{\omega}) < \Omega$ then $\langle cf(\Omega^{\omega}\alpha_{\omega}), U^*; < \rangle \equiv_{L_2} \langle cf(\Omega^{\omega}\beta_{\omega}), U^*; < \rangle$.

We have proven the sufficiency of the conditions. Their necessity is easy to prove, e.g., $\alpha < \Omega$ iff $\langle \alpha; \langle \rangle \models (\exists A) \ (\forall x) \ (x \in A)$.

5. Discussion

a) Clearly we can interpret in the group of permutations of \aleph_{α} : (1) one-to-one functions from \aleph_{α} into \aleph_{α} , (2) equivalence relations with $\leq 2^{\aleph_0}$ equivalence class, (3) the lattice of $E_{\alpha}^{\aleph_1}$ and (4) $E_{\alpha}^{\aleph_1}$ partially ordered. Except for (2) also the converses are true.

b) Let P_{α}^{β} be the group of permutations $f \in P_{\alpha}$, $|\{x: f(x) \neq x\}| < \aleph_{\beta}$. It is easy to see by Vaught's test that if $\beta \leq \alpha \leq \gamma$ then $\langle P_{\alpha}^{\beta}, \circ \rangle$ is an elementary submodel of $\langle P_{\gamma}^{\beta}; \circ \rangle$, and we can, with no difficulty, describe the elementary theories of $\langle P_{\alpha}^{\beta}; \circ \rangle$ in a way parallel to the description for $\langle P_{\alpha}, \circ \rangle$.

McKenzie [10], solving the question of Mycielski [11], asks when $FG(\lambda)$ (the free group with λ -generators) can be embedded in P_{α}^{β} . By De Bruijn [1, Th. 4.2], if there is $\gamma < \beta$ such that $2^{\aleph \gamma} \ge \lambda$, and $\gamma \le \alpha$ then there is such an embedding. McKenzie [10] shows that if λ is big enough relative to \aleph_{α} , then this cannot be done.

Let $\{x_i: i < \lambda\}$ be the generators of $FG(\lambda)$, and F an embedding of $FG(\lambda)$ into P_{α}^{β} . McKenzie ([10] p. 57) shows, using a partition relation $\mu \to ((2^{\kappa})^+)_2^{3\kappa}$ from Erdös, Hajnal and Rado [3], that for λ big enough there is $I \subseteq \lambda$, $|I| > \sum_{\kappa < \aleph_{\beta}} 2^{\kappa}$ such that

(*) for $i_1 < j_1 < k_1 \in I$, $i_2 < j_2 < k_2 \in I$, there is a permutation of \aleph_{α} which

S. SHELAH

takes $\langle F(x_{i_1}), F(x_{j_1}), F(x_{k_1}) \rangle$ to $\langle F(x_{i_2}), F(x_{j_2}), F(x_{k_2}) \rangle$ and from this he gets a contradiction. Now if $\lambda > \sum_{\kappa < \aleph_{\beta}} 2^{\kappa}$, let

$$A_i = \{y \colon y \in \aleph_{\alpha}, F(x_i)[y] \neq y\} \ (F(x_i) \in P_{\alpha}^{\beta});$$

therefore $|A_i| < \aleph_{\beta}$. Hence, by Erdös and Rado [4] there is $I \subseteq \lambda$, $|I| > \sum_{\kappa < \aleph_{\beta}} 2^{\kappa}$ such that for $i \neq j \in I$, $A_i \cap A_j = A$ (i.e., any two A_i have the same intersection); therefore, $|A| < \aleph_{\beta}$. Hence there is $J \leq I$, $|J| > \sum_{\kappa < \aleph_{\beta}} 2^{\kappa}$ such that for $i \neq j \in J$, $\langle A_j; F(x_j), a \rangle_{a \in A} \cong \langle A_i; F(x_i), a \rangle_{a \in A}$. Clearly (*) is satisfied, which McKenzie shows is impossible. Therefore, if $FG(\lambda)$ can be embedded in P_{α}^{β} then $\lambda \leq \sum_{\kappa < \aleph_{\beta}} 2^{\kappa}$, and

$$\lambda \leq \sum \{ 2^{\kappa} : \kappa \leq \aleph_{\alpha}, \ \kappa < \aleph_{\beta} \}.$$

The remaining problem is for β a limit ordinal, $\beta \leq \alpha$, $\lambda = \sum_{\gamma < \beta} 2^{\aleph \gamma}$ but $\gamma < \beta \rightarrow 2^{\aleph \gamma} < \lambda$. Let $g_k = F(x_k) \circ F(x_0) \circ F(x_k)^{-1} \circ F(x_0)^{-1}$. Then $\{g_{\delta} : 0 < \delta < \lambda, \delta$ a limit ordinal} generates a free subgroup of cardinality λ , and $|\{x : g_{\delta}(x) \neq x\} \leq |\{y : F(x_0)(y) \neq y\}| + \aleph_0 \leq \aleph_{\gamma} < \aleph_{\beta}$, so we get a contradiction as before.

THEOREM 5.1. The free group of cardinality λ is isomorphic to a subgroup of P_{α}^{β} (i.e., the group of permutations of \aleph_{α} which moves $< \aleph_{\beta}$ elements) iff for some $\aleph_{\gamma} < \aleph_{\beta} \ 2^{\aleph_{\gamma}} \ge \lambda$.

c) In the same way we prove Conclusion 3.3, we can prove

THEOREM 5.2. K^{10} , K^{11} are bi-interpretable where

1)
$$M_{\alpha}^{10} = \langle \aleph_{\alpha}, E_{\alpha}^{\kappa}; \rangle$$

2) $M_{\alpha}^{11} = \langle \alpha, U_{\alpha}, \dots, R_n(\alpha \bigcup U_{\alpha}), \dots; \langle \rangle$ where \langle is the order of ordinals and $|U_{\alpha}| = \min(\aleph_{\alpha}, (\Sigma_{\mu < \kappa} 2^{\mu}) + 2^{\aleph_0})$. (κ is any regular cardinal; the interpretation is independent of κ).

The essential property of E_{α}^{κ} we used is that for any $e \in E_{\alpha}^{\kappa}$, $\langle \aleph_{\alpha}; e \rangle$ is the direct sum of models, each of cardinality $\langle \kappa$. Thus, there are many variants of our theorems.

As an easy corollary of Theorem 5.2 we have a well-known theorem of Rabin [17] that allowing quantifications over arbitrary equivalence relations is equivalent to full second order logic. (In fact, more is proved there).

We can seek another generalization by allowing some extrastructure over \aleph_{α} , e.g. some equivalence relation; then in K instead of M_{α} a set \mathcal{M}_{α} of models appear, and in the definition of interpretation $\mathcal{M}_{\alpha} \models \psi$ means $M \in \mathcal{M}_{\alpha}$ implies $M \models \psi$. However, if we allow (in the case of equivalence relations) quantification over FIRST ORDER THEORY

permutations, we get full second order theory. But we can allow quantification only over automorphisms of \aleph_{α} with the extrastructure. Even for a one-place function this is equivalent to a full second-order theory. Contrast this with the decidability of the monadic second-order theory of a one-place function, which is shown by Le Tourneau to follow from Rabin [13]. But for equivalence relations ordered by refinement, we get:

THEOREM 5.3. $K^{12,n}$, $K^{13,n}$ are bi-interpretable, where

$$\mathcal{M}^{12} = \{ \langle \aleph_{\alpha}, \operatorname{Aut}_{\alpha}(\bar{e}); \bar{e} \rangle : \bar{e} = (e_1, \cdots, e_n), \ e_i \in E_{\alpha}^{\aleph_{\alpha+1}}, \ e_i \ refines \ e_{i+1} \},$$

$$\begin{split} M_{\alpha}^{13} &= \langle \alpha, U_{\alpha}^{n}; < \rangle \text{ where } < \text{ is the order of ordinals and } \left| U_{\alpha}^{0} \right| = \min(2^{\aleph_{0}}, \aleph_{\alpha}), \\ \left| U_{\alpha}^{n+1} \right| &= \min(\left| \alpha \right|^{|U_{\alpha}^{n}|}, \aleph_{\alpha}) \text{ where } \operatorname{Aut}_{\alpha}(\bar{e}) \text{ is the set of automorphisms of } (\aleph_{\alpha}, e). \end{split}$$

We could have generalized Theorem 5.3 in the direction of Theorem 5.2, replacing (or adding to) the automorphisms by appropriate sets of equivalence relations.

For $M_{\alpha}^{14} = \{ \langle \aleph_{\alpha}, \operatorname{Aut}(\langle \rangle; \langle \rangle : \langle \rangle :$

We can look also at $\tilde{E}_{\alpha}^{\kappa}$, i.e., the set of equivalence relations over \aleph_{α} with $<\kappa$ equivalence classes. It is not hard to see that in $\langle \aleph_{\alpha}, E_{\alpha}^{\kappa} \rangle$ we can interpret $\tilde{E}_{\alpha}^{\lambda}$ when $(\sum_{\mu < \kappa} 2^{\mu})^{+} = \lambda$. However, the converse is not true. If $\aleph_{\alpha} \ge \aleph_{\beta} \ge \kappa$, κ regular (or $\aleph_{\beta} > \kappa$) then $\langle \aleph_{\alpha}, \tilde{E}_{\alpha}^{\kappa} \rangle$ is an elementary extension of $\langle \aleph_{\alpha}^{\alpha}, \tilde{E}_{\alpha}^{\kappa} \rangle$. The theory of the natural numbers with addition and multiplication, and the theory of $\langle \aleph_{0}, \tilde{E}_{0}^{\aleph_{0}} \rangle$ are bi-interpretable (one recursive in the other).

REFERENCES

1. N. G. De Bruijn, Embedding problems for infinite groups, Indag. Math. 19 (1957), 560-569.

2. N. G. De Bruijn, Addendum to "Embedding theorems for infinite groups", Indag. Math. 26 (1964), 594-595.

3. P. Erdös, A. Hajnal, and R. Rado, Partition relations for cardinals, Acta Math. Acad. Sci. Hungar. 16 (1965), 93-196.

4. P. Erdös and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 44 (1969), 467-479.

5. J. L. Ershov, Undecidability of theories of symmetric and simple finite groups, Dokl. Akad. Nauk SSSR N4, 158, 777–779.

6. J. L. Ershov. New examples of undecidability of theories, Algebra i Logika 5, N. 5 (1966), 37-47.

7. S. Feferman and R. L. Vaught, *The first order properties of products of algebraic systems*, Fund. Math. 47 (1959), 57–103.

8. A. Kino, On definability of ordinals in logic with infinitely long expressions, J. Symbolic Logic 31 (1966), 365-375, (correction in 32 (1967), 343).

9. R. McKenzie, On elementary types of symmetric groups, Algebra Universalis 1 (1971) N1, 13-20.

10. R. McKenzie, A note on subgroups of infinite symmetric groups, Indag. Math. 33 (1971), 53-58.

11. J. Mycielski, Problem 324, Colloq. Math. 8 (1961), 279.

12. A. G. Pinus, On elementary definability of symmetric groups and lattices of equivalencies, Algebra Universalis, to appear.

13. M. O. Rabin, Decidability of second-order theories and automata on infinite trees, Trans. Amer. Math. Soc. 141 (1969), 1-35.

14. S. Shelah, There are just four possible second-order quantifiers, and on permutation groups Notices Amer. Math. Soc. 19 (1972), A-717.

15. S. Shelah, There are just four possible second-order quantifiers, Israel J. Math., to appear.

16. J.N. Vazhenin and V. V. Rasin, On elementary differentiability of symmetric groups XI, All-Union Algebraic Colloquium, Summary of Reports and Communications, Kishener, 1971.

17. M. O. Rabin, A simple method for undecidability proofs, Proceedings of the 1964 International Congress for Logic, North-Holland, 1965, pp. 58-68.

INSTITUTE OF MATHEMATICS

THE HEBREW UNIVERSITY OF JERUSALEM, ISRAEL