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ON REGULAR REDUCED PRODUCTS*

JULIETTE KENNEDY' AND SAHARON SHELAH?

Abstract. Assume (Ro, R1) — (1, 17). Assume M is a model of a first order theory T of cardinality
atmost A" in a language #(T) of cardinality < A. Let N be a model with the same language. Let A be a
set of first order formulas in Z(7T) and let D be a regular filter on A. Then M is A-embeddable into the
reduced power N* /D, provided that every A-existential formula true in M is true also in N. We obtain
the following corollary: for M as above and D a regular ultrafilter over 4, M*/D is 2**-universal. Our
second result is as follows: For i < g let M; and N; be elementarily equivalent models of a language which
has cardinality < 1. Suppose D is a regular filter on 4 and (Rg, ;) — (4, A%) holds. We show that then
the second player has a winning strategy in the Ehrenfeucht-Fraissé game of length 2* on Hi M;/D and

Hi N;/D. This yields the following corollary: Assume GCH and 4 regular (or just (Rg, R¢) — (4,11)
and 2* = i*). For L, M; and N; be as above, if D is a regular filter on A, then H‘_ M;/D =~ Hi N;/D.

§1. Introduction. Suppose M is a first order structure and F is the Frechet filter
on w. Then the reduced power M /F is N;-saturated and hence R,-universal ([6]).
This was generalized by Shelah in [10] to any filter F on w for which B®/F is
R;-saturated, where B is the two element Boolean algebra, and in [8] to all regular
filters on w. In the first part of this paper we use the combinatorial principle Df{*
of Shelah [11] to generalize the result from w to arbitrary 4, assuming (Rg, ¥;) —
(A, A"). This gives a partial solution to Conjecture 19 in [3]: if D is a regular
ultrafilter over A, then for all infinite M, the ultrapower M*/D is A**-universal.

The second part of this paper addresses Problem 18 in [3], which asks if it is true
that if D is a regular ultrafilter over A, then for all elementarily equivalent models M
and N of cardinality < A in a language of cardinality < 4, the ultrapowers M*/D
and N*/D are isomorphic. Keisler [7] proved this for good D assuming 2* = A*.
Benda [1] weakened “good” to “contains a good filter”. We prove the claim in full
generality, assuming 2* = A* and (X, X;) — (4, A%).

Regarding our assumption (Xg, Xy} — (4, 17). by Chang’s Two-Cardinal Theo-
rem ([2]) (Ro, R1) — (4, A*) is a consequence of A = 1<*. So our Theorem 2 settles
Conjecture 19 of [3], and Theorem 13 settles Conjecture 18 of [3], under GCH for
4 regular. For singular strong limit cardinals (Ro, ®;) — (4, 4*) follows from O,
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(Jensen [5]). In the so-called Mitchell’s model ([9]) (Rg,N;)} 4 (Ry,X;), so our
assumption is independent of ZFC.

§2. Universality.

DEFINITION 1. Suppose A is a set of first order formulas of the language L. The
set of A-existential formulas is the set of formulas of the form

By .. Ixa (P A A ),

where each ¢; is in A. The set of weakly A-existential formulas is the set of formulas
of the above form, where each ¢, is in A or is the negation of a formula in A. If
M and N are L-structures and # : M — N, we say that & is a A-homomorphism
if h preserves the truth of A-formulas. If h preserves also the truth of negations of
A-formulas, it is called a A-embedding.

THEOREM 2. Assume (Ro, V1) — (A, AT). Let M be a model of a first order theory
T of cardinality at most A%, in a language L of cardinality < A and let N be a model
with the same language. Let A be a set of first order formulas in L and let D be a
regular filter on A. We assume that every weakly A-existential sentence true in M is
true also in N. Then there is a A-embedding of M into the reduced power N*/D.

By letting A be the set of all first order sentences, we get from Theorem 2:

COROLLARY 3. Assume (Ro, N1} — (4, 4%). If M is a model with language < A, and
D is a regular ultrafilter on A, then M* /D is A+ -universal, i.e. if M' is of cardinality
<t and M' = M, then M’ is elementarily embeddable into the ultrapower M*/D.

We can replace “weakly A-existential” by “A-existential” in the Theorem, if we
only want a A-homomorphism.

The idea behind the proof of Theorem 2 is roughly as follows: suppose M =
{ar : { < AT}. We associate to each { < A* finite sets uf C ¢, i < A, and represent
the formula set A as a union of finite sets A;. The proof involves a simultaneous
recursion over At and A. At stage i, for each { < At we consider the A;-type of
those elements a, of the model whose indices lie in the set uf, { < AT. This will
yield a witness f.(i) in N at stage i, 7. Naturally, the sets ' have to have some
coherence properties in order for this to work. Our embedding is then given by
a, — (f.(i) i< i)/D.

We need first an important lemma, reminiscent of Proposition 5.1 in [11}:

LEMMA 4. Assume (Ro,R1) — (4, 47). Let D be a regular filter on A. There exist
sets uf and integers n; for each { < A* and i < A such that for each i,{

Q) fuf| <n

(i) uf C¢
(iii) Let B be a finite set of ordinals and let { be such that B C { < A*. Then
{i:BCuleD '

(iv) Coherency: y € u’

i

=>u17=ufﬁy

Assuming the lemma, and letting M = {a, : { < A1} we now define, for each [,
a function f¢r : A+— N.
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Let A = {¢o : @ < A} and let {4, : a < A} be a family witnessing the
regularity of D. Thus for each i < 4, the set w; = {& : i € A,} is finite. Let
A; = {¢a : @ € w;}, and let 4, n; be as in the lemma.

We define a sequence of formulas essential to the proof: suppose { < A* and
i< A Letmt = |u*] and let

up = {&it. ... Seimtt

be the increasing enumeration of uf. (We adopt henceforth the convention that
any enumeration of uf that is given is the increasing enumeration.) Let 0,.( be the
A;-type of the tuple (ag,, .. ... aéam;) in M. (So every ¢(x1,..., xm’;) € A; orits

negation occurs as an element of 0_,-5, according to whether ¢(az,,,,. ... as .)or
~¢(ag,,...-» ag . ) holds in M .) We define the formula 6¢ for each i by downward

induction on m’ as follows:

Casel. mt +1=n;. Let 6 = \6°.

Case 2. m®+1 < n;. Let 6 be the conjunction of #* and all formulas of the form
I 05 (X1, .., X, X ), Where & satisfies uf = u* U{¢} and hence m® = mt+ 1.
Ifnosuche exists,’ 6° is just the conjunction of 0:.

An easy induction, based on the fact that there is a uniform bound #; on the sizes
of the sets u;, shows that for a fixed i < A, the cardinality of the set {6° : { < A} is
finite.

Let i < A be fixed. We define £, (i) for & € u* by induction on ¢ < A* in such a
way that the following condition remains valid:

(IH) I <Candul ={ry.....ry}, then N | 05 (f4,(i),.... fs (D).

Actually, f,(i) gets defined once and for all at the first stage { such that ¢ € uf To
define f,(i) fore € u,-c , we consider different cases:

Casel. n; =m® + 1.

Casg 1.1. n; = 1. Then there is nothing to prove, since uf 1s empty.

Case1.2. m; > 1. Letuf = {&,...,¢ ¢ }. Since m} + 1 = n;, the formula 67 is
the A;-type of the elements {ac,. ... . a; } By assumptiony = émf is the maximum
element of u*. We note that for ¢ € u’ Ny, f,(i) is already defined. By coherency,
ul = uf Ny ={&.....¢,:_}. Since y < {, we know by the induction hypothesis
that '

NEO(faG).... . fe, (D).

Asuf =u/ U{y}and m! < n; — 1, the formula 8/ contains the formula
Eixmlgﬁf(xl, e ,Xml;)
as a conjunct. Thus

N ': Elxm’gﬁf(fil(z), ,f,fm{Al(l'),xmd.

> i
i
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Now let & € N witness this formula and set /(i) = b.

CASE 2. mf 41 < n;. Let uf ={&.....¢,:}. We have that
M ': 95(&5,,... ,agm;),
and therefore M = 3x, 0% (a;,.... .ac o Xge) Lety = max(u{)=¢ . By
coherency u = uf Ny and therefore since y < { again by the induction hypothesis
we have that
N ’: HZ(ffx(l)s cen ’fém;_l(i))-
But then as in case 1.2 we can infer that
N b= 32,00, (fe, (). fe (0).%,0).

As in case 1 choose an element b € N to witness this formula and set f, (i) = b.

It remains to be shown that the mapping a; — (f(i) : i < A)/D satisfies the
requirements of the theorem, i.e. we must show, for all ¢ such that ¢ € Aor—¢ € A:
M}= ¢(a¢l,... ,agk) = {i N }=¢(f¢'l(i),... ,f{k(i))} e D.

So let such a ¢ be given, and suppose M = ¢(az,. ..., az ). Let

Ii={i:NE¢(fe,(i).... fa (i)}
We wish to show that Iy € D. Let o < 4 so that ¢ is ¢, or its negation. It suffices
to show that 4, C I. Let { < AT be such that {&,...,&,} € {. By Lemma 4
condition (iii), {i : {¢1....,&.} C uf} € D. So it suffices to show

Aaﬂ{i : {él,...,f,,} Quf} C 1.
Let i € A4, such that {&,....¢,} C uf. By the definition of Hf we know that

N = 0(fe (i), ..., fe (i)). But the A;-type of the tuple (ag,, ... ,az, ) occurs as a
conjunct of §¢, and therefore N = ¢(f¢, (i), ..., fe, (i) 5

§3. Proof of Lemma 4. We now prove Lemma 4. We first prove a weaker version
in which the filter is not given in advance:

LEMMA 5. Assume (Ro,R1) — (4, A). Then there exist sets (u° : { < A*,i <
cof (1)), integers n; and a regular filter D on A, generated by A sets, such that (i)-(iv)
of Lemma 4 hold.

Proor. By [11, Proposition 5.1, p. 149] the assumption (o, N;) — (4,47} is
equivalent to:

05" : There is a A*-like linear order L, sets (C: : a € L,{ < ¢f(4)), equivalence
relations (E¢ : { < ¢f(4)), and functions <f§,b :{ < A,a € L b e L)such that

(i) U, C} = {b: b <, a} (an increasing union in ¢).

(ii) Ifb € C¢. then Cf = {c € C} : ¢ <1 b}).

(iii) E¢ is an equivalence relation on L with < 1 equivalence classes.

(iv) If¢ < & < ¢f(A), then E¢ refines E°.

(v) If aE*b, then f ib is an order-preserving one to one mapping from C¢ onto

C; such that for d € C},dES f%,(d).
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(vi) I { < ¢ < ¢f(2) and aEb. then f7, C £
(vii) If £, (a1) = by, then f5 , C f5,.

a ar.b

(viii) Ifa € C; then =E(a,b).
This is not enough to prove Lemma 5, so we have to work a little more. Let
B, = {a/E*:a € L}.
We assume, for simplicity, that { # £ implies Z; N Z; = 0. Define for 1,1, € &;:
t<¢tr <= (3a1 € )3 € K)(a; € C).

PROPOSITION 6. (E;, <() is a tree order with cf () as the set of levels.

PrOOF. We need to show (a) 11 <; 1, <; 13 implies 11 <; #3, and (b) #; <, 3 and
1, <; ty implies t; <; t2 or t; <¢ t; or t; = t,. For the first, #; < ¢, implies there
exists a; € t and a; € f; such that a; € ng. Similarly f» <, t; implies there exists
by € t and b3 € 13 such that b; € Cbi. Now a,E¢b, and hence we have the order
preserving map fgz,bz from C;, onto Cbi. Recalling a; € C{,, let fgz’bz(al) = by.
Then by (vi), a; E*b; and hence b; € t;. But then b; € Cbi implies b; € Ci, by
coherence and the fact that b, € C bi‘ But then it follows that 7; <, 3.

Now assume ¢ <; t3and t <; t3. Leta; € ty and a3 € 3 besuch that ) € C§3,
and similarly let b, and b3 be such that b, € Cbi . a3 E* b3 implies we have the order
preserving map f gs,ba from C{, to Cf}. Letting f ngs (a1) = by, we see that b € Cbi.
If by <, by, then we have Cf = C; N {c : ¢ < by} which implies b, € C; , since,
as f g;,bs is order preserving, by < by. Thus ¢; <; t;. The case b, <y b is proved
similarly, and b, = b; is trivial. ~

Fora <; b let

é(a.b) =min{¢ :a € C;}.

Denoting &(a, b) by &, let

tp(a.b) = (a/ES, b/ E*).
Ifay < -+ < ay, let

ip({ay,....an)) ={{,m.tpla;, an))]1 <l<m < n}

and

T ={wla):ae<"L}.
For ¢t = tp(d), @ € " L we use n, to denote the length of @.

ProrosiTioN 7. If ag <y --- < a,, then

max{&(a;, an) : 0 <! <m < n}=max{l(a,a,):0<I<n}.

Proor. Clearly the right hand side is < the left hand side. To show the left hand
side is < the right hand side, let / < m < n be arbitrary. If &(a;, a,) < E(am, an),
then &(a;, an) < &(am,a,). On the other hand, if é(ay,a,) > &(am. a,), then
E(ar, am) < E(ay, ay). In either case E(ay, ap) < max{&(ax,a,):0<k<n}. A
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Let us denote max{&(a;, a,) : 0 <1 < n} by £(&). We define on I a two-place

relation < as follows:
h<rn

if there exists a tuple (ay, . . . an, _1) realizing t, such that some subsequence of the
tuple realizes ¢;.

Clearly, (I", <r) is a directed partial order.

PrOPOSITION 8. Fort € I',t = tp(by,...bs_1) and a € L, there exists at most one
k < n such that by Eo--bn-1)g

Proor. Let { = (b, ... ,b,—1) and let by, # by, be such that by E‘a and
bi,Eta, ki,ky < n — 1. Without loss of generality, assume by, < by,. Since E¢ is
an equivalence relation, by, E* b, and thus we have an order preserving map f ,sz e

from ka to Cbi . Also by, € C,fk , by the definition of { and by coherence, and
2 1 2
therefore 1 ,sz b (b, ) E€ by, . But this contradicts (viii), since f gkz,bkl (bi,) € kal. -

DerINITION 9. Fort € T, £ = tp(by, ... b,_1) and a € L suppose there exists k <
n such that by E€bo--b1-1)g Then let u? = {fg(bbko bn=0(p,) 1 1 < k} Otherwise, let
uf = 0.

Finally, let D be the filter on I" generated by the 4 sets

o ={tel: " <t}
We can now see that the sets u¢, the numbers #, and the filter D satisfy conditions
(i)-(iv) of Lemma 4 with L instead of A*: Conditions (i) and (i) are trivial in this
case. Condition (iii) is verified as follows: Suppose B is finite. Let a € L be such
that (Vx € B)(x <r a). Let @ enumerate B U {a} in increasing order and let
t* = tp(a@). Clearly
tGth* :>B§u§’.

Condition (iv) follows directly from Definition 9 and Proposition 8.

To get the Lemma on A™ we observe that since L is AT-like, we can assume
that (11, <) is a submodel of (L, <,). Then we define v = u> N {f : f < a}.
Conditions (i)-(iv) of Lemma 5 are still satisfied. Also having D a filter on I instead
of on A is immaterial as [T} = 1. =

Now back to the proof of Lemma 4. Suppose uf ,n; and D are as in Lemma 5,
and suppose D’ is an arbitrary regular filter on A. Let {4, : & < A} be a family of
sets witnessing the regularity of D', and let {Z, : o < A} be the family generating
D. We define a function 4 : A — 4 as follows. Suppose i < 4. Then let

h(i) € ({Zali € Aa}.

Now define 4 = ”g(a)' Define also n, = ny,(,). Now the sets v$ and the numbers

n,, satisfy the conditions of Lemma 4. -

8d. Is D’j* needed for Lemma 5? In this section we show that the conclusion
of Lemma 5 (and hence of Lemma 4) implies 02" for singular strong limit 1.
By [11, Theorem 2.3 and Remark 2.5], Dﬁ* is equivalent, for singular strong limit
4, to the following principle:



Sh:769

ON REGULAR REDUCED PRODUCTS 1175

Sy : There are sets (C! : a < A1, i < ¢f(4)) such that
(i) Ifi < j,then CL C CJ.

(i) U, Ci = a.

(iii) Ifb € C!, then Cf = C N b.

(iv) sup{otp(Cl):a < it} < A

=

Thus it suffices to prove:
PROPOSITION 10. Suppose the sets ut and the filter D are as given by Lemma 5 and
A is a limit cardinal. Then & holds.

PrOOF. Suppose & = {4, : a < A} is a family of sets generating D. Wl.o.g., &/
is closed under finite intersections. Let A be the union of the increasing sequence
(Ao : @ < ¢f(4)), where Ag > w. Let the sequence ([, : a < ¢f (1)) satisfy:

(a) ITal < 4a
(b) T, is continuously increasing in a with A as union
(c) If By,..., B, € T, then there is y € T, such that

AyZAp‘ﬂ"-ﬂAﬁn.

The sequence (I'y, : @ < ¢f (1)) enables us to define a sequence that will witness o;.
For o < ¢f (1) and { < A*, let

VE={E<{:(Fy eTa)4, C{izEeuf}}
Lemma 11. (1) (Vf : @ < A) is a continuously increasing sequence of subsets of {,
[VE| < Aasand (V1 a < cf(A)} = (.
(2) IfE € V. then V& = VENE,
ProoF. (1) is a direct consequence of the definitions. (2) follows from the respec-
tive property of the sets uf. -
Lemma 12. sup{otp(Ve) : { < A%} < A7

PROOF. By the previous Lemma, |V#| < 4. Therefore op(V) < A% and the
claim follows. -

The proof of the proposition is complete: (i)-(iii) follows from Lemma 11, (iv) fol-
lows from Lemma 12 and the assumption that A is a limit cardinal. -

More equivalent conditions for the case A singular strong limit, D a regular
ultrafilter on A, are under preparation.

§5. Ehrenfeucht-Fraissé-games. Let M and N be two first order structures of the
same language L. All vocabularies are assumed to be relational. The Ehrenfeuchi-
Fraissé-game of length y of M and N denoted by EFG, is defined as follows: There
are two players called I and I1. First I plays x¢ and then II plays yo. After thisI plays
x1, and II plays y;, and so on. If ((xg,ys) : § < ) has been played and o < p,
then I plays x, after which II plays y,. Eventually a sequence ((xg, y4) : f < y) has
been played. The rules of the game say that both players have to play elements of
M U N. Moreover, if I plays his x4 in M (N), then IT has to play his yz in N (M).
Thus the sequence ({xg, yg) : B < y) determines a relation 7 C M x N. Player II
wins this round of the game if 7 is a partial isomorphism. Otherwise I wins. The
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notion of winning strategy is defined in the usual manner. We say that a player wins
EFG, if he has a winning strategy in EFG,.

Note that if IT has a winning strategy in EFG, on M and N, where M and N are
of size < |y|, then M = N.

Assume L is of cardinality < A and for each i < 1 let M; and N; be elementarily
equivalent L-structures. Shelah proved in [12] that if D is a regular filter on A, then
Player II has a winning strategy in the game EFG, on [ [, M;/D and [, N;/D for
each y < A*. We show that under a stronger assumption, I has a winning strategy
even in the game EFG;+. This makes a big difference because, assuming the models
M; and N; are of size < A%, 2* = AT, and the models [], M;/D and [], N;/D are
of size < A7, then by the remark above, if II has a winning strategy in EFGj -,
the reduced powers are actually isomorphic. Hyttinen [4] proved this under the
assumption that the filter is, in his terminology, semigood.

THEOREM 13. Assume (Ro, N1} — (A, A1), Let L be a language of cardinality < A
and for each i < A let M; and N; be two elementarily equivalent L-structures. If D
is a regular filter on A, then Player II has a winning strategy in the game EFG,+ on
Hi M,/D andHl- N,/D

PrOOF. We'use Lemma 4. For simplicity assume L is finite. (The general case
follows from the regularity of D.) If i < A, then, since M; and N; are elementarily
equivalent, Player II has a winning strategy o; in the game EFG,, on M; and N;.
We will use the set uf to put these short winning strategies together into one long
winning strategy.

A “good” positionisa sequence {(f;, g;) : { < &), where £ < At,and forall{ < ¢
we have f; € [, M;, g; € [[; Vi, and if i < 4, then ((f, (i), g:.(i)) : e € uf u{hH
is a play according to a;.

Note that in a good position the equivalence classes of the functions f; and g,
determine a partial isomorphism of the reduced products. To see this, suppose
((fr.gc): £ < &) is agood position, ¢(xy, ... ,x;) is atomic and

Iy={i: M; = ¢(fa,(D)..... fo, (i)} € D.

We wish to show that I} = {i : N; |= ¢(gs,(i).... .8 (i))} € D. By Lemma 4,
if y < A% is such that B = {a1,..., o4} C y, thenJ, = {i : B C u/} € D.
Thus J, N1 € D, and for each i € J,, ((f.(i).g:(i)) : € € ul) is part of the play
according to g;. Thus for each such i,i € Iy <~ i € Ijie J,NI; = J, NI, whence
I, €D.

The strategy of player II is to keep the position of the game “good”, and thereby
win the game. Suppose ¢ rounds have been played and II has been able to keep the
position “good”. Then player I plays f:. We show that player II can play g, so that
((fr.8c) 1 ¢ < &) remains “good”. Leti < A. Letuslookat ((f.(i), g.(i)) : € € u).
We know that this is a play according to the strategy o; and |uf| < n;. Thus we
can play one more move in EF,, on M; and N; with player I playing f¢(i). Let
g:(i) be the answering move of II in this game according to o;. The values g¢ (i),
i < A, constitute the function g:. We have shown that II can maintain a “good”
position. 4

COROLLARY 14. Assume GCH and A regular (or just (Ro,¥1) — (A, AT) and 2* =
AT). Let L be a language of cardinality < 1 and for each i < A let M; and N; be two



Sh:769

ON REGULAR REDUCED PRODUCTS 1177

elementarily equivalent L-structures. If D is a regular filter on A, then ||, M;/D =

I1, N:/D.
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