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ABSTRACT 

We prove (without G.C.H.) that every two elementarily equivalent models 
have isomorphic ultrapowers, and some related results. 

We prove here 

THEOREM. Let 2 be any cardinality, p = min{p: 2" > 2}. Then there is an 

ultrafilter D over ), such that: 

1) I f  M, N are elementarily equivalent models of power < p, then MZ/D, 

NZ/D are isomorphic; 

2) I f  M is a model of power < p, 2 ~ < 24, then MaID is t¢ + -saturated; 

3) I f  Mk, N k are models of eardinality <= 7, < p, of the same language, and 

IIk<xMJD , IIk<~Nk/D are elementarily equivalent then they are isomorphic. 

This theorem generalizes Keisler [6] (which proved a stronger result using 

G.C.H.) and the proof generalizes the proof of Kunen [ 12]. Part (1) of the theorem 

affirms a well-known conjecture; it is not clear who proposed it. It  occurs as open 

problem 5 in Chang and Keisler [1]. The problem was attacked by several people 

in several ways. Keisler [6] proves: if 2 + = 2 z, then there is an ultrafilter D over 2 

such that: if M ---- N, I1M ]l < 2+' 11N [I < ;~+, and the language is of cardinality 

<_ 2 then MaID "~ NX/D. By Keisler [8] this can be broken into the following 

stages: if 2 + = 2 ~, there is a 2+-good ultrafilter over 2; if D is a 2+-good ultra- 

filter over I and M a model with language of cardinality _-< 2, then MIlD is 

2+-saturated, and any two elementarily equivalent p-saturated models of car- 

dinality p are isomorphic. (See Keisler [8], Keisler [7] and Morley and Vaught 

[15]). Another approach was that of Kochen [11] (or Keisler [10] §5). He gen- 
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eralizes ultrapower to ultralimits, a generalization which preserves most of the 

interesting properties of ultrapower, and proves that any two elementarily equiv- 

alent models of cardinalities <- "~ have isomorphic ultralimits of cardinality 

"~+o~ Lately, Mansfield has generalized ultrapower in another way, to boolean 

ultrapower, and proved for them a parallel isomo-theorem. See [13]. Recently 

Kunen [12] succeeded in eliminating G.C.H. from the theorem on the existence 

of good ultrafilter, (we generalize his proof.) Silver and, independently, Rucker 

proved: it is consistent with ZFC + (N~ < 2~o) that there is an ultrafilter D over 

such that for every countable model M with a countable language, M°'/D is 

saturated. (In fact, this follows easily enough from Martin's axiom). It is yet an 

openquestionwhetherfor any M , N  M - N,  IIMII ~, IINFI ---<  ,IL(N)I <= ~; 

there is an ultrafilter D over # such that M"/D,  NU/D are isomorphic. Maybe 

this is independent from ZFC. 

By part (1) of our theorem we can eliminate G.C.H. from some theorems 

which were used by Keisler [6], especially those concerning the characterization 

of elementary classes (Keisler [6]). Also from the theorem "a  sentence is preserved 

under reduced products iff it is equivalent to a Horn sentence" (Keisler [5]) 

G.C.H. can be eliminated, by the technique used here. G.C.H. was already 

eliminated by Galvin [3], using a set theoretic consideration, and by Mansfield 

[14] using Boolean ultrapowers. 

About ultrapowers and ultraproducts see Los [3], Frayne Morel and Scott [2], 

the survey Keisler [9] or Bell and Slomson [16]. We use only the definition. 

NOTATION. Through all the paper, 2 will be a fixed (infinite)cardinal, 

p = min {#: 2" > 2}. Notice that p is a regular cardinal. We use X, x for cardinals; 

i , j ,  k, l, a, fl, y, 3 for ordinals, m, n for natural numbers; f ,  for functions from 2 

into IL, and g for functions from 2 to some z(g) </~. We use F and G for families 

of such functions. Speaking of functions f ~ F with different indexes, we mean 

they are different functions. D will denote a proper filter over 2. The filter [El 

generated by the family E of subsets of 2 is 

A : A c 2, and for some A 1 , . . . , A , , e E ,  ~ A . 

Let A = Z; (modD) mean that for some X eD, A c (2 - X). Models will be 

denoted by M, N. The universe of M is I M I, and the cardinality of a set A is 

!A I, so that the cardinality of (the universe of) M is 11M II" 
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DEFINmON 1. We say that (F, G, D) is x-consistent if 

A) D is generated by a family of < ~: subsets of 2. 

B) I f  f i~F ,  ji < p f o r i  < x < pand  f m ~ F , g " ~ G  

for m _< n then 

{k < 2: f i (k)  =Ji for i < Z and f " (k )  = g"(k) for m < n} ~ Z~ (modD) 

LEMMA 1. There is a family F of 2 z functions ( from)L to It) such that 

(F,~Z~, {2}) is p-consistent (this generalizes Ketonen's lemma which was used by 

Kunen [-12] but both had already appeared in Engelking and Karlowicz [ la] .  

PROOF. Let H be the set of all pairs (A, h) such that: A is a subset of  2 of 

cardinality < /~; h is a function, from a family S of < # subsets of  A into p. 

The number of A c 2 ,  IAI < p  is y~z<u2 x <  # .  2 = 2. For  each such A, the 

number of suitable S is 

I{S:Sc{B:B A},ISI< }I= Xl{s:Sc{B:ncA},lsl=)dl 
)~<u 

= Z ] { B : B c A } I  x =  ]~(21al) x <  2(21"1) z =  Z 2  z <  p 2 =  2 
Z<,U Z</t Z<,u Z<,u 

and for each such S the number of functions from S into # is < #lSl < 21Sl = 2. 

So [H[ __< 2, and in fact [H I = 2. Let H = {(Ak, hk) :k  < 2}. For  every set 

B ~ )~ deanz fB aS follows: fB(i) = hi(Bl")A~) ifhi(B[")Ai) is defined, and fB(i) = 0 

otherwise. Let F = {fn : B ~ 2}, and we shall prove that F satisfies our demands. 

Let f ~ E F  j i<[ t  for i < X < P, and let f i = fs , .  Clearly il ~ i2 implies Bi~ ~Bi~. 

As we have X < # sets B i ~ 2, there is A c 2, 1AI = ~(, such that il ~ i2 implies 

A["]Bi~ ~ A[")Bi~. Define 

S = { A l i B i :  i < Z}, h(A['~Bi) = Ji for every i < Z. 

Clearly (A, h) E H, so for some k < 2, (A, h) = (A k, hk). Hence 

f i (k)  = f~,(k) = hk(A NBI)  = ji. 

So 

SO 

{k : f i (k)  = Ji for every i < Z} • 

{k : f i (k)  = ji for every i < X} # ~ (mod {2}) 

and the lemma is proved. 

LEMMA 2. (A) I f  (F,G,D) is x-consistent, ~ <= ~i ,  then 

consistent. 

(F, G, D) is xl-  
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B) I f  for  every i<cS, (Fi, Gi, Ol) is 1q-consistent, for i < j < 6 ,  D i c D j ,  

G i c G j ,  F I ~ F j ;  D =QJ~<~Di, G =[, .Ji<aGi,  F =  O~<aF~ and t¢ :>tel for 

every i < 5 and x > cf(5) (the cofinality of 6) then (F,G,D) is ~c-consistent. 

C) I f  (F,G,D) is K-consistent, F' c F, G' c G, then (F', G',D) is K-consistent. 

PROOF. Immediate.  

LEMMA 3. Suppose (F, fg, D) is K-consistent, # + I GI < x, ( a  a set o f  

fimctions f rom 2 to cardinals < #). Then there is F' c F, IF- F'[ <= x such 

that (F', G, D) is ~-consistent. 

PROOF. Let  D be generated by E = {J~ : c~ < x} (Jr c 2) and wi thout  loss of  

generality assume that  E is closed under finite intersection. Clearly it suffices to 

prove that  for  every finite subset G1 of  G there is F(GI), I --< x such that  

( F - F ( G 1 ) ,  Gt, D) is K-consistent, because then 

F '  = F - - U { F ( G , ) :  G1 c G, IG11 < No} 

will satisfy our  conclusion. 

So let G~ = {go, "",g,}-  Suppose there is no F(G,) as required. So there is a 

case o f  violat ion o f  par t  (2) of  the definition o f  K-consistency o f  (F, G, D). We can 

remove the involved functions from F, and again we do not  get K-consistency. 

So we can repeat  it  x + times. So we can define by induct ion on fl < x +, (dist inct)  

functions f : , f * P E F ;  i < Za < I.t, m < n and ordinals j~ i < Zt~ < P such that :  

1) f f ,  f * ~ F -  ( fY r*~ : V < fl, =< n, i < )~} 

2) for  every fl 

= * #  Ap {k < 2 : for  every i < Xp f f ( k )  =j,P, f o r  every m < n f2, (k) = gin(k)} 

= 5g5 (mod D). 

By the definition of  D, for  every fl < x +, as Aa = ~ (rood D) there is aa < x 

such tha t  Aa c ()~ - J~a). As the number  of  %'s  is x, and the number  of  Z~ is 

=< # < x, whereas the number  of  fl < x + is x +, clearly there are a ° < ~c, X ° < # 

such that  I{fl < x+ : Za = X °, aa = no} [ = x+. Wi thout  loss o f  generality 

assume that  Xp = X °, aa = a° for  every fl < #. Let  { ( j ~ ,  . - - , j ' P )  : fl < X*} 

be the set of  all  sequences of  length n + 1 o f  ordinals smaller than  

Z* = sup {I gm(k) l+ : m < n, k < 2}. (The cardinal  X* is < #, as each g~ is by 

definition a funct ion f rom 2 into some Z < Y). (Clearly the number  of  such 

sequences is Z*.) Let  

A = {k < 2 : for  every fl < Z*, i < Z °, m < n, f~(k) = j~,f*P(k) = j'P}. 

As ~* < y, )~o < # also Z*)~ ° + )~* (n + 1) < p, so as ( F , ~ ,  D) is K-consistent, 
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clearly A # ~ (mod O). Hence it cannot hold that A c (2 - J~o). So we can 

choose k~A,  k~ ( i t - J~o ) .  As k~A,  for every f l <Z* ,  i < z  °, m__< n, 

f~(k)  = i f ,  f*~(k)  = j*~. By the definition of the sequences <j*~, "",Jn'*P), there 

is fl < Z* such that 

go(k) "*~ .,p = Jo , " ' , g n ( k )  = yn • 

SO by the definition of A~, k E Ap, but 

A p c  it - J~o, k ~ ( i t -  J~o) 

contradiction. 

LEMMA 4. A) Suppose (F, G, D) is x-consistent A ~ ,t.. Then there is F '  ~ F, 

I F - F ' [  < # such that (F' ,  G, [DU{A}])  is x-consistent or (F' ,  G, [Dm{i t  - A}]) 

is ~c-consistent. 

B) I f  (F, G, D) is x-consistent, A~ ~ it f o r  a < ~:, and # <= 7¢, then there are 

F'  c F, I F - F '  I <= 1¢, and a f i l t e r  D', D ~ D'  such that (F' ,  G,D' )  is 1c-consistent 

and f o r  every ~ < ~c either A ~ E D '  or (it - A~)~D' .  

PROOF. Clearly it suffices to prove A) as B) follows by repeating A) and using 

Lemma 2B. Let D1 = [DU{A}]  DE = [D U{it  - A}]. D1 and D2 are generated 

by families of =< K subsets of it. (As if D = [E] I E[ =< 1¢, then D1 = [EU{A}] ,  

= [ E U { i t  - A}].) 
If  (F, G, D1) is x-consistent - -  our conclusion follows. So we can assume that 

(F ,G,  D1) is not ~:-consistent. So there are f t ~ F  j i < #  for i < Z < #  and 

fm  ~ F g"  ~ G for m < n such that 

= j , , f  (k) gin(k)} = ~ ( m o d O l ) .  B = { k  < it: for every i < Z m < n fi(k) = " " = 

This implies that for some X e D, B ~ (it - A)U(i t  - X). Let 

F'  = F - { f i , f m :  i < z , m  < n}. 

If  (F' ,  G, D2) is x-consistent, our conclusion follows. So assume (F' ,  G, D2) is not 
• p 

~c-consistent, and we shall get a contradiction. So there are fi  e F ,  j *  < # for 

i < X* < # and f . m  e F' ,  g*m e G for m __< n* such that 

B* = {k < it: for every i < Z*, m < n*,f i*(k) = j* , f*m(k)  = g*m(k)} = f2~ 

(modD2). 

So for some X*ED,  B * c ( i t - x * ) U ( i t - ( i t - A ) )  = ( i t - x * ) U A .  So 

B *( ' iB  ~ (it - X*)  U(i t  - x )  = (it - ( x*  A x ) )  and as D is a filter X* ( ' lX  e D. 
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So B* ["]B = ~ (mod D). Observing what  are B and B*, we see that  we get a 

contradict ion to the x-consistency of  (F, 13, D). (If  one D i is not  a filter the p roo f  

is the same.) 

LEMMA 5. Let M be a model of cardinality Z < #, and dt,,,~ [MI ~ for 

1 < lo, 1 < m <-_ nt, It < x, and (F,(J, D) is x-consistent. Assume moreover that 

P = {~bl(x, yt.1, "",Yt.,,) : I < I o < x+}, ((o t - - formula  in the language L of M) 

and p is closed under conjunctions and for every I < lo, A t =  {k < 2: M ~  

(3x)~,(x, 4 ,dk ] ,  ..., 4 , , , [k ] ) }  ~ D. 
Thenthere are aEIMI~,F ' c F ,D '  = D, such that: I F -  F' I <= K,(F',f2~,D') 

is x-consistent and for every l < lo {k < 2: M ~ O,(d[k],d~.l[k],..., 4, , , [kl)} e D'.  

REMARK. [ MIx is the set of functions from ;t into I M I. 

PROOF. Let  [M I = {c~ : i < Z < #}. For  every l < lo let us define a funct ion 

gt f rom ), into Z( < P) such that :  

if  M ~ (3x)¢,(x,  dl , l[k],  .-., dz.n,[k]) and j = gt(k) 

then M ~ qS~[cj, dl.x[k], ..., dz.n,[k]). 

Let  G = { g t : l < l o } .  As l o < x  + and ( F , ~ , D )  is x-consistent,  and / 2 <  x, 

there is, by Lemma 3, F1 ~ F, I F - F i [ =< t¢ such tha t  (F1, G, D) is x-consistent.  

Choose f e F i and let: 

Cf(k) i f  f ( k )  
F '  = F i  - { f } ,  a [ k ]  = 

< X 

t Co otherwise 

and D' = [ D U E  ] where E = {At: I < /o} ,  At = {k < 2: M ~ qS,[d[k],dl.1 [k] , - - .  ]}. 

We shall show that  (F ' ,~ ,D ' )  is x-consistent,  and hence prove the lemma. 

As D is generated by a family E t  o f  < ~: subsets o f  2, clearly D '  is generated 

by E1UE , [El U E I  < x. 

suppose (F ' ,  ~ ,  D') is not  x-consistent.  So there are fi  ~ F ' ,  Ji < P for i < Xl < # 

and X '  m D' such tha t  

A = {k < 2 : for  every i < z l , f i (k)  = Ji} ~ 2 - X ' .  

As p is closed under conjunctions,  E is closed under intersection. So there are 

X m D, l < lo such that  X'  ~ X A A  ~ . So A A A  z ~ (2 - X). Tha t  is 

{k < 2: for  every i < z,f~(k) = Ji, M ~ dpt[d[k], dz,i[k], . . . ,  dl,,,[k]} c (2 - X). 

Hence 

{k < #: for  every i < x, fi(k) = Jl, f (k)  = gz(k)} ~ (2 - x ) U ( 2  - A t) 

(A * - -  defined in the lemma.) 
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A contradiction to the x-consistency of (F1, G, D). Thus we have proved the 

lemma. 

REMARK. We did not prove explicitly that D' is a proper filter, but this can be 

viewed as a special case of the x-consistency of (F' ,  ~ ,  D') (with empty set of Ks) .  

PROOF OF THE MAIN THEOREM. 

REMARK. 1) The theorem is formulated at the beginning. 

2) For  simplicity we omit the proof  of part (3). 

3) From part (2) and Keisler [-8] it is clear that D is 2+-good. As in Kunen [-12] 

we can also prove it directly. 

We can assume, without loss of generality, that the language of any model M, 

HMll < g ,  is of cardinality < 2 lIMIt< )JlMtl= 2. SO let L ° be a (first-order) 

language of cardinality 2, which contains, for every n < co, n > 0, 2 predicates 

with n places, and 2 function symbols with n places. So we can restrict ourselves 

to models whose language is included in L °, and whose universe is Z = {i : i < Z} 

for some Z < P. Now the number of  sublanguages of L ° is 2 z, and for each such L, 
and X < #, there are ILI 2x < )~ = 24 L-models with universe X. Let 

{(M,, N , ) :  i < 2 

be a list of all the pairs of elementarily equivalent models, whose language is 

L~ c L °, and whose universes are some cardinals <# .  We shall find an ultrafilter 

D over ~ such that: M~/D is isomorphic to N~/D, and M~/D is x +-saturated if 

2 ~ < 2 x. As the ultrapowers of isomorphic models are isomorphic this is sufficient. 

Let 

IN, I s = < 

From considerations of cardinalities, it is clear that there is a function R, defined 

for every y < 2 x such that 

A) For  every i < 2 x, ~ < 2 z there is ~ < 2 x such that  

R(~) = (i ,  1, d;). 

B) For  every i < 2 4, e < 2 z, there is ~, < 2 ~ such that 

= (~, 2, b~).  R(~) " -i 

C) For every i < 2 z and set of formulas p, 2 Ipl =< 2 a, p is closed under con- 

junctions and 
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p = {¢,(x,y% ,...,): l <  ]p ] }  (%m<24,¢t~Li)  

there are 7 < 24, Yst,,, < 7 

R(y) = <i,p>, R(y%m ) = <i, 1, -~ as l ,m> • 

D) For every subset A of 2, there is 7 < 2 4 such that R(y) = A. 

E) For every 7 exactly one of A), B), C), D) occurs. 

We shall now define by induction on y < 2 ~ a set of functions Fr,  a filter D r 
and " i 2 4 functions Hr, i < such that: 

1) For every 7, (Fr ,~ ,Dr )  is (2 + [y[)-consistent, [Fo[ = 2 ~, Do = {2}, 

I ro -F , I  < ; t+  lyl and for f l < y  F p ~ F , , D p = D , .  

2) Hit is a function from a subset of [M,I ~" into [Nil z, for fl < 7, H~ extends 

H~, and ]U,<2~DomH',l  _-< I~'1. 
• i - i  3) If  % ,  -~ ..., d~' eDomH~, Sj_ = H,(as,.) for 1 = < m = < n and ¢(x~, . . . ,x , )eL,  

then 

{ k < 2 :  Mi~ i ¢[as,[kl, "" dis.[k]] "*> n~ ~ ~b [bp,[k],-* ..., b~.[k]]} ~D~. 

4) If  d~,,..., ~ .  ~ Dom U~, ¢ ~ L i then either 

{k < 2: Mi ~ ¢[d~,[kl, ..., d~°[k]]} ~De or 
{k < : M, - l  ..., 

5) If  R(?) <i, 1, d~> then - i  = a~ m D o m H r + l .  

6) If  R(?) <i,2, b~> then -i = bs ~ Range H~+ 1. 

7) If  R(y) = <i, p> and for every ¢(x, y,, ,  . . ., y,,) ~ p 

{k < .L : Mi ~ (~x)dp(x, a~,[k], ..., d4[k])  } ~D~ 
then there is d~ ~IMi[ 4 such that for every ¢(x, ys,, " " , y J  e p  

. t  - i  - i  {k < 2: Mi ~ ¢[a~[k], ..., as,[kl, as [k ] ] }  roD,+,. 
8) IfR(y) = A ~ 2 then either A~D~+I or ( 2 -  A)~D~+I. 

If  we succeed in the induction D = D(24) will be the required ultrafilter. By (8) 

and (D) it is an ultrafilter. For every i < 24, it is clear that/-/~4 induces an iso- 

morphism from M~/D onto N~/D. [By 5) and (A) the domain of H124 is I M, I 
by (6) and (B) its range is IN, I and by (3) it preserves all the formulas, hence 

all the relations and, in particular, the equality.]. By (7) and (C) M~/D is x +- 

saturated whenever 2 k < 2 ~. 

Let us return to the definition by induction, which is the only thing remaining 

to be proved. 
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Case I. 7 = 0 .  

This follows f rom Lemma 1. [(3) follows from the elementary equivalence o f  

M i and N i.] 

Case II .  ? a limit ordinal.  

Define F~ = O~<~F~, D r = (.JB<7Dp and H i = (.Jp<~Hj. I t  is easy to see that  

all the condit ions (1)-(8) still hold.  In  part icular  (1) follows f rom Lemma 2.B. 

Case I I I .  7 = fl + 1, R(fl) = ( i ,  1, d~). 

First  we use Lemma 4.B so that  the type realized by a-~ over D o m H ~  will be 

' {d~}[,_jDomH~. (We depend on decided. Then we use Lemma 5 to extend Hp to 

Iz,l Z 
Case IV. 7 = fl + l , R ( f l )  = (i ,  2,[~).  

The same as Case I I I .  

Case V. ~ = f l +  l , R ( f l ) =  ( i , p ) .  

I t  follows f rom Lemma 5. 

Case VI.  7 =  f l +  l , R ( f l ) =  A ( c 2 ) .  

I t  follows f rom Lemma 4.A. 

So we prove the theorem. 

REMARK. We actually proved more  than we needed to know about  G in order 

to  prove our  main theorem. We could have proved even more :  we could  have 

generalized all our  lemmas, except for  2B, to the case where < Z ° equat ions 

of  the form f ( k )  = g(k)  are allowed in Definition l, with some natural  restrictions 

imposed on Z °. Maybe  there is a use for these stronger lemmas. 
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