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Abstract: It is consistent that for every function f : !! ! there is a graph
with size and chromatic number @1 in which every n-chromatic subgraph
contains at least f (n) vertices (n � 3). This solves a $ 250 problem of Erdős.
It is consistent that there is a graph X with Chr(X ) ¼ jX j ¼ @1 such that if Y
is a graph all whose finite subgraphs occur in X then Chr(Y ) � @2 (so the
Taylor conjecture may fail). It is also consistent that if X is a graph with
chromatic number at least @2 then for every cardinal � there exists a graph
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Y with Chr(Y ) � � all whose finite subgraphs are induced subgraphs of X .
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1. INTRODUCTION

In [8] Erdős and Hajnal determined those finite graphs which appear as subgraphs

in every uncountably chromatic graph: the bipartite graphs. In fact, not just that

any odd circuit can be omitted, for every natural number n � 1 and infinite

cardinal � there is a graph with cardinality and chromatic number � such that it

omits all odd circuits up to length 2nþ 1. They observed that the so-called r-shift

graph construction has all but one of these properties; the vertex set of Shrð�Þ is

the set of all r-tuples from �, with fx0; x1; . . . ; xr�1g< joined to fx1; x2; . . . ; xrg<,

then this graph omits odd circuits of length 3; 5; . . . ; 2r þ 1 and the Erdős–

Rado theorem asserts that the chromatic number of Shrðexpr�1ð�Þ
þÞ is at least �þ.

The problem of determining the classes of finite graphs that occur in

uncountably chromatic graphs seems to be much harder, and its investigation

was strongly pushed by Erdős and Hajnal.

An early conjecture, for example, was the following. Every uncountably chro-

matic graph contains all odd circuits from some length onward. This was then

proved by Erdős, Hajnal, and Shelah [11], and independently, by Thomassen [17].

In [19] and later in [11] the following problem was posed (the Taylor

conjecture). If �, � are uncountable cardinals and X is a �-chromatic graph, is

there a �-chromatic graph Y such that every finite subgraph of Y appears as a

subgraph of X. Notice that the above shift graphs give some evidence for this

conjecture—the finite subgraphs of Shrð�Þ do not depend on the parameter �.

The authors of [11] remarked that even the following much stronger conjecture

seemed possible. If X is uncountably chromatic, then for some r it contains all

finite subgraphs of Shrð!Þ. This conjecture was then disproved in [13].

One easy remark, the so called Hanf number argument gives that there is a

cardinal � with the property that if the chromatic number of some graph X is at

least � then there are arbitrarily large chromatic graphs with all finite subgraphs

appearing in X. This argument, however, does not give any reasonable bound

on �.

Another conjecture of Erdős and Hajnal was if the maximal chromatic number

of n-element subgraphs of an uncountably chromatic graph as a function of n can

converge to infinity arbitarily slowly as n tends to infinity. It was mentioned in

several problem papers, for example, in [2], [5], [6], [10], [12]. See also [1], [14].

The relevance of the above examples is that the chromatic number of the n-vertex

subgraphs of (any) Shrð�Þ grows roughly as the r � 1 times iterated logarithm of

n. Perhaps, it was this fact that led Erdős and Hajnal to the above problem.

Erdős also tirelessly popularized the Taylor conjecture, he mentioned it, e.g.,

in [3], [4], [7], [9], [10], [11]. It is also mentioned in [1], the book collecting
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Erdős’ conjectures on graphs. In [15], we gave some results when the additional

hypotheses jXj ¼ �; jYj ¼ � was imposed. We described countably many differ-

ent classes Kn;e of finite graphs and proved that if �@0 ¼ � then every �þ-

chromatic graph of cardinal �þ contains, for some n; e, all elements of Kn;e as

subgraphs. On the other hand, it is consistent for every regular infinite cardinal �
that there is a �þ-chromatic graph on �þ that contains finite subgraphs only from

Kn;e. We got, therefore, some models of set theory, where the finite subraphs of

graphs with jXj ¼ ChrðXÞ ¼ �þ for regular uncountable cardinals � were

completely described.

Notice that the class of regular cardinals on which the above result operated

excludes !1, and in this paper we show the reason, by resolving the above Erdős–

Hajnal conjecture: it is consistent that for every monotonically increasing

function f : !! ! there is a graph with size and chromatic number @1 in which

every n-chromatic subgraph has at least f ðnÞ elements (n � 3). The possibility of

transforming the proof into a ZFC argument will be checked in the forthcoming

[16], Chapter 9. An application of the method presented here gives the consistent

existence of a graph X with ChrðXÞ ¼ jXj ¼ @1 such that if Y is a graph (of any

size) all whose subgraphs are subgraphs of X then ChrðYÞ � @2. This gives a

consistent negative answer to the Taylor conjecture. As for the positive direction,

we prove that it is consistent that if X is a graph with chromatic number at least @2

then there are arbitrarily large chromatic graphs all whose finite subgraphs being

induced subgraphs of X.

Theorems 1 and 2 were proved by S. Shelah and then P. Komjáth proved

Theorems 3 and 4.

Notation. We use the standard axiomatic set theory notation. If A is a set of

ordinals, � is an ordinal, then � < A, means that � < � holds for every � 2 A.

Similarly for � � A, A < �, etc. If f is a function, A a set, then we let

f ½A� ¼ ff ðxÞ : x 2 Ag. If S is a set, � is a cardinal, ½S�� ¼ fX � S : jXj ¼ �g,

½S�<� ¼ fX � S : jXj < �g. A graph is an ordered pair ðV ;XÞ where V is some set

(the set of vertices) and X � ½V�2 (the set of edges). In some cases, we identify the

graph and X. The chromatic number of a graph ðV ;XÞ is the least cardinal � such

that there exists a function f : V ! � with f ðxÞ 6¼ f ðyÞ for fx; yg 2 X (a good

coloring). A path of length n is a sequence fv0; . . . ; vng of distinct vertices such

that fvi; viþ1g 2 X holds for i < n. A cycle of length n is a sequence fv1; . . . ; vng
of vertices such that for 1 � i < n we have fvi; viþ1g 2 X and fvn; v1g 2 X also

holds. If the vertices are distinct then we call it a circuit.

2. A LARGE CHROMATIC GRAPH WITH SMALL CHROMATIC
FINITE SUBGRAPHS

Let f : !! ! be a strictly increasing function. Fix a sequence fC� : � <
!1; limitg such that C� is an !-sequence converging to �, and the whole sequence

is a club guessing sequence, that is, if C � !1 is a closed unbounded set, then
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C� � C holds for some �. Notice that the existence of a guessing sequence is an

easy consequence of the diamond principle.

We are going to define the notion of forcing ðQf ;�Þ. Every condition p 2 Qf

will be of the form p ¼ ðs; u; g;m; hi; cÞ where s 2 ½!1�<!; u � s, consisting of

limit ordinals, g is a graph on u, for every � 2 u we have an mð�Þ < !, and then

the ordinals h0ð�Þ < � � � < hmð�Þ�1ð�Þ < � which are C�-separated, that is,

minðC�Þ < h0ð�Þ and between hið�Þ and hiþ1ð�Þ there is an element of C� (hið�Þ
is undefined if i � mð�Þ or � =2 u). c : g ! ! satisfies that if fx; �g 2 g;
fy; �g 2 g and x; y < � then cðx; �Þ 6¼ cðy; �Þ.

Given p 2 Qf we define

Yp
r ¼ fe 2 g : cðeÞ � rg

for any natural number r.

We add the following stipulations.

(1) If � 2 u is incident to some e 2 g with cðeÞ � r then mð�Þ � r.

(2) If x; y are connected in Yp
r in i steps then hj�iðxÞ < hjðyÞ < hjþiðxÞ holds

for i � j � f ðrÞ � i.

(3) Yp
r does not contain odd circuits of length � f ðrÞ.

We notice that although a condition p ¼ ðs; u; g;m; hi; cÞ is infinite (perhaps

p ¼ ðs; u; g;m; ðhiÞi<!; cÞ or p ¼ ðs; u; g;m; hi; cÞi<! would be better notation) as

all but finitely many of the partial functions fhi : i < !g are the empty function,

every condition is really a finite object.

The partial order on Qf is defined the natural way. p0 ¼ ðs0; u0; g0;m0; h0i; c
0Þ

extends p ¼ ðs; u; g;m; hi; cÞ iff the following hold. s0 � s; u ¼ u0 \ s; g ¼ g0 \
½s�2. m0ð�Þ � mð�Þ holds for � 2 u, and h0ið�Þ ¼ hið�Þ for i < mð�Þ. Finally,

c0ðx; �Þ ¼ cðx; �Þ holds for fx; �g 2 g.

We call two conditions p ¼ ðs; u; g;m; hi; cÞ and p0 ¼ ðs0; u0; g0;m0; h0i; c
0Þ iso-

morphic iff jsj ¼ js0j and the unique order preserving mapping � : s ! s0 satis-

fies u0 ¼ �½u�; g0 ¼ �½g�; mð�Þ ¼ m0ð�ð�ÞÞ for � 2 u; h0ið�ð�ÞÞ ¼ hið�Þ and

c0ð�ðxÞ; �ð�ÞÞ ¼ cðx; �Þ hold whenever the right hand sides are defined. Notice

that, as our conditions are finite structures, we have only countably many iso-

morphism types.

From a generic G � Qf we define the following graphs on !1:

X ¼
[

g : ðs; u; g;m; hi; cÞ 2 Gf g;
Xn ¼ fx; yg : fx; yg 2 g; cðx; yÞ ¼ n; ðs; u; g;m; hi; cÞ 2 Gf g;
Yr ¼ Xr [ Xrþ1 � � �

and notice that Yr ¼ [fYp
r : p 2 Gg.

Lemma 1. For � < !1 the set fðs; u; g;m; hi; cÞ 2 Qf : � 2 sg is dense.

Proof. Straightforward. &
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Lemma 2. If � < !1 is limit, ðs; u; g;m; hi; cÞ 2 Qf ; � =2 s, then there is an

extension ðs0; u0; g0;m0; h0i; c
0Þ � ðs; u; g;m; hi; cÞ with � 2 u0.

Proof. Straightforward. &

Lemma 3. If ðs; u; g;m; hi; cÞ 2 Qf ; � 2 u; n < ! then there is an extension

ðs0; u0; g0;m0; h0i; c
0Þ � ðs; u; g;m; hi; cÞ with mð�Þ � n.

Proof. It suffices to show that mð�Þ can be incremented by one. Given

hmð�Þ�1ð�Þ < � if we choose h0mð�Þð�Þ < � large enough the condition on C� will

surely be satisfied. &

Lemma 4. ðQf ;�Þ is ccc.

Proof. Modulo standard arguments we have to show that p ¼ ðs; u; g;m;
hi; cÞ and p0 ¼ ðs0; u0; g0;m0; h0i; c

0Þ are compatible, assuming that they are

isomorphic, and s \ s0 is an initial segment of both s and s0. Let � : s ! s0 be

the order preserving structure isomorphism. We let p00 ¼ ðs00; u00; g00;m00; h00i ; c
00Þ

where we take unions in all coordinates.

In order to show that p00 is a condition we have to check properties (1–3).

(1) Is obvious.

For (3) assume that C is an odd circuit of length � f ðrÞ in Yp00
r . If we replace

every e 2 C that contains at least one vertex from s� s0 with �ðeÞ then we get an

odd cycle C0 in Yp0
r . C0 splits into circuits, at least one of them odd, so we get a

contradiction.

For (2) notice that it holds if x, y are joined via a path going entirely in Yp
r or

Yp0
r . It suffices, therefore, to show that if some path P between x and y of length i

is split by an inner point z into the paths P0 and P1 between x and z, and z and y,

respectively, and of the respective lengths i0 and i1 (so i0 þ i1 ¼ i) and the

statement holds for P0 and P1 then it holds for P, as well. Indeed, for i �
j � f ðrÞ � i we have

hj�ði0þi1ÞðxÞ < hj�i1ðzÞ < hjðyÞ < hjþi1ðzÞ < hjþði0þi1ÞðxÞ:
&

Lemma 5. ChrðXÞ ¼ !1.

Proof. Assume that some p forces that F is a good coloring of X with the

elements of !. Select an increasing, continuous sequence of countable elementary

submodels p;F;Qf ; jj� 2 N0 � N1 � � � �N� � Hð�Þ with some large enough

regular cardinal �, for � < !1, such that �� ¼ N� \ !1 is an ordinal. The set

C ¼ f�� : � < !1g will be a closed, unbounded set, so by the guessing property

there is some � ¼ �� such that C� � C. Notice that all points of p are smaller

than �.
Extend p to a p0 using Lemma 2, adding � to the u-part, then let p	 be a

condition extending p0 such that p	 jj� Fð�Þ ¼ i holds for some i < !.
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Let n be some natural number that n =2 fc	ðx; �Þ : fx; �g 2 g	; x < �g where

p	 ¼ ðs	; u	; g	;m	; h	i ; c
	Þ. Extend p	 using Lemma 3, to some condition p with

p ¼ ðs; u; g;m; hi; cÞ such that m ¼ mð�Þ � f ðnÞ holds.

In p, we have the values

h0ð�Þ < h1ð�Þ < � � � < hm�1ð�Þ < �

and by our requirements on conditions there are elements �0; . . . ; �m�1 of C� such

that

�0 < h0ð�Þ < �1 < h1ð�Þ < � � � < �m�1 < hm�1ð�Þ < �

holds.

The values �0; . . . ; �m�1; � break s into disjoint parts: s ¼ s0 [ � � � [ sm [ smþ1

with

s0 < �0 � s1 < �1 � s2 < � � � < �m�1 � sm < � � smþ1

(some of them may be empty).

Sublemma. There is a condition p0 on some s0 ¼ s0 [ s01 [ � � � [ s0m [ s0mþ1

isomorphic to p with js0ij ¼ jsij; �0 ¼ minðs0mþ1Þ; p0 jj� Fð�0Þ ¼ i and

s0 < s01 < �0 � s1 < s02 < �1 � s2 < � � � < s0m < �m�1 � sm < s0mþ1 < � � smþ1

holds.

Proof. Let 	 be the isomorphism type of p. For the ordered finite sets

x0; x1; . . . ; xmþ1 let  ðx0; x1; . . . ; xmþ1Þ denote the statement that x0 < x1 < � � � <
xmþ1; jxij ¼ jsij and for the (unique) condition p on x0 [ x1 [ � � � [ xmþ1 of type 	
p jj� Fð�Þ ¼ i where � ¼ minðxmþ1Þ.

Set
’mþ1ðx0; x1; . . . ; xmþ1Þ ¼  ðx0; x1; . . . ; xmþ1Þ

and for 0 � i � m

’iðx0; x1; . . . ; xiÞ ¼ 9	xiþ1’iþ1ðx0; x1; . . . ; xiþ1Þ

where the quantifier 9	 denotes ‘‘there exist unboundedly many’’ which is

expressible in the first order language of ð!1; <Þ.
Claim. For 0 � i � mþ 1 the sentence ’iðs0; s1; . . . ; siÞ holds.

Proof. We prove the statement by reverse induction on 0 � i � mþ 1. We

certainly have ’mþ1ðs0; s1; . . . ; smþ1Þ. If for some 0 � i � m we had that

’iþ1ðs0; s1; . . . ; siþ1Þ holds yet

’iðs0; s1; . . . ; siÞ ¼ 9	xiþ1’iþ1ðs0; s1; . . . ; si; xiþ1Þ
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fails, then there was a bound, computable from s0; s1; . . . ; si for the minima of

those sets xiþ1 for which ’iþ1ðs0; s1; . . . ; si; xiþ1Þ holds. Then this bound was

smaller than �i (� for i ¼ m) as there is an elementary submodel containing the

ordinals < �i (or < �) but this contradicts the fact that ’iþ1ðs0; s1; . . . ; siþ1Þ holds

and �i � si. &

Using the Claim, we can inductively select the sets s01; . . . ; s
0
mþ1 such that for every

1 � i � mþ 1 we have ’iðs0; s
0
1; . . . ; s

0
iÞ and si < s0iþ1 � �i, as required. &

Using the Sublemma we create the following one-edge amalgamation p00 of p

and p0. p00 ¼ ðs00; u00; g00;m00; h00i ; c
00Þ where s00 ¼ s [ s0; u00 ¼ u [ u0; g00 ¼ g [ g0 [

f�; �0gf g; m00 ¼ m [ m0; h00i ¼ hi [ h0i; c
00 extends c; c0 and has c00ð�; �0Þ ¼ n.

We have to show that p00 is indeed a condition, that is, we have to check if the

properties (1–3) hold.

(1) Is obvious.

For (2) we argue as in the proof of Lemma 4; every path in question is the

union of paths for which this condition holds, plus possibly the path f�; �0g but (2)

also holds for this.

Assume finally, that C is a circuit of length 2t þ 1 � f ðrÞ in Yp00
r . Unless C

contains f�; �0g, we can argue as in Lemma 4. So we are left with the case that C

contains f�; �0g and r � n. That is, � 2 s and �0 2 s0 are joined in Yp
r [ Yp0

r in 2t

steps, and this is only possible if the connecting path has vertices in s \ s0. So we

get that � can be connected in Yp
r with some point in s \ s0 in � t steps. But this is

impossible: if x 2 s \ s0 is such a point then h0ð�Þ < htðxÞ < h2tð�Þ by condition

(2) and also x < h0ð�Þ, a contradiction.

As p00 forces that Fð�Þ ¼ Fð�0Þ ¼ i yet they are joined in X, we are finished.

&

Theorem 1. The forcing Qf adds an uncountably chromatic graph X on !1 such

that every subgraph on at most f ðrÞ vertices is at most 2rþ1-chromatic.

Proof. As every Xn is a circuitfree graph, it can be colored with two colors.

Consider now a subgraph of X induced by a set S of at most f ðrÞ vertices. On S all

the graphs X0; . . . ;Xr�1 are bipartite, and so is Yr ¼ Xr [ � � � (as it has no odd

circuits of length � f ðrÞ). So their union, X restricted to S, can be colored by at

most 2rþ1 colors. &

Theorem 2. It is consistent with CH that for every function f : !! ! there is

an uncountably chromatic graph X on !1 such that every sugraph of X on f ðrÞ
vertices is at most r-chromatic (r � 2).

Proof. Assume that } holds in the ground model. Then we have CH and

there is a club guessing sequence fC� : � < !1; limitg as required for Theorem 1.

We force with a finite support iteration P ¼ fP�;Q� : � < !1g. In step � < !1,

we add Q� ¼ Qf� for some increasing function f� : !! !. As this will be a ccc
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forcing that preserves CH it is possible by bookkeeping to make sure that every

suitable f : !! ! occurs as some f�. Also, as P�, the iteration up to � is ccc,

every closed, unbounded set C in VP� contains a ground model closed,

unbounded set D, and as there is some element C� of the club guessing system

that C� � D we have C� � C, that is the club guessing system retains its property

in VP� .

Call a condition p 2 P determined if for every � < !1 the condition pj�
completely determines pð�Þ, that is, for every � coordinate pð�Þ is not just a

name for a finite structure but it is actually a finite structure.

Lemma 6. The determined conditions form a dense set in P.

Proof. We prove by induction on � < !1 that the determined conditions form

a dense subset of P�. This is obvious if � is limit, as we are considering finite

supports. Assume that we have the statement for some � < !1 and we try to

handle the case of �þ 1. Let ðp; qÞ 2 P�þ1 ¼ P� 	 Q� be arbitrary. Extend p to

some p0 that completely determines q, that is, there is a finite structure h that

p0 jj� q ¼ h. Then extend p0 to a determined p	 2 P�. Now ðp	; hÞ is a determined

extension of ðp; qÞ. &

Lemma 7. For every � < !1, ChrðX�Þ ¼ !1 holds in VP.

Proof. By moving to VP� we can assume that � ¼ 0. We imitate the proof of

Lemma 5. By Lemma 6, we can work with determined conditions. We consider

every such condition as a finite structure on some finite subset s of !1, here s

contains all points of all graphs pð�Þ where � is an arbitrary element of the

support of p, and we also add the elements of the support to s. Assume that some

p 2 P forces that F is a good coloring of X0 with the elements of !. With an

argument like in Lemma 5 we get some natural number n, ordinals �0 < � < !1,

and also �1; . . . ; �m; �1; . . . ; �t; �
0
1; . . . ; �

0
t and two isomorphic determined condi-

tions p and p0 with the respective supports f0; �1; . . . ; �m; �1; . . . ; �tg and

f0; �1; . . . ; �m; �
0
1; . . . ; �

0
tg that p jj� Fð�Þ ¼ n; p0 jj� Fð�0Þ ¼ n hold, pð0Þ and

p0ð0Þ are isomorphic conditions that behave like p and p0 in Lemma 5, for every

�i the structures pð�iÞ and p0ð�iÞ are isomorphic with the common part preceding

the tails, that is, it is possible to make a non-edge amalgamation. We can,

therefore, take the union of p and p0, and add the edge f�; �0g with color n in

coordinate 0. &

The above Lemma concludes the proof of the Theorem. &

3. THE TAYLOR CONJECTURE

Theorem 3. It is consistent that there is a graph X with ChrðXÞ ¼ jXj ¼ @1

such that, if Y is a graph with all finite subgraphs occurring in X then

ChrðYÞ � @2, that is, the Taylor conjecture fails.
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Proof. Let V be a model of GCH and }. Let P be the notion of forcing that

adds a Cohen real. It is well known that P adds an undominated real, that is, a

function f : !! ! such that for no g : !! ! in V does f ðnÞ � gðnÞ hold for

every n < !. Let V 0 be the forced model. Notice that V 0 still has GCH and club

guessing (by the argument in the proof of Theorem 2). Now force over V 0 with the

partial order Qf , and get a graph X with ChrðXÞ ¼ jXj ¼ @1 such that every n-

chromatic subgraph of X has at least f ðnÞ elements (n � 3). This X will be our

graph. To show the property stated, assume that Y is a graph in VP;Qf

whose every

finite subgraph is a subgraph of X. We assume that the vertex set of Y is some

cardinal �. We notice that every n-chromatic subgraph of Y has at least f ðnÞ
elements.

Lemma 8. If Z � Y is a subgraph with Z 2 V then Z is finitely chromatic.

Proof. Otherwise for every n < ! we can let gðnÞ be the minimal size of an

n-chromatic subgraph of Z. Now notice that g 2 V and also by the absoluteness of

the set of finite subsets of � and the absoluteness of the cromatic number of a

finite graph, g denotes the same thing in V and VP	Qf

. This implies that

gðnÞ � f ðnÞ holds for every n, but that obviously contradicts the fact that f cannot

be dominated by the the ground model !! ! functions. &

We finally need the following Lemma.

Lemma 9. If R is a notion of forcing over some model V ; Y is a graph in the

extended model on some ordinal � then Y is the union of at most jRj subgraphs
which are elements of V.

Proof. Let 
 be a name for (the edge set of) Y . Set

Zp ¼ fe 2 ½��2 : p jj� e 2 
g

for p 2 R, then Y ¼
S
fZp : p 2 Gg where G � R is a generic set. &

To finish the proof of the Theorem we remark that by Lemma 9 Y decomposes

into the union of jP 	 Qf j ¼ @1 graphs each being in V , therefore, finitely

chromatic, so we get ChrðYÞ � 2@1 ¼ @2. &

The following argument gives that the Hanf number mentioned in the

Introduction can be as small as @2.

Theorem 4. It is consistent that if X is a graph with ChrðXÞ � @2 then for

every cardinal � there exists a graph Y with ChrðYÞ � � all whose finite

subgraphs are induced subgraphs of X.

Proof. Let V be a model of GCH. Choose the regular cardinal � so large that

the following holds. If X is a graph with ChrðXÞ � � and � is a cardinal then there

is a graph with ChrðYÞ � � all whose finite subgraphs occur as subgraphs of X.

Clearly, such a � exists.
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Let P ¼ Colð!; �Þ be the collapse of � to @0, that is, the elements of P are

those functions of the form p : n ! � for some n < ! with p � q iff p extends q

as a function. Our claim is that if G � P is generic then V ½G� models the

statement of the Theorem. Notice that j�j ¼ @0 holds there and calculation shows

that GCH still holds in V ½G�.
Assume that X is a graph in V ½G� with chromatic number at least @2 (that is,

@V½G�
2 ). By Lemma 9, X is the union of jGj ¼ @0 ground model graphs. As

@@0

1 ¼ @1, one of them, say Y must have chromatic number at least @2. In V; Y
has chromatic number at least @V½G�

2 ¼ �þþ. Assume that we are given some

� > �. By the choice of �, there is a graph Z with ChrðZÞ � � such that every

finite induced subgraph of Z is an induced subgraph of Y .

Lemma 10. ChrðZÞ � � holds in V½G�.
Proof. Otherwise let F be a name for a coloring with the ordinals less than


 < �. Then the coloring x 7! ðp; �Þ is a good coloring of the vertices of Z with

�þ 
 < � colors, where p 2 P is some element of P with p jj� FðxÞ ¼ �. &

We are almost finished, the only problem is that the finite induced subgraphs of

Z are not induced subgraphs of X, they only are (edge-)subgraphs of induced

subgraphs of X. The following Lemma is what we need.

Lemma 11. There is a graph Z 0 on the vertex set of Z with Z 0 � Z and such that

every induced subgraph of Z 0 is an induced subgraph of X.

Proof. Let S be the vertex set of Z. For every finite subset s of S there are

some graphs on s, which on the one hand are isomorphic to induced subgraphs of

X, on the other hand they are supergraphs of the graph Z restricted to s. Call these

graphs appropriate for s. Notice that there are finitely many appropriate graphs

for every given s, and if T is an appropriate graph for s and s0 is a subset of s then

T restricted to s0 is a graph appropriate for s0. We can, therefore, apply the Rado

selection principle (or the compactness theorem of model theory) and get a graph

Z 0 on S every induced subgraph of which is appropriate, so Z 0 is a required. &

As ChrðZ 0Þ � ChrðZÞ � � holds we are done. &
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