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Abstract

We strengthen nonstructure theorems for almost free Abelian groups by studying long
Ehrenfeucht–Fra%&ss'e games between a 4xed group of cardinality � and a free Abelian group.
A group is called �-game-free if the isomorphism player has a winning strategy in the game (of
the described form) of length �∈ �. We prove for a large set of successor cardinals � = �+ the
existence of nonfree (� · !1)-game-free groups of cardinality �. We concentrate on successors
of singular cardinals. c© 2002 Published by Elsevier Science B.V.
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1. Introduction

The problem of possible cardinals carrying a nonfree almost free Abelian group has
already a long history, see e.g. [3]. Recall that if G is a group of cardinality �, G
is L∞�-equivalent to a free Abelian group if and only if G is strongly �-free [2]. 3

Recall also that the L∞�-equivalence is characterized by an Ehrenfeucht–Fra%&ss'e game
of length game of length ! (¡� elements at the time). For an ordinal �, a group

∗ Corresponding author.
E-mail addresses: shelah@math.huji.ac.il (S. Shelah), pauli.vaisanen@helsinki.4 (P. V%ais%anen).
URLs: http://math.rutgers.edu/∼shelah, http://www.math.helsinki.4/∼pavaisan/

1 Research supported by the United States–Israel Binational Science Foundation. Publication 787.
2 Research supported by the Academy of Finland grant 40734 and the Royal Swedish Academy of Sciences.
3 Collection of articles dedicated to Andrzej Mostowski on the occasion of his Sixtieth birthday, IV.

0168-0072/02/$ - see front matter c© 2002 Published by Elsevier Science B.V.
PII: S0168 -0072(02)00037 -4

Sh:787



148 S. Shelah, P. V2ais2anen / Annals of Pure and Applied Logic 118 (2002) 147–173

G is called �-game-free, if the “isomorphism player” has a winning strategy in the
Ehrenfeucht–Fra%&ss'e game of length � between G and a free Abelian group (countable
many elements at the time). Let � be a cardinal. We study existence of nonfree groups
of cardinality �+ which are �-game-free with �6�¡�+. We concentrate our attention
on the case that � is singular. This work continues [19], where the case that � is a
successors of a regular cardinal is studied. The following result is the main theorem
of the paper (presented in a more general form in Section 5).

Theorem 1.1. Let Cℵ0 denote the smallest set of cardinals such that ℵ0 is in Cℵ0 and
Cℵ0 is closed under the operations � �→ �+ and 〈�; 	〉 �→ �+	+1. For every cardinal �
of the form �+ in Cℵ0 with �¿ℵ2, there exists a nonfree (� ·!1)-game-free group of
cardinality �.

For an ordinal � and � of the form �+, (� · �)-game-freeness (the ordinal multiplica-
tion) of a group G implies that G is equivalent to a free Abelian group with respect
to a “deep” in4nitary language L
∞�, even a stronger language than L∞� [7,8,11]. So
our results can be interpreted as strengthened nonstructure theorems for almost free
Abelian groups.

Shelah proved in [14] that the question of existence of nonfree almost free Abelian
groups is equivalent to a purely set theoretical question concerning existence of nonfree
almost free families of countable sets. A family is almost free if all the subfamilies
of cardinality strictly less than the whole family has a transversal. A transversal for a
subfamily is an injective choice function whose domain is the subfamily. It is nowadays
a standard custom to write that NPT(�; 	) holds if there exists a family S of sets such
that the elements of S have cardinality 6	, S is almost free, S is not free, and
S has cardinality � (in some papers NPT(�; 	+) is used instead of NPT(�; 	)). For
some history of NPT(�; 	) see, e.g., [16, II Section 0] and [9, Section 0]. Recall that
NPT(�; 	) fail for all �¿	 if � is a singular cardinal [12]. Recall also that by Shelah
[17, Section 1], for every cardinal �, NPT(�;ℵ0) holds iL there exists a nonfree, �-
separable group of cardinality �.

A transversal game on a family S of sets is a two players game, where on each round
i the 4rst player chooses a set si from S and the second player, also called transversal
player, must answer with an element xi from si so that xi is distinct from the elements
xj, j¡i, the second player has chosen on the earlier rounds (De4nition 2.2). That
means that the transversal player must be able to choose an “extendable” transversal
whose domain contains at least the sets chosen by the 4rst player. A family S is called
�-game-free if the transversal player has a winning strategy in the transversal game of
length � on S. As can be expected, the question “does there exist a nonfree �-game-
free group of cardinality �”, for various �, is very closely related to the question “does
there exist a nonfree �-game-free family of countable sets having cardinality �”. For
a detailed exposition of a transformation of an �-game-free family into an �-game-free
group see [19, Section 4.1].

Let � denote the 4rst cardinal 4xed point (the 4rst cardinal 	 with ℵ	 = 	). Our
main target is to prove, without any assumptions beyond ZFC, that for a given 
¡�,
there are nonfree � · 
-game-free groups of cardinality �+ for unbounded many singular
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cardinals � below �. In [9, Section 1] it is proved that NPT(�+;ℵ0) holds for unbounded
many singular cardinals � below �. The main theorem follows from this result together
with a proposition on “canonical” families of countable sets (Section 3).

We present de4nitions of �-sets and �-systems in Section 2 even though those could
be found from [14, Section 3], [17, Appendix], or [3, VII.3A]. The reason for this
is that we want the new terminology “canonical form of a �-set” and “NPT(�;ℵ0)-
skeletons of type P�” (or brieQy “incompactness skeletons”) to be very clear for the
reader. Moreover, we introduce a variant of these, called “NRT(�;ℵ0)-skeletons of type
P�”, in Section 4.

In Section 3, we prove the main proposition. Namely, we show that any family S of
countable sets of cardinality �+ with � a singular cardinal, whose canonical form ful4lls
a certain “co4nality” condition, can be transformed into a family S′ of countable sets
such that S′ is a nonfree �-game-free family having cardinality �+. The reader may
wonder why the conclusion of Proposition 3.1 is �-game-free for every �¡� instead
of �-game-free. The answer is that by [19, Lemma 4.23], �-game-freeness for every
�¡� implies �-game-freeness, when � is a singular cardinal.

By [17, Section 3] it is consistent, relative to existence of two weakly compact cardi-
nals, that for some uncountable regular cardinals 	¡�, both NPT(�; 	) and NPT(	;ℵ0)
hold, even though, NPT(�;ℵ0) does not hold. Hence, the ordinary notion of “al-
most free” is not strong enough for the transitivity conclusion: for all �1¿�2¿�3,
if NPT(�1; �2) and NPT(�2; �3) hold, then NPT(�1; �3) hold. In Section 4, we present
special kind of families, called R(	)-families, for which an analogical transitivity prop-
erty hold (R refers to the notion NRT(�; 	), which will be an analog of NPT(�; 	)):
for all �1¿�2¿�3, NRT(�1; �2) and NRT(�2; �3) implies NRT(�1; �3). Note that if S
exempli4es NPT(�; 	), and S satis4es a stronger freeness notion, say the following
property:

whenever R is a subset of S of cardinality ¡ �; there are pairwise disjoint
sets 〈rs | s ∈ R such that s \ rs has cardinality ¡ 	 for every s ∈ R;

then S and any family exemplifying NPT(	;ℵ0) can be amalgamated to get a family
exemplifying NPT(�;ℵ0). The point of introducing R(	)-families and “RI(	)-freeness”
in Section 4 is that the existence of such a family is also necessary to build a canonical
example of a family of countable sets. In other words, the largest nicely incompact
subset of � (which denotes the 4rst cardinal 4xed point), de4ned in [17, Section 2],
coincides with the smallest set of cardinals below � which contains ℵ0 and is closed
under “amalgamation of R(	)-families” (De4nition 5.1).

The main theorem of the paper is presented in Section 5. Namely we link together the
pieces proved in [19, Section 4], Sections 3 and 4. For all nonzero n¡!, it is possible
to build nonfree (!n ·!n−1)-game-free families of cardinality ℵn+1 level by level using
the “old methods”, see [19, Section 2]. To get an example of nonfree �-game-free
group of cardinality �+ with �=ℵ!, one needs Proposition 3.1 and [9, Theorem 4
of Section 1]. To get examples for ℵ!¡�¡ℵ!+!, one may use an example for ℵ!
and apply [19, Lemma 4.29], which just says that a certain type of an NPT(�+

2 ;ℵ0)-
skeleton is (�2 · �1)-game-free, if �2 = �+

1 and the “previous level” is �1-game-free (a
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group whose �-invariant consists of ordinals of co4nality ¿�2 is always �2-game-free,
but not necessarily �2 + �2-game-free [19, Section 2]). By [9, Theorem 4 of Section
1] and Proposition 3.1, one get examples for even larger �’s, e.g., �=ℵ!n for any
n¡!. In fact it follows that such examples exist for unbounded many �’s below the
4rst cardinal 4xed point.

Suppose that G is an Abelian group of cardinality �+ whose �-invariant �(G)
contains stationary many 
 co4nal ordinals, i.e., for some 4ltration 〈G� | �¡�+〉 of G,
the set cof (
)∩{�¡�+ |G�+1=G� is not free} is stationary in �+. Assume, for a while,
that �(G)∩ cof (
) is in the ideal I [�]+ of “all good subsets of �+” (see, e.g., [16,
Analytical Guide Section 0]). Then by [19, Lemma 2.11], (� · (
 + 1))-game-freeness
implies freeness for groups G of cardinality �+. Hence, Theorem 5.6 is very close to
the optimal result provable from ZFC alone.

What happens if � is singular and �(G) is not in I [�]+? (For the regular case
see [19, Propositioin 3.4].) In Section 6, we collect together some facts about “good
points with respect to a scale for �” and we prove that, relative to the existence of a
supercompact cardinal, it is possible to have a nonfree group G of cardinality �+ (e.g.
�=ℵ!n for any n¡!), so that G is �-game-free for every �¡�+. It is also possible
to obtain the “maximal game-freeness” without G being free by measuring the length
of the game by trees.

2. Preliminaries

We denote the co4nality of an ordinal � by cf (�) and the cardinality of a set X by
card(X ). The class of all ordinals of co4nality 
 is denoted by cof (
). The set of all
subsets of X of cardinality¡� is denoted by [X ]¡�.

The de4nitions concerning �-sets and �-systems are from [14, Section 3]. There are
slightly revised versions in [17, Appendix]. For the reader’s convenience, we have
chosen the notation so that it is compatible to [3, Section 3 of Chapter VII], and of
course, compatible to [19]. The reason to represent the de4nitions is that in the later
sections the concepts of “type of a �-set” and “incompactness skeletons” have a central
role.

De�nition 2.1. Suppose S is a family of countable sets. A function T from S into⋃
S is called a transversal for S when T is injective and for every s∈S, T (s)∈s. If

S is enumerated by {si | i∈I} without repetition, then a transversal for J ⊆ I means
a transversal T for {si | i∈J}. When more convenient, we abbreviate T (si)
by T (i).

A family S is called free if there exists a transversal for S. For a cardinal 	, S is
called 	-free, when every subfamily of S of cardinality ¡	 is free. S is almost free
when it is �-free with �= card(S).

For a subfamily R of S, S=R denotes the family {s\⋃R | s∈S\R}.

De�nition 2.2. Suppose S is a family of countable sets and � is an ordinal. We call S
�-game-free if the second player, called player II, has winning strategy in the following
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two players “transversal game” denoted by GT�(S). A play of the game last at most �
rounds. On each round i the 4rst player, called player I, chooses a countable subfamily
Ri of S. The second player, player II, must answer with a transversal Ti whose
domain contains all the elements of Ri and which extends the transversals Tj, j¡i, he
has chosen on the earlier rounds. Player II wins a play if he succeeds to follow the
given rules � rounds.

De�nition 2.3 (Shelah [14, De4nition 3.1]). Suppose � is an uncountable regular car-
dinal, and S is a nonempty set of 4nite sequences of ordinals which is closed under
initial segments. Let Sf denote the “4nal nodes” of S, i.e., Sf is the smallest subset
of S with S = {��m | �∈Sf and m6lh(�)}. A set S as above is called a �-set if there
exist uncountable regular cardinals 〈�� | �∈S\Sf〉 such that
• �∅ = �;
• for every �∈S\Sf, ES� = {� | �a 〈�〉∈S} is a stationary subset of �� (so �a 〈�〉∈S

implies that �¡��);
• for every �∈S\Sf and �∈ES� , ��a 〈�〉6card(�) (so ��¿��a 〈�〉).
The sequence 〈�� | �∈S\Sf〉 is called the type of S. A �-set S is said to have height n
if n is a 4nite ordinal such that lh(�) = n for all �∈Sf.

De�nition 2.4. Suppose S is a �-set of type 〈�� | �∈S\Sf〉. A subset S ′ of S is called
a sub-�-set of S if S ′ is a �-set such that S ′f ⊂ Sf and the type of S ′ is the re-
striction 〈�� | �∈S ′\S ′f〉 of the type of S. A subset I of Sf is small in Sf if the set
{��m | �∈I and m6lh(�)} is not a sub-�-set of S.

De�nition 2.5 (Shelah [14, Claim 3.2]). We say that a �-set S of type P� has a canon-
ical form when the following demands are ful4lled. S has height n∗ and there exist
sequences of cardinals 〈�′n | n¡n∗〉 and 〈
n | n¡n∗〉 such that �′0 = �∅ and for every
�∈S\Sf of length n,
(i) either both of the following two properties are satis4ed:

• the set ES� consist of regular limit cardinals and 
n = 0 (in this case 
n is called
unde4ned);

• if n + 1¡n∗ then for every �∈ES� , ��a 〈�〉 = � and �n+1 = 0 (in this case �′n+1
is called unde4ned);

(ii) or otherwise both of the following two properties are satis4ed:
• ES� is a subset of cof (
n);
• if n+ 1¡n∗ then for every �∈ES� , ��a 〈�〉 = �′n+1.

Fact 2.6 (Shelah [14, Claim 3.2]). Every �-set contains a sub-�-set which is in a
canonical form.

De�nition 2.7 (Shelah [14, De4nition 3.4]). Suppose � is an uncountable regular car-
dinal, S is a �-set of type P�= 〈�� | �∈S\Sf〉. An indexed family

P! = 〈!�a〈�〉 | � ∈ S\Sf and � ¡ ��〉
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is called a �-system of type P�, if !∅ is the empty set (only for technical reasons) and
for every �∈S\Sf the sequence !� = 〈!�a 〈�〉 | �¡��〉 satis4es that
• !� is a strictly increasing continuous chain of sets;
• the union of !� has cardinality ��;
• each !�a 〈�〉 has cardinality¡��.
A �-system is called disjoint when the sets

⋃
�¡��!�a 〈�〉, for all �∈S\Sf, are disjoint.

De�nition 2.8. Suppose �¿	 are in4nite regular cardinals. A tuple 〈S; P!;S〉 is called
an NPT(�; 	)-skeleton (of type P� and of height n∗) when
• S is a �-set of type P�;
• S is in a canonical form and its height is n∗;
• the cardinals in P� are greater than 	;
• P!= 〈!�a 〈�〉 | �∈S\Sf and �¡��〉 is a disjoint �-system of type P�;
• S is a family of sets of cardinality 6	 enumerated by {s� | �∈Sf};
• S is based on P!, which means that for every �∈Sf,

s� ⊆
⋃

m6n∗
!��n:

Additionally, the demands in [14, Claims 3.6 and 3.7] are ful4lled (in case 	=ℵ0 they
are essentially equivalent to the “beautifulness properties” presented in [3, De4nition
VII.3A.2(1–6)]). De4ne for every �∈Sf and m¡n∗, that

sm+1
� = s� ∩ !n�m+1:

Remark. sm+1
� is denoted by sm� in [14].

For the reader’s convenience we repeat three of the additional demands (used in
Section 3):
(A) For all � �= #∈Sf, if s� ∩ s# �= ∅ then there is a unique m¡n∗ such that s� ∩ s# =

sm+1
� ∩ sm+1

# and for every l¡n∗ with l �=m, �(l) = #(l).
(B) For every �∈Sf and m¡n∗, if �(m) has co4nality 
¿	, then there is n¡n∗ with

���n = 
 (���n is from the type P� of S).
(C) In case 	=ℵ0: For all �∈Sf and m¡n∗, the sets sm+1

� have enumerations 〈x�;ml |
l¡!〉 with the following property: for every #∈Sf and n¡!, if x#;mn ∈sm+1

� then
the initial segments 〈x#;ml | l6n〉 and 〈x�;ml | l6n〉 are equal.

De�nition 2.9. Suppose P�= 〈�% | %¡	〉 is an increasing sequence of regular cardinals
approaching � such that �0¿	+. For functions f; g∈∏%¡	 �%, we write that f¡∗g
when f is eventually strictly less than g, i.e., if {%¡	 |f(%)¿f(%)} is bounded in 	.

A pair 〈�; Pf〉 is called a scale for � when P� is as above and Pf= 〈f� | �¡�〉 is a
¡∗-increasing co4nal sequence of functions in

∏
%¡	 �% (co4nal means that for every

g∈∏%¡	 �i there exists � with g¡∗f�).

Fact 2.10 (Shelah [16, Theorem II.1.5]). For any singular cardinal �, there exists a
scale for �. In other words, there is a sequence 〈�% | %¡	〉 of regular cardinals ap-
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proaching � so that
∏

%¡	 �i has true co=nality �+ under the partial order ¡∗

(denoted by ¡J bd
k
in the reference).

3. Transversals and game-free families

The paper [19] left open a question: if � is a singular cardinal, does there exist a
family S of countable sets of cardinality �+ which is nonfree and �-game-free for all
�¡�? Shelah has a very satisfactory answer to this question.

Proposition 3.1. Suppose 〈S ′; P!′;S′〉 is an NPT(�;ℵ0)-skeleton of type P�= 〈�� | �∈
S ′\S ′f〉 such that the following conditions hold:
• � is a singular cardinal and � equals �+;
• either cf (�) =ℵ0 or there is m below the height of S such that �� = cf (�) for every
�∈S of length m;

• the cardinal 
 for which ES′∅ ⊆ cof (
) holds (and which exists by De=nition 2.8) is
such that cf (�) �= 
.

Then there exists NPT(�;ℵ0)-skeleton 〈S; P!;S〉 such that S is �-game-free for every
�¡�. Moreover, S is a sub-�-set of S ′ and hence ES∅ ⊆ cof (
) holds (S = S ′ if P� does
not contain limit cardinals).

The rest of the section is devoted to the proof of this proposition.
Suppose that S ′ has height n∗ (by the canonical form height is well-de4ned). Now

note that n∗ must be at least 2: If � has uncountable co4nality, this follows directly
from our second demand. On the other hand, if � has countable co4nality, the claim
follows from the demand that ES

′
∅ * cof (ℵ0) together with De4nition 2.8(B).

Remark. If n∗ = 1 and ES∅ ⊆ cof (ℵ0), then S would not be ℵ1-game-free as explained
in [19, Example 4.4].

We let �1 denote the regular cardinal given by Fact 2.6, i.e., for every �∈ES∅ ,
�〈�〉 = �1. By taking a suitable sub-�-set S of S ′ if necessary, we may assume that

if cf (�) is uncountable; then there is a 4xed m ¡ n∗ such that for every
� ∈ Sf; ���m = cf (�):

If there is no limit cardinals in P�, then Fact 2.6 guarantees that we can choose S = S ′.
By Fact 2.10 choose a scale 〈�; Pf〉 for � (De4nition 2.9), where P�= 〈�% | %¡cf (�)〉

and Pf= 〈f� | �¡�〉.
The only modi4cation of the family S′ = {s′� | �∈S ′f} needed is that the “4rst coor-

dinate” (s1�)′ = s′� ∩!′
��1 of each s′� is slightly changed. The modi4cation depends on

the co4nality of � as follows: Fix � from Sf. If � has countable co4nality, then de4ne

s1� = {F� � l | l ¡ !};
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where F� is a 4xed function from ! onto ran(f�(0))× (s1�)′. This de4nition ensures that
the property De4nition 2.8(C) becomes ful4lled. In order to choose the corresponding
new �-system, let !〈�〉, for every �¡�, be [�×!′〈�〉]¡ℵ0 , and additionally, for all
nonempty �∈S\Sf and �¡��, de4ne !�a 〈�〉 to be the old !′

�a 〈�〉. Otherwise, for the
4xed �, cf (�) = ���m¿ℵ0 holds and we de4ne

s1� = {f�(0)(�(m))} × (s1�)
′

and for every �¡�, !〈�〉 = �×!′
〈�〉 (De4nition 2.8(C) is satis4ed since (s1�)′ satis4es

it). Note that now 〈S; P!;S〉 is an NPT(�;ℵ0)-skeleton, i.e., it ful4lls all the demands
mentioned in De4nition 2.8, because 〈S ′; P!′;S′〉 is an NPT(�;ℵ0)-skeleton.

In order to show that player II has a winning strategy in the game GT�(S) for every
�¡�, it suVces to describe a winning strategy for player II in a modi4ed game of length
) for every regular cardinal ) with �¿)¿�1, where the rules of the modi4ed game
are exactly as in GT)(S), except that player II is demanded to choose a transversal
only if the index of the round is a limit ordinal.

On every round i¡) player II chooses two elementary submodels Mi+1 and Ni+1

of 〈H (�);∈; Pf; P�; S; P!;S〉 such that
• � is some large enough regular cardinal;
• card(Mi+1) = �;
• card(Ni+1) = );
• Ni+1 ⊆Mi+1;
• Ni+1 contains all the elements chosen by player I
• ) + 1⊆Ni+1;
• Mi+1 ∩ � is an ordinal denoted by +i+1∈�;
• Mi ;Ni∈Ni+1, where M0 =N0 = ∅ and for limit i, Mi =

⋃
j¡i Mj and Ni =⋃

j¡i Nj.
For the rest of this proof assume i¡) to be a limit ordinal or zero, and suppose Mj,
Nj for each j6i are chosen. Denote the set S∩Ni by R. We show that

(3:1) S=R is �-free;

because then after i + !¡) rounds, player II is able to continue (or start) with some
transversal Ti+! whose domain consist of the elements in S∩Ni+! (contains the
elements chosen by player I so far) and satis4es that Ti ⊆Ti+! (where T0 = ∅ and for
i which is a limit of limit ordinals, Ti =

⋃
j¡i Tj+!).

To check the details, we have to de4ne some auxiliary notations (familiar from [19]
or [3, VII.3A]): for every �¡�,

S� = {s� | � ∈ Sf and �(0) ¡ �};
S〈�〉f = {� ∈ Sf | �(0) = �};

S〈�〉 =

{ ⋃
0¡l¡n∗

sl+1
� | � ∈ S〈�〉f

}
:
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Hence, e.g., S∩Mi equals to S+i for every i¡). We also need the fact that when
〈S; P!;S〉 is an NPT(�;ℵ0)-skeleton, for every � in ES∅ and for all I ⊂ S〈�〉f (recall
smallness from De4nition 2.4):

(3:2) I is small in S〈�〉f iL there is a transversal T such that its domain is
{s� | � ∈ I} and for every � ∈ I; T (s�) =∈ s1�:

Much more is proved in [14, Claim 3.8]. This simple fact is explained, e.g., in [19,
Fact 4.21].

The proof of (3.1) is divided into several parts. Because we may assume that ES∅
contains only limit ordinals, S=S(+i)+1 is �-free. Since R⊆S+i it suVces to show that
S(+i)+1=R is free. First we show that

(3:3) there is a transversal T for S〈+i〉 so that ran(T ) ∩
⋃

R is empty:

Remark. We do not claim that T witnesses S(+i)+1=S+i to be free. It can happen that
ran(T ) contains elements from

⋃
S+i .

Secondly we prove that

(3:4) T can be extended to a transversal T ′ for S(+i)+1=R:

Note that if +i =∈ES∅ , then S(+i)+1=S+i is empty, and (3.3) holds trivially. So suppose
that +i∈ES∅ . We want that

(3:5) there exists %∗ such that f+i(%) =∈ Ni for any %¿ %∗:

From this claim (3.3) follows in the following way: By the de4nition of the “new
4rst coordinate” there are two diLerent cases according to the co4nality of �. If �
has countable co4nality then choose a transversal T ′ for {s′� | �∈S〈+i〉f } (s′� is the “old

4rst coordinate”), and de4ne the desired transversal T for {s� | �∈S〈+i〉f } by setting for

every �∈S〈+i〉f , that T (s�) is the 4nite restriction of F� whose greatest element is the
pair 〈f�(0)(%∗); T ′(s′�)〉. Suppose then that cf (�) is uncountable. By the de4nition of

s1� , when �∈S〈+i〉f , and the assumption (3.5), the following set is small in S〈+i〉f :

I0 =
{
� ∈ S〈+i〉f | s1� ∩

(⋃
R
)
�= ∅
}
:

Choose any transversal U1 for I1 = S〈+i〉f \I0 (I1 ⊆ Sf has cardinality¡�). By (3.2),

I ′1 = {�∈I1 |U1(�) =∈ s1�} must be small in S〈+i〉f . Now the set I0 ∪ I ′1 is small in S〈+i〉f , and
by (3.2) again, there is a transversal U0 for I0 ∪ I ′1 with the property that U0(�) =∈ s1�
for all �∈I0 ∪ I ′1. Because of De4nition 2.8(A), the union T =U0 ∪U1�I1\I ′1 forms the
desired transversal witnessing that (3.3) holds. So (3.5) implies (3.3).

Note that {+j | j¡i} is a subset of Ni. De4ne -∗ to be the 4rst index in cf (�)
with �-∗¿). For every j6i de4ne a function hj∈

∏
%¡cf (�) �% by setting hj(%) = 0 if

%¡-∗, and hj(%) = sup(�% ∩Nj) otherwise. Clearly, hk(%)¡hj(%) when k¡j6i and
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%¿-∗. For every j¡i there is /¡+i with hj¡∗f/, since hj∈Ni and Ni ∩ �⊆ +i. Thus
hj¡∗f+i for every j¡i. To prove (3.5) it suVces to show that hi6∗f+i . For every j¡i,
there is the smallest %j¡cf (�)\-∗ satisfying that {%¡cf (�) | hj(%)¿f+i(%)}⊂%j. By
the de4nition of hj’s, %k¡%j for every k¡j¡i. By the assumption ES

′
∅ ∩ cof (cf (�))=∅,

cf (i) = cf (+i) �= cf (�). Hence, there exists %∗¿-∗ such that %j6%∗ for every j¡i. By
the de4nition of %j’s, for every %¿%∗, f+i(%)¿ sup {hj(%) | j¡i}= hi(%). Therefore
(3.5) holds, and we have proved (3.3).

Next we prove that there is some transversal for S+i =R, and 4nally we explain how
to 4nd a transversal witnessing (3.4). In order to show that S+i =R is free, it suVces
to conclude that for every j¡i,

(3:6) S+(j+1) =(S+j ∪R)

is free. Note that in this case +i might be in ES∅ or in its complement, but in both cases

S〈+j〉f is a subset of Ni for every j¡i (because of the inequality )¿�1¿ · · ·¿��,
lh(�)¿1). Since (+j) + 1 is not in ES∅ , S+(j+1) =S(+j)+1 is free. Since S+(j+1) =S(+j)+1 is in
Ni, also

(S+(j+1) =S(+j)+1)=((S+(j+1) =S(+j)+1) ∩Ni) = S+(j+1) =(S(+j)+1 ∪ (R ∩S(+j)+1))

is free. Because both
⋃

(S(+j)+1 ∩R) = (
⋃
S(+j)+1)∩ (

⋃
R) and S〈+j〉 ⊆R hold, we

have that S+(j+1) =(S+j ∪R) =S+(j+1) =(S(+j)+1 ∪ (R∩S(+j)+1)). Hence (3.6) holds, and we
have proved that S+i =R is free.

Let X denote the set ES∅ ∩ +i\Ni. Suppose, for the moment, that for every �∈X , the
set

(3:7) J� = {� ∈ S〈�〉f | s# ∩ s� �= ∅ for some # ∈ S〈+i〉f } is small in S〈�〉f :

By (3.2) choose a transversal U� for J�, �∈X , so that U�(�) =∈s1� hold for all �∈J�.
By De4nition 2.8(A) together with the fact that X ∩Ni is empty, ran(U�)∩

⋃
R is

empty. Consequently, the desired extension T ′ in (3.4) can be T ∪W ∪ ⋃�∈X U�,
where W is a restriction of some transversal witnessing that S+i =R is free into the
set S+i\{s� | �∈J� for some �∈X }.

So it remains to prove (3.7). Fix some � from X . Since f�¡∗f+i , there is %∗ with
f�(%)¡f+i(%) for each %¿%∗. Assume that �∈ ⋃�∈X S

〈�〉
f and #∈S〈+i〉f are such that

s� ∩ s# is nonempty. From De4nition 2.8(A) it follows that s1� ∩ s1# �= ∅ and there is %
with �(m) = #(m) = %. From the new de4nition of the “4rst coordinate” it follows that
f�(%) =f+i(%). Therefore %6%∗. This means that for every 1∈S of length m, the set
{�∈S1f | s� ∩ s# �= ∅ for some #∈S〈+i〉f } has cardinality¡���m = �#�m = cf (�). Thus (3.7)
holds and we have proved Proposition 3.1.

4. Building blocks of incompactness skeletons

In this section, �¿	 are regular cardinals and P	 is a decreasing sequence of regular
cardinals. In the de4nitions below we present a variant “NRT(�; 	)” of the notion
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NPT(�; 	). A simplest form of this variant is mentioned in [16, Fact 6.2(9)]. So we
de4ne analogical notions of “a transversal for a subfamily” and “a free subfamily over
another subfamily”. There are two main motivations. Firstly, even if both NPT(	1; 	2)
and NPT(	2; 	3) hold, for regular cardinals 	1¿	2¿	3, NPT(	1; 	3) does not need to
hold:

Fact 4.1 (Shelah [18, Lemma 3.1]). It is consistent with ZFC relative to existence
of two weakly compact cardinals, that for some regular cardinals �¿	¿ℵ0, both
NPT(�; 	) and NPT(	;ℵ0) hold, but NPT(�;ℵ0) does not hold.

However, we show that an analogical “transitivity property” for NRT(�; 	) holds,
Corollary 4.19. Secondly, the introduced families and their canonical forms, called
NRT(�;ℵ0)-skeletons, provide a uni4ed picture of those construction methods of
NPT(�;ℵ0)-skeletons presented in [9, Section 1] and [18, Section 2] (see Fact 4.6).
We shall deal with the ideal Jnst

P	 of “the product” of nonstationary ideals of 4xed
cardinals P	 (the next de4nition) instead of considering just the ideal of the bounded
subsets of 	. However, the reader may think in the beginning, if she or he wants, that
P	= 〈	〉 and PI consist of the ideal of all bounded subsets of 	.

Remark. From Fact 4.5 below it follows that NRT(�; P	)-skeletons are necessary to
“pump up” more complicated NPT(�;ℵ0)-skeletons. In fact we shall see in De4ni-
tion 5.1 and Conclusion 5.3, that the de4nition of a nicely incompact set of regu-
lar cardinals from [17, De4nition 2.1] can be expressed using NRT(�; P	)-skeletons
as building blocks. All together (which means Fact 4.16, De4nition 4.17, Lemma
4.18, and Lemma 5.2), NRT(�; P	)-skeletons are handy tools to divide and amalga-
mate NPT(�;ℵ0)-skeletons. The reader is advised to look at Section 5 to understand
our goal, if she or he feel lost with the technicalities in this section.

De�nition 4.2. Suppose P	= 〈	k | k¡k∗〉 is a nonempty decreasing sequence of in4-
nite cardinals. A family A is called an R( P	)-family (R( P	) comes from the notion
NRT(�; P	)), when A ful4lls the following demands:
• the elements of A are 4nite sequences of functions;
• A is enumerated by { Pai | i¡card(A)};
• each Pai is of the form 〈ai; l | l¡lh( Pai)〉;
• ai; l’s have domain

∏
P	.

De�nition 4.3. Suppose P	 is as in De4nition 4.2. A sequence PI= 〈Ik | k¡k∗〉 is called
a P	-sequence of ideals, when each Ik is a proper ideal on 	k containing all the bounded
subsets of 	k . For two ideals I0 and I1 on 	0 and 	1, respectively, the product I0 ×I1

is the ideal of all subsets X of 	0 × 	1 such that

{�0 ¡ 	0 | {�1 ¡ 	1 | 〈�0; �1〉 ∈ X } =∈ I1} ∈ I0:

For a regular cardinal 	, let Jbd
	 denote the ideal of all the bounded subsets of 	, and

if 	 is uncountable, let Jnst
	 denote the ideal of all nonstationary subsets of 	. For a
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P	-sequence of ideals, let Jnst
P	 denote the product of the ideals in 〈I′

k | k¡k∗〉, where
I′
k =Jnst

	k if 	k is uncountable, and otherwise, Ik =Jbd
ℵ0

.

De�nition 4.4. Assume that PI is a P	-sequence of ideals, A is an R( P	)-family, and
A′ = { Pai | i∈I} is a subfamily of A. A sequence b= 〈bi | i∈I〉 of functions is called
an R PI( P	)-transversal for A′ if the following properties are satis4ed for every i∈I :
• for some l¡lh( Pai), bi ⊂ ai; l and

∏
P	\dom(bi) is in

∏ PI;
• the ranges of bi, i∈I , are pairwise disjoint.
A′ is called R PI( P	)-free if there exists an R PI( P	)-transversal for A′ (the empty sequence
is transversal for the empty family). A family A is almost R PI( P	)-free, when every
subfamily of cardinality¡card(A) is R PI( P	)-free.

For a cardinal �¿max P	, we say that NRT PI(�; P	) holds, if there exists an almost
R PI( P	)-free R( P	)-family of cardinality � which is not R PI( P	)-free. In the case P	= 〈	〉
and PI= 〈Jbd

	 〉, NRT(�; 	) is an abbreviation for NRT PI(�; P	).

First, we see that existence of an NPT(�;ℵ0)-skeleton necessarily gives many al-
most free nonfree R( P	)-families (depending on the type of the skeleton). Later in
Lemma 4.18 we shall see that existence of certain type of R( P	)-families is also suV-
cient condition for building NPT(�;ℵ0)-skeletons. More generally, “neat” R( P	)-families
can be transformed into a form of an “NRT(�; P	)-skeleton”, which is an analog of
NPT(�;ℵ0)-skeletons for R( P	)-families.

Fact 4.5. Let 〈S; P!;S〉 be an NPT(�;ℵ0)-skeleton of type P� and of height n∗. Suppose
that there is a sequence 〈�n | n¡n∗〉 such that for every n¡n∗ and �∈S of length
n, �n = �� holds ( P� does not contain regular limit cardinals). Then for every n¡n∗,
NRTJnst

P	n
(�n; P	n) holds, where P	n = 〈�m | n¡m¡n∗〉a 〈ℵ0〉 and Jnst

P	n is the ideal given
in De=nition 4.3 above. In fact, there exists an NRT(�n; P	)-skeleton of type 〈�n〉, see
De=nition 4.10.

Proof. Fix n¡n∗ and �∈S\Sf of length n. Let k∗ denote the length of P	, i.e., k∗ = n∗−
n + 1. De4ne a family A� to be {〈a�〉 | �∈ES�}, where each a� is a function having
domain

∏
P	 and for every 1∈∏ P	, the value a�(1) is chosen in the following way. For

4xed � and 1 let ��; 1∈Sf be such that ��;1�n= �, ��;1(n) = �, and for every k¡k∗− 1,
��; 1(n+k) is the 1(k)’s member of ES��; 1�n+k in ∈-order. De4ne a�(1) to be the 1(k∗−1)’s
element of the countable set sn+1

��; 1 = s��; 1 ∩!�a 〈�〉 in the 4xed enumeration of it, recall
De4nition 2.8(C).

By Fodor’s lemma A� cannot be RJnst
P	

( P	)-free. On the other hand, A� is almost
RJnst

P	
( P	)-free: Fix +¡�n and let I denote the set {�∈S�f | �(n)¡+}. By [14, Claim

3.8(D)] we may choose a sequence 〈u� | �∈I〉 of pairwise disjoint sets such that for
every �∈I there is an index l� such that n6l�¡n∗ and u� is an end segment of sl�+1

� .
For every �¡+ the set

I � = {# ∈ S�f | #(n) = � and l# ¿ n}
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must be small in S�a 〈�〉
f . It follows that the corresponding set Y � = {1∈∏ P	 | ��; 1∈I �}

must be in Jnst
P	 . So we may de4ne a transversal 〈b� | �¡+〉 for {〈a�〉 | �¡+} by setting

b� = a��
∏

P	\Y �.

There are many examples of nonfree almost free R PI( P	)-families. Note that the ex-
amples below are NRT(�; P	)-skeletons of height 1 for some P	 of length at most 2.

Fact 4.6. Suppose � is an uncountable regular cardinal.
(a) [13, Lemma 23]. If there exist a regular cardinal 	¡� and a nonre>ecting sta-

tionary subset E of �∩ cof (	) (which means for all �¡�, E ∩ � is nonstationary
in �), then NRT(�; 	) holds.

(b) If �= 	+ and 	 is a regular cardinal, then NRT(�; 	) holds (since �∩ cof (	) is a
nonre>ecting stationary set, or for the other co=nalities use ∗(	; 	) given in the
references of the next item).

(c) [10] or [3, Theorem VI.3.9 and VI.3.10]. If � is a singular cardinal of co=nality
	 and V =L, then NRT(�+; 	) holds (because of ∗(�; 	)).

(d) [13, Lemma 24]. Suppose � is a singular strong limit cardinal of co=nality 	 such
that I [�]+ =P(�+) ( for a de=nition of I [�]+, see e.g. [15, De=nition 2.1]). Then
for every regular 
¡� with 	 �= 
, NRT PI(�; 〈
; 	〉) holds, where PI= 〈Jbd


 ;Jbd
	 〉.

(e) [9, Theorem 4]. Suppose 	¡
 are regular cardinals and �= 
+	+1. Then
NRT PI(�; 〈
; 	〉) holds, where PI= 〈Jnst


 ;Jbd
	 〉.

(f) [18, Lemma 1.16]. Suppose 	 is a regular cardinal such that for �= 	+	 there
is a scale 〈 P�; Pf〉 whose good points Sgd[ Pf] contains a closed and unbounded
subset of �+ (De=nitions 2.9 and 6.2). Then for every regular 
 with 	¡
¡�,
NRT PI(�+; 〈
; 	〉) holds, where PI= 〈Jnst


 ;Jbd
	 〉.

(g) [16, Claim II.1.5A]. If � is a singular cardinal of co=nality 	 and pp∗I(�)¿�+,
then NRTI(�+; 	) holds. Moreover, when 	 is uncountable, already pp(�)¿�+

together with some weak assumptions imply NRTJbd
	

(�+; 	) [16, Analytical Guide
5.7(B) and Sh371; Sections 0 and 1].

(h) [16, Theorem II.6.3]. If � is a singular cardinal of countable co=nality and
cov(�; �;ℵ1; 2)¿�+ (e.g., � strong limit and �ℵ0¿�+), then NRT(�+;ℵ0) holds.

The rest of this section is essentially based on a similar analysis and a construction
of a �-system as in [14, Section 3]. Our presentation resembles [14, Appendix] (or [3,
VII.3A]). The next de4nition yields an analog of the notion “a subfamily is free over
an other subfamily”.

De�nition 4.7. Suppose A is an R( P	)-family. A sequence 〈A� | �¡�〉 is called a 4ltra-
tion of A if it is a continuous increasing chain of subfamilies, such that the members
have cardinality¡� and the union of the members equals A.

For every A′ ⊆A;
⊔
A′ denotes the set

⋃
Pa∈A′

⋃
l¡lh( Pa) ran(al).

Suppose PI is a 4xed P	-sequence of ideals and A1;A2 are subfamilies of A. We
denote by A2=A1 the family { Pa�L Pa | Pa∈A2\A1 and L Pa �= ∅} ( PI should be clear from
the context), where L Pa denotes those indices l¡lh( Pa) for which ran(al)∩ (

⊔
A1) is
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“small”, i.e.,

L Pa =
{
l ¡ lh( Pa) |

{
1 ∈

∏
P	 | al(1) ∈

⊔
A1

}
∈
∏

PI
}
:

We say that A2 is free over A1, if the family A2=A1 is free (we omit the pre4x
R PI( P	)).

The next fact oLers some basic facts needed to understand Lemma 4.9.

Fact 4.8. Suppose A is an R( P	)-family and PI is a P	-sequence of ideals.
(a) If 〈A� | �¡+〉 is a continuous chain of subfamilies of A such that A0 is free

and A�+1=A� is free for every �¡+, then the family
⋃
�¡+A� is free.

(b) Suppose A is of regular cardinality � and A is free. Then for all =ltrations
〈A� | �¡�〉 of A, the set {�¡� |A=A� is free} contains a cub of �.

Proof. (a) Build an R PI( P	)-transversal for the union by induction on �¡+ using the
following: Suppose A1 ⊆A2 ⊆A3 are subfamilies of A, b is an R PI( P	)-transversal
for A2=A1, and c is an R PI( P	)-transversal for A3=A2. Then the concatenation ba c
is an R PI( P	)-transversal for A3=A1, since w.l.o.g. for every i∈I , the intersection
ran(bi)∩ (

⊔
A1) is empty.

(b) Suppose 〈bi | i¡�〉 is an R PI( P	)-transversal for A. By the demands on P	 and P	-
sequence of ideals, each of the sets ran(bi) has cardinality 	0 = max P	. Let h%, %¡	0,
be injective functions with domain � such that for every i¡�, h%(i) is the %’s element
of ran(bi) in some 4xed enumeration. To prove the claim, it suVces to choose a cub
C of � so that for all �∈C and i¡�:

if h%(i) ∈
⊔

A� for some % ¡ 	0; then Pai ∈ A�:

Then 〈bi | i¡� and Pai =∈A�〉 is an R PI( P	)-transversal for A=A�.

Lemma 4.9. Suppose P	 and PI are as in De=nition 4.4. For all singular cardinals
�¿max P	, every almost R PI( P	)-free family of cardinality � is free, i.e., NRT PI(�; P	)
does not hold.

Proof. The claim follows from [12, Theorem 2.1] or [1, Theorem in Section 0], because
for a 4xed family A of cardinality �, the relation “A2 is free over A1” for subfamilies
of A satis4es the demanded axioms. However, we brieQy sketch why axioms I–V of
[5, Theorem 5 in Section 4] hold. De4ne the set S(A) of “the subalgebras of A” to
be the set of all subfamilies of A. A subalgebra A1∈S(A) is free when A1 has an
R PI( P	)-transversal, say b, and a basis F of A1 is the set of all subalgebras A2 of A1

such that the corresponding restriction of b is a transversal for A1=A2 (the proof of
Fact 4.8(b)). Note that a basis F is “fully closed unbounded above 	0” as demanded
in axiom II (use h%’s as in the proof of Fact 4.8(b)). Axioms I, III, and IV hold by
the de4nition. Axiom V can be proved by a similar construction as in the proof of
Fact 4.8(a).
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Our next task is to prove that R( P	)-families can be transformed into a canonical
form in the same way as families of countable sets are transformed into incompactness
skeletons (Lemma 4.13). In order to succeed in the proof we have to assume the
R( P	)-family to be “neat” (De4nition 4.12).

De�nition 4.10. Suppose P	 and PI are as in De4nition 4.4 and � is a regular cardinal
greater than max P	. A tuple 〈S; P!;A〉 is called an NRT(�; P	)-skeleton of type P�, when
the following conditions hold (recall the de4nitions of a canonical �-set and a disjoint
�-system from Section 2):
• S is a �-set of type P�= 〈�� | �∈S\Sf〉;
• S has a canonical form and its height is n∗¡!;
• P!= 〈!�a 〈�〉 | �∈S\Sf and �¡��〉 is a disjoint �-system;
• A is an R( P	)-family of cardinality �;
• A is enumerated by { Pa� | �∈Sf};
• every sequence in A has a 4xed length l∗¡!, where l∗¿n∗;
• A is based on P!, i.e., for all �∈ Sf and l¡l∗; ran(a�; l)⊆

⋃
m6lh(�) !��m;

• A is almost RJnst
P	

( P	)-free (Jnst
P	 given in De4nition 4.3).

Moreover, analogously to the de4nition of an NPT(�; 	)-skeleton, we demand that
for every n¡n∗ and �∈ S of length n the following conditions hold:

When the cardinal 
n, given by the canonical form of S (De4nition 2.5), is well-
de4ned:
• 
n¿max P	 implies that there is m¡n∗ such that the cardinal �m, given by the

canonical form of S, is well-de4ned and �m = 
n;
• if ℵ0¡
n6max P	 then 
n ∈ ran( P	).
The index set l∗ can be partitioned into n∗ blocks 〈Ln+1 | n¡n∗〉 (analogously to
the partition 〈sn+1

� | n¡n∗〉 of a set in an NPT(�;ℵ0)-skeleton) such that for every
n¡n∗; l∈Ln+1, and �∈ Sf; ran(a�; l)⊆!��n+1 (by the disjointness of P!; for all l∈Ln+1

and l′ ∈Ln′+1; ran(a�; l)∩ ran(a�′ ; l′) = ∅ whenever ��n �= �′�n).
For all � in S\Sf; 〈S�; P!�;A�〉 denotes the NRT(��; P	)-skeleton of type 〈�1 | 1∈

S�\Sf〉, where
• S� denotes the set {�∈ S | �⊆ �};
• P!� is the restriction of P! according to the new index set;
• A� denotes the family { Pa��L¿lh(�) | �∈ S�f}, where

L¿lh(�) =
⋃

lh(�)6n¡n∗
Ln+1:

Lastly, for every �∈ S of length n¿0 and 9¡�(n− 1), there are strictly less than ��
indices �∈ Sf such that �⊆ � and for some l∈Ln+1, the set {1∈∏ P	 | a�; l(1)∈!�a 〈9〉}
is not in Jnst

P	 .

Fact 4.11. If 〈S; P!;A〉 is an NRT(�; P	)-skeleton, then there is no injective choice
function for the family {s� | �∈ Sf}, where each s� is the set

⋃
l¡lh( Pa�) ran(a�; l). In

particular, there is no RJnst
P	

( P	)-transversal for A.
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Proof. The given family is based on the �-system P!. Hence, the claim follows from
[14, Claim 3.5] (or [3, VII.3.6]).

De�nition 4.12. For technical reasons (needed in the proof of Lemma 4.13), we say
that an R( P	)-family A is neat, when for all Pa; Pa′ ∈A; l¡lh( Pa), and l′¡lh( Pa′): al �= a′l′
implies that the set

{
1(0) | 1 ∈

∏
P	 and al(1) = a′l′(1)

}

is a nonstationary subset of 	0, if 	0 is uncountable, and otherwise, the set is 4nite.

Remark. We do not demand neatness in the de4nition of an NRT(�; P	)-skeleton. There-
fore, Facts 4.6(d)–(f) are examples of NRT(�; P	)-skeletons.

In the de4nition of the neatness the most natural demand would be that “intersec-
tion of two diLerent coordinates” is small in the Jnst

P	 sense, but such a de4nition
would cause problems in the next lemma, since Jnst

P	 is not 	0-complete when P	 has
length ¿1.

Lemma 4.13. If A is a neat family witnessing that NRTJnst
P	

(�; P	) holds, then there is
an NRT(�; P	)-skeleton.

Proof. We de4ne an NRT(�; P	)-skeleton 〈S ′; P!′;A′〉 following the same ideas as in
[14, Claim 3.3] or [14, Appendix: Proposition 4] (or [3, Proposition VII.3.7]), except
that at the end we need a diLerent trick.

Let �∅ be � itself. By Fact 4.8(a) there is a 4ltration 〈A〈�〉 | �¡�∅〉 of A and a
stationary subset E∅ of � such that for every �∈E∅; A〈�+1〉=A〈�〉 is not free. For every
�∈E∅, choose B〈�〉 ⊆A�+1\A� so that �〈�〉 = card(B〈�〉)¡�∅ is the smallest cardinal
such that B〈�〉 is not free over A�.

Suppose �〈�〉¿	0 holds. By the choice of B〈�〉, the family B〈�〉=A〈�〉 witnesses that
NRTJnst

P	
(�〈�〉; P	) holds. By Lemma 4.9 �〈�〉 is a regular cardinal. By Fact 4.8(a) there

is a 4ltration 〈A〈�; /〉 | /¡��〉 of B〈�〉 and a stationary subset E〈�〉 so that A〈�; /+1〉
is not free over A〈�; /〉 ∪A〈�〉. Hence, we may continue choosing a subset B〈�; /〉 of
A〈�; /+1〉\(A� ∪A〈�; /〉) having the smallest possible cardinality �〈�; /〉¡�〈�〉 for which
B〈�; /〉 is not free over A〈�; /〉 ∪A〈�〉.

Assume � is a sequence of ordinals such that its length is n¿0 and ���n−1¿	0¿��.
Such sequences � form the 4nal nodes S ′f of the desired �-set S ′. Suppose also that
all the sets A��m, for nonzero m6n, together with B� are already chosen so that B�

is not free over A�
∗, where A�

∗ is an abbreviation for
⋃

0¡m6nA��m. To simplify
our explanations, let Pa=A�

∗ denote the sequence (possibly empty) in the singleton
{ Pa}=A�

∗, and on the other hand, let Pa � A�
∗ denote the “complementary” sequence

〈al | l¡lh( Pa) and l =∈ dom( Pa=A�
∗)〉. Now we would like to de4ne that the new R( P	)-

family is A′ = { Pa′� | �∈ S ′f}, where each Pa′� is Pa �A�
∗ for some Pa∈B�. However, we

should choose Pa′� so that A′ becomes based on a �-system.
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The desired �-system P!′ is de4ned by setting for every �∈ S ′\S ′f and �¡��;
!′
�a 〈�〉 =

⊔
A�a 〈�〉

Assume that A is enumerated by { Pai | i¡�}. Let for every i¡�; X�; i; l be those
indices for which ai; l takes value in the de4ned �-system, i.e.,

X�;i;l =
{
1 ∈

∏
P	 | ai;l(1) ∈

⊔
A∗

�

}
:

We get a better candidate for Pa′� by considering the sequence 〈ai; l �X�; i; l | l¡lh( Pa) and
l =∈ dom( Pa=A∗

�)〉. Even this sequence is problematic. The domains of the coordinates
are not equal to

∏
P	 as demanded in the de4nition of an R( P	)-family. (Why the

domain should be of that form? Otherwise we run into diVculties when we combine
two skeletons together in Lemma 4.18.) We can 4x this in the same way as we did
in the proof of Fact 4.5. Let :�; i; l be the following “continuous” map from

∏
P	 onto

X�; i; l de4ned for every )∈∏ P	 by

:�;i;l()) = 1 iL for each k ¡ lh( P	); 1(k) is the )(k)′s ordinal (in ∈ -order) of

the set {1′(k) | 1′ ∈ X�;i;l and 1′ � k = 1 � k}:
The property of these maps used below is that if X�; i; l is not in Jnst

P	 , then for every
B⊆∏ P	:

(A)
∏

P	\B ∈ Jnst
P	 iL :−1

�;i;l[X�;i;l\B] ∈ Jnst
P	 :

A new candidate for Pa′� could be 〈ai; l�X�; i; l ◦:�; i; l | ai; l ∈ Pai �A�
∗〉 for some i such that

Pai ∈B�. But then we face “the real problem”, why should such an A′ be almost free?
A 4nal de4nition of Pa′� will be a concatenation of 4nite number of sequences of the
lastly given form. How to choose a suitable 4nite set?

We claim that the neatness of the original A guarantees that there is no “choice
function” picking diLerent functions from the sequences in B�=A�

∗, i.e., there is no
injective function f with domain B�=A�

∗ such that f( Pa)∈ Pa for each Pa in the domain.
Namely, assume that such a f exists and 〈 Pa% | %¡��〉 enumerates B�. By induction on
%¡�� de4ne b% to be the restriction f( Pa%)�(

∏
P	\A%), where

A% =


1 ∈

∏
P	 |f( Pa%)(1) ∈

⋃
-¡%

ran(f( Pa-))


 :

Since ��6	0 and for every % �= -, the set {1(0) | 1∈∏ P	 and f( Pa%)(1) =f( Pa-)(1)} is
nonstationary in 	0; A% is in Jnst

P	 . Hence, 〈b% | %¡��〉 is a transversal for B�=A�
∗,

contrary to the choice of B�.
Because the sequences in B� are 4nite, the standard compactness argument (for the

4rst-order logic) yields a 4nite subset F� of B� such that F�=A�
∗ does not have such a

choice function (the neatness is needed because a similar argument cannot be applied
to transversals).

Now we can de4ne for every �∈ S ′f, that I� is such that { Pai | i∈ I�}=F� and

Pa′� = 〈ai;l ◦ :�;i;l | i ∈ I� and ai;l ∈ Pai �A∗
�〉:
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We show 4rst that A′ = { Pa′� | �∈ S ′f} is almost free. Fix J to be a subset of S ′f having
cardinality ¡�. Since the given A is almost free, there is a transversal 〈bi | i∈

⋃
�∈J I�〉

for { Pai | i∈
⋃
�∈J I�}. We de4ne a transversal 〈b′� | �∈ J 〉 for { Pa′� | �∈ J}. Fix an arbi-

trary � from J . Assume, toward a contradiction, that for every i∈ I�; bi is a restriction
of the coordinate ai; li in Pai=A�

∗. But then for all i �= j∈ I�; ai; li �= aj;lj contrary to
the choice of F�. Therefore, there is i∈ I� such that for some coordinate ai; l from
the nonempty sequence Pai � A�

∗; bi is a restriction of ai; l. Thus X�; i; l is not in
Jnst

P	 . By (A),
∏

P	\dom(bi)∈Jnst
P	 implies that the set

∏
P	\Y�; i is in Jnst

P	 , where
Y�; i = :�; i; l−1[dom(bi)∩X�; i; l]. Hence, we may de4ne b′� = bi ◦:�; i; l�Y�; i.

It remains to show that all the other demands listed in De4nition 4.10 can be ful4lled.
Exactly as for the NPT(�;ℵ0)-skeletons, S ′; P!′, and A′ can be modi4ed so that S ′ is
in the canonical form of type P� and height n∗, and moreover, P!′ is disjoint.

By choosing a suitable sub-�-set of S ′ if necessary [14, Claim 3.2(1)], we may
assume that for all n¡n∗ and �; #∈ S ′f, the sets {l¡lh( Pa′�) | ran(a′�; l)⊆!′

��n+1} and
{l¡lh( Pa′#) | ran(a′#;l)⊆!′

��n+1} are equal. Hence, there exists l∗ such that
lh( Pa′�) = l∗ for every �∈ S ′f, and also, the required partition 〈Ln+1 | n¡n∗〉 of l∗ exists.

When ℵ0¡
n¡min P� is well-de4ned one can add 
n into P	 (see Fact 4.16 be-
low), if not yet appeared there. So assume that 
n has the index k in P	 and de4ne
a′′�; l(1) = 〈a′�; l(1); �1(k)〉 for every l¡l∗ and 1∈∏ P	, where 〈�% | %¡	k〉 is an increasing
sequence of ordinals co4nal in �(n) (change P!′ accordingly).

For the rest of the properties (covering the case 
n¿max P	), a suitable modi4cation
procedure is described in a very detailed way in [3, Theorem VII.3A.5] (e.g., the case
that 
n¿min P� and 
n =∈ P�).

Corollary 4.14. (a) Suppose 〈S; P!;A〉 is an NRT(�;ℵ0)-skeleton of type P�. Then there
is a family S of countable sets such that the triple

〈S; 〈[!�]¡ℵ0 | � ∈ S\Sf〉;S〉

forms an NPT(�;ℵ0)-skeleton.
(b) For every uncountable cardinal �;NPT(�;ℵ0)-holds if and only if there is a

neat family exemplifying that NRT(�;ℵ0) holds.

Proof. The reader may wonder why a family witnessing that NRT(�;ℵ0)-holds is not
“straightforwardly” an example of a family witnessing that NPT(�;ℵ0)-holds. The an-
swer is that, because R(ℵ0)-transversal is a stronger notion than the standard transversal,
the nonfreeness in the R(ℵ0)-sense does not guarantee the nonfreeness in the standard
sense.

(a) The existence of an NPT(�;ℵ0)-skeleton follows from Fact 4.11 together with
[14, Claim 3.8] or [3, VII.3A.6]. To see that the structure of the �-system can be
almost preserved, consider a family {s� | �∈ Sf} such that each coordinate (w.r.t. to
the slightly modi4ed �-system) sn+1

� corresponds to a “well-chosen” subset of all 4nite
sequences of elements in

⋃
l∈Ln+1 ran(a�; l) (the reason to use 4nite sequences is the

same as in the proof of Proposition 3.1).
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(b) From left to right the claim follows from [14, Claim 3.8] or [3, VII.3A.6]. The
other direction follows from Lemma 4.13 and (a).

The following two small facts are needed in the proof of Lemma 4.18.

Fact 4.15. For all NRT(�; P	)-skeletons 〈S; P!;A〉 and I ⊆ Sf; I is small in Sf if and
only if there exists an RJnst

P	
( P	)-transversal for { Pa� | �∈ I}.

Proof. A proof of this fact is similar to a proof of the property (3.2) in Section 3.

Fact 4.16. If there is an NRT(�; P	)-skeleton of type P�, then for every regular cardinal
�¡min P�, there exists an NRT(�; P�)-skeleton of type P�, where ran( P�) = ran( P	)∪{�}.

Proof. Suppose P�= 〈�k | k¡k∗〉 is a decreasing enumeration of ran( P	)∪{�} and K
denotes the index set {k¡k∗ | �k �= �}. For every �∈ Sf and l¡lh( Pa�), replace the
old coordinate a�; l with a new one a′�; l, where a′�; l has domain

∏
P� and for ev-

ery 1∈∏ P�; a′�; l(1) = a�; l(1�K). De4ne a new family A′ to be { Pa′� | �∈ Sf}, where
Pa′� is 〈a′�; l | l¡lh( Pa�)〉. The only problem is that A′ should be almost RJnst

P�
( P�)-free.

However, for any X ⊆∏ P	;
∏

P	\X ∈Jnst
P	 implies that {1∈∏ P� | 1�K =∈X } is in Jnst

P�
as well. Hence, every RJnst

P	
( P	)-transversal 〈b� | �∈ I〉 can be straightforwardly trans-

formed into the form of an RJnst
P�

( P�)-transversal 〈b′� | �∈ I〉, where each dom(b′�) equals
{1∈∏ P� | 1�K ∈ dom(b�)}.

In the light of the previous fact and for purposes of the forthcoming “transitivity”
lemma, it makes sense to de4ne “compatible skeletons”.

De�nition 4.17. Suppose 〈S ′; P!′;A′〉 is an NRT(�; P	)-skeleton of type P� and 〈S ′′;
P!′′;A′′〉 is an NRT(); P�)-skeleton of type P). We say that 〈S ′; P!′;A′〉 is compatible

with 〈S ′′; P!′′;A′′〉 if the following conditions are satis4ed:
(A) min P�¿max P);
(B) for all cardinals 	∈ ran( P	), if 	¿min P) then there is n below the height of S ′′

such that for every �∈ S ′′ of length n; )� = 	.

Lemma 4.18. Suppose that an NRT(�; P	)-skeleton 〈S ′; P!′;A′〉 of type P� is compatible
with an NRT(); P�)-skeleton 〈S ′′; P!′′;A′′〉 of type P). Then there exists an NRT(�; P	
∪ P�)-skeleton 〈S; P!;A〉 of type P�a P).

Proof. By Fact 4.16, we may assume that P� is an end segment of P	 (does not have
any eLect on compatibility and if P� is 〈ℵ0〉, just make sure that ℵ0 is the last element
of P	). By the assumption on P), let N ⊆ n′′ be such that the initial segment of P	 of
cardinals not in P� is equal to 〈)n | n∈N 〉. Thus, for every �′′ ∈ S ′′f and 1∈∏ P�, the
concatenation �′′�N a 1 is a sequence in

∏
P	.

We de4ne 〈S; P!;A〉 in a straightforward manner by “concatenating” 〈S ′; P!′;A′〉 and
several copies of 〈S ′′; P!′′;A′′〉. So Sf is de4ned to be {�′a �′′ | �′ ∈ S ′f and �′′ ∈ S ′′f },
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and S is {��n | n¡n∗}, where n∗ = n′ +n′′; n′ is the height of S ′, and n′′ is the height
of S ′′.

To de4ne the other components, 4x an arbitrary �= �′a �′′ from Sf (where this
notation means �′ ∈ S ′f and �′′ ∈ S ′′f ). Let l∗ denote l′ + l′′, where l′ and l′′ are the
lengths of the sequences in A′ and A′′, respectively.

De4ne Pa� = 〈a�; l | l¡l∗〉, by setting for each l¡l′ and 1∈∏ P�,

a�;l(1) = 〈l; �′′; a′�′ ;l(�′′ � N a 1)〉
and for every l with l′6l¡l∗ and 1∈∏ P�,

a�;l(1) = 〈l; �′; a′′�′′ ;l−l′(1)〉:
De4ne a �-system by setting for every �′ ∈ S ′\S ′f and �¡��′ ,

!�′a〈�〉 = l′ × S ′′f × !�′a〈�〉

and for every �′ ∈ S ′f; �′′ ∈ S ′′\S ′′f , and �¡)�′′ , set

!�′a�′′a〈�〉 = l∗ × {�′} × !′′
�′′a〈�〉:

Clearly S and P! have the desired form and A= { Pa� | �∈ Sf} is based on P!. So to
prove that 〈S; P!;A〉 is an NRT(�; 
)-skeleton, it remains to show that A is almost
RJnst

P�
( P�)-free.

Fix I ⊆ Sf of cardinality ¡�. We de4ne an RJnst
P�

( P�)-transversal 〈b� | �∈ I〉 for { Pa� |
�∈ I}. The set I ′ = {��n′ | �∈ I} has cardinality ¡�. Therefore, there is an RJnst

P	
( P	)-

transversal 〈b�′ | �′ ∈ I ′〉 for { Pa′�′ | �′ ∈ I ′}. Fix now �′ ∈ I ′. De4ne J�′ to be the set of
all �′′ ∈ S ′′f such that{

1 ∈
∏

P� | �′′ � N a 1 =∈ dom(b�′)
}
∈ Jnst

P� :

Since
∏

P	\dom(b�′) is in Jnst
P	 and P� is an end segment of P	, the complement K�′ =

S ′′f \J�′ must be small in S ′′f (remember, X ⊆ S ′′f is small in S ′′f if {�′′�N | �′′ ∈X } is in
Jnst

P	�k , where k is the largest index below lh( P	) with 	k¿max P�). By Fact 4.15 there
exists an RJnst

P�
( P�)-transversal 〈b�′ ; �′′ | �′′ ∈K�′〉 for { Pa′′�′′ | �′′ ∈K�′}.

Consider �∈ Sf. If �′′ is in J�′ , then de4ne

b� = a�;l �
{
1 ∈

∏
P� | �′′ � N a 1 ∈ dom(b�′)

}
;

where l¡l′ is the index with b�′ ⊆ a′�′ ; l. Otherwise �′′ is in K�′ , and we can de4ne

b� = a�;l � dom(b�′ ;�′′):

where l= l′ + m and m¡l′′ is the index with b�′ ; �′′ ⊆ a′′�′′ ; l.

Corollary 4.19. For all regular cardinals �¿	¿�, if NRT(�; 	) and NRT(	; �) hold,
then NRT(�; �) holds.
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5. Conclusion

Now, we may put the pieces together. By De4nition 2.5, if � is a regular cardinal
below the possible 4rst regular limit cardinal and S is a �-set in the canonical form
of height n∗ and type 〈�� | �∈ S\Sf〉, then there exist sequences P�= 〈�n | n¡n∗〉 and
P
= 〈
n | n¡n∗〉 such that for every �∈ S\Sf of length n, both �� = �n and ES� ⊆ cof (
n)
hold. For the rest of this section we assume that all the types of skeletons are given
in this simpli4ed form.

Remark. For simplicity we have chosen
∏

P	 to be the domain of the functions ap-
pearing in the elements of R( P	)-families. Hence, we must restrict ourselves below the
possible 4rst regular limit cardinal. It is possible to replace

∏
P	 with a “full” 	0-set and

Jnst
P	 with “small sets” w.r.t. the 4xed 	0-set, but that makes the notation unnecessarily

complicated.

De�nition 5.1. Let CNRT denote the smallest set of cardinals such that
• ℵ0 is in CNRT;
• if there exists an NRT(�; P	)-skeleton of type P� such that there is no regular limit

cardinal below �+ and ran( P	)⊆CNRT, then ran( P�)⊆CNRT.

Remark. One could expect that, analogously to Fact 4.5 and because of the transitivity
property Lemma 4.18, it would suVce to consider NRT(�; P	)-skeletons of height 1
only (i.e., that in the de4nition above we could assume P� has length 1). However,
an analogous proof does not work for NRT(�; P	)-skeletons because, even in a 4xed
“level n”, a transversal may choose from several possible coordinates a�; l; l∈Ln+1,
contrary to the NPT(�;ℵ0)-case, where on each level n there is only one coordinate,
namely sn+1

� .

The bene4t of Fact 4.5 is that we can separate levels of NPT(�;ℵ0)-skeletons to
independent building blocks and combine those blocks in various ways. Of course in
this countable case, we apply Corollary 4.14 (i.e., the coordinates a�; l; l∈Ln+1, of level
n in the de4nition of an R(ℵ0)-family can be amalgamated to a single coordinate).

Lemma 5.2. Suppose )¡� are cardinals in CNRT. There exists an NPT(�;ℵ0)-skeleton
of type P� such that if ) is uncountable, )∈ ran( P�).

Proof. If � is the 4rst uncountable cardinal in CNRT, i.e., �=ℵ1, then the claim holds
by the de4nition. Suppose 〈S0; P!0;A0〉 is an NRT(�; P	)-skeleton of type P�; ran( P�)∪
ran( P	)⊆CNRT, and the claim holds for all cardinals below �. Note that the problematic
case is max P�¿)¿min P�.

By the induction hypothesis there is an NPT(max P	;ℵ0)-skeleton 〈S1; P!1;S1〉 of
type P
 such that ran( P	)⊆ ran( P
) and if max P	¿)¿ℵ0 then )∈ ran( P
) holds too. Since
〈S0; P!0;A0〉 and 〈S1; P!1;S1〉 are compatible, it follows from Lemma 4.18 and Corol-
lary 4.14, that there is an NPT(�;ℵ0)-skeleton 〈S2; P!2;S2〉 of type P�a P
.
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Suppose )¿min P� (hence ) =∈ ran( P
)) and n is the largest index with �n¿)¿�n+1.
By the induction hypothesis there is an NPT();ℵ0)-skeleton 〈S3; P!3;S3〉 of such a type
that it contains the sequence P)= 〈)〉a 〈�m | n¡m¡n∗〉a P
. By applying Facts 4.5 and
4.16 to 〈S2; P!2;S2〉, there is an NRT(�; P))-skeleton 〈S4; P!4;A4〉 of type 〈�m |m6n〉.
Now 〈S3; P!3;S3〉 and 〈S4; P!4;A4〉 are compatible, and hence the claim follows from
Lemma 4.18 together with Corollary 4.14.

Conclusion 5.3.
(a) For all cardinals � in CNRT; NPT(�;ℵ0) hold. In particular, CNRT is a nicely

incompact set of regular cardinals in the sense of [18, De=nition 2.1].
(b) If K is a nicely incompact set of regular cardinals below the possible =rst inac-

cessible cardinal, then K ⊆CNRT.
(c) All the cardinals from the set Cℵ0 de=ned in [9, Theorem 1 of Section 1] belong

to CNRT (or look at Theorem 1.1). Particularly, all the regular cardinals below
ℵ! ·!+1 are in CNRT, and CNRT is co=nal below the =rst cardinal =xed point.

Proof. (a) By Lemma 5.2.
(b) Suppose P� is a type of some NPT(�;ℵ0)-skeleton. By induction on increasing

order of the cardinals in P�, apply Fact 4.5 to show that ran( P�)⊆CNRT.
(c) By Facts 4.6(b) and (c).

Our 4nal conclusion concerns game-free groups. As we have seen in Proposition 3.1,
game-freeness of an NPT(�;ℵ0)-skeleton 〈S; P!;S〉 is closely connected to the possi-
ble value of ES∅ . Hence, we have to look at a little bit more restricted set of nicely
incompact cardinals.

De�nition 5.4. Let CGT denote the set of all cardinals � in CNRT such that � appears
in a type of some NRT(�; P	)-skeleton 〈S; P!;A〉 satisfying that P	⊆CGT, and moreover,
if � is a successor of a singular cardinal �, then ES∅ ∩ cof (cf (�)) = ∅.

Fact 5.5. All the cardinals from the set Cℵ0 (Conclusion 5.3(c)) belong to CGT. In
fact, all the examples in Fact 4.6, except the =rst two of them, yield skeletons ful=lling
the co=nality demand in the de=nition of CGT.

Theorem 5.6. Suppose � is a cardinal such that both cf (�) and �= �+ are in CGT.
Then there exists a nonfree (� · 
)-game-free group of cardinality �, where 
¡� is a
regular cardinal such that if � is a successor of a regular cardinal then �= 
+, and
otherwise 
 �= cf (�).

Proof. The proof proceeds by induction on increasing order of the cardinals in CGT. By
V%ais%anen [19, Lemmas 4.17, 4.23, and 4.29] it suVces to show existence of NPT(�;ℵ0)-
skeleton such that if � is regular then S is �-game-free, and if � is singular, then S
is �-game-free for every �¡�.

The case successor of a regular cardinal follows from [19, Fact 4.6 and Lemma 4.29],
since as an induction hypothesis, we may assume that there exists a )-game-free
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NPT(�;ℵ0)-skeleton 〈S; P!;S〉, where ) is a cardinal such that �= )+ and if ) is
a regular cardinal, then )= 
+ and ES∅ ⊆ cof (
).

The case successor of a singular cardinal follows from Conclusion 5.3 and Proposi-
tion 3.1, since CGT ⊆CNRT and a modi4cation of Lemma 5.2 for CGT holds (thus, the
demands of Proposition 3.1 can be ful4lled).

6. On cub-game and game-free groups

In this section, � is a singular cardinal, 	 denotes the co4nality of �, and � is
the successor cardinal of �. We study existence of nonfree �-game-free families of
cardinality �, when �¿(� · �) + �. Our tools for that are some known and modi4ed
results about “cub-game” for successors of singular cardinals. An analog study for
successors of regular cardinals, which is an easier case, is carried out in [19, Section 2].

De�nition 6.1. Suppose � is an uncountable regular cardinal A⊆ �, and �¡� is an
ordinal. For notational purposes let x denote a set of regular cardinals below � (x tells
in which “co4nalities the limits are checked”). We denote by GCx

�(A; �) the following
two players cub-game. The players, player I (also called “outward” player) and Player
II (also called “inward” player), choose in turns a sequence 〈�i | i¡�〉 of ordinals such
that
• Player I chooses ordinals �0¡� and �i+2¡�, for i¡�, with �i+2¿�i+1;
• if i is a limit ordinal, player I must choose the ordinal �i = supj¡i �j;
• when �i is de4ned, player II must pick some ordinal �i+1¡� with �i+1¿�i.

Player II wins a play if for all limit ordinals i for which cf (i)∈x; �i belongs to A.
We say that player II wins GCx

�(A; �) if there exists a winning strategy for player II in
GCx

�(A; �). For a regular cardinal 
 below �; GC

� (A; �) is a shorthand for GC{
}

� (A; �).

De�nition 6.2 (Shelah [18, De4nition 1.9], Magidor and Shelah [9, De4nition 2 of
Section 1], Shelah [15, Section 1]). Suppose 〈 P�; Pf〉 is a scale for a singular cardi-
nal � of co4nality 	 (De4nition 2.9), where P�= 〈�% | %¡	〉 and Pf= 〈f� | �¡�〉. We
denote by Sgd[ Pf] the set of all “good points � w.r.t. Pf”, i.e., �’s below � such that
for some unbounded set A⊆ � and -¡	; f�(%)¡f/(%) holds whenever �¡/∈A and
-6%¡	. Let Sngd[ Pf] denote the set of all limit ordinals �¡� such that � =∈ Sgd[ Pf] and
cf (�)¿	= cf (�).

Proposition 6.3. Assume that the following conditions are ful=lled:
• � is a singular cardinal, �= �+, and cf (�) = 	;
• there is a scale 〈 P�; Pf〉 for � such that Sngd[ Pf] is stationary in �;
• there exists an NPT(�;ℵ0)-skeleton 〈S; P!;S〉 of type P� such that ES∅ ⊆ Sngd[ Pf];
• if 	 is uncountable then there is n below the height of S such that for every �∈S
of length n, �� = 	 (where �� is from the type P�).
Then there exists a nonfree group of cardinality �, which is +-game-free for every

+¡� (and even in a “longer” game).
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Proof. By Proposition 3.1 we may assume that 〈S; P!;S〉 is chosen so that S is �-game-
free for every �¡�. By V%ais%anen [19, Lemma 4.23] we know that S is �-game-free.
Fix a + below �. As in [19, Lemma 4.29], we can 4x a 4ltration 〈S� | �¡�〉 of S, and
ensure using a suitable bookkeeping, that after any “block” of � moves by the players
of the transversal game GT+(S), there is some �¡� such that the elements chosen by
the players are from S�, and moreover, all the elements of S� has been chosen.

Suppose 
 is a regular cardinal below � such that ES∅ ⊆ cof (
). Note that ES∅ ⊆ Sngd[ Pf]
implies 
¿	. By Lemmas 6.7 and 6.8, player II has a winning strategy in the cub-game
GC


+(S
gd[ Pf]; �).

During the transversal game GT+(S), player II can additionally use his winning
strategy in the cub-game GC


+(S
gd[ Pf]; �) to ensure that after arbitrary many rounds of

the blocks of � moves in the transversal game, the elements chosen by the players are
exactly the elements in S� for some � which is not in ES∅ = {/¡� |S=S/ is not �-free}
⊆ Sngd[ Pf]∩ cof (
).

By [19, Lemma 4.25], the family S=S� = {s r ⋃S� | s∈S r S�} is �-game-free.
Therefore, player II can continue the transversal game GT+(S) one more round of
the block of � moves. During these new � moves player II uses his bookkeeping and
winning strategy in the cub-game again, and so on, up to all the required + moves.
Now, the claim follows from [19, Lemma 4.17].

Before changing the subject to the winning strategies in the cub-game, we ask: for
which singular cardinals � can the demands of the last proposition be ful4lled? We
need few lemmas before the conclusion.

Lemma 6.4 (Shelah [13, Claim 27]). Suppose � is a supercompact cardinal, � is a
singular cardinal, 	= cf (�); 	¡�¡�; �= �+, and 〈 P�; Pf〉 is a scale for �. There exists
a singular cardinal )¡� such that cf ()) = 	 and Sngd[ Pf]∩ cof ()+) is stationary in �.

Proof. Let us 4rst show that Sngd[ Pf] is stationary in �. Suppose, contrary to this
claim, that C is a cub of � with C ∩ Sngd[ Pf] = ∅ and j is an embedding from V onto
an inner model M satisfying that j(%) = % for every %¡�; j(�)¿�, and [M ]6�⊆M .
Let + be sup j[�]. The set j[�] is in M and + is in j(C), because C is a cub of
�; +¡ sup j(C) = j(�), and j[�]⊆ j(C). So + is good w.r.t. j( Pf) for j(�) in M and
j[�] is a co4nal subset of +. By [9, Lemma 6] there exists a co4nal subset A of
j[�] and - witnessing the goodness of +. De4ne A′ to be the set j−1[A]. Then for
every �¡/∈A′, the inequality f�(-)¡f/(-) holds, since j is an elementary embedding,
j(-) = -; j(�); j(/)∈A, and (j(f))j(�)(-)¡(j(f))j(/)(-). This is a contradiction, since
A′ has cardinality �, and the set {f�(-) | �¡�} has cardinality �-¡�¡� (where �- is
from P�).

Now the desired conclusion follows from the fact that � is a successor of the singular
cardinal � of co4nality 	 and + has co4nality � in M : If �∈C whenever supC ∩ �= �
and � has co4nality �, where � is a successor of a singular cardinal having co4nal-
ity 	, then j[C] has this property too. So the assumption C ∩ Sngd[ Pf] = ∅ leads to a
contradiction as above.
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Lemma 6.5. Suppose 	 is a regular cardinal, �=ℵ	¿	; �= �+; 〈 P�; Pf〉 is a scale for
�, and moreover, 2	 = 	+. Then Sngd[ Pf]⊆ cof (	+) and Sngd[ Pf]∩ � is nonstationary
in �, for every �¡�.

Proof. Suppose � below � has co4nality )¿	+. We show that � is good (of course,
all the ordinals of co4nality ¡	 are good). By Shelah [16, II.1.2A(3)], 2	 = 	+ implies
that there exists an exact upper bound g of 〈f/ | /¡�〉 (i.e., g is an ¡∗-upper bound
for 〈f/ | /¡�〉 such that for every h∈∏ P�; h¡∗g implies that h¡∗f/ for some /¡�).

Now, argue as in [9, Case 1 of the proof of Lemma 5 in Section 1]: By Magidor and
Shelah [9, Lemma 7] the set {%¡	 | cf (g(%))¿)} is in Jbd

	 . Assume, toward a con-
tradiction, that � is not good. By Magidor and Shelah [9, Lemma 6] 〈cf (g(%)) | %¡	〉
is not eventually constant, even though, its range is a subset of ℵ	 ∩ () + 1) mod-
ulo Jbd

	 . Since there are ¡	 cardinals in the range of this sequence, there must
exists diLerent cardinals )1 and )2 such that both {%¡	 | cf (g(%)) = )1} =∈Jbd

	 and
{%¡	 | cf (g(%)) = )2} =∈Jbd

	 hold. However, by [9, Lemma 8], )1 = )= )2 must hold,
a contradiction.

The claim on nonreQection follows from the de4nition of goodness: if � is in Sgd[ Pf],
then there is a closed unbounded subset of � consisting of ordinals in Sgd[ Pf] only.

Using [15, Fact 4.2] (similarly to [13, Conclusion 29]) we get the following con-
clusion.

Lemma 6.6. Suppose � is a supercompact cardinal, GCH holds, 	¡ℵ	 is a regular
cardinal below �; � is �+	, and � is �+. Then there is a forcing extension, where
ZFC + GCH holds, no bounded subset of 	 is added, � is the singular cardinal
ℵ	; �= �+, and all the assumptions of Proposition 6.3 hold too.

Proof. If NPT(	;ℵ0) does not hold, shoot a nonreQecting stationary subset F of
	∩ cof (ℵ0) by a forcing notion described, e.g., in [17, Proof of Lemma 3.1]. This is
for building the desired NPT(�;ℵ0)-skeleton at the end of this proof. Then no bounded
subset of 	 is added, � remains supercompact, and GCH still holds.

By Lemma 6.4, there is a cardinal 
 which is a successor of a singular cardinal )¡�
so that cf ()) = 	 and Sngd[ Pf]∩ cof (
) is stationary in �. Let E1 denote this stationary
set. Note that by the form of ) and �; )¡)+ = 
¡� holds.

Using Levy collapse Col(	;¡)), collapse all the cardinals below ) to 	. Because
of GCH and cf ()) = 	; Col(	;¡)) has cardinality ) in V . Recall that Col(	;¡)) is
	-complete. So in V Col(	;¡)), no bounded subset of 	 is added, 	 is a regular cardinal,
F is a nonreQecting stationary subset of 	; E1 is still a stationary subset of �; ) has
cardinality 	; 
 is the cardinal 	+, and GCH holds. Moreover, the 	-completeness and
card(Col(	;¡))) = )¡
¡� implies that 〈 P�; Pf〉 is still a scale for �, and as mentioned
in [15, 4.2(2)], if we let E2 denote the set Sngd[ Pf] in VCol(	;¡)); E1 =E2 modulo a
cub of � in VCol(	;¡)).

Now use the Levy collapse Col(
;¡�), to collapse all the cardinals between 
= 	+

and �. Since in VCol(	;¡)); � is still a strongly inaccessible cardinal, Col(
;¡�) has
�-c.c. Consequently, in the 4nal extension, E2 is still a stationary subset of �; �= 
+ =
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	++; �=ℵ	 (by the assumption 	¡ℵ	), and �= �+. Since Col(
;¡�) is also 
-
complete, it follows that in the 4nal extension, no bounded subset of 	 is added, 〈 P�; Pf〉
remains as a scale for �; GCH holds, 
= 	+; F is still a nonreQecting stationary subset
of 	, and by [15, 4.2(2)] again, Sngd[ Pf] =E2 modulo a cub of �. Consequently Sngd[ Pf]
is stationary in �=ℵ	+1.

It remains to show that the required type of NPT(�;ℵ0)-skeleton exists. By the
properties of F , Facts 4.6(a) and (b), we get an NPT(
;ℵ0)-skeleton in whose type 	
appears, if 	 is uncountable. By Lemma 6.15, Fact 4.6(a), and Lemma 4.18 we get an
NPT(�;ℵ0)-skeleton 〈S; P!;S〉 in whose type 
 appears, and also 	 is in the type if 	
is uncountable. Furthermore, the set ES∅ equals �∩ cof (
). Therefore, by shrinking ES∅
to Sngd[ Pf

′
], one gets the required NPT(�;ℵ0)-skeleton.

In “extreme cases” Sgd[ Pf] does not contain a closed and unbounded subset of �
(for more cases, see [15, Fact 1.7] and [4, Claim 4.3]). However, Sgd[ Pf] is “almost”
a cub of �, because there is a winning strategy for the “inward” player in a very long
cub-game.

Lemma 6.7. Suppose �= �+ and �¿cf (�) = 	. We denote by GC 
= 	
� (A; �) the game

GCx
�(A; �), where x is the set of all other regular cardinal below � except 	. For

every �¡�, player II has a winning strategy in the game GC 
= 	
� (Sgd[ Pf]; �).

Proof. First of all let -∗ be the least index below 	 with �¡�-∗ . Suppose that the
players has already chosen the ordinals 〈�j | j6i〉 and Player II should choose �i+1. As-
sume that Player II has picked during the earlier rounds also functions 〈hj | j¡i is odd〉
satisfying for each odd j that
• hj∈

∏
%¡	 �%;

• for every odd k¡j and %∈	 r -∗, both f�k (%)¡hj(%) and hk(%)¡hj(%) hold;
• hj¡∗f�j .
Firstly, Player II de4nes hi+1 by setting hi+1(%) = 0 for all %¡-∗, and otherwise,

hi+1(%) =

(
sup

j¡i odd
(max{f�j (%); hj(%)})

)
+ 1:

Then hi+1 is in
∏

%¡	 �%, since �% is a regular cardinal greater than � when %¿-∗. Sec-
ondly, player II picks �i+1 to be the least ordinal / above �i satisfying that hi+1¡∗f/.
Such an ordinal exists because Pf is co4nal in

∏
%¡	 �%.

So it remains to show that for a limit i of co4nality not equal to 	; �i = sup{�j | j¡i}
belongs to Sgd[ Pf]. If cf (i)¡	; �i is good. So assume that cf (i)¿	. Let I be a co4nal
subset of i having order type cf (i) and consisting of odd ordinals only (the moves of
player II). For every j∈I , de4ne %j¡	 to be the smallest index with hj¡%jf�j . Since
cf (i)¿	, there is a co4nal subset J of I and - such that for all j∈J; %j = -. But then
A= {�j | j∈J} is a co4nal subset of �i and A together with - witness that �i is good,
since for all k¡j from J and for all %¿-,

f�k (%) ¡ hj(%) ¡ f�j (%):
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Remark. If 2� = � then the conclusion of the previous lemma follows from the de4-
nition of I [�] too, as explained in detail, e.g., in [6, Lemma 2.1].

Lemma 6.8. Assume 	6� are cardinals, � is �+; A⊆ �, and x a set of regular car-
dinals below �. Suppose that player II wins GCx

�(A; �) for every �¡�, and moreover,
if � is a regular cardinal, player II wins GCx

�+1(A; �). Then player II wins GCx
)(A; �)

for every )¡�.

Proof. This is a known fact, presented e.g. in [19, Section 2].

It is again a known fact that the inward player has a winning strategy even in “much
longer” games of the form GCx

T (A; �), where the length of the game is measured by the
tree T of closed subsets of A of order type �+1, �¡� (ordered by the end extension).
Details are presented in [19, Section 2].

References

[1] S. Ben-David, On Shelah’s compactness of cardinals, Israel J. Math. 31 (1) (1978) 34–56.
[2] P.C. Eklof, In4nitary equivalence of Abelian groups, Fund. Math. 81 (1974) 305–314.
[3] P.C. Eklof, A.H. Mekler, Almost Free Modules, North-Holland Mathematical Library, Vol. 46,

North-Holland, Amsterdam, 1990.
[4] M. Foreman, M. Magidor, A very weak square principle, J. Symbolic Logic 62 (1) (1997) 175–196.
[5] W. Hodges, In singular cardinality, locally free algebras are free, Algebra Universalis 12 (2) (1981)

205–220.
[6] T. Huuskonen, T. Hyttinen, M. Rautila, On potential isomorphism and non-structure, preprint, 2000.
[7] T. Hyttinen, Model theory for in4nite quanti4er languages, Fund. Math. 134 (2) (1990) 125–142.
[8] M. Karttunen, Model theory for in4nitely deep languages, Ann. Acad. Sci. Fenn. Ser. A I Math.

Dissertationes 50 (1984) 96.
[9] M. Magidor, S. Shelah, When does almost free imply free? (For groups, transversals, etc.) J. Amer.

Math. Soc. 7 (4) (1994) 769–830.
[10] A.H. Mekler, S. Shelah, When 	-free implies strongly 	-free, in: Abelian Group Theory (Oberwolfach,

1985), eds. R. G%obel and E.A. Walker, Gordon and Breach, New York, 1987, pp. 137–148.
[11] J. Oikkonen, Unde4nability of 	-well-orderings in L∞	, J. Symbolic Logic 62 (3) (1997) 999–1020.
[12] S. Shelah, A compactness theorem for singular cardinals, free algebras, Whitehead problem and

transversals, Israel J. Math. 21 (4) (1975) 319–349.
[13] S. Shelah, On successors of singular cardinals, in: Logic Colloquium ’78 (Mons, 1978), eds. M. BoLa,

D. van Dalen and K. McAloon, North-Holland, Amsterdam, 1979, pp. 357–380.
[14] S. Shelah, Incompactness in regular cardinals, Notre Dame J. Formal Logic 26 (3) (1985) 195–228.
[15] S. Shelah, ReQecting stationary sets and successors of singular cardinals, Arch. Math. Logic 31 (1)

(1991) 25–53.
[16] S. Shelah, Cardinal arithmetic, Oxford Logic Guides, Vol. 29, The Clarendon Press, Oxford University

Press, Oxford Science Publications, New York, 1994.
[17] S. Shelah, If there is an exactly �-free Abelian group then there is an exactly �-separable one,

J. Symbolic Logic 61 (1996) 1261–1278.
[18] S. Shelah, Existence of almost free abelian groups and reQection of stationary set, Math. Japon. 45

(1997) 1–14.
[19] P. V%ais%anen, Almost free groups and long ehrenfeucht-fra%&ss'e games, 2001. Preprint,

http://www.math.helsinki.4/pavaisan/.

Sh:787

http://www.math.helsinki.fi/pavaisan/

	Almost free groups and Ehrenfeucht--Fraïssé games for successors of singular cardinals
	Introduction
	Preliminaries
	Transversals and game-free families
	Building blocks of incompactness skeletons
	Conclusion
	On cub-game and game-free groups
	References


