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ON ENDO-RIGID, STRONGLY  h-FREE 
ABELIAN GROUPS IN 

BY 

S. SHELAH * 

ABSTRACT 

Assuming 2"0 < 2"1 we prove that there is an endo-rigid strongly Nt-free group of 
power N1. 

Here group will mean an abelian group. 

1. DEFINrrIoN. A group G is endo-rigid if every endomorphism h : G---, G 

has the form h ( x ) =  nx (n E Z  fixed). 

2. I-hSTORV. Fuchs [5] with the help of Coroner proved the existence of such 

groups up to very large cardinalities, Shelah [7] in all cardinals ( > No), Eklof and 

Mekler [4] prove the existence of strong K-free, indeeomposable groups of 

power K, K regular, under the hypothesis V = L, and Dugas [3] replaces 

indecomposable by endo-rigid. 

3: THEOREM. (2"0<2 "') There is an endo-rigid, strongly tl~-free group of 

power ~11. 

REMARK. We can get 2" such groups with no non-zero homomorphism from 

one to another (see [1]). 

4. CLAIM. Let G be a countable free abelian group, c, b E G, c ~ 0, b ~ 0, b, c 

have no common multiple (by integers). 

Let G = U.<,~G., G. C G.+I, G.+dG. free (hence G/G.  is free). Let 

a. E G.+~ be such that a. + G. E G.+t/G. is not divisible by any natural number, 

and for l = 0,1 and i < a,, k~E/Z such that for infinitely many i's, k ° = k~ = 0, 

and for infinitely many i's k ° -  k~ -- 1. 
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Let G t (! = 0,1) be the group freely generated by G, x ~, y~ (i < to) except the 

relations p,y~ = x ~ - a~ - k~b where (p~ : i < to) is a list of the primes. 

Then 

(1) G I is countable and free; moreover, it is a pure extension of G, i.e., 

nx ~ G ^ x ~ G ~ ̂  n ~ O  impl ies  x ~ G. 

(2) There are no homomorphisms ht : G t'--* G ~, h0[ G = h~ r G, ho(b) = c. 

(3) If G ~ c_ G' ,  G ' / G  ~ is Nrfree,  f an endomorphism of G '  mapping G into 

itself, then f maps G t into itself. 

5. PROOF OF 4. Part (I) of the claim is trivial, and so is part (3) (as in G' /G ,  

G~ /G  is the set of elements of G ' / G  divisible by infinitely many primes and f 

induces an endomorphism of G ' / G ) .  

So we concentrate on (2), and let h = h~tG.  For some m, kt E Z, d~ E (3, 
m ~ 0 ,  mh~(x')  = k~x' + dt (there are such m, k~, dj as h , ( x ' ) E  G ' ) .  (Why m and 

not m~ ? Use the least common multiple.) 
So for every i <  to, ! E{0,1}, as p,y[= x ~ -  a i -  kJ~b, clearly (remember that 

h, tO =h) 

mp, ht(yt,) = m(ht(x')- h(a~)- klh(b )) 

= klx' +dl - mh(a~) - mtk~c. 

So in G ~, ( ktx ~ + da - mh(a,)  - m k  ~ c ) is divisible by/~. But also ( x t - a, - k ~ b ) 

is divisible by p, in G ~. Hence in G ~ 

z~ = (k~r' + d, - m h ( a , ) -  m k l c ) -  k , (x '  - a, - k~b) 

= d~ - m h ( a , ) +  k~a, + k~(ktb - m c ) E  G 

is divisible by/~ in Gt, but G is a pure subgroup of Gt, hence z ~ is divisible by p, 

in G. Hence 

z ° -  z~ = ( d o -  d l )+  k°(kob - m e ) -  k~(k~b - m e ) +  ( k o -  kl)a, 

= (do-  d,) + (ko-  k,),~ + (k° ko- k~ k~)b - m (k°-  k~)c 

is divisible by p~ in G. 

For large enough/ ,  do, d~, b, c ~ G~, hence ( k o -  kl)a~ + Gt is divisible by p, (in 

G/G~), but by the choice of as this implies ko - kl = 0, i.e., ko = k~ (as otherwise 
we can choose i such that p, does not divide k o - k l ) .  

So for every i, ( d o -  d~) + ko(k ° -  k ~ )b - m ( k  ° -  k ~ )c is divisible by pj. As for 

infinitely many i's, k ° = k~, for infinitely many primes p, d o -  d~ is divisible by p. 
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As G is free, d o - d ~ = 0 .  Similarly as for infinitely many i's, k , ° . - k [ = l ,  

kob - mc = 0 hence kob = me. Clearly m ~ 0, thus we contradict a hypothesis. 

6. FACT. If h is an endomorphism of an ~r f ree  (abelian) group (3, and there 

is no n ~ Z  such that for every x, h ( x ) =  nx, then there are b,c ~ G, h ( b ) =  c, 

and n b ~  mc for i1, m ~  0, and b ~  0, c ~  0. 

PROOF. Suppose h is a counterexample. Then for every x E G not divisible 

by any n E Z ,  n ~ 0 , 1 ,  there is n~ such that h ( x ) =  n~x, hence for every x ~ G 

there is such n~. Clearly if kox = k ,y  (kok, ~ 0) then n. = n~. If the rank of G is 

1, h is nx for some n, so there are x, y ~ G which are a basis of a free pure 

subgroup of G, and n ~  n~. Trivially b = x  +y ,  c = h ( b ) =  n~x +n~y are as 

required. 

7. PROOF or  TtmOREM 3. Let (Sa : a < ¢01) be a list of N~ pairwise disjoint 

non-small stationary subsets of ~, (see [2], or e.g. [1]) such that y 6 Sa @ a < y. 

Let {(ha, c.)  : a < to,} be a list of the pairs of ordinals smaller than ~o~, such that 

bo, ca<-_l+a. 

Now we define by induction on a < ~o~, for every ~ E a2, a group G.  such 

that: 

(1) G.  is a free (abelian) group with universe co(1 + a ) =  ~0(1 + 1(~)), 

(2) if. v = ~ r/3 then G~ is a pure subgroup of (7., 

(3) if v = ~ r(B + 1) then G,,/G~ is free, also G.,/G.,~ is free, 

(4) if a E S,, a limit, ~ ~ "2, 

then there are no homomorphisms ht : G.~o---> G.^~,>, ho [ (7. = h~ [ G. ,  h~(b,) = 

c~, except when mc~ = nb, for some m, n ~ Z-{0},  also if G.^a> C G', G'/G.^t,> 

~lrfree, h an endomorphism of G' ,  h maps G.  to G.  then h maps G~^,> into 

G ~ ^ ( l )  • 

There is no problem in the definition; for (4) use the claim. 

For each a, let Fa be the following function: If 6<to~ ,  to6 = 6, r / ~ 2 ,  

h : ~5 --> ~5, h an endomorphism of G~ into G~, h(ba) = c~ and h can be extended 

to an endomorphism of G,^<o>, then Fa(*l, h)  = 1, otherwise Fa(*/, h)  = 0. 

By [2] there are v~ E '~,2, such that for every h :to~---~ ta~, 71 ~ °'~2, the set 

{8 E S~ : F~(~ r & h [ 8) = v~(8)} is stationary (because Sa is not small). 

Let v ~ , 2  be defined such that i ES~ ~ v ( i ) =  v~(i). Suppose h is an 

endomorphism of G~, such that for no n is h ( x )  = nx for every x E G~. By Fact 

6, h (b )  = c, b, c with no common multiple ~ 0, for some b, c E G~. For some a, 

(ha, ca )=  (b, c) (as {(ba, c~):a < to~} list all pairs of ordinals < to~). Also S * =  
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{8 : h maps 8 into 8, to6 = 8} is a closed unbounded set of to~. On the other hand, 

S* = { S E S o  :Fa(vrS, h 1'8)= vo(8)} is stationary. So there is 8 E S *  A S * .  

Now h I' 8 is an endomorphism of G~t~ ; it can be extended to an endomorphism 

of G.ns+l) = G.~<.ts)~. What is v(8)? If it is zero, then Fo(v 1 8, h [ 8) = 1 (by its 

definition) hence v~(8) = 1 (as 8 E S* A S*), but v(8) = vo(8) as 8 E S~, con- 

tradiction. If, on the other hand, v(8) = 1 then h F G~r~ can be extended to an 

endomorphism of some G ' D  G.r~+, = G~r~^<, (use G.), and also of some 

G ' D  G.r~^<0> (as 1 = v(8) = v~(8) = F.(v r 8, h r 8) and the definition of F.) .  This 
contradicts (4) in the requirements on the G, 's .  

We can now ask: when does this proof generalize to cardinals A > N1 ? For 

example: 

8. THEOREM. Suppose 

(i) A is a regular cardinal > No, 
(ii) S C_ {8 < A : cf 8 = No}, 

(iii) S is not small (hence stationary, see [2]), 

(iv) S has no initial segment stationary (but is stationary). 
Then there is a strongly A -free abelian group of power h which is endo-rigid. 

9.. REMARK. (A) So in the proof G = U,<~ Gj, G~ increasing continuous, each 
G~ free a n d i < j A i ~ S  ~ Gj/G~ is free. 

(B) In the proof of 8 we need A disjoint non-small subsets of S. Let 

B = U , a ( 8 ,  n), a(8, n )<a(8 ,  n + l )  for 8 E S ,  then for some n for A ao'S, 
{8:a(8 ,  n ) =  ao} is not small; otherwise use the normality of the ideal of 

non-small subsets of A. (This proof is well known and appears in Solovay [9].) 

(C) If G.C.H., A =/~+, c f / ~  No, we can omit (iii) ( =  non-smallness) as by 
Gregory [6] and Shelah [8] O * { 8 < A : c f S ~ c f / z }  holds, hence for every 
stationary S _C A, (V8 E S) cf 8 ~  cf/~, Os holds, hence S is not small (see [2]). 
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