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We continue investigations of reasonable ultrafilters on uncountable cardinals defined in Shelah [8]. We intro-
duce a general scheme of generating a filter on λ from filters on smaller sets and we investigate the combina-
torics of objects obtained this way.
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0 Introduction

Reasonable ultrafilters were introduced in Shelah [8] in order to suggest a line of research that would in some
sense repeat the beautiful theory created around the notion of P -points on ω. The definition of reasonable ultrafil-
ters involves two conditions. The first one, called the weak reasonability of an ultrafilter, is a way to guarantee that
we are not entering the realm of large cardinals: the considered ultrafilter is required to be very non-normal. Since
this property will be also of some interest in the present paper, let us recall the following definition and observa-
tion.

Definition 0.1 (Shelah [8, Definition 1.4])

1. We say that a uniform ultrafilter D on λ is weakly reasonable if for every non-decreasing unbounded func-
tion f ∈ λλ there is a club C of λ such that⋃

{[δ, δ + f(δ)) : δ ∈ C} /∈ D.

2. Let D be an ultrafilter on λ, C ⊆ λ be a club, and let 〈δξ : ξ < λ〉 be the increasing enumeration of C ∪ {0}.
We define

D/C = {A ⊆ λ :
⋃

ξ∈A[δξ, δξ+1) ∈ D}.

(It is an ultrafilter on λ.) D/C will be called the quotient of D by C.

Observation 0.2 (Shelah [8, Observation 1.5]) Let D be a uniform ultrafilter on a regular uncountable car-
dinal λ. Then the following conditions are equivalent:
(A) D is weakly reasonable.
(B) For every increasing continuous sequence 〈δξ : ξ < λ〉 ⊆ λ there is a club C∗ of λ such that⋃

{[δξ, δξ+1) : ξ ∈ C∗} /∈ D.

(C) For every club C of λ the quotient D/C does not extend the filter generated by clubs of λ.
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The second part of the definition of reasonable ultrafilters is directly related to generalizing P -points to the
context of weakly reasonable ultrafilters on an uncountable cardinal λ. To carry out this process we have to be
somewhat creative in re-interpreting the property that any countable family of members of the ultrafilter has a
pseudo-intersection in the ultrafilter. An interesting way of doing this is to impose some demands on how the ul-
trafilter on λ can be obtained from λ-sequences of objects on smaller cardinals (this approach was motivated by
Rosłanowski and Shelah, see [4, §§5, 6].) For instance we may consider sequences r = 〈(αξ, dξ) : ξ < λ〉 such
that 〈αξ : ξ < λ〉 is an increasing continuous sequence of ordinals below λ and dξ is an ultrafilter on the inter-
val [αξ, αξ+1). For each such sequence r we look at the family of subsets of λ which are eventually large in every
interval [αξ, αξ+1), that is, we consider the set

fil(r) = {A ⊆ λ : (∃ζ < λ)(∀ξ > ζ)(A ∩ [αξ, αξ+1) ∈ dξ)}.

(The set fil(r) is a filter on λ.) There is a natural quasi-order on sequences r as above: we say that r ≤∗ s if and
only if fil(r) ⊆ fil(s). Now the demand generalizing P -pointness may be phrased for an ultrafilter D on λ as fol-
lows: there is a (< λ+)-directed (with respect to ≤∗) family H such that D =

⋃
{fil(r) : r ∈ H}.

The ideas described above can be further generalized by allowing the use of arbitrary filters or just filters with
some special properties in place of ultrafilters dξ. This immediately leads to the general scheme of generating
filters on λ presented in our Definition 1.2.

This paper continues Shelah [8] and Rosłanowski and Shelah [3], but it is essentially self contained.

0.1 The content of the paper

In the first section we present our key definitions introducing systems of local filters and corresponding quasi-or-
ders Q∗

λ(F), Q0
λ(F). In Propositions 1.6, 1.8 we explain how those partial orders can be made (< λ+)-complete

(as we will be interested in directed subfamilies of Q∗
λ(F) and/or Q0

λ(F)). A directed subfamily H of Q∗
λ(F)

and/or Q0
λ(F) determines a filter fil(H) on λ. One of the basic questions is: how does the choice of H and/or of

the system of local filters F influence the properties of the filter fil(H)? Does the choice of F matter?
In Theorem 1.9 we show that ultrafilters generated by sufficiently directed generating systems are weakly rea-

sonable, unless they are produced from a measurable ultrafilter. This result can be used as an argument that our
re-interpretation of the P -pointness is very natural for weakly reasonable ultrafilters.

The second section is concerned with the full system Fult of local ultrafilters and the ultrafilters on λ generated
by H ⊆ Q∗

λ(Fult). We show (see Theorem 2.3) that there may be weakly reasonable ultrafilters on λ generated
by some H ′ ⊆ Q0

λ(F) which cannot be obtained by the use of Fult. Thus, in particular, the choice of the system
of local filters may be important. Then we introduce more properties of families H ⊆ Q∗

λ(Fult) which are useful
in generating ultrafilters on λ.

In the third section we introduce pararegular filters (Definition 3.1) and the full system of local pararegular
filters Fpr. It occurs that filters fil(r) for r ∈ Q0

λ(Fpr) are related to generating numbers (in standard sense) of fil-
ters on λ (see Corollary 3.6, Proposition 3.8).

The referee of Shelah’s paper [8] requested that the importance of the inaccessibility of λ in the assumptions
of [8, Proposition 1.6(1)] is clarified. We pay this debt in the last section of the present paper and we show that
one does need the assumption that λ is inaccessible for that result: Theorem 4.8 shows that consistently there is
a very reasonable ultrafilter D on ω1 such that Odd has a winning strategy in �D.

Notation 0.3 Our notation is rather standard and compatible with that of classical textbooks (like Jech [1]).
1. Ordinal numbers will be denoted by the lower case initial letters of the Greek alphabet (α, β, γ, δ, . . .) and

also by i, j (with possible sub- and superscripts). Cardinal numbers will be called κ, λ, µ (with possible sub- and
superscripts). λ is always assumed to be an uncountable regular cardinal.

2. For two sequences η, ν we write ν � η whenever ν is a proper initial segment of η, and ν � η when ei-
ther ν � η or ν = η. The length of a sequence η is denoted by lh(η).

3. We will use letters D, E, F , and d (with possible indexes) to denote filters on various sets. Typically, D will
be a filter on λ (possibly an ultrafilter), while E,F will stand for filters on smaller sets. Also, in most cases d
will be an ultrafilter on a set of size less than λ.

For a filter F of subsets of a set A, the family of all F -positive subsets of A is called F+. (So B ∈ F+ if and
only if B ⊆ A and B ∩ C 
= ∅ for all C ∈ F .)
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4. In forcing we keep the older convention that a stronger condition is the larger one. For a forcing notion P,
ΓP stands for the canonical P-name for the generic filter in P. With this one exception, all P-names for objects in
the extension via P will be denoted with a tilde below (e. g. τ

˜
, X
˜

).

1 Generating a filter from systems of local filters

Here we present the general scheme of generating a filter on a regular uncountable cardinal λ by using smaller
filters. Our approach is slightly different from the one in [8, §2] and/or [3, §1], but the difference is notational only
(see Remark 1.3 below).

Definition 1.1
1. A system of local filters on λ is a family F such that

(a) all members of F are triples (α, Z, F ) such that Z ⊆ λ, |Z| < λ, α = min(Z), and F is a proper filter
on Z;

(b) the set {α < λ : (∃Z,F )((α, Z, F ) ∈ F)} is unbounded in λ.
If above for each (α, Z, F ) ∈ F , the set Z is infinite and F is a non-principal ultrafilter on Z, then we say that F is
a system of local non-principal ultrafilters.

2. More generally, if Ψ is a property of filters, then a system of local Ψ-filters on λ is a system of local filters F
such that for every (α, Z, F ) ∈ F , the filter F has the property Ψ. The full system of local Ψ-filters is the family of
all triples (α, Z, F ) such that α < λ, α ∈ Z ⊆ λ \ α, |Z| < λ, and F is a proper filter on Z with the property Ψ
(assuming that it forms a system of local filters). The full system of local non-principal ultrafilters on λ is denoted
by Fult

λ or just Fult (if λ is understood).
The next definition introduces the filters generated by some families of local filters. As we said in the intro-

duction, our motivations have roots in forcings with norms and this suggested us to use sometimes a forcing-like
notation (e. g. Q∗

λ) similar to that of [4]. It is also worth noticing that some families of generators may be used as
forcing notions – for instance (Q0

λ,≤∗) is the forcing used in the end of [3, Section 1].
Definition 1.2 Let F be a system of local filters on λ.
1. We let Q∗

λ(F) be the family of all sets r ⊆ F such that

(∀ξ < λ)(|{(α, Z, F ) ∈ r : α = ξ}| < λ) and |r| = λ.

For r ∈ Q∗
λ(F) we define

fil(r) = {A ⊆ λ : (∃ε < λ)(∀(α, Z, F ) ∈ r)(ε ≤ α ⇒ A ∩ Z ∈ F )},

and we define a binary relation ≤∗ = ≤∗
F on Q∗

λ(F) by

r1 ≤∗
F r2 if and only if (r1, r2 ∈ Q∗

λ(F) and) fil(r1) ⊆ fil(r2).

2. We say that r ∈ Q∗
λ(F) is strongly disjoint if and only if

(a) (∀ξ < λ)(|{(α, Z, F ) ∈ r : α = ξ}| < 2), and
(b) (∀(α1, Z1, F1), (α2, Z2, F2) ∈ r)(α1 < α2 ⇒ Z1 ⊆ α2).

We let Q0
λ(F) be the collection of all strongly disjoint elements of Q∗

λ(F).
3. We write Q∗

λ, Q0
λ for Q∗

λ(Fult), Q0
λ(Fult), respectively (where, remember, Fult is the full system of local

non-principal ultrafilters).
4. For a set H ⊆ Q∗

λ(F) we let fil(H) =
⋃
{fil(r) : r ∈ H}.

Remark 1.3
1. Note that if r ∈ Q0

λ, then there is r′ ∈ Q0
λ such that fil(r′) = fil(r) and for some club C of λ we have

{(α, Z) : (∃d)((α, Z, d) ∈ r′)} = {(α, [α, β)) : α ∈ C & β = min(C \ (α + 1))}.

Thus Q0
λ is essentially the same as the one defined in [8, Definition 2.5].

2. If H ⊆ Q∗
λ(F) is ≤∗-directed, then D = fil(H) is a filter on λ which extends the filter of co-bounded sets.

We may say that the filter D is generated by H or that H is the generating system for D.
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Definition 1.4 Suppose that
(a) X is a non-empty set and F is a filter on X ,
(b) Fx is a filter on a set Zx (for x ∈ X).

We let ⊕F
x∈X Fx = {A ⊆

⋃
x∈X Zx : {x ∈ X : Zx ∩ A ∈ Fx} ∈ F}.

(Clearly,
⊕F

x∈X Fx is a filter on
⋃

x∈X Zx.) If X is a linearly ordered set (e. g. it is a set of ordinals) with no maxi-
mal element and F is the filter of all co-bounded subsets of X , then we will write

⊕
x∈X Fx instead of

⊕F
x∈X Fx.

Proposition 1.5 (Cf. [8, Proposition 2.9])
1. Let F be a system of local filters on λ and p, q ∈ Q∗

λ(F). Then p ≤∗ q if and only if there is ε < λ such that

(∀(α, Z, F ) ∈ q)(∀A ∈ F+)(α > ε ⇒ (∃(α′, Z ′, F ′) ∈ p)(A ∩ Z ′ ∈ (F ′)+)).

2. Let p, q ∈ Q∗
λ. Then the following are equivalent:

(a) p ≤∗ q.
(b) There is ε < λ such that

(∀(α, Z, d) ∈ q)(∀A ∈ d)(α > ε ⇒ (∃(α′, Z ′, d′) ∈ p)(A ∩ Z ′ ∈ d′)).

(c) There is ε < λ such that if (α, Z, d) ∈ q, ε ≤ α, and X = {(ξ, Z ′, d′) ∈ p : Z ′ ∩ Z 
= ∅}, then X 
= ∅
and there is an ultrafilter e on X such that

d = {A ∩ Z : A ∈
⊕e{d′ : (∃ξ, Z ′)((ξ, Z ′, d′) ∈ X)}}.

The quasi-orders (Q∗
λ,≤∗) and (Q0

λ,≤∗) are (< λ+)-complete (cf. [8, Proposition 2.3(3)]). Moreover, by es-
sentially the same argument we may show the following observation.

Proposition 1.6 Assume that F is a system of local filters on λ such that

(⊕)sum
F if κ < λ is an infinite cardinal and a sequence 〈(αξ, Zξ, Fξ) : ξ < κ〉 ⊆ F

satisfies (∀ξ < ζ < κ)(Zξ ⊆ αζ), then for some uniform filter F on κ we
have (α0,

⋃
ξ<κ Zξ,

⊕F
ξ<κ Fξ) ∈ F .

Then both Q∗
λ(F) and Q0

λ(F) are (< λ+)-complete (with respect to ≤∗).
It is worth noticing that in general Q∗

λ(F) and/or Q0
λ(F) do not have to be even σ-complete. For instance,

consider the full system of co-bounded filters F0; it consists of all triples (α, Z, F ) such that α ∈ Z ⊆ λ \ α,
|Z| < λ, sup(Z) /∈ Z, and F is the filter of all co-bounded subsets of Z. Let C consist of all ordinals α < λ divi-
sible by ω · ω, and for α ∈ C and m < ω let Zα

m = [α + m · ω, α + m · ω + ω) and Fα
m be the filter of co-boun-

ded subsets of Zα
m. For n < ω put

pn = {(α + m · ω, Zα
m, Fα

m) : α ∈ C & 0 < m < ω & 2n | m}.

Clearly pn ∈ Q0
λ(F0) and pn ≤∗ pn+1 for all n < ω. One may easily verify that the sequence 〈pn : n < ω〉 has

no ≤∗-upper bound in Q∗
λ(F0).

There is a natural procedure which for a given system F of local filters on λ generates a system F∗ ⊇ F sat-
isfying the condition (⊕)sum

F of Proposition 1.6 (so then Q∗
λ(F∗) and Q0

λ(F∗) are suitably complete).
Definition 1.7 Assume that

(a) F is a system of local filters on λ,
(b) Ē = 〈Eκ : κ is a cardinal and ℵ0 ≤ κ < λ〉, where each Eκ is a uniform filter on κ.

We define:
1. An (Ē,F)-block is a pair (T, D̄) such that

(i) T ⊆ <ωλ is a well-founded tree;
(ii) if η ∈ T \ max(T ), then {ξ < λ : η�〈ξ〉 ∈ T} = κ for some infinite cardinal κ < λ;
(iii) D̄ = 〈(αη, Zη, Fη) : η ∈ max(T )〉 ⊆ F ;
(iv) if η, ν ∈ max(T ) and η <lex ν, then Zη ⊆ αν (where <lex is the lexicographic order of T ).
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2. For an (Ē,F)-block (T, D̄) we define a filter D̄(T ) on
⋃
{Zη : η ∈ max(T )} by induction on the rank of

the tree T (where D̄ = 〈(αη, Zη, Fη) : η ∈ max(T )〉).
(i) If rk(T ) = 0, i. e., T = {〈〉}, then D̄(T ) = F〈〉.

(ii) Suppose rk(T ) > 0. Let κ = {ξ < λ : 〈ξ〉 ∈ T} (so ℵ0 ≤ κ < λ is a cardinal). For ξ < κ we put

T ξ = {ν ∈ <ωλ : 〈ξ〉�ν ∈ T} and D̄ξ = 〈(αη, Zη, Fη) : η ∈ max(T ) & η(0) = ξ〉.

Plainly, each (T ξ, D̄ξ) is an (Ē,F)-block (and rk(T ξ) < rk(T )). We define

D̄(T ) =
⊕Eκ

ξ<κ D̄ξ(T ξ).

3. The Ē-closure of F is the family of all triples (α, Z, D) such that α < λ and for some (Ē,F)-block (T, D̄)
we have

Z =
⋃
{Zη : η ∈ max(T )} and D = D̄(T ) and α = min(Z)

(where D̄ = 〈(αη, Zη, Fη) : η ∈ max(T )〉).
Proposition 1.8 Assume that

(a) F is a system of local filters on λ,
(b) Ē = 〈Eκ : ℵ0 ≤ κ < λ and κ is a cardinal〉, where each Eκ is a uniform filter on κ.

Then the Ē-closure of F is a system of local filters extending F and satisfying the condition (⊕)sum
F of Proposi-

tion 1.6.
Suppose that a system F ′ of local filters on λ includes all triples (α, {α}, d), where α < λ and d is the principal

ultrafilter on {α}. For a set A ⊆ λ let pA = {(α, {α}, d) ∈ F ′ : α ∈ A} ∈ Q0
λ(F ′). Note that pA ∩ pB = pA∩B ,

so easily if D is a filter on λ extending the co-bounded filter, then HD def= {pA : A ∈ D} is a ≤∗-directed family
and fil(HD) = D. If D is a normal filter on λ, then HD will be also (< λ+)-directed (with respect to ≤∗). Con-
sequently, if λ is a measurable cardinal, then we may find a system F of local filters on λ and a (< λ+)-directed
family H ⊆ Q0

λ(F) such that fil(H) is an ultrafilter including all club subsets of λ (so fil(H) is not weakly rea-
sonable). However, to have a quite directed family H such that fil(H) is a non-reasonable ultrafilter we do need
a measurable cardinal.

Theorem 1.9 Suppose that F is a system of local filters on λ, κ ≤ λ, and H ⊆ Q∗
λ(F) is a (< κ)-directed

family such that fil(H) is an ultrafilter. If fil(H) is not weakly reasonable, then for some club C∗ of λ the quotient
ultrafilter fil(H)/C∗ is (< κ)-complete and it contains all clubs of λ.

P r o o f. Assume that the family H ⊆ Q∗
λ(F) is (< κ)-directed and fil(H) is an ultrafilter which is not weakly

reasonable. Let δ̄ = 〈δξ : ξ < λ〉 be an increasing continuous sequence of ordinals below λ such that δ0 = 0 and
for every club C ⊆ λ we have that

⋃
{[δξ, δξ+1) : ξ ∈ C} ∈ fil(H). Now for a club C of λ and p ∈ H put

S(p, C) = {ξ ∈ C : (∃(α, Z, F ) ∈ p)([δξ, δξ+1) ∩ Z ∈ F+)}.

Claim 1.9.1 For every club C ⊆ λ and p ∈ H , the set S(p, C) is stationary.

P r o o f. Assume towards contradiction that S(p, C) is non-stationary. So we may choose a club C ′ ⊆ C of λ
such that

(∗)1 (∀ξ ∈ C ′)(∀(α, Z, F ) ∈ p)(Z \ [δξ, δξ+1) ∈ F ).

Pick a club C ′′ ⊆ C ′ such that

(∗)2 (∀(α, Z, F ) ∈ p)(∀ξ ∈ C ′′)(α < δξ ⇒ Z ⊆ δξ).

By the choice of δ̄ we know that
⋃
{[δξ, δξ+1) : ξ ∈ C ′′} ∈ fil(H), so necessarily⋃

{[δξ, δξ+1) : ξ ∈ C ′′} ∈ (fil(p))+.

Therefore we may pick (α, Z, F ) ∈ p and ξ ∈ C ′′ such that Z ∩ [δξ, δξ+1) ∈ F+ (remember (∗)2), contradict-
ing (∗)1. � (Claim 1.9.1)
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Claim 1.9.2
1. If p ≤∗ q, p, q ∈ H , and C ′ ⊆ C are clubs of λ, then |S(q, C ′) \ S(p, C)| < λ.
2. If A ⊆ λ, then there are p ∈ H and a club C ⊆ λ such that either S(p, C) ⊆ A or S(p, C) ⊆ λ \ A.

P r o o f.
1. Pick γ < λ so that

(∀(α, Z, F ) ∈ q)(∀A ∈ F+)(α > γ ⇒ (∃(α′, Z ′, F ′) ∈ p)(A ∩ Z ′ ∈ (F ′)+))

(remember Proposition 1.5) and let γ∗ < λ be such that

γ < γ∗ and (∀(α, Z, F ) ∈ q)(α ≤ γ ⇒ Z ⊆ γ∗).

Suppose that ξ ∈ S(q, C ′) \ γ∗. Then ξ ∈ C ′ ⊆ C and there exists (α, Z, F ) ∈ q such that [δξ, δξ+1) ∩ Z ∈ F+.
Since δξ ≥ ξ ≥ γ∗, we also have α > γ and hence there is (α′, Z ′, F ′) ∈ p such that

[δξ, δξ+1) ∩ Z ∩ Z ′ ∈ (F ′)+.

Hence we may conclude that ξ ∈ S(p, C).
2. Assume A ⊆ λ. Let A∗ =

⋃
{[δξ, δξ+1) : ξ ∈ A}. Since fil(H) is an ultrafilter, then either A∗ or λ \ A∗

belongs to it. Suppose A∗ ∈ fil(p) for some p ∈ H . Pick a club C ⊆ λ such that

(�) if (α, Z, F ) ∈ p and (sup(Z) + 1) ∩ C 
= ∅, then A∗ ∩ Z ∈ F .

Suppose ξ ∈ S(p, C), so ξ ∈ C and for some (α, Z, F ) ∈ p we have [δξ, δξ+1) ∩ Z ∈ F+. It follows from (�)
that A∗ ∩ Z ∈ F and therefore ξ ∈ A. Thus S(p, C) ⊆ A.

If λ \ A∗ ∈ fil(H), then we proceed in an analogous manner. � (Claim 1.9.2)

Let

D = {A ⊆ λ : |S(p, C) \ A| < λ for some p ∈ H and a club C ⊆ λ}.

By Claim 1.9.1, all members of D are stationary, and since H is directed we may use Claim 1.9.2, 1. to argue
that D is a filter on λ. By Claim 1.9.2, 2. we see that D is an ultrafilter on λ (so it also contains all clubs as its
members are stationary). Since H is (< κ)-directed and the intersection of < κ many clubs is a club, we may
conclude from Claim 1.9.2, 1. that D is a (< κ)-complete ultrafilter.

Let C∗ = {δξ : ξ < λ} (so it is a club of λ). To complete the proof of the theorem we are now going to show
that D = fil(H)/C∗. Since we already know that D is an ultrafilter, it suffices to show that S(p, C) ∈ fil(H)/C∗

for every p ∈ H and a club C ⊆ λ. So let C ⊆ λ be a club, p ∈ H , and let S∗ =
⋃
{[δξ, δξ+1) : ξ ∈ S(p, C)}.

If S∗ ∈ fil(H), then we are done, so assume S∗ /∈ fil(H). Since fil(H) is an ultrafilter and H is directed, we may
find q ∈ H such that p ≤∗ q and λ \ S∗ ∈ fil(q). Let γ < λ be such that

(∀(α, Z, F ) ∈ q)(γ ≤ sup(Z) ⇒ Z \ S∗ ∈ F ).

Since |S(q, C) \ S(p, C)| < λ, we may pick ξ ∈ S(q, C) ∩ S(p, C) such that ξ > γ. Then [δξ, δξ+1) ⊆ S∗ but
also there is (α, Z, F ) ∈ q such that [δξ, δξ+1) ∩ Z ∈ F+, and thus also S∗ ∩ Z ∈ F+. However,

sup(Z) ≥ δξ > γ,

so Z \ S∗ ∈ F by the choice of γ, a contradiction showing that S∗ ∈ fil(H) as required.

2 Systems of local ultrafilters

In this section we are interested in the full system Fult of local ultrafilters on λ and Q∗
λ, Q0

λ. The first question
that one may ask is whether weakly reasonable ultrafilters on λ generated by some H ⊆ Q0

λ(F) can be obtained
by the use of Q0

λ. It occurs that it does matter which system of local filters we are using.
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Definition 2.1 A filter F on a set Z is called an unultra filter if for every A ∈ F+ there is B ⊆ A such that
both B ∈ F+ and A \ B ∈ F+. The full system of local unultra filters on λ will be denoted by Funu. (Thus Funu

consists of all triples (α, Z, F ) such that ∅ 
= Z ⊆ λ, |Z| < λ, α = min(Z), and F is an unultra filter on Z.)
Observation 2.2
1. If F is an unultra filter on Z, A ∈ F+, then F + A

def= {B ⊆ Z : B ∪ (Z \ A) ∈ F} is an unultra filter.
2. Suppose that ξ is a limit ordinal, {Zζ : ζ < ξ} is a family of pairwise disjoint non-empty sets, Fζ is a filter

on Zζ ( for ζ < ξ). Then
⊕

ζ<ξ Fζ is an unultra filter on
⋃

ζ<ξ Zξ. (Remember the convention declared in the
last sentence of Definition 1.4.)

Theorem 2.3 Assume λ<λ = λ and 2λ = λ+. There exists a ≤∗-increasing sequence

〈pξ : ξ < λ+〉 ⊆ Q0
λ(Funu)

such that
(a) fil({pξ : ξ < λ+}) is a weakly reasonable ultrafilter on λ, but
(b) there is no p ∈ Q0

λ with fil(p) ⊆ fil({pξ : ξ < λ+}).

P r o o f. Fix enumerations
1. 〈Yζ : ζ < λ+ and ζ is limit〉 of all subsets of λ, and
2. 〈rζ : ζ < λ+ and ζ is limit〉 of Q0

λ, and
3. 〈δ̄ζ : ζ < λ+ and ζ is limit〉 of all the increasing continuous sequences δ̄ζ = 〈δζ

α : α < λ〉 of ordinals be-
low λ.
By induction on ξ < λ+ we choose pξ ∈ Q0

λ(Funu) so that the following conditions are satisfied for every limit
ordinal ζ < λ+.

(o) For n < ω, the element pn ∈ Q0
λ(Funu) is

{(α, Zα, Fα) : α < λ is limit, Zα = [α, α + ω), and Fα is the filter of co-finite subsets of Zα}.

(i) If cf(ζ) < λ, then for some increasing and cofinal in ζ sequence 〈ζi : i < cf(ζ)〉, for every (α, Z, F ) ∈ pζ ,
there is a sequence 〈(αi, Zi, Fi) : i < cf(ζ)〉 such that

1) (αi, Zi, Fi) ∈ pζi ;
2) Zi ⊆ αj for i < j < cf(ζ);
3) Z =

⋃
i<cf(ζ) Zi, and F =

⊕
{Fi : i < cf(ζ)}.

(ii) If cf(ζ) = λ, then for some increasing and cofinal in ζ sequence 〈ζi : i < λ〉, we have:

if (α, Z, F ) ∈ pζ and otp({α′ < α : (∃Z ′, F ′)((α′, Z ′, F ′) ∈ pζ)}) = j,
then (α, Z, F ) ∈ pζj

and (∀i < j)(∀A ∈ F+)(∃(β, W, D) ∈ pζi
)(A ∩ W ∈ D+).

(iii) If |{(α, Z, F ) ∈ pζ : Yζ ∩ Z ∈ F+}| = λ, then

pζ+1 = {(α, Z, F + [Yζ ∩ Z]) : (α, Z, F ) ∈ pζ & Yζ ∩ Z ∈ F+},

and otherwise pζ+1 = {(α, Z, F ) ∈ pζ : Z \ Yζ ∈ F}.
(iv) pζ+2 ⊆ pζ+1 and for some club C of λ, for every β ∈ C we have:

1) Z ⊆ δζ
β whenever (α, Z, F ) ∈ pζ+2, α < δζ

β ;

2) δζ
β+1 < min(α ≥ δζ

β : (∃Z,F )((α, Z, F ) ∈ pζ+2)).

(v) pζ+3 = {(α, Z, F + Aα) : (α, Z, F ) ∈ pζ+2}, where for every (α, Z, F ) ∈ pζ+2 the set Aα ∈ F+ is such
that (∀(β, Y, d) ∈ rζ)(Aα ∩ Y /∈ d).
(vi) pζ+3+n = pζ+3 for all n < ω.
(vii) For every r ∈ Q0

λ and ξ < λ+, if (α, Z, F ) ∈ pξ and A ∈ F+, then there is A′ ⊆ A such that

A′ ∈ F+ and (∀(β, Y, d) ∈ r)(A′ ∩ Y /∈ d).
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Conditions (o) – (vi) fully describe how the construction is carried out and Proposition 1.5, Observation 2.2 im-
ply that 〈pξ : ξ < λ+〉 ⊆ Q0

λ(Funu) is ≤∗-increasing. However, we have to argue that the demand in (vii) is sat-
isfied, as it is crucial for the possibility of satisfying the demand in (v). Let r ∈ Q0

λ. By induction on ξ < λ we
show that for every (α, Z, F ) ∈ pξ we have:

(�)(α,Z,F ) if A ∈ F+, then there is A′ ⊆ A such that A′ ∈ F+ and (∀(β, Y, d) ∈ r)(A′ ∩ Y /∈ d).

(For a set A′ as above we will say that it works for F and r.)
S t e p ξ < ω.
Note that for each limit ordinal α < λ there is at most one (β, Y, d) ∈ r such that Y ∩ [α, α + ω) is infinite.

Assume A ⊆ [α, α + ω) is infinite. Considering any two disjoint infinite sets A′, A′′ ⊆ A we easily see that one
of them must work for the filter of co-finite subsets of [α, α + ω) and r.

S t e p ξ = ζ + n + 1, ζ < λ+ is limit, n < ω.
If (α, Z, F ) ∈ pζ+n, A ∈ F+, A ⊆ A∗, and A′ ⊆ A works for F and r, then also A′ works for F + A∗ and r.
S t e p ξ = ζ < λ+ is limit.
Suppose that (α, Z, F ) ∈ pζ . If cf(ζ) = λ, then (α, Z, F ) ∈ pξ′ for some ξ′ < ζ (see (ii)) so the inductive hy-

pothesis applies directly. So assume cf(ζ) < λ. Then Z =
⋃

i<cf(ζ) Zi and F =
⊕

{Fi : i < cf(ζ)} for some
sequence 〈(αi, Zi, Fi) : i < cf(ζ)〉 such that

1. (�)(αi,Zi,Fi) holds for each i < cf(ζ);
2. Zi ⊆ αj for i < j < cf(ζ).

Let α∗ = sup(Z) and let A ∈ F+. Now we consider three cases.
C a s e A: For some α′ < α∗ we have (∀(β, Y, d) ∈ r)(Y ∩ [α′, α∗) = ∅).
Plainly, the set A′ = A \ α′ works for F and r.
C a s e B: For some (β, Y, d) ∈ r we have β < α∗ ≤ sup(Y ).
For each i < cf(ζ) such that A ∩ Zi ∈ (Fi)+ choose disjoint sets A0

i , A
1
i ∈ (Fi)+ included in A ∩ Zi (re-

member each Fi is an unultra filter) and let

A� =
⋃
{A�

i : i < cf(ζ) & A ∩ Zi ∈ (Fi)+} \ β ⊆ A

(for � < 2). Both A0 ∈ F+ and A1 ∈ F+, and one of these two sets works for F and r.
C a s e C: For each α′ < α∗ there is (β, Y, d) ∈ r such that α′ < β < sup(Y ) < α∗.
Let A ∈ F+. Then the set I = {i < cf(ζ) : A ∩ Zi ∈ (Fi)+} is unbounded in cf(ζ). Using the assumptions

of the current case we may choose an increasing sequence 〈ij : j < cf(ζ)〉 ⊆ I such that for every (β, Y, d) ∈ r
there is at most one j < cf(ζ) such that Zij

∩ Y 
= ∅. For each j < cf(ζ) pick A′
ij
∈ (Fij

)+ included in A ∩ Zij

which works for Fij
and r, and then put A′ =

⋃
j<cf(ζ) A′

ij
.

Problem 2.4 Is it provable in ZFC that for some system F of local filters on λ there exists a ≤∗-directed fami-
ly H ⊆ Q∗

λ(F) such that
(a) fil(H) is a weakly reasonable ultrafilter on λ, but
(b) there is no ≤∗-directed family H ′ ⊆ Q0

λ(Fult) such that fil(H) = fil(H ′)?
The assumption that a generating system H ⊆ Q∗

λ(F) is directed is an easy way to ensure that fil(H) is a filter
on λ. However, if we work with H ⊆ Q∗

λ we may consider alternative ways of guaranteeing this.
Definition 2.5 For p ∈ Q∗

λ let

Σ(p) = {(α, Z, d) ∈ Fult : (∀A ∈ d)(∃(α′, Z ′, d′) ∈ p)(A ∩ Z ′ ∈ d′)}.

Observation 2.6
1. If p, q ∈ Q∗

λ, then p ≤∗ q if and only if |q \ Σ(p)| < λ.
2. If p ∈ Q∗

λ and (α, Z, d) ∈ Σ(p), then for some {(αx, Zx, dx) : x ∈ X} ⊆ p and an ultrafilter e on X we
have

d = {A ⊆ Z : A ∩
⋃

x∈X Zx ∈
⊕e{dx : x ∈ X}}.
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Definition 2.7 We say that a non-empty family H ⊆ Q∗
λ is

(a) big if for each D ⊆ Fult there is q ∈ H such that either q ⊆ D or q ∩ D = ∅;
(b) linked if for each p0, . . . , pn ∈ H , n < ω, we have

|{α : (∃Z, d)((α, Z, d) ∈ Σ(p0) ∩ · · · ∩ Σ(pn))}| = λ.

The property introduced in Definition 2.7(a) resembles the bigness of creating pairs (cf. [4, Section 2.2]), so the
use of the term “big” seemed natural. The name “linked” is motivated by Observation 2.8, 1. below.

Observation 2.8
1. If H ⊆ Q∗

λ is linked, then
(a) for each p0, . . . , pn ∈ H , n < ω, there is q ∈ Q∗

λ which is ≤∗-above all p0, . . . , pn;
(b) fil(H) has the finite intersection property.

2. If H ⊆ Q∗
λ is linked and big, then fil(H) is an ultrafilter on λ.

For basic information on the ideal Mλ
λ,λ of meager subsets of λλ and its covering number we refer the reader

e. g. to Matet, Rosłanowski, and Shelah [2, §4]. Let us recall the following definition.
Definition 2.9
1. The space λλ is endowed with the topology obtained by taking as basic open sets ∅ and Os for s ∈ <λλ,

where Os = {f ∈ λλ : s ⊆ f}.
2. The (< λ+)-complete ideal of subsets of λλ generated by nowhere dense subsets of λλ is denoted by Mλ

λ,λ.

3. cov(Mλ
λ,λ) is the minimal size of a family A ⊆ Mλ

λ,λ such that
⋃
A = λλ.

Theorem 2.10 Assume that λ = λ<λ ≥ ℵ1 and cov(Mλ
λ,λ) = 2λ. Then there exists a linked and big fami-

ly H ⊆ Q0
λ such that fil(H) is a weakly reasonable ultrafilter.

P r o o f. The proof is very similar to that of [8, Theorem 2.14]. Let χ be a sufficiently large regular cardinal
and let N ≺ H(χ) be such that |N | = λ and <λN ⊆ N . Put Fult

N = Fult ∩ N . We will inductively construct a
linked and big family H included in Q0

λ(Fult
N ) ⊆ Q0

λ(Fult). The following two claims are the key points of the
inductive process. Below, “linked” means “linked as a subfamily of Q∗

λ” (i. e., it is the notion introduced in Defi-
nition 2.7(b)).

Claim 2.10.1 Assume that H0 ⊆ Q∗
λ(Fult

N ) is linked, |H0| < cov(Mλ
λ,λ), and D ⊆ Fult. Then there is

q ∈ Q0
λ(Fult

N ) ⊆ Q0
λ

such that H0 ∪ {q} is linked and either q ⊆ D or q ∩ D = ∅.

P r o o f. We consider two cases.
C a s e A: For every n < ω, p0, . . . , pn ∈ H0, and β < λ, there is

(α, Z, d) ∈ Σ(p0) ∩ · · · ∩ Σ(pn) ∩ D ∩ Fult
N

such that β < α.
Let T0 be the family of all sequences η such that

(i) lh(η) < λ;
(ii) if ξ < lh(η), then η(ξ) ∈ D ∩ Fult

N ;
(iii) if ξ < ξ′ < lh(η), η(ξ) = (α, Z, d), η(ξ′) = (α′, Z ′, d′), then Z ⊆ α′.

It follows from the assumptions of the current case that T0 is a λ-branching tree (remember |Fult
N | = λ). More-

over, for each p0, . . . , pn ∈ H0 we have

{� ∈ lim(T0) : (∃ζ < λ)(∀ξ > ζ)(�(ξ) /∈ Σ(p0) ∩ · · · ∩ Σ(pn))} ∈ Mλ
λ,λ.

Hence (as |H0| < cov(Mλ
λ,λ)) we may pick � ∈ lim(T0) such that for every p0, . . . , pn ∈ H0, n < ω, we have

|{ξ < λ : �(ξ) ∈ Σ(p0) ∩ · · · ∩ Σ(pn)}| = λ.

Let q = {�(ξ) : ξ < λ}. Then q ∈ Q0
λ(Fult

N ) ⊆ Q0
λ, H0 ∪ {q} is linked, and q ⊆ D.
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C a s e B: Not Case A.
Then for some p∗0, . . . , p

∗
m ∈ H0 and β < λ we have

(∀(α, Z, d) ∈ Σ(p∗0) ∩ · · · ∩ Σ(p∗m) ∩ Fult
N )(α > β ⇒ (α, Z, d) /∈ D).

It follows from the choice of N that if p0, . . . , pn ∈ Q∗
λ(Fult

N ) and (α, Z, d) ∈ Σ(p0) ∩ · · · ∩ Σ(pn), then there
are Z ′, d′ such that (α, Z ′, d′) ∈ Σ(p0) ∩ · · · ∩ Σ(pn) ∩ Fult

N .
Consequently, we may repeat arguments of the previous case replacing in clause (ii) D ∩ Fult

N by Fult
N \ D.

Then we obtain q ∈ Q0
λ(Fult

N ) ⊆ Q0
λ such that H0 ∪ {q} is linked and q ∩ D = ∅. � (Claim 2.10.1)

Claim 2.10.2 Assume that H0 ⊆ Q∗
λ(Fult

N ) ⊆ Q∗
λ is linked, |H0| < cov(Mλ

λ,λ), and 〈δξ : ξ < λ〉 ⊆ λ is an
increasing continuous sequence. Then there are p ∈ Q0

λ(Fult
N ) and a club C∗ of λ such that

(a) H0 ∪ {p} is linked;
(b)

⋃
{[δξ+1, δζ) : ξ < ζ are successive members of C∗} ∈ fil(p).

P r o o f. This is essentially [8, Claim 2.14.4]. � (Claim 2.10.2)

Now we employ a bookkeeping device to construct inductively a sequence 〈qξ : ξ < 2λ〉 ⊆ Q0
λ(Fult

N ) such
that

1. for each ζ < 2λ the family {qξ : ξ < ζ} is linked;
2. if D ⊆ Fult

N , then for some ξ < 2λ we have qξ ⊆ D or qξ ∩ D = ∅;
3. if 〈δξ : ξ < λ〉 ⊆ λ is increasing continuous, then for some ε < 2λ and a club C∗ of λ we have that⋃

{[δξ+1, δζ) : ξ < ζ are successive members of C∗} ∈ fil(qε).

Since |Fult
N | = λ, there are no problems with carrying out the construction. It should be clear that at the end the

family {qξ : ξ < 2λ} is linked, big, and it generates a weakly reasonable ultrafilter.

Note that we may modify the construction in the proof of Theorem 2.10 so that the resulting H is directed.
Namely, by an argument similar to the one in the proof of Claim 2.10.1 we may show that if H0 ⊆ Q∗

λ(Fult
N ) is

linked, |H0| < cov(Mλ
λ,λ), p0, p1 ∈ H0, then there is q ∈ Q0

λ(Fult
N ) such that q ⊆ Σ(p0) ∩ Σ(p1) and H0 ∪ {q}

is linked. With this claim we may modify the inductive choice of 〈qξ : ξ < 2λ〉 so that at the end {qξ : ξ < 2λ}
is directed. However, we do not know how to guarantee the opposite, that the family {qξ : ξ < 2λ} is not directed
or even better, that for no directed H ⊆ Q0

λ do we have fil(H) = fil({qξ : ξ < 2λ}). Thus the following question
remains open.

Problem 2.11 Does “H ⊆ Q0
λ is linked and big” imply that “H is directed”?

3 Systems of local pararegular filters

In this section we are interested in filters associated with the full system Fpr of local pararegular filters on λ and
we show their relation to numbers of generators (in standard sense) of some filters on λ.

Definition 3.1 Suppose that Z ⊆ λ is an infinite set, α = min(Z). A pararegular filter on Z is a filter F on Z
such that for some system 〈Au : u ∈ [κ]<ω〉 of sets from F we have:

1. |ω + α| ≤ κ < λ, and if u ⊆ v ∈ [κ]<ω, then Av ⊆ Au.
2. If U ⊆ κ is infinite, then

⋂
{A{ξ} : ξ ∈ U} = ∅.

3. F = {B ⊆ Z : (∃u ∈ [κ]<ω)(Au ⊆ B)}.
If the cardinal κ above satisfies 2|ω+α| ≤ κ < λ, then we say that the filter F is strongly pararegular.

The full system of local pararegular filters on λ will be denoted by Fpr and the full system of local strongly
pararegular filters on λ is denoted by F spr. (The latter forms a system of local filters if and only if λ is inaccessible
and then F spr ⊆ Fpr.)
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Let us recall the following strong λ+-chain condition.
Definition 3.2 (See Shelah [5, Definition 1.1] and [7, Definition 7]) Let Q be a forcing notion, and ε < λ be

a limit ordinal.
1. We define a game �cc

ε,λ(Q) of two players, Player I and Player II. A play lasts ε steps, and at each stage α < ε
of the play sequences p̄α, q̄α and a function ϕα are chosen so that:

(a) p̄0 = 〈∅Q : i < λ+〉, ϕ0 : λ+ −→ λ+, i �−→ 0.
(b) If α > 0, then Player I picks p̄α, ϕα such that

(i) p̄α = 〈pα
i : i < λ+〉 ⊆ Q satisfies (∀β < α)(∀i < λ+)(qβ

i ≤ pα
i );

(ii) ϕα : λ+ −→ λ+ is regressive, i. e., (∀i < λ+)(ϕα(i) < 1 + i).
(c) Player II answers choosing a sequence q̄α = 〈qα

i : i < λ+〉 ⊆ Q such that (∀i < λ+)(pα
i ≤ qα

i ).
If at some stage of the game Player I does not have any legal move, then he loses. If the game lasted ε steps,
Player I wins a play 〈p̄α, q̄α, ϕα : α < ε〉 if there is a club C of λ+ such that for each distinct members i, j of C
satisfying cf(i) = cf(j) = λ and (∀α < ε)(ϕα(i) = ϕα(j)), the set {qα

i : α < ε} ∪ {qα
j : α < ε} has an upper

bound in Q.
2. The forcing notion Q satisfies condition (∗)ε

λ if Player I has a winning strategy in the game �cc
ε,λ(Q).

Proposition 3.3 (See Shelah [5, Iteration Lemma 1.3] and [7, Theorem 35]) Let ε < λ be a limit ordinal, and
let λ = λ<λ. Suppose that Q̄ = 〈Pξ, Q

˜ ξ
: ξ < γ〉 is a (< λ)-support iteration such that �Pξ

“Q
˜ ξ

satisfies (∗)ε
λ”

for each ξ < γ. Then Pγ satisfies (∗)ε
λ.

Definition 3.4 Suppose that D is a uniform filter on λ. We define a forcing notion Q
pr
D by:

1. a condition is a tuple p = (ζp, 〈αp
ξ : ξ ≤ ζp〉, 〈Zp

ξ , F p
ξ : ξ < ζp〉,Ap) such that

(α) Ap ⊆ D, |Ap| < λ, ζp < λ;
(β) 〈αp

ξ : ξ ≤ ζp〉 is an increasing continuous sequence of ordinals below λ;

(γ) Zp
ξ = [αp

ξ , α
p
ξ+1) and F p

ξ is a pararegular filter on Zp
ξ ;

2. the order ≤Q
pr
D

= ≤ is given by p ≤ q if and only if (p, q ∈ Q
pr
D and)

(i) Ap ⊆ Aq, ζp ≤ ζq;
(ii) αq

ξ = αp
ξ for ξ ≤ ζp, and Zp

ξ = Zq
ξ , F q

ξ = F p
ξ for ξ < ζp;

(iii) if A ∈ Ap and ζp ≤ ξ < ζq, then A ∩ Zq
ξ ∈ F q

ξ .

Proposition 3.5 Assume λ<λ = λ and let D be a uniform filter on λ. Then we have:
1. Q

pr
D is a (< λ)-complete forcing notion of size 2λ.

2. Q
pr
D satisfies the condition (∗)ε

λ of Definition 3.2 for each limit ordinal ε < λ.
3. If r

˜
is a Q

pr
D -name such that

�Q
pr
D

r
˜

= {(αp
ξ , Z

p
ξ , F p

ξ ) : ξ < ζp & p ∈ ΓQ
pr
D
},

then �Q
pr
D

“r
˜
∈ Q0

λ(Fpr) and D ⊆ fil(r
˜
)”.

P r o o f.
1. Note that if α < β < λ, then there exist ≤

∑
κ<λ 2κ·|[α,β)| many pararegular filters on [α, β). Hence easi-

ly |Qpr
D | = 2λ.

If 〈pα : α < γ〉 ⊆ Q
pr
D is ≤Q

pr
D

-increasing, γ < λ, then letting

Aq =
⋃

α<γ Apα , ζq = sup(ζpα : α < γ), and
〈αq

ξ, Z
q
ξ , F q

ξ : ξ < ζq〉 =
⋃

α<γ〈α
q
ξ, Z

pα

ξ , F pα

ξ : ξ < ζpα〉,

we get a condition

q = (ζq, 〈αq
ξ : ξ ≤ ζq〉, 〈Zq

ξ , F q
ξ : ξ < ζq〉,Aq) ∈ Q

pr
D

stronger than all pα (for α < γ).
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2. Let X consist of all sequences 〈Zξ, Fξ : ξ < ζ〉 such that

〈Zξ, Fξ : ξ < ζ〉 = 〈Zp
ξ , F p

ξ : ξ < ζp〉

for some p ∈ Q
pr
D . By what we said earlier, |X | = λ, so we may fix an enumeration 〈σ̄α : α < λ〉 of X . Let st

be a strategy of Player I in the game �cc
ε,λ(Qpr

D ) which, at a stage α < ε of the play, instructs her to choose a legal
inning p̄α, ϕα such that if λ ≤ i < λ+, then

〈Zpα
i

ξ , F
pα

i

ξ : ξ < ζpα
i 〉 = σ̄ϕα(i).

(Note that there exist legal innings for Player I by the completeness of the forcing proved in 1. above.) Plainly,
if 〈p̄α, q̄α, ϕα : α < ε〉 is a play of �cc

ε,λ(Qpr
D ) in which Player I follows st and λ ≤ i < j < λ+ are such that for

all α < ε, ϕα(i) = ϕα(j), then the family {pα
i , pα

j : α < ε} has an upper bound. Thus st is a winning strategy
for Player I.

3. Suppose p ∈ Q
pr
D and let

κ = |Ap| + |ω + αp
ζp |.

Fix a sequence 〈Aβ : β < κ〉 listing all members of Ap ∪ {λ} (with possible repetitions) and let 〈uγ : γ < κ〉
be an enumeration of [κ]<ω. By induction on γ < κ choose an increasing sequence 〈ξγ : γ < κ〉 ⊆ [αp

ζp , λ) such
that ξγ ∈

⋂
β∈uγ

Aβ . (Remember, D is a uniform filter and κ < λ.) Let

ζq = ζp + 1, αq
ζq = sup(ξγ : γ < κ) + 1,

and for u ∈ [κ]<ω let Bu = {ξγ : u ⊆ uγ & γ < λ}. Then F q
ζp = {B ⊆ [αq

ζp , αq
ζq ) : (∃u ∈ [κ]<ω)(Bu ⊆ B)}

is a pararegular filter on [αq
ζp , αq

ζq ) and A ∩ [αq
ζp , αq

ζq ) ∈ F q
ζp for all A ∈ Aq. Hence, we may now take a condi-

tion q ∈ Q
pr
D stronger than p and such that Zq

ζp = [ζp, ζq), Ap = Aq. Then q � (αq
ζp , Zq

ζp , F q
ζp) ∈ r

˜
.

So we easily conclude that indeed �Q
pr
D

“r
˜
∈ Q0

λ(Fpr) and D ⊆ fil(r
˜
)” (remember the definition of the order

on Q
pr
D , specifically Definition 3.4, 2.(iii)).

Corollary 3.6 Assume λ<λ = λ, 2λ = λ+, 2λ+
= λ++. Then there is a (< λ)-complete λ+-cc forcing no-

tion P such that

�P “2λ = λ++ and if D is a uniform filter on λ generated by less than λ++ elements,
then D ⊆ fil(r) for some r ∈ Q0

λ(Fpr)”.

P r o o f. Using a standard bookkeeping argument build a (< λ)-support iteration Q̄ = 〈Pξ, Q
˜ ξ

: ξ < λ++〉
such that

1. for each ξ < λ++ we have that �Pξ
Q
˜ ξ

= Q
pr
D
˜

for some Pξ-name D
˜

for a uniform filter on λ;

2. if 〈A
˜

β : β < λ+〉 is a sequence of Pλ++-names for subsets of λ, then for some ξ < λ++ such that every A
˜

β

is a Pξ-name, we have

�Pξ
“if 〈A

˜
β : β < λ+〉 generates a uniform filter D on λ, then Q

˜ ξ
= Q

pr
D ”.

Now look at the limit Pλ++ = lim(Q̄) (and remember Propositions 3.5, 3.3).

Proposition 3.7 Assume that 2λ = λ+. Then there is a uniform ultrafilter D on λ which contains no fil(p)
for p ∈ Q∗

λ(Fpr).

P r o o f. First note that if F is a pararegular filter on Z, then for each β we have Z \ {β} ∈ F . Consequently,
if A ⊆ [λ]λ is a family with the finite intersection property, {[α, λ) : α < λ} ⊆ A, |A| ≤ λ, and p ∈ Q∗

λ(Fpr),
then we may choose A ⊆ λ such that

1. A ∪ {A} has the finite intersection property;
2. for each (α, Z, F ) ∈ p we have |Z ∩ A| ≤ 1 so also Z \ A ∈ F .
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Hence, by induction on ξ < λ+, we may choose a sequence 〈Aξ : ξ < λ+〉 of unbounded subsets of λ such that
1. for ξ < λ, Aξ = [ξ, λ);
2. {Aξ : ξ < λ+} has the finite intersection property;
3. for every A ⊆ λ there is ξ < λ+ such that either Aξ ⊆ A or Aξ ∩ A = ∅;
4. for every p ∈ Q∗

λ(Fpr) there is ξ < λ+ such that λ \ Aξ ∈ fil(p).
Then D = {A ⊆ λ : Aξ0 ∩ · · · ∩ Aξn

⊆ A for some ξ0, . . . , ξn < λ+, n < ω} is an ultrafilter as required.

Proposition 3.8 Assume that
(a) there exists a λ-Kurepa tree with 2λ λ-branches;
(b) D is a uniform filter on λ;
(c) p ∈ Q0

λ(Fpr) is such that fil(p) ⊆ D;
(d) if λ is a limit cardinal, then it is strongly inaccessible and p ∈ Q0

λ(F spr).
Then the filter D cannot be generated by less than 2λ sets, i. e., for every family X ⊆ D of size less than 2λ there
is a set A ∈ D such that |X \ A| = λ for all X ∈ X .

P r o o f. Let T be a λ-Kurepa tree with 2λ λ-branches (so every level in T is of size < λ). For ξ < λ let Tξ

be the ξth level of T . Now choose an increasing continuous sequence 〈αξ : ξ < λ〉 such that if (α, Z, F ) ∈ p
and αξ ≤ α < αξ+1, then Z ⊆ αξ+1 and there is a system 〈Aα

u : u ∈ [κα]<ω〉 of sets from F which witnesses
that F is pararegular (strongly pararegular if λ is inaccessible) with κα satisfying |Tξ| ≤ κα. For every ξ < λ

and (α, Z, F ) ∈ p such that αξ ≤ α < αξ+1, let us fix an injection πα
ξ : Tξ

1-1−→ κα. Next for every λ-branch η

through T let us choose a set Aη ∈ D so that if ξ < λ, ν ∈ Tξ ∩ η, (α, Z, F ) ∈ p, αξ ≤ α < αξ+1, then we have
that Aη ∩ Z = Aα

{πα
ξ (ν)}. For our conclusion, it is enough to show that if B ∈ D, then there exist at most finitely

many λ-branches η through T such that |B \ Aη| < λ. So suppose towards contradiction η0, η1, η2, . . . are dis-
tinct λ-branches through T , B ∈ D, and |B \ Aηn

| < λ for each n < ω. The set {(α, Z, F ) ∈ p : B ∩ Z ∈ F+}
is of cardinality λ, so we may find ξ < λ and νn ∈ Tξ (for n < ω) such that

1. ηn ∩ Tξ = {νn} and νn 
= νm for distinct n, m;
2. B ∩ Z∗ ∈ (F ∗)+ for some (α∗, Z∗, F ∗) ∈ p satisfying αξ ≤ α∗ < αξ+1;
3. B \ αξ ⊆ Aηn for all n < ω.

Then ∅ 
= B ∩ Z∗ ⊆
⋂
{Aα

{πα
ξ (νn)} : n < ω}, a contradiction.

4 Forcing a very reasonable ultrafilter

Our goal here is to show that the inaccessibility of λ in the assumptions of [8, Proposition 1.6(1)] is needed. This
answers the request of the referee of [8] and fulfills the promise stated in [8, Remark 1.7]. Assuming that κ is
strongly inaccessible, we will construct a countable support iteration 〈Pα, Q

˜
α : α < κ〉 of proper forcing notions

such that

�Pκ
“there is a (≤ ω1)-directed family H ⊆ Q0

ω1
such that fil(H) is a weakly reasonable

ultrafilter on ω1 and yet Odd has a winning strategy in �fil(H)”.

Let us recall the following definition.
Definition 4.1 (Shelah [8, Definition 1.4]) Let D be a uniform ultrafilter on λ. We define a game �D between

two players, Odd and Even, as follows. A play of �D lasts λ steps and during a play an increasing continuous
sequence ᾱ = 〈αi : i < λ〉 ⊆ λ is constructed. The terms of ᾱ are chosen successively by the two players so
that Even chooses the αi for even i (including limit stages i, where she has no free choice) and Odd chooses αi

for odd i. Even wins the play if and only if
⋃
{[α2i+1, α2i+2) : i < λ} ∈ D.

The following result was shown in [8, Proposition 1.6].
Proposition 4.2 Assume D is a uniform ultrafilter on λ.
1. If λ is strongly inaccessible and Odd has a winning strategy in �D, then D is not weakly reasonable.
2. If D is not weakly reasonable, then Odd has a winning strategy in the game �D.
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Before we define our iteration 〈Pα, Q
˜

α : α < κ〉 let us introduce two main ingredients used in the construc-
tion.
Sealing the branches: At each stage of the iteration we will first use forcing notions that have been introduced

by Shelah in [6, Chapter XVII, §2].
For a tree T ⊆ <ω1ω1, the set of all ω1-branches through T will be denoted by lim(T ). Thus

lim(T ) = {η ∈ ω1ω1 : (∀α < ω1)(η � α ∈ T )}.

Lemma 4.3 (Shelah [6, Chapter XVII, Fact 2.2]) Suppose that T ⊆ <ω1ω1 is a tree of height ω1. Let C be
the Cohen forcing and L

˜
be a C-name for the Levy collapse of 2ℵ2 to ℵ1 (with countable conditions, so it is a

σ-closed forcing notion). Then �C∗L
˜

lim(T ) = (lim(T ))V.

Definition 4.4 (Shelah [6, Chapter XVII, Definition 2.3]) Suppose that T ⊆ <ω1ω1 is a tree of height ω1 such
that |T | = ℵ1 and | lim(T )| ≤ ℵ1. Let 〈Bi : i < ω1〉 list all members of lim(T ) (with possible repetitions), and
let 〈yi : i < ω1〉 list all elements of T so that yj � yi implies j < i. For j < ω1 we define

B∗
j =

{
Bi if j = 2i,

{yi} if j = 2i + 1
and B′

j = B∗
j \

⋃
i<j B∗

i .

Let w = {j < ω1 : B′
j 
= ∅} and for j ∈ w let xj = min(B′

j). Finally, we put A = {xi : i ∈ w}. We define a
forcing notion PT for sealing the branches of T :

1. a condition p in PT is a finite function from dom(p) ⊆ A into ω such that if �, ν ∈ dom(p) and � � ν,
then p(η) 
= p(ν);

2. the order ≤PT
of PT is the inclusion, i. e., p ≤ q if and only if p, q ∈ PT and p ⊆ q.

Lemma 4.5 (Shelah [6, Chapter XVII, Lemma 2.4]) Suppose that T ⊆ <ω1ω1 is a tree of height ω1 such
that |T | = ℵ1 and | lim(T )| ≤ ℵ1, and PT is the forcing notion for sealing the branches of T .

(a) PT satisfies the ccc.
(b) If G ⊆ PT is generic over V and V∗ is a universe of ZFC extending V[G] and (ℵ1)V

∗
= ℵV

1 (= (ℵ1)V[G]),
then V∗ � lim(T ) = (lim(T ))V.

Adding a bound to G ⊆ Q0
ω1

and a family U ⊆ P(ω1): After sealing the branches of a tree, we will force a new
member r∗ of our family H ⊆ Q0

ω1
at the same time making sure that some family U of subsets of ω1 is included

in fil(r∗).

Definition 4.6 Suppose that G ⊆ Q0
ω1

and U ⊆ P(ω1) are such that
(a) G ⊆ Q0

ω1
is ≤∗-directed;

(b) U0 ∩ · · · ∩ Un ∈ (fil(G))+ for every U0, . . . , Un ∈ U , n < ω.
We define a forcing notion Qbd(G,U) as follows:

1. a condition p in Qbd(G,U) is a triple (rp,Gp,Up) such that rp ⊆ Fult
ω1

is countable and strongly disjoint
(i. e., it satisfies the demands of Definition 1.2, 2.), Gp ⊆ G is countable, and Up ⊆ U is countable;

2. the order ≤ = ≤Qbd(G,U) is defined by p ≤ q if and only if (p, q ∈ Qbd(G,U) and) Up ⊆ Uq, Gp ⊆ Gq,
rp ⊆ rq, and for every (α, Z, d) ∈ rq \ rp we have that

(i) (∀(α′, Z ′, d′) ∈ rp)(Z ′ ⊆ α);
(ii) (∀r ∈ Gp)((α, Z, d) ∈ Σ(r)) (Σ(r) was defined in Definition 2.5);
(iii) (∀U ∈ Up)(U ∩ Z ∈ d).

We also define a Qbd(G,U)-name r
˜

by �Qbd(G,U) r
˜

=
⋃
{rp : p ∈ ΓQbd(G,U)}.

Lemma 4.7 Assume G ⊆ Q0
ω1

, U ⊆ P(ω1) satisfy demands (a), (b) of Definition 4.6. Then
1. Qbd(G,U) is a σ-closed forcing notion;
2. �Qbd(G,U) “r

˜
∈ Q0

ω1
and (∀r ∈ G)(r ≤∗ r

˜
) and U ⊆ fil(r

˜
)”.

www.mlq-journal.org c© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Sh:889



216 A. Rosłanowski and S. Shelah: Generating ultrafilters in a reasonable way

P r o o f.
1. Straightforward.
2. To argue that �Qbd(G,U) r

˜
∈ Q0

ω1
, suppose p ∈ Qbd(G,U). Let

{rn : n < ω} = Gp, {Un : n < ω} = Up

(we allow repetitions). Choose inductively (αm, Zm, dm) ∈ Fult
ω1

such that for m < ω we have
(a) (∀(α′, Z ′, d′) ∈ rp)(Z ′ ⊆ α0), Zm ⊆ αm+1;
(b) (αm, Zm, dm) ∈ Σ(r0) ∩ · · · ∩ Σ(rm);
(c) U0 ∩ · · · ∩ Um ∩ Zm ∈ dm.

[Why is the choice possible? Since G is directed, we may first choose s ∈ G such that r0, . . . , rm ≤∗ s. Then for
some β < ω1, if (α, Z, d) ∈ s and β ≤ α, then (α, Z, d) ∈ Σ(r0) ∩ · · · ∩ Σ(rm). By the assumption of Defini-
tion 4.6(b) on U we know that U0 ∩ · · · ∩ Um ∩ Z ∈ d for ω1 many (α, Z, d) ∈ s, so (αm, Zm, dm) ∈ s may be
chosen as required.]

After the above construction is carried out, pick any uniform ultrafilter e on ω and put

α = α0, Z =
⋃

m<ω Zm, and d =
⊕e

m<ω dm.

Then q = (rp ∪ {(α, Z, d)},Gp,Up) ∈ Qbd(G,U) is a condition stronger than p. Thus by an easy density argu-
ment we see that �Qbd(G,U) |r˜

| = ω1. The rest should be clear.

Let us recall that a very reasonable ultrafilter on λ is a weakly reasonable ultrafilter D such that D = fil(H)
for some (< λ+)-directed family H ⊆ Q0

λ (see [8, Definition 2.5(5)]). Now we may state and prove our result.
Theorem 4.8 Assume that κ is a strongly inaccessible cardinal. Then there is a κ-cc proper forcing notion P

such that

�P “there is a ≤∗-increasing sequence 〈rξ : ξ < ω2〉 ⊆ Q0
ω1

such that fil({rξ : ξ < ω2}) is a
very reasonable ultrafilter on ω1 but Odd has a winning strategy in the game �{rξ : ξ<ω2}”.

P r o o f. The forcing notion P will be obtained as the limit of a countable support iteration of proper forcing
notions

〈Pξ, Q
˜

ξ : ξ < κ〉.

The iteration will be built so that for each ξ < κ,

�Pξ
“Q
˜

ξ is a proper forcing notion of size < κ”,

so we will be sure that the intermediate stages Pξ and the limit Pκ will be proper and each Pξ (for ξ < κ) will have
a dense subset of cardinality < κ. Thus Pκ will satisfy κ-cc (and κ will not be collapsed). Since in the process of
iteration we will also collapse to ℵ1 all uncountable cardinals below κ, we will know that

�Pκ ℵ1 = (ℵ1)V & 2ℵ1 = ℵ2 = κ.

Thus we may set up a bookkeeping device that gives us a list 〈C
˜

ζ , A
˜

ζ , �
˜

ζ : ζ < κ〉 such that
1. C

˜
ζ is a Pζ-name for a club of ω1;

2. A
˜

ζ is a Pζ-name for a subset of ω1;
3. �

˜
ζ is a Pζ-name for a function from ω1 to ω1;

4. for each Pκ-name C
˜

for a club of ω1, for some ζ < κ we have �Pκ
C
˜

= C
˜

ζ , and similarly for names A
˜

for
subsets of ω1 and names �

˜
for elements of ω1ω1.

Before continuing let us set some terminology used later. A partial strategy is a function σ such that
1. dom(σ) ⊆ {η ∈ <ω1ω1 : lh(η) is an odd ordinal};
2. (∀ν ∈ dom(σ))(σ(ν) ∈ ω1 \ (sup(ν) + 1)).
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We say that a sequence η ∈ ≤ω1ω1 is played according to a partial strategy σ if
1. the sequence η is increasing continuous, and
2. for every odd ordinal α < lh(η) we have η � α ∈ dom(σ) and η(α) = σ(η � α).

If �, η ∈ ω1ω1 and η is played according to σ, then we say that η = σ[�] if

η(0) = �(0) and η(2α + 2) = η(2α + 1) + �(1 + α) + 1 for each α < λ.

Also, for an increasing sequence η ∈ ω1ω1 let

Uη =
⋃
{[η(2α), η(2α + 1)) : α < ω1}.

Now we will inductively choose Q
˜

ξ and T
˜

ξ, σ
˜

ξ, r
˜

ξ so that for each ξ < κ the following demands are satisfied.
(�)1 r

˜
ξ is a Pξ+1-name for a member of Q0

ω1
and �Pξ+1 (∀ζ < ξ)(r

˜
ζ ≤∗ r

˜
ξ).

(�)2 T
˜

ξ is a Pξ-name for a subtree of <ω1ω1 of height ω1 (with no maximal nodes).
(�)3 σ

˜
ξ is a Pξ-name for a partial strategy with domain {η ∈ T

˜
ξ : lh(η) is odd}, and all nodes of the tree T

˜
ξ

are played according to σ
˜

ξ.
(�)4 �Pξ+1 (∃η ∈ lim(T

˜
ξ+1))(η = σ

˜
ξ+1[�

˜
ξ]).

(�)5 �Pξ
(∀ζ < ξ)(T

˜
ζ ⊆ T

˜
ξ & σ

˜
ζ ⊆ σ

˜
ξ) and

�Pξ+1 “if ν ∈ <ω1ω1 is increasing continuous and such that lh(ν) = γ + 1 for a limit γ
and (∀α < γ)(ν � α ∈ T

˜
ξ) but ν � γ /∈ T

˜
ξ, then ν ∈ T

˜
ξ+1”.

(�)6 �Pξ
(∀η0, . . . , ηn ∈ lim(T

˜
ξ))(∀ζ < ξ)(Uη0 ∩ · · · ∩ Uηn ∈ (fil(r

˜
ζ))+) for each n < ω, and

�Pξ+1 (∀η ∈ lim(T
˜

ξ))(Uη ∈ fil(r
˜

ξ)).

(�)7 �Pξ+1 “A
˜

ξ ∈ fil(r
˜

ξ) or ω1 \ A
˜

ξ ∈ fil(r
˜

ξ)” and

�Pξ+1 “if 〈δα : α < λ〉 is the increasing enumeration of C
˜

ξ, then for some club C∗ ⊆ ω1

we have ω1 \
⋃
{[δα, δα+1) : α ∈ C∗} ∈ fil(r

˜
ξ)”.

(�)8 For ξ > 0, Q
˜

ξ is the Pξ-name for the composition

C ∗ L
˜
∗ P

˜
T
˜

ξ
∗ Q

˜
bd({r

˜
ζ : ζ < ξ}, {Uη : η ∈ lim(T

˜
ξ)})

(see Lemma 4.3, Definitions 4.4, 4.6). Hence we know that also

(�)9 for every Pξ+1-name Q
˜

for a proper forcing notion, �Pξ+1∗Q
˜

lim(T
˜

ξ) = (lim(T
˜

ξ))V
Pξ .

To start, we let r−1 be any fixed element of Q0
ω1

. We choose σ′ : <ω1ω1 −→ ω1 so that for every η ∈ <ω1ω1

there is (α, Z, d) ∈ r such that sup(η) < α and Z ⊆ σ′(η), and we let

T
˜

0 = T0 = {σ′[�0] � α : α < ω1} ⊆ <ω1ω1.

(So T0 is a tree with lim(T0) = {σ′[�0]}.) Finally σ
˜

0 = σ0 = σ′ � {ν ∈ T0 : lh(ν) is odd}. Now the forcing no-
tion Q0 is C ∗ L

˜
∗ P

˜
T0 ∗ Q

˜
bd({r−1}, {Uσ0[�0]}). Clearly, the families {r−1}, {Uσ0[�0]} satisfy the demands (a)

and (b) of Definition 4.6.
Now suppose that we have arrived to a successor stage ξ = ζ + 1 (and that we have already defined Pζ and

Pζ-names T
˜

ζ , σ
˜

ζ , and Pε+1-names r
˜

ε for ε < ζ so that the demands of (�)1 – (�)6 hold). From (�)1 + (�)6 it
follows that Q

˜
ζ is correctly determined by clause (�)8, so

�Pζ
Q
˜

ζ = C ∗ L
˜
∗ P

˜
Tζ

∗ Q
˜

bd({r
˜

ε : ε < ζ}, {Uη : η ∈ lim(T
˜

ζ)}).

(Remember also that, by (�)9, all ω1-branches of T
˜

ζ in extensions by proper forcing over VPζ∗Q
˜

ζ are the same
as those in VPζ .) Note that the last factor of Q

˜
ζ adds an element r

˜
∈ Q0

ω1
(see Lemma 4.7, 2.) and we know that

�Pζ∗Q
˜

ζ
“(∀ε < ζ)(r

˜
ε ≤∗ r

˜
) and {Uη : η ∈ lim(T

˜
ζ)} ⊆ fil(r

˜
)”.
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In VPζ∗Q
˜

ζ , we may choose a thin enough uncountable subset of r
˜

, getting r
˜
′ ⊆ r

˜
satisfying the demand in (�)7

and such that

(∀(α, Z, d), (α′, Z ′, d′) ∈ r
˜
′)(α < α′ ⇒ sup(Z) + ω < α′).

Let σ
˜
′ : <ω1ω1 −→ ω1 be such that σ

˜
′ � dom(σ

˜
ζ) = σ

˜
ζ and for ν ∈ <ω1ω1 \ dom(σ

˜
ζ) we have

σ
˜
′(ν) = min{β < ω1 : (∃(α, Z, d) ∈ r

˜
′)(sup(ν) < α & Z ⊆ β)}.

Let η
˜
∗ = σ

˜
′[�
˜

ζ ] and let r
˜

ζ = {(α, Z, d) ∈ r
˜
′ : Uη

˜

∗ ∩ Z ∈ d}. It follows from our choices so far that r
˜

ζ ∈ Q0
ω1

,
and r

˜
ε ≤∗ r

˜
ζ for ε < ζ, and also for each i < ω1,

η
˜
∗ � (2i + 1) /∈ T

˜
ζ ⇒ (∃(α, Z, d) ∈ r

˜
ζ)(η

˜
∗(2i) < α & Z ⊆ η

˜
∗(2i + 1)).

Put

T
˜
∗
ζ = T

˜
ζ ∪ {η

˜
∗ � α : α < ω1}

and define σ
˜
′′ : <ω1ω1 −→ ω1 so that σ

˜
′′ � T

˜
∗
ζ = σ

˜
′ � T

˜
∗
ζ and for ν ∈ <ω1ω1 \ T

˜
∗
ζ we have

σ
˜
′′(ν) = min{β < ω1 : (∃(α, Z, d) ∈ r

˜
ζ)(sup(ν) < α & Z ⊆ β)}.

Let

S
˜

= {ν ∈ <ω1ω1 : ν is increasing continuous of length lh(ν) = γ + 1
for some limit γ and (∀α < γ)(ν � α ∈ T

˜
ζ) but ν � γ /∈ T

˜
∗
ζ}.

For each ν ∈ S
˜

let ην ∈ ω1ω1 be such that ν � ην , ην is played according to σ
˜
′′, and ην(α + 1) = ην(α) + 889

for every odd ordinal α ≥ lh(ν). Put

T
˜

ζ+1 = T
˜
∗
ζ ∪ {ην � α : ν ∈ S

˜
& α < ω1}.

Note that (still in VPζ∗Q
˜

ζ ) we have that lim(T
˜

ζ+1) = lim(T
˜

ζ) ∪ {ην : ν ∈ S
˜
} ∪ {η

˜
∗}.

It follows from the choice of r
˜
, r
˜

ζ that (∀η ∈ lim(T
˜

ζ))(Uη ∈ fil(r
˜

ζ)) and by the definition of σ
˜
′′ we obtain

that (∀ν ∈ S
˜

)(Uην
∈ fil(r

˜
ζ)) (remember the choice of r

˜
′). Hence, remembering the definition of r

˜
ζ , we conclude

that (∀η ∈ lim(Tζ+1))(Uη ∈ fil(r
˜

ζ)).
Finally we put

σ
˜

ζ+1 = σ
˜
′′ � {ν ∈ Tζ+1 : lh(ν) is odd}.

One easily verifies that the relevant demands in (�)1 – (�)7 hold for T
˜

ζ+1, σ
˜

ζ+1, and r
˜

ζ . Let us also stress for
future reference that

(	)1 if ν ∈ dom(σ
˜

ζ+1) \ T
˜

ζ is of length 2i + 1, then there is (α, Z, d) ∈ r
˜

ζ

with ν(2i) < α and Z ⊆ σ
˜

ζ+1(ν).

Suppose now that we have arrived to a limit stage ξ < κ and we have defined Pζ names Q
˜

ζ , T
˜

ζ , σ
˜

ζ , and r
˜

ζ

for all ζ < ξ. In VPξ we define T
˜

ξ =
⋃

ζ<ξ T
˜

ζ and σ
˜

ξ =
⋃

ζ<ξ σ
˜

ζ . We have to argue that the relevant demands
in (�)2 – (�)6 are satisfied, and the only problematic one is the first condition of (�)6. If cf(ξ) = ω0, then

�Pξ
lim(T

˜
ξ) =

⋃
ζ<ξ lim(T

˜
ζ),

so there are no problems. We will show that (�)6 holds also if cf(ξ) ≥ ω1 and for this we will argue a contrario.
So suppose towards contradiction that (cf(ξ) ≥ ω1 and) we have Pξ-names η

˜
0, . . . , η

˜
n (n < ω) and a condi-

tion p ∈ Pξ such that

p �Pξ
“η
˜

0, . . . , η
˜

n ∈ lim(T
˜

ξ) and (∃ζ < ξ)(ω1 \ (Uη
˜

0 ∩ · · · ∩ Uη
˜

n
) ∈ fil(r

˜
ζ))”.
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Remembering that (�)1 + (�)6 hold on earlier stages, we may pass to a stronger condition (if necessary) and
assume additionally that for some ζ < ξ, γ < ω1, and pairwise distinct ν0, . . . , νn ∈ γω1 we have

p �Pξ
“η
˜

0, . . . , η
˜

n /∈
⋃

ε<ξ lim(T
˜

ε) and η
˜

0 � γ = ν0, . . . , η
˜

n � γ = νn

and (∀(α, Z, d) ∈ r
˜

ζ)(γ ≤ sup(Z) ⇒ Uη
˜

0 ∩ · · · ∩ Uη
˜

n ∩ Z /∈ d)”.

The forcing notion Pξ is proper, so we may choose a countable elementary submodel N ≺ H(χ) such that

η
˜

0, . . . , η
˜

n, ν0, . . . , νn, ζ, ξ, γ, p, . . . ∈ N

and then we may pick an (N, Pξ)-generic condition q ≥ p. Let γ∗ = N ∩ ω1 and ξ∗ = sup(N ∩ ξ), and we may
assume q ∈ Pξ∗ . Then

(	)2 q �Pξ∗ (∀i ≤ n)(∀ε < ξ∗)(∃δ < γ∗)(η
˜

i � δ /∈ T
˜

ε),

and hence q �Pξ∗ η
˜

0 � γ∗, . . . , η
˜

n � γ∗ /∈ T
˜

ξ∗ . [Why? As for each ε ∈ N ∩ ξ we have a name δ
˜
∈ N for an or-

dinal below ω1 such that p � η
˜

i � δ
˜

/∈ T
˜

ε, so we may use the genericity of q.]
By a similar argument,

(	)3 q �Pξ∗ (∀i ≤ n)(∀δ < γ∗)(∃ε < ξ∗)(η
˜

i � δ ∈ T
˜

ε),

so also q �Pξ∗ (∀δ < γ∗)(η
˜

0 � δ, . . . , η
˜

n � δ ∈ T
˜

ξ∗), and q �Pξ∗ η
˜

0(γ∗) = · · · = η
˜

n(γ∗) = γ∗. (Remember that
the η

˜
i are increasing continuous.) Now consider a Pξ∗ -name q

˜
for the following member of Qξ∗ :

(∅C, ∅L
˜
, ∅PT

˜ ξ∗
, (∅, {r

˜
ζ}, ∅)).

Directly from the definition of the order of the forcing Qbd and the choice of r
˜

ξ∗ we see that

q ∪ {(ξ∗, q
˜
)} �Pξ∗+1 r

˜
ξ∗ ⊆ Σ(r

˜
ζ).

It follows from (	)2, (	)3, and (�)5 that

q ∪ {(ξ∗, q
˜
)} �Pξ∗+1 η

˜
0 � (γ∗ + 1), . . . , η

˜
n � (γ∗ + 1) ∈ T

˜
ξ∗+1 \ T

˜
ξ∗ ,

so let us look what are the respective values of the partial strategy σ
˜

ξ∗+1. By (	)1 we know that

q ∪ {(ξ∗, q
˜
)} �Pξ∗+1 “there exists (A,Z, d) ∈ r

˜
ξ∗ such that for each i ≤ n,

η
˜

i(γ∗) = γ∗ < α and Z ⊆ η
˜

i(γ∗ + 1)”.

Since γ∗ > γ we get a contradiction with the choice of p.
This completes the inductive definition of the iteration and the names T

˜
ξ, σ

˜
ξ and r

˜
ξ. It should be clear that

�Pκ “the sequence 〈r
˜

ξ : ξ < κ〉 is ≤∗-increasing and fil({rξ : ξ < ω2}) is a very reasonable
ultrafilter on ω1 and

⋃
ξ<κ σ

˜
ξ is a winning strategy for Odd in the game �{rξ : ξ<κ}”.
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