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We prove that if the existence of a supercompact cardinal is consistent with ZFC, then it is
consistent with ZFC that the p-rank of ExtZ(G,Z) is as large as possible for every prime p and
for any torsion-free Abelian group G. Moreover, given an uncountable strong limit cardinal µ
of countable cofinality and a partition of Π (the set of primes) into two disjoint subsets Π0 and
Π1, we show that in some model which is very close to ZFC, there is an almost free Abelian
group G of size 2µ = µ+ such that the p-rank of ExtZ(G,Z) equals 2µ = µ+ for every p ∈ Π0

and 0 otherwise, that is, for p ∈ Π1.

1. PRELIMINARIES

In [1, 2], the well-known Whitehead problem was solved by showing that it is undecidable in ordinary set
theory ZFC whether or not every Abelian group G satisfying ExtZ(G,Z) = {0} has to be free. However,
this did not clarify the structure of ExtZ(G,Z) for torsion-free Abelian groups — a problem which has
received much attention since then. Easy arguments show that ExtZ(G,Z) is always a divisible group for
every torsion-free group G. Hence it is of the form

ExtZ(G,Z) =
⊕

p∈Π

Z(p∞)(νp) ⊕Q
(ν0)

for some cardinals νp, ν0, p ∈ Π, which are uniquely determined. This brings up the natural question as to
which sequences (ν0, νp : p ∈ Π) of cardinals can appear as the cardinal invariants of ExtZ(G,Z) for some
(which?) torsion-free Abelian group. Obviously, the trivial sequence consisting of zero entries only can
be realized by any free Abelian group. However, the solution of the Whitehead problem shows that it is
undecidable in ZFC if these are the sole ones. There are a few results on possible sequences (ν0, νp : p ∈ Π)
provable in ZFC. On the other hand, assuming Gödel’s constructible universe (V = L) plus there being no
weakly compact cardinal, a complete characterization of the cardinal invariants of ExtZ(G,Z) for torsion-
free Abelian groups G has recently been completed (see [3-12] for references). In fact, it turned out that

∗Number 874 in Shelah’s list of publications. Supported by the German–Israeli Foundation for Scientific Research &

Development project No. I-706-54.6/2001.
∗∗Supported by a grant from the German Research Foundation DFG.

1The Hebrew University of Jerusalem, Israel; Rutgers University, New Brunswick, NJ USA; Shelah@math.huji.ac.il.
2University of Duisburg-Essen, 45117 Essen, Germany; lutz.struengmann@uni-due.de. Current address: University

of Hawaii, 2565 McCarthy Mall, Honolulu, HI 96822-2273, USA; lutz@math.hawaii.edu. Translated from Algebra i

Logika, Vol. 46, No. 3, pp. 369-397, May-June, 2007. Original article submitted June 1, 2006.

200 0002-5232/07/4603-0200 c© 2007 Springer Science+Business Media, Inc.

Sh:874



almost all divisible groups D may be realized as ExtZ(G,Z) for some torsion-free Abelian group G of almost
any given size.

In this paper we shall hold the opposite point of view. There is a theorem for ZFC stating that every
sequence (ν0, νp : p ∈ Π) of cardinals such that ν0 = 2λ0 , for some infinite λ0, and νp � ν0 is either finite or
of the form 2λp , for some infinite λp, can arise as the cardinal invariants of ExtZ(G,Z) for some torsion-free
G. Our prime goal is to show that this result is as best as possible by constructing a model of ZFC in
which the only realizable sequences are of just this kind. We shall therefore assume the consistency of the
existence of a supercompact cardinal (see [13]). This is a strong additional set-theoretic assumption which
makes the model we are working in be far from ZFC.

On the other hand, we will also work with models very close to ZFC assuming only the existence
of certain ladder systems on successors of strong limit cardinals of cofinality ℵ0. Although this model is
close to ZFC, it allows us to construct almost free torsion-free Abelian groups G such that, for instance,
ExtZ(G,Z), is torsion free, that is, G is coseparable. Also this can be considered as a result at the borderline
of what is provable in models close to ZFC since the existence of non-free coseparable groups is independent
of ZFC (see [14, Chap. XII; 13]).

Our notation is standard; all groups under consideration are Abelian and are written additively. We
shall abbreviate Ext(−,−) to ExtZ(−,−), and Π will denote the set of all primes. A Whitehead group
is a torsion-free group G such that ExtZ(G,Z) = 0. If H is a pure subgroup of the Abelian group G,
then we write H ⊆∗ G. We expect the reader to have sufficient knowledge about forcing, large cardinals,
and prediction principles like weak diamond, etc., as, for example, in [14-16]. Also reasonable knowledge
is assumed about Abelian groups, as, for instance, in [17]. However, we have tried to make the paper as
accessible as possible to both algebraists and set theorists.

2. THE STRUCTURE OF Ext(G,Z)

In this section we recall the basic results on the structure of Ext(G,Z) for torsion-free groups G. Let G
be a torsion-free Abelian group. It is easy to see that Ext(G,Z) is divisible; hence it is of the form

Ext(G,Z) =
⊕

p∈Π

Z(p∞)(νp) ⊕Q
(ν0)

for certain cardinals νp, ν0, p ∈ Π. Since the cardinals νp, p ∈ Π, and ν0 completely determine the structure
of Ext(G,Z), we introduce the following terminology. Let Extp(G,Z) be the p-torsion part of Ext(G,Z) for
p ∈ Π. Denote by re0(G) the torsion-free rank ν0 of Ext(G,Z), which is the dimension of Q ⊗ Ext(G,Z),
and by rep(G) the p-rank νp of Ext(G,Z), which is the dimension of Ext(G,Z)[p] as a vector space over
Z/pZ for any prime p. There are only a few results provable in ZFC for the case where G is uncountable;
yet, under additional set-theoretic assumptions, we can gain a better understanding of the structure of
Ext(G,Z). For instance, a complete characterization has been obtained for Gödel’s universe under the
assumption that there is no weakly compact cardinal. The aim of this paper is to go to the borderline
of the characterization. On the one hand, we show that the p-ranks of Ext(G,Z) can be made as large
as possible for every torsion-free Abelian group G in a model of ZFC with strong additional axioms (the
existence of large cardinals). On the other hand, we deal with a model which is very close to ZFC but still
allows us to construct uncountable torsion-free groups G such that Ext(G,Z) is torsion free.

We first justify our restriction to torsion-free G. Let A be any Abelian group and t(A) its torsion
subgroup. Then Hom(t(A),Z) = 0, and hence we obtain the short exact sequence

0 → Ext(A/t(A),Z) → Ext(A,Z) → Ext(t(A),Z) → 0,
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which must split since Ext(A/t(A),Z) is divisible. Thus

Ext(A,Z) ∼= Ext(A/t(A),Z) ⊕ Ext(t(A),Z).

Since the structure of Ext(t(A),Z) ∼= ∏

p∈Π

Hom(A,Z(p∞)) in ZFC is well known (see [17]), it is reasonable

to assume that A is torsion free and, of course, non-free. Using Pontryagin’s theorem yields

LEMMA 2.1 [14, Thm. XII 4.1]. Suppose G is a countable torsion-free group which is not free. Then
re0(G) = 2ℵ0 .

Similarly, for the p-ranks of G we have

LEMMA 2.2 [14, Thm. XII 4.7]. If G is a countable torsion-free group, then, for any prime p, either
rep(G) is finite or rep(G) = 2ℵ0 .

This sheds light on the structure of Ext(G,Z) for countable torsion-free groups G in ZFC. We now turn
our attention to uncountable groups. There is a useful characterization of rep(G) using the exact sequence

0 → Z
p→ Z → Z/pZ → 0.

The induced sequence

Hom(G,Z)
ϕp

→ Hom(G,Z/pZ) → Ext(G,Z)
p∗→ Ext(G,Z)

shows that the dimension of
Hom(G,Z/pZ)/Hom(G,Z)ϕp

as a vector space over Z/pZ is exactly rep(G).
The next result deals with the case where Hom(G,Z) = 0.

LEMMA 2.3 [7, Thm. 3(b)]. For any cardinal ν0 of the form ν0 = 2µ0 for some infinite µ0 and any
sequence of cardinals (νp : p ∈ Π) less than or equal to ν0 such that each νp is either finite or of the form 2µp

for some infinite µp, there is a torsion-free group G of cardinality µ0 such that Hom(G,Z) = 0, re0(G) = ν0,
and rep(G) = νp for all primes p ∈ Π.

The following lemma helps us reach the borderline of what is provable in ZFC.

LEMMA 2.4 [14, Lemma XII 5.2]. If G is torsion free so that Hom(G,Z) = 0, then, for all primes p,
rep(G) is either finite or of the form 2µp for some infinite µp � |G|.

Assuming Gödel’s axiom of constructibility, we even know of a complete characterization for the case
where Hom(G,Z) = 0.

LEMMA 2.5 [V = L] (see [14, Thm. XII 4.4, Cor. XII 4.5]). Suppose G is a torsion-free non-free
group and let B be a subgroup of A of minimum cardinality ν such that A/B is free. Then re0(G) = 2ν . In
particular, re0(G) is uncountable and re0(G) = 2|G| if Hom(G,Z) = 0.

Note that the above lemma is not true in ZFC since ZFC is, in fact, consistent with the following:
for any countable divisible group D, there exists an uncountable torsion-free group G with Ext(G,Z) ∼= D;
hence re0(G) = 1 is possible if we take D = Q (see [12]).

The following result is a collection of theorems due to Grossberg, Mekler, Roslanowski, Sageev, and the
authors. We show that under the assumption on (V = L), almost all possibilities for rep(G) can appear if
the group is not of weakly compact cardinality, nor of singular cardinality of cofinality ℵ0.

LEMMA 2.6 [V = L]. Let ν be an uncountable cardinal and suppose that (νp : p ∈ Π) is a sequence
of cardinals such that 0 � νp � 2ν for each p. Moreover, let H be a torsion-free group of cardinality ν.
Then the following statements hold:
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(i) [8, Thm. 3.7] if ν is regular and less than the first weakly compact cardinal, then there is an almost
free group G of cardinality ν such that re0(G) = 2ν , and for all primes p, rep(G) = νp;

(ii) [5, Thm. 1.0] if ν is a singular strong limit cardinal of cofinality ω, then there is no torsion-free group
G of cardinality ν such that rep(G) = ν for any prime p;

(iii) [9, Main Thm.] if ν is weakly compact and rep(H) � ν for some prime p, then rep(H) = 2ν ;
(iv) [11] if ν is singular, is less than the first weakly compact cardinal, and is of cofinality cf(ν) > ℵ0,

then there is a torsion-free group G of cardinality ν such that re0(G) = 2ν , and for all primes p, rep(G) = νp.
The above results show that under the assumption on (V = L) and on the non-existence of weakly

compact cardinals, the structure of Ext(G,Z) for torsion-free groups G of cardinality ν is clarified for all
cardinals ν, and almost all sequences (ν0, νp : p ∈ Π) can be realized as the cardinal invariants of some
torsion-free Abelian group in almost every cardinality. However, if we weaken the set-theoretic assumptions
to GCH (the generalized continuum hypothesis), then even more versions are possible which have been
excluded by (V = L) before (see Lemma 2.5).

LEMMA 2.7 [14, Thms. XII 5.3 and 5.49]. (i) Assume GCH . For any torsion-free group A of
uncountable cardinality ν, if Hom(A,Z) = 0 and re0(A) < 2ν, then rep(A) = 2ν for each prime p;

(ii) it is consistent with ZFC and GCH that for any cardinal ρ � ℵ1, there is a torsion-free group Gρ
such that Hom(Gρ,Z) = 0, re0(Gρ) = ρ, and for all primes p, rep(Gρ) = 2ℵ1 .

In the next section, we will see that this rich structure of Ext(G,Z) (G is torsion free), which exists
under the assumption on (V = L), does not appear in other models of ZFC. As a motivation, we cite
two results from [13] which show that using Cohen forcing we may enlarge the p-rank of Ext(G,Z) for
torsion-free groups G.

LEMMA 2.8 [13, Thm. 8]. Suppose G is contained in the p-adic completion of a free group F and
|G| > |F |. If λ � |F | and λ Cohen reals are added to the universe, then |Extp(G,Z)| � λ. In particular,
adding 2ℵ0 Cohen reals to the universe implies that for every torsion-free reduced non-free Abelian group
G of cardinality less than the continuum, there is a prime p such that rep(G) > 0.

If we assume the consistency of large cardinals we can even get more. Recall that a cardinal κ is compact
if it is uncountable, regular, and satisfies the condition that for every set S, every κ-complete filter on S can
be extended to a κ-complete ultrafilter on S. This is equivalent to saying that for any set A, |A| � κ, there
exists a fine measure on Pκ(A) (the set of all subsets of A of size less than or equal to κ). If we require the
measure to satisfy a normality condition, then we arrive at a stronger notion. A fine measure U on Pκ(A)
is said to be normal if, for f : Pκ(A) → A such that f(P ) ∈ P for almost all P ∈ Pκ(A), f is constant on a
set in U . A cardinal κ is supercompact if, for every set A such that |A| � κ, there exists a normal measure
on Pκ(A) (for more information on supercompact cardinals, see [14, Chap. II.2] or [18, Chap. 6, Sec. 33]).

LEMMA 2.9 [13, Thm. 11]. Suppose that it is consistent that a supercompact cardinal exists. Then
it is consistent with either 2ℵ0 = 2ℵ1 or 2ℵ0 < 2ℵ1 that for any group G, either Ext(G,Z) is finite or
re0(G) � 2ℵ0 .

3. THE FREE (p-)RANK

In this section we introduce the free (p-)-rank of a torsion-free group G (p is a prime), which will induce
upper bounds for the cardinal invariants of Ext(G,Z).

Definition 3.1. For a prime p ∈ Π, let Kp be the class of all torsion-free groups G such that G/pωG
is free. Moreover, let K0 be the class of all free groups.
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Note that for G ∈ Kp (p is a prime) we have G = pωG ⊕ F , where F is a free group, and hence
Ext(G,Z)[p] = 0 (since pωG is p-divisible). Notice also that pωG is a pure subgroup of G. Thus rep(G) = 0
for G ∈ Kp and for any prime p. Clearly, re0(G) = 0 for all G ∈ K0.

Definition 3.2. Let G be a torsion-free group. We call

fr-rk0(G) = min{rk(H) : H ⊆∗ G such that G/H ∈ K0}

the free rank of G, and similarly, we call

fr-rkp(G) = min{fr-rk(H) : H ⊆∗ G/pωG such that (G/pωG)/H ∈ Kp}

the free p-rank of G for any prime p ∈ Π.
First, we argue for

LEMMA 3.3. Let G be a torsion-free group and p ∈ Π a prime. Then the following hold:
(i) rep(G) = rep(G/pωG);
(ii) rep(H) � rep(G) and re0(H) � re0(G), where H is a pure subgroup of G;
(iii) fr-rk0(G) � fr-rk0(G/pωG);
(iv) fr-rkp(G) = fr-rkp(G/pωG);
(v) fr-rkp(G) � fr-rk0(G).
Proof. (i) Let p be a prime. Since pωG is pure in G, pωG is p-divisible. Hence

0 → pωG→ G→ G/pωG→ 0

induces an exact sequence such as

0 → Hom(G/pωG,Z/pZ) → Hom(G,Z/pZ) → Hom(pωG,Z/pZ) = 0,

the latter being trivial because pωG is p-divisible. Thus we have

Hom(G,Z/pZ) ∼= Hom(G/pωG,Z/pZ),

and it follows easily that

Hom(G,Z/pZ)/Hom(G,Z)ϕp ∼= Hom(G/pωG,Z/pZ)/Hom(G/pωG,Z)ϕp.

Therefore rep(G) = rep(G/p
ωG).

(ii) We consider the exact sequence

0 → H → G→ G/H → 0,

which induces an exact sequence such as

. . .→ Ext(G/H,Z) α→ Ext(G,Z) → Ext(H,Z) → 0.

Since G/H is torsion free, we conclude that Ext(G/H,Z) is divisible, and hence Im(α) is as well. Thus
Ext(G,Z) = Ext(H,Z)⊕ Im(α), and so re0(H) � re0(G) and rep(H) � rep(G) for every prime p.

(iii) We need only observe the following: whenever G = H ⊕ F for some free group F , pωG ⊆ H for
every prime p; hence G/pωG = H/pωG⊕ F .

(iv) Note that pω(G/pωG) = {0}, and so fr-rkp(G) = fr-rkp(G/pωG).
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(v) Keeping in mind that the class K0 is contained in the class Kp for every prime p, we need only
appeal to (iii), (iv) and the definitions of fr-rkp(G) and fr-rk0(G). �

Remark 3.4. If G is a torsion-free group and p is a prime, then it follows from Lemma 3.4(i), (iv) that,
regarding the free p-rank of G, we may assume without loss of generality that G is p-reduced. This is also
justified by the following fact:

fr-rkp(G) = {H ⊆∗ G such that G/H ∈ Kp},

whose proof is an easy exercise.
To simplify the notation, in what follows we put Π0 = Π ∪ {0}.
LEMMA 3.5. Let G be a torsion-free group. Then the following hold:
(i) re0(G) � 2λ, where λ = max{ℵ0, fr-rk0(G)}; in particular, re0(G) � 2fr-rk0(G) if fr-rk0(G) is infinite;
(ii) rep(G) � pfr-rkp(G) for all p ∈ Π.
Proof. (i) Choose a subgroup H ⊆ G such that rk(H) = fr-rk0(G) and G/H ∈ K0. It follows that

G = H ⊕ F for some free group F , and hence Ext(G,Z) = Ext(H,Z). Therefore re0(G) = re0(H) � 2λ,
where λ = max{ℵ0, rk(H)} = max{ℵ0, fr-rk0(G)}.

(ii) Let p be a prime; then rep(G) = rep(G/p
ωG) and fr-rkp(G) = fr-rkp(G/pωH) by Lemma 3.3(i), (iv).

Hence there is no loss of generality in assuming that pωG = {0}. Let H ⊆ G be such that fr-rk0(H) =
fr-rkp(G) and G/H ∈ Kp. Then G/H = D ⊕ F for some free group F and some p-divisible group D.
As in the proof of Lemma 3.3(i), it follows that rep(G) = rep(H). Now, we let H = H ′ ⊕ F ′ for some
free group F ′ such that rk(H ′) = fr-rk0(H) = fr-rkp(G). Hence Ext(H,Z) = Ext(H ′,Z), and therefore
rep(G) = rep(H) = rep(H

′). Consequently rep(G) = rep(H
′) � prk(H′) = pfr-rkp(G). �

Note that, for instance, in (V = L), for any torsion-free group G, 2fr-rk0(G) is the actual value of re0(G)
by Lemma 2.5. The next lemma justifies the fact that, as far as the free p-rank of a torsion-free group is
concerned, we may also assume that fr-rkp(G) = rk(G) if p ∈ Π0.

LEMMA 3.6. Let G be a torsion-free group and p ∈ Π0 and H ⊆∗ G be such that:
(i) G/ (H ⊕ F ) ∈ Kp for some free group F ;
(ii) rk(H) = fr-rkp(G).

Then fr-rkp(H) = rk(H) and rep(G) = rep(H).
Proof. Let G, H , and p be given. If p = 0, then the claim is trivially true. Hence we assume that

p ∈ Π and rk(H) = fr-rkp(G). Then there is a free group F such that H ′ = H ⊕ F is a pure subgroup of G
satisfying G/H ′ ∈ Kp. Thus fr-rkp(G) = rk(H) = fr-rk0(H ′). Without loss of generality, we may assume
that G/H ′ is p-divisible by splitting the free part.

By way of contradiction, suppose that fr-rkp(H) < rk(H). Let H1 ⊆∗ H , H/H1 ∈ Kp, and fr-rk0(H1) =
fr-rkp(H) < rk(H). Then there are a free group F1 and a p-divisible group D for which

H/H1 = D ⊕ F1.

Choose a pure subgroup H1 ⊆∗ H2 ⊆∗ H such that H2/H1
∼= D. Thus H/H2

∼= F1, and so H ∼= H2 ⊕ F1.
Without loss of generality, we may assume that H = H2 ⊕ F1. Consequently rk(H2) = rk(H) (since
rk(H) = fr-rkp(G)). Let H3 = H1 ⊕ F1 ⊕ F . Then

fr-rk0(H3) = fr-rk0(H1) < rk(H) = fr-rkp(G).

Moreover,
G/H ′ ∼= (G/H3) / (H ′/H3)
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is p-divisible. Since H ′/H3
∼= H2/H1 is also p-divisible and all groups under consideration are torsion free,

we conclude that G/H3 is p-divisible. Hence fr-rkp(G) � fr-rk0(H3) < fr-rkp(G), which is a contradiction.
Finally, rep(G) = rep(H) derives as in the proof of Lemma 3.5. �

We now show how to calculate fr-rkp(G) explicitly for torsion-free groups G of finite rank and for p ∈ Π
(note that fr-rk0(G) can be easily calculated). Recall that a torsion-free group G of finite rank is almost
free if every subgroup H of G of smaller rank than the rank of G is free. Obviously, we have

LEMMA 3.7. Let G be a non-free torsion-free group of finite rank n and p ∈ Π. Then we can calculate
fr-rkp(G) as follows.

(i) If G is almost free, then let H ⊆ Q be the outer type of G. Then:
(a) fr-rkp(G) = n if H is not p-divisible;
(b) fr-rkp(G) = 0 if H is p-divisible.
(ii) If G is not almost free, then choose a filtration {0} = G0 ⊆∗ G1 ⊆∗ . . . ⊆∗ Gm ⊆∗ G with Gk+1/Gk

almost free. Then
fr-rkp(G) =

∑

k<m

fr-rkp(Gk+1/Gk).

In order to prove our main Theorem 4.3 in Sec. 4, we need a further result on the class Kp, p ∈ Π.

LEMMA 3.8. Let p be a prime and G a torsion-free group of infinite rank. Then the following hold:
(i) if G is of singular cardinality, then G ∈ Kp iff every pure subgroup H of G of smaller cardinality

than is one of G satisfies H ∈ Kp;
(ii) G 
∈ Kp iff rep(G) > 0 whenever we add |G| Cohen reals to the universe;
(iii) if rk(G) � ℵ0, then adding |G| Cohen reals to the universe adds a new member to Extp(G,Z) while

preserving the old ones.
Proof. (i) We need only apply the Singular Compactness Theorem given in [19].
(ii) One of the implications is trivial, and hence we only verify the second. Let G 
∈ Kp. By

Lemma 3.3(ii), we may assume that G does not have any pure subgroup of smaller rank than is one
of G which would satisfy (ii). It is easy to see that the rank δ = rk(G) of G must be uncountable. Thus
δ > ℵ0 should be regular by (i). Let G =

⋃

α<δ

Gα be a filtration of G by pure subgroups Gα, α < δ, of G.

The claim now follows by repeating the argument in [13, Thms. 9 and 10] (cf. also Lemma 2.8). The only
difference is that in our situation the group G is not almost free; hence we require in [13, Thm. 10] that, for
every α, the stationary set E contains an element a ∈ Gα+1\(Gα + pωGα+1) which belongs to the p-adic
closure of Gα + pωGα+1. This makes only a minor change in the proof of [13, Thm. 10].

(iii) Is similar to (ii) using the proof of [13, Thm. 11]. �

Finally, we consider the p-closure of a pure subgroup H of some torsion-free Abelian group G, which
will be needed in the proof of Theorem 4.3.

Definition 3.9. Let G be torsion free and H be a pure subgroup of G. For every prime p ∈ Π, the set

clp(G,H) = {x ∈ G : for all n ∈ N there is yn ∈ H such that x− yn ∈ pnG}

is called the p-closure of H .

LEMMA 3.10. Let G be torsion free and H be a pure subgroup of G. For all primes p ∈ Π, the
following statements hold:

(i) H ⊆ clp(G,H);
(ii) clp(G,H) is a pure subgroup of G;
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(iii) clp(G,H)/H is p-divisible.
Proof. We fix a prime p ∈ Π.
(i) Is trivial.
(ii) Assume that mx ∈ clp(G,H) for some m ∈ N and x ∈ G. Then, for every n ∈ N, there is yn ∈ H

such that mx− yn ∈ pnG, say, yn = pngn for some gn ∈ G. Without loss of generality, we may assume that
(m, p) = 1. Hence 1 = km+ lpn for some k, l ∈ Z. Thus

x = kmx+ lpnx = kpngn + kyn + lpnx,

and hence x− kyn ∈ pnG with kyn ∈ H . Therefore x ∈ clp(G,H).
(iii) Follows easily from (ii). �

4. SUPERCOMPACT CARDINALS AND LARGE p-RANKS

In this section we shall assume that the existence of a supercompact cardinal is consistent with ZFC.
We shall then determine the cardinal invariants (re0(G), rep(G) : p ∈ Π) of Ext(G,Z) for every torsion-free
Abelian group in this model and show that they are as large as possible. We start with a theorem from
[13] (see also [2]). Recall that, for cardinals µ, γ, and δ, we can define a partially ordered set

Fn(µ, γ, δ) = {f : dom(f) → γ : dom(f) ⊆ µ, |dom(f)| < δ}.

The partial order is given by f � g iff g ⊆ f treated as functions.

LEMMA 4.1 [13, Thm. 19]. Suppose κ is a supercompact cardinal, V is a model of ZFC which
satisfies 2ℵ0 = ℵ1 and P = Fn(µ, 2,ℵ1) × Fn(ρ, 2,ℵ0), where µ, ρ > ℵ1. Then P forces every κ-free group
to be free.

As a consequence we obtain

LEMMA 4.2 [13, Cor. 20]. If it is consistent with ZFC that a supercompact cardinal exists, then
both of the statements

— every 2ℵ0-free group is free and 2ℵ0 < 2ℵ1 , and
— every 2ℵ0-free group is free and 2ℵ0 = 2ℵ1

are consistent with ZFC. Furthermore, if it is consistent that there is a supercompact cardinal then it is
consistent that there is a cardinal κ < 2ℵ1 such that if κ Cohen reals are added to the universe then every
κ-free group is free.

We are now ready to prove the main theorem of this section working in the model from Lemma 4.2.
Assume that the existence of a supercompact cardinal is consistent with ZFC. Let V be any model in
which there exists a supercompact cardinal κ such that the weak diamond principle �∗

λ+ holds for all regular
cardinals λ � κ. Now, we use Cohen forcing to add κ Cohen reals to V to obtain a new model V. Thus, in
V, we still have �∗

λ+ for all regular λ � κ, and also �κ holds. Moreover, we have 2ℵ0 = κ and every κ-free
group (of arbitrary cardinality) is free by [13].

THEOREM 4.3. In any model V described as above, for every non-free torsion-free Abelian group G
and every prime p ∈ Π, the following hold:

(i) re0(G) = 2max{ℵ0,fr-rk0(G)};
(ii) if fr-rkp(G) is finite, then rep(G) = fr-rkp(G);
(iii) if fr-rkp(G) is infinite, then rep(G) = 2fr-rkp(G).
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We first note that the above theorem shows that rep(G), p ∈ Π0, is as large as possible for every torsion-
free Abelian group G in the model V. Moreover, by Lemma 3.6, every sequence of cardinals (νp : p ∈ Π0)
not excluded by Theorem 4.3 may be realized as the cardinal invariants of Ext(H,Z) for some torsion-free
group H .

Proof. Let p ∈ Π0 be fixed. By Lemma 3.3, we may assume that pωG = 0 if p ∈ Π. Moreover, in view
of Lemma 3.6, there is no loss of generality in assuming that fr-rkp(G) = rk(G). We use induction on the
rank λ = rk(G) = fr-rkp(G).

Case A: λ is finite. We may assume without loss of generality that Hom(G,Z) = {0} (since G is of finite
rank). If p = 0, then re0(G) = 2ℵ0 = κ follows from Lemma 2.1, since G is not free. Further, let p > 0. Then
rep(G) is the dimension of Hom(G,Z/pZ) as a vector space over Z/pZ. Since Hom(G,Z/pZ) is dual to the
vector space G/pG, it follows that rep(G) = rk(G) = fr-rkp(G). Note that G is p-reduced by assumption.

Case B: λ = ℵ0. For a group G of countable rank, as is well known, there exists a decomposition
G = G′ ⊕ F , where F is a free group and G′ satisfies Hom(G′,Z) = {0}. Moreover, fr-rkp(G) = λ = ℵ0

by assumption, and hence rk(G′) = fr-rkp(G′) = ℵ0. Therefore it follows from Lemma 2.1 that re0(G) =
re0(G

′) = 2ℵ0 = κ. If p > 0 then we conclude that Hom(G′,Z/pZ) has cardinality 2ℵ0 . In view of
Hom(G′,Z) = {0}, by Lemma 3.5(ii),

2ℵ0 � rep(G
′) = rep(G) � 2ℵ0 ,

and hence rep(G) = 2ℵ0 = κ for p ∈ Π0.
Case C: ℵ0 < λ < κ. Note that κ = 2ℵ0 = 2λ, and so re0(G) = 2ℵ0 = κ follows from Lemma 2.5. In

fact, by the induction hypothesis, every Whitehead group H of size less than λ has to be free (because
rep(H) = fr-rk0(H)), which suffices for Lemma 2.5 to apply. Now, assume that p ∈ Π. By Lemma 3.5(ii),
we deduce

rep(G) � 2fr-rkp(G) � 2λ = 2ℵ0 ,

and hence it remains to prove that rep(G) � 2ℵ0 . The proof is very similar to that of [13, Thm. 8] (see also
Lemma 2.8), and so we only briefly recall it.

Let V be the ground model and P be the Cohen forcing, that is, P = P (κ× ω, 2, ω) = {h : Dom(h) →
{0, 1} : Dom(h) is a finite subset of κ × ω}. If G is a P -generic filter over V , we let h̃ =

⋃

g∈G

g. For the

notational reasons, we may also write V = V [G] = V [h̃] for the extension model determined by the generic
filter G. Choose A ⊆ [κ]�λ so that G belongs to V [h̃ �A×ω]. Without loss of generality, we may assume
that α ∈ A iff β ∈ A whenever α+ λ = β + λ. We shall prove the claim by splitting the forcing. For each
α such that λα ∈ κ\A, let

f̃α ∈ V [A× ω ∪ [λα, λα + λ) × ω]

be a member of Hom(G,Z/pZ) computed by h̃�[λα,λα+λ)×ω. Note that f̃α exists by Prop. 3.8(iii). Then
f̃α is also computed from h̃ �[λα,λα+λ)×ω over V [h̃ �κ\[λα,λα+λ)×ω], and so f̃α is not equivalent to any
f ′ ∈ V [h̃�κ\[λα,λα+λ)×ω] modulo Hom(G,Z)ϕp. Thus the set {f̃α : λα < κ, λα 
∈ A} of homomorphisms
exemplifies that rep(G) � κ = 2ℵ0 , and hence

2λ = 2ℵ0 = κ � rep(G) � 2λ,

which shows that rep(G) = 2λ = 2fr-rkp(G).
Case D: λ � κ. Let p ∈ Π0. We distinguish two subcases. Note that, for p ∈ Π, the assumption that

fr-rkp(G) = rk(G) also implies that fr-rk0(G) = rk(G) by Lemma 3.3(v).
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Case D1: λ � κ and λ is regular. The case p = 0 is treated as in [14, Thm. XII 4.4]. Let 〈Gα : α < λ〉
be a filtration of G into pure subgroups Gα, α < λ, so that if G/Gα is not λ-free, then Gα+1/Gα is not
free. Using [3, Lemma 2.4], we choose an associate free resolution of G, that is, a free resolution

0 → K
Φ→ F → G→ 0

of G for which F =
⊕

α<λ

Fα and K =
⊕

α<λ

Kα are free groups such that |Fα| < λ and |Kα| < λ for all α < λ,

and the induced sequences
0 →

⊕

β<α

Kβ →
⊕

β<α

Fβ → Gα → 0

are exact for every α < λ.
Since fr-rk0(G) = λ, the set E = {α < λ : Gα+1/Gα is not free} is stationary. For any subset E′ ⊆ E,

let K(E′) =
⊕

α∈E′
Kα and G(E′) = F/Φ(K(E′)). Then Γ(G(E′)) ≥ Ẽ′, where Γ(G(E′)) is the Γ-invariant

of G(E′) (see [14] for details on the Γ-invariant). Now, �∗
λ by assumption; hence we may decompose E into

λ disjoint stationary sets E′
α, each of which is non-small, that is, �∗

λ(E
′
α) holds. Hence G(E′

α) is not free
since Ẽ′

α ≤ Γ(G(E′
α)) for every α < λ. By [13], we conclude that G(E′

α) is not κ-free and, therefore, has a
non-free pure subgroup Hα of rank less than κ. By the induction hypothesis, Ext(Hα,Z) 
= 0, and hence
also Ext(G(E′

α),Z) 
= 0. As in [3, Lemma 1.1] (see also [14, Lemma XII 4.2]), there is an epimorphism

Ext(G,Z) →
∏

α<λ

Ext(G(E′
α),Z) → 0,

which yields re0(G) � 2λ, and hence re0(G) = 2λ (cf. [14, Lemma 4.3]).
Now assume that p > 0. Again, let 〈Gα : α < λ〉 be a filtration of G into pure subgroups Gα, α < λ,

such that Extp(Gα+1/Gα,Z) 
= 0 iff Extp(Gβ/Gα,Z) 
= 0 for some β > α. Fix α < λ. We claim that
G/clp(G,Gα) is not free. Conversely, assume that G/clp(G,Gα) is free. Hence G = clp(G,Gα)⊕F for some
free group F . Therefore G/Gα = (clp(G,Gα)⊕ F ) /Gα = clp(G,Gα)/Gα⊕F is a direct sum of a p-divisible
group and a free group by Lemma 3.5(iii). It follows that fr-rkp(G) � rk(Gα) < λ, contradicting the fact
that fr-rkp(G) = λ. By [13], we conclude that G/clp(G,Gα) is not κ-free since we are working in the model
V. Let G′/clp(G,Gα) ⊆∗ G/clp(G,Gα) be a non-free pure subgroup of G/clp(G,Gα) of size less than κ.
Then there exists α � β < λ such that G′ ⊆∗ Gβ . By purity, it follows that clp(G,Gα)∩Gβ = clp(Gβ , Gα).
Hence

Gβ/clp(Gβ , Gα) = (Gβ + clp(G,Gα)) /clp(G,Gα)

is torsion free but not free. Without loss of generality, we may assume that β = α + 1. Hence we can
suppose that, for all α < λ, the quotient Gα+1/clp(Gα+1, Gα) is a torsion-free non-free group. Note that
Gα+1/clp(Gα+1, Gα) is also p-reduced since clp(Gα+1, Gα) is the p-closure of Gα inside Gα+1.

Since the cardinality of Gα+1/clp(Gα+1, Gα) is less than λ, the induction hypothesis applies. Hence
rep(Gα+1/clp(Gα+1, Gα)) = 2fr-rkp(Gα+1/clp(Gα+1,Gα)). We claim that Extp(Gα+1/clp(Gα+1, Gα),Z) 
= {0}
stationarily often. If not, then there is a cube C ⊆ λ such that for all α < β ∈ C we have
Extp(Gα+1/clp(Gα+1, Gα),Z) = {0}, and equivalently, Extp(Gβ/Gα,Z) = 0; hence fr-rkp(Gβ) = fr-rkp(Gα)
by the induction hypothesis. As in [14, Prop. XII 1.5], it follows that Extp(G/Gα,Z) = 0 for all α ∈ C,
which contradicts the fact that fr-rkp(G) = λ.

Without loss of generality, we may assume that, for every α < λ, there exist homomorphisms h0
α, h

1
α ∈

Hom(Gα+1,Z/pZ) such that:
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(1) h0
α �clp(Gα+1,Gα)= h1

α �clp(Gα+1,Gα);
(2) there are no homomorphisms g0

α, g
1
α ∈ Hom(Gα+1,Z) for which

(a) g0
α�clp(Gα+1,Gα)= g1

α�clp(Gα+1,Gα) (or, which is equivalent, g0
α�Gα= g1

α�Gα), and
(b) h0

α = g0
αϕ

p and h1
α = g1

αϕ
p.

Indeed, there is a homomorphism ϕ : Gα+1/clp(Gα+1, Gα) → Z/pZ which cannot be factored by ϕp since
Extp(Gα+1/clp(Gα+1, Gα),Z) 
= {0}. Let h0

α = 0 and h1
α be given by

h1
α : Gα+1 → Gα+1/clp(Gα+1, Gα)

ϕ→ Z/pZ.

It is then easy to check that h0
α and h1

α are as required. In particular, we may assume that h0
α = 0 for every

α < λ. An immediate consequence is the following property:
(U) Let f : Gα → Z/pZ and g : Gα → Z so that gϕp = f . Then there exists f̃ : Gα+1 → Z/pZ such

that f̃ �Gα= f and there is no homomorphism g̃ : Gα+1 → Z satisfying both g̃ �Gα= g and g̃ϕp = f̃ .
Indeed, let f̂ : Gα+1 → Z/pZ be any extension of f , which exists by the pure injectivity of Z/pZ. If

f̂ is as required, we let f̃ = f̂ . Otherwise, choose ĝ : Gα+1 → Z so that ĝ �Gα= g and ĝϕp = f̂ . Put
f̃ = f̂ − h1

α. Then f̃ �Gα= f . Assume that there exists g̃ : Gα+1 → Z such that g̃ �Gα= g and g̃ϕp = f̃ .
Choosing g1

α = g̃ − ĝ we conclude that −g1
αϕp = h1

α, which is a contradiction with (2). Note that h0
α = 0.

We now proceed exactly as in [7, Prop. 1] to show that rep(G) = 2fr-rkp(G) = 2λ. We therefore outline
the proof only briefly, and for simplicity, we even suppose that �λ holds. It is an easy exercise (and so left
to the reader) to prove the result assuming the weak diamond principle only. Suppose that rep(G) = σ < 2λ

and let L = {fα : α < σ} be a complete list of representatives of elements in Hom(G,Z/pZ)/Hom(G,Z)ϕp.
Without loss of generality, let {gα : Gα → Z : α < λ} be the Jensen functions given by �λ; hence
for every homomorphism g : G → Z, there exists α such that g �Gα= gα. We now define a sequence
{f∗
α : Gα → Z/pZ : α < λ} of homomorphisms so that:
(1) f∗

0 = f0;
(2) f∗

α �Gβ
= f∗

β for all β < α;
(3) if f∗ =

⋃

α<λ

f∗
α, then f∗ − fα is an element of Hom(G,Z/pZ) but not of Hom(G,Z)ϕp.

Suppose that f∗
β has been defined for all β < α. If α is a limit ordinal, then we let f∗

α =
⋃

β<α

f∗
β , which is

a well-defined homomorphism by (2). If α = β + 1 is a successor ordinal, then we distinguish two cases. If
f∗
β − fβ�Gβ


= gβϕp, we let f∗
α : Gα → Z/pZ be any extension of f∗

β , which exists since Z/pZ is pure injective
and Gβ ⊆∗ Gα. If f∗

β − fβ �Gβ
= gβϕp, then (U) shows that there is a homomorphism f̃ : Gα → Z/pZ

extending f∗
β − fβ�Gβ

such that there is no g̃ : Gβ+1 → Z with both extending gβ and g̃ϕp = f̃ . Lastly,
put f∗

α = f̃ + fα�Gα and f∗ =
⋃

α<λ

f∗
α. It is now straightforward to see that f∗ satisfies (3), and hence f∗

contradicts the maximality of the list L.
Case D2: λ � κ and λ is singular. First, note that fr-rkp(G) > κ since κ = 2ℵ0 is regular. By induction

on α < λ, we choose subgroups Kα of G such that:
(1) Kα is a pure non-free subgroup of G;
(2) |Kα| < κ;
(3) Kα ∩

∑

β<α

Kβ = {0};
(4)

∑

β<α

Kβ is a pure subgroup of G.

Assume that we have succeeded in constructing the groups Kα, α < λ. Then

K =
∑

β<λ

Kβ =
⊕

β<λ

Kβ
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is a pure subgroup of G, and hence rep(G) � rep(K) by Lemma 3.3(ii). If Extp(Kα,Z) = 0, then Kα ∈ Kp

follows by induction. Since G is p-reduced, we obtain Kα ∈ K0, contradicting (1). Thus Extp(Kα,Z) 
= {0}
for every α < λ, which implies rep(K) � 2λ (since Ext(K,Z) ∼= ∏

α<λ

Ext(Kα,Z)). Hence we need only

complete the construction of the groups Kα, α < λ. Assume that Kβ , β < α, have been constructed. Let
µ = (κ+ |α|)<κ, which is a cardinal less than λ. Let Hα be such that:

(i) Hα ⊆∗ G;
(ii)

∑

β<α

Kβ ⊆ Hα;

(iii) |Hα| = µ;
(iv) if K ⊆ G is of cardinality less than κ, then there is a subgroup K ′ ⊆∗ G such that Hα ∩K ⊆ K ′

and K and K ′ are isomorphic over K ∩Hα, i.e., there exists an isomorphism ψ : K → K ′, which is the
identity if restricted to K ∩Hα.

It is easy to see thatHα exists. Now, G/Hα is a non-free group since fr-rk0(G) = λ and pω (G/Hα) = {0}.
Hence [13] implies that there is K ′

α ⊆ G such that (K ′
α +Hα) /Hα is not free and |K ′

α| < κ. Let K0
α ⊆∗ Hα

be as in (5), that is, K ′
α ∩Hα ⊆ K0

α and there is an isomorphism ψα : K ′
α → K0

α, which is the identity on
K ′
α ∩Hα. Let Kα = {x− xψα : x ∈ K ′

α}. Then Kα is as required. For instance,

Kα
∼= K0

α/ (K ′
α ∩Hα) ∼= K ′

α/ (K ′
α ∩Hα)

shows that Kα is not free. �

COROLLARY 4.4. In the model V, let 〈µp : p ∈ Π0〉 be a sequence of cardinals. Then there exists a
torsion-free non-free Abelian group G such that rep(G) = µp for all p ∈ Π0 if and only if the following hold:

(i) µ0 = 2λ0 for some infinite cardinal λ0;
(ii) µp � µ0 for all p ∈ Π;
(iii) µp is either finite or of the form 2λp for some infinite cardinal λp.
The proof follows easily from Lemma 2.3 and Theorem 4.3. �

COROLLARY 4.5. In the model V, let 〈µp : p ∈ Π0〉 be a sequence of cardinals. Then there exists a
non-free ℵ1-free Abelian group G such that rep(G) = µp for all p ∈ Π0 if and only if µp � µ0 and µp = 2λp

for some infinite cardinal λp for every p ∈ Π0.
Proof. In view of Theorem 4.3, we need only prove the existence claim of the corollary. It suffices to

construct ℵ1-free groups Gp for p ∈ Π0 so that rep(G) = re0(G) = 2ℵ0 = κ and req(G) = 0 for all p 
= q ∈ Π.

Then B = G
(λ0)
0 ⊕ ⊕

p∈Π

G
(λp)
p will be as required (see, e.g., the proof of [7, Thm. 3(b)]). Fix p ∈ Π0.

From [14, Thm. XII 4.10] or [10], it follows that there exists an ℵ1-free non-free group Gp of size 2ℵ0 such
that rep(Gp) = 2ℵ0 = κ if p ∈ Π. In [14, Thm. XII 4.10], it is then assumed that 2ℵ0 = ℵ1 to show
that re0(Gp) = κ. However, since we work in the model V, and Gp is not free, Theorem 4.3 implies that
fr-rk0(Gp) � ℵ1, and hence r0p(Gp) = 2fr-rk0(Gp) = κ. �

Recall that a reduced torsion-free group G is said to be coseparable if Ext(G,Z) is torsion free. By [13],
it is consistent that all coseparable groups are free. By [14, Thm. XII 4.10], yet, there exist coseparable
groups which are not free if 2ℵ0 = ℵ1. Note that the groups constructed in Lemma 2.3 are not reduced and,
hence, do not provide examples of coseparable groups.

COROLLARY 4.6. In the model V, there exist non-free coseparable groups.
The proof follows from Corollary 4.5 letting µ0 = 2ℵ0 and µp = 0 for all p ∈ Π. �
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5. A MODEL CLOSE TO ZFC

In this section we shall construct a coseparable group which is not free in a model of ZFC and is very
close to ZFC. As mentioned in Sec. 4, the question if all coseparable groups are free is undecidable in
ZFC.

Let ℵ0 < λ be a regular cardinal and S be a stationary subset of λ consisting of limit ordinals of
cofinality ω. We recall the definition of a ladder system on S (see, e.g., [14, p. 405]).

Definition 5.1. A ladder system η̄ on S is a family of functions η̄ = 〈ηδ : δ ∈ S〉 such that ηδ : ω → δ

is strictly increasing with sup(rg(ηδ)) = δ, where rg(ηδ) denotes the range of ηδ. We say that the ladder
system is tree-like if, for all δ, ν ∈ S and for every n, n ∈ ω, ηδ(n) = ην(m) implies n = m and ηδ(k) = ην(k)
for all k � n.

One way to construct almost free groups is to use κ-free ladder systems.

Definition 5.2. Let κ be an uncountable regular cardinal. The ladder system η̄ is said to be κ-free if,
for every subset X ⊆ S of cardinality less than κ, there is a sequence of natural numbers 〈nδ : δ ∈ X〉 such
that

〈{ηδ �l: nδ < l < ω} : δ ∈ X〉
is a sequence of pairwise disjoint sets.

Finally, recall that a stationary set S ⊆ λ with λ uncountable regular is non-reflecting if S ∩ κ is not
stationary in κ for every κ < λ with cf(κ) > ℵ0.

THEOREM 5.3. Let µ be an uncountable strong limit cardinal such that cf(µ) = ω and 2µ = µ+.
Put λ = µ+ and assume that there exists a λ-free tree-like ladder system on a non-reflecting stationary
subset S ⊆ λ. If Π = Π0 ∪ Π1 is a partition of Π into disjoint subsets Π0 and Π1, then there exists an
almost free group G of size λ such that:

(i) re0(G) = 2λ;
(ii) rep(G) = 2λ if p ∈ Π0;
(iii) rep(G) = 0 if p ∈ Π1.
Proof. Let η̄ = 〈ηδ : δ ∈ S〉 be the λ-free ladder system, where S is a stationary non-reflecting subset of

λ consisting of ordinals less than λ of cofinality ω. Without loss of generality, we may assume that S = λ.
Let pr : µ2 → µ be a pairing function; then pr is bijective. And if α ∈ µ then we denote by (pr1(α), pr2(α))
the unique pair (β, γ) ∈ µ2 such that pr(pr1(α), pr2(α)) = α. Let

L =
⊕

α<µ

Zxα

be the free Abelian group generated by independent elements xα, α < µ.
To simplify the notation, we may assume that Π1 
= ∅ and let 〈(pβ , fβ) : β < λ〉 be a listing of all pairs

(p, f) with p ∈ Π1 and f ∈ Hom(L,Z/pZ). Recall that λ = 2µ. By induction on β < λ, we choose triples
(gβ, νβ , ρβ) for which the following conditions hold:

(1) gβ ∈ Hom(L,Z);
(2) fβ = gβϕp, where ϕp : Hom(L,Z) → Hom(L,Z/pZ) is the canonical map;
(3) for νβ , ρβ : ω → µ, ηβ(n) = pr1(νβ(n)) = pr1(ρβ(n));
(4) for all δ � β, there exist n = n(δ, β) ∈ ω such that gδ(xνβ(m)) = gδ(xρβ(m)) for all m � n;
(5) for all δ < β, there exist n = n(δ, β) ∈ ω such that, for some sequence

〈
bδ,βm : m ∈ [n, ω)

〉
of natural

numbers,

(
∏

p∈Π1∩m
p

)

bδ,βm+1 = bδ,βm + gβ(xνδ(m))− gβ(xρδ(m)) for all m � n;
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(6) νβ(m) 
= ρβ(m) for all m ∈ ω.
Fix β < λ and assume that we have constructed (gδ, νδ, ρδ) for all δ < β. Choose a function hβ : β → ω

so that hβ(δ) > pδ for all δ < β, and

〈{ηδ �l: l ∈ [hβ(δ), ω)} : δ < β〉 (5.1)

is a sequence of pairwise disjoint sets. Note that such a choice is possible since the ladder system η̄ is λ-free
by assumption. Moreover, by (3), the pairing function pr also ensures that

〈{νδ �l, ρ�l: l ∈ [hβ(δ), ω)} : δ < β〉 (5.2)

is a sequence of pairwise disjoint sets. Now, we choose the function gβ for which (2) and (5) hold. For
δ < β, let n = n(δ, β) = hβ(δ). Since L is free, first we choose gβ(xα) satisfying gβ(xα) + pβZ = fβ(xα) for
every α such that pr1(α) 
= ηδ(l) for all δ < β and l � n(δ, β), that is to say, for those α for which xα does
not appear in (5). Second, for δ < β, by induction on m � n(δ, β), we choose integers bδ,βm+1 so that

0 + pβZ = bδ,βm+1 + fβ(xνδ(m))− fβ(xρδ(m)) + pβZ,

and then choose gβ(xνδ(m)) and gβ(xρδ(m)) such that (5) holds for δ. This inductive process, note, is possible
by the choice of hβ and condition (5.1).

Finally, let β =
⋃

n∈ω
An be the union of an increasing chain of sets An for which |An| < µ (recall that we

have assumed without loss of generality that S = λ, and so β is of cofinality ω). By induction on n < ω,
we may now choose ρβ(n) and νβ(n) as distinct ordinals so that:

ρβ(n), νβ(n) ∈ µ;
ρβ(n), νβ(n) 
∈ {νβ(m), ρβ(m) : m < n};
pr1(ρβ(n)) = pr1(νβ(n)) = ηβ(n);
〈
gδ(xνβ (n)) : δ ∈ An

〉
=
〈
gδ(xρβ(n)) : δ ∈ An

〉
.

Hence (3), (4), and (6) hold, and we have carried on the induction. Now, let G be freely generated by
L and {yβ,n : β < λ, n ∈ ω} be subject to the following relations for β < λ and n ∈ ω:




∏

p∈Π1∩n
p



 yβ,n+1 = yβ,n + xνβ(n) − xρβ(n).

Then G is a torsion-free Abelian group of size λ. Moreover, since the ladder system η̄ is λ-free and S is
stationary but not reflecting, it follows by standard calculations using (5.2) that G is almost free but not
free (see, e.g., [21]).

It remains to prove that (i), (ii), and (iii) of the theorem hold. For β < λ, let

Gβ = 〈L, yδ,n : δ < β, n ∈ ω〉∗ ⊆∗ G

so that G =
⋃

β<λ

Gβ is the union of the continuous increasing sequence of pure subgroups Gβ , β < λ.

(iii) Let p ∈ Π1 and choose f ∈ Hom(G,Z/pZ). By assumption, there is β < λ such that (p, f �L) =
(pβ, fβ). Inductively we define an increasing sequence of homomorphisms gβ,γ : Gγ → Z for γ � β such
that gβ,γϕp = f �Gγ . For γ = β, we choose n(δ, β) and

〈
bδ,βm : m ∈ [n(δ, β), ω)

〉
, where δ < β, as in (5).

We let gβ,β �L= gβ, where gβ is chosen as in (1). Moreover, put gβ,β(yδ,m) = bδ,βm for m ∈ [n(δ, β), ω)
and δ < β. By downward induction, we choose gβ,β(yδ,m) for m < n(δβ), δ < β. It is easy to see
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that gβ,β is as required, that is, satisfies gβ,βϕp = f �Gβ
. Now, assume that γ > β. If γ is a limit

ordinal, then we let gβ,γ =
⋃

β�ε<γ
gβ,ε. If γ = ε + 1, then (4) implies that there is n(β, ε) < ω such that

gβ(xνε(m)) = gβ(xρε(m)) for all m ∈ [n(β, ε), ω). Therefore, putting gβ,γ �Gε= gβ,ε and gβ,γ(yε,m) = 0 for
m ∈ [n(β, ε), ω) and determining gβ,γ(yε,m) by downward induction on m < n(β, ε), we obtain gβ,γ , as
required. Lastly, let g =

⋃

γ�β
gβ,γ, which satisfies gϕp = f . Since f was chosen arbitrarily, it follows that

Hom(G,Z/pZ) = Hom(G,Z)ϕp for all p ∈ Π1, and hence rep(G) = 0 for p ∈ Π1.
(ii) We now turn to the case p ∈ Π0. By the definition of G, it follows that every homomorphism

ψ : L→ Z has at most one extension to a homomorphism ψ′ : G→ Z. Thus |Hom(G,Z)| � 2µ. However,
for every β < λ, any homomorphism ψ : Gβ → Z/pZ has more than one extension to a homomorphism
ψ′ : Gβ+1 → Z/pZ, and hence |Hom(G,Z/pZ)| = 2λ > 2µ. Consequently rep(G) = 2λ.

(i) That re0(G) = 2λ can be shown similarly. �

COROLLARY 5.4. Let µ be an uncountable strong limit cardinal such that cf(µ) = ω and 2µ = µ+.
Put λ = µ+ and assume that there exists a λ-free ladder system on a stationary subset S ⊆ λ. Then there
exists an almost free non-free coseparable group of size λ.

The proof follows from Theorem 5.3 letting Π0 = ∅ and Π1 = Π. �
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