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In the above article the proof of  Theorem 3.3 of  [1] was flawed in that the definition 
of somewhat determined was inaccurate. This should be replaced by the following. 

A condition p E P~2 will be said to be determined if there is some ~p E [w2] <r176 
such that ~p is the support of p and for each cr E ~p there is a quadruple 

~ ~ ~ at" (ap, iV, Ap,  9~;) such th . 
- P Falk~o p ( ~ r ) = a p  ( f ~ , A p )  for e a c h a E ~ p  
- A ~ _ C ~ p N ~ f o r e a c h ~ r c S p  
- p [ cr Ikpo "9o(~) 1 dora(a;)  = g~" for each ~r E Zp 

- for each {(7, 7-} E [L~] 2 such that ~ -< ~- there is some kp(cr, ~-) E 2 such that 

P I 7-IFp,_ "A;l{kp(O-,T)} E D~_" 
- dom(fp)  _D dom(a~) for each a E Zp 

- d o m ( f f )  C_ dom(fp)  for each {o-, T} C [~p]2 such that ~ -~ ~-. 
This definition of  determined differs in a substantial way from the definition of 

somewhat determined in [1]. The next lemma shows that every condition can be 
extended to a determined condition; this is problematic for the somewhat determined 
conditions. 

L e m m a  0.1. The set of determined conditions is dense in Pco 2 . 

Proof. Induction on c~ C a) 2 -~- 1 will be used to prove the following stronger statement: 
For each m E w and each p C F~ there is a determined condition q _> p such that 

o- if (7 is the maximal element of  Zq then m c_ aq and cr is the maximal element of 
o- the support of  p. Note that aq has the smallest domain of any function appearing in 

o- q so the requirement that m C aq implies that m is in the domain of  any function 
appearing in q. 

To prove this, suppose the statement is true for all c~ E ~. If/3 is a limit ordinal the 
result follows from the finite support of the iteration; therefore suppose that/3 = "7+ 1. 
Then extend p so that p IFe.y "p('y) = a*(f,  A)". By extending, it may be assumed that 
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m C_ dom(a) C_ dom(f) .  Let rh be the maximal element of dom(f) .  Let p '  >= p I "7 
be such that A is contained in the support of  p~. 

There are now two cases to consider: Either/3 is a successor in --< or it is a limit. If  it 
is a successor then let/3* be the predecessor of/3 in --<. Otherwise, let/3* be such that 
/3* is greater then the support o f p  ~ and/3* -</3 and/3* is the successor of/3"* in the 
ordering -<. In the first case, l e t s  => p~ be such that p" IF-~, "A~l.k E DS'. In the sec- 

ond case, choose p" such that S I~-~,. "A~I** k E D~." and such that/3** belongs to 

the support of pH. 
Now use the induction hypothesis to find a determined condition q such that if ~r 

is the maximal element of  Sq then ~ E dom(aq). Moreover, in the case that/3 is 

a limit of  -<, then the induction hypothesis can be used to ensure that cr < /3*. It 
will be shown that the transitivity of  -~ guarantees that q .  P(7) = r is a determined 
condition satisfying the extra induction requirements. Let S r = Sq U {/3} and let f~ ,  
a~ and A~ have the values inherited from q and p(/3). Furthermore, kr(a, 7-) can be 
defined to be kq(cr, T) unless/3 = 7-. Here the choice of  pH helps. 

In the case that/3 is the successor of /3*,  then p~ decides that A~.lk E D/~. so 

k~(/3*,/3) can be defined to be k and, moreover kr(#,/3) can be defined to be k for 
each # E Zq such that # -< /3*. Since /5 is the successor of /3* in -4 there are no 
new instances with which to deal. In the case that/3 is a limit in the partial order -<, 
it is possible to define kr(/3**,/5) = k because of  the transitivity of  -<. For the same 
reason it is possible to define k,_(#,/3) to be k for each # E Zq such that # ~ /3**.  

Since the support of q is contained in /3* and /3* is the successor of /3** in the 
partial order -<, it follows that there are no new instances to consider in this case as 
well. [] 

The reader who wishes to see all the details of the proof is advised to download 
the file chainserrata by anonymous ftp from the directory \pub\logic\shelahsteprans 
at the site ftp.math.ufl.edu. 
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