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We will prove a theorem on the cardinahty of inverse limits of systems of groups. 
The following is an instance of the theorem: 

THEOREM. Let 1 be a strong limit cardinal of cojinality X0. For every torsion free 
abelian group G of cardinafity A and a prime p )Ext,(G, Z)( < 1 or IExt,(G, Z)l = 2”. 

We made an effort to make this paper readable also by non-logicians. C# 1989 
Academic Press, Inc. 

0. INTRODUCTION 

History and motivarion. For a discussion of the importance and the 
history of problems about the structure of the group Ext(G, Z) see Fuchs 
[6,7] and Nunke [ 131. The major question in the area was Whitehead’s 
problem: “Does there exist a nonfree group G such that Ext(G, Z) = {O}?” 
In an early stage it was clear that without loss of generality we may 
assume: 
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118 GROSSBERG ANDSHELAH 

Assumption 0.1. From now on (unless explicitly stated) the groups 
mentioned always will be uncountable torsion free abelian groups. 

Shelah proved in [17] that the problem is independent of the usual 
axioms of set theory (an alternative presentation can be found in Eklof’s 
book [2]). The positive result is: 

THEOREM 0.2. Assume V = L. Let G be an abelian group. G is 
free o Ext(G, Z) = (0). 

After the solution of Whitehead’s problem, the next natural question is 
the investigation of the structure of the group Ext(G, Z) (see [13]). A basic 
question to ask is: If Ext(G, Z) # {0}, what can the cardinality of 
Ext(G, Z) be? 

Since Ext(G, Z) is a divisible group (as we are assuming that G is torsion 
free; see [6]), Ext(G, Z) is determined by the invariants v,(Ext(G, Z)), 
where for p prime vP is the p-rank, and v,(Ext(G, Z)) is the torsion free 
rank of the group. Let Ext,(G, Z) be the p part of the group Ext(G, Z). 
A more concrete (and harder) question is the following: 

Question 0.3. Given that Ext,(G, Z) # {0}, what can the cardinality of 
Ext,(G, Z) be? 

Because of the independence results of [17,21] and Theorem 0.2 it was 
natural to deal with the last question assuming the axiom V = L or at least 
GCH. (For groups of cardinality N, there is a positive result assuming 
2n0>K,+MAn,, see [3]). Since the early sixties everything was known 
about the structure of Ext(G, Z) for G countable (see S. Chase [l] and the 
book of Hilton and Stambach [lo]). The first instance of the question was 
answered by Hiller and Shelah in [9]: 

THEOREM 0.4. Assume V = L. If Ext(G, Z) # (0) then there are at least 
K, many elements in Ext(G, Z). 

Additional results on the rank of Ext(G, Z) assuming only 2’O < 2” can 
be found in [20, Chap. 143. 

Change of notation. From now on, given a group G, by v,(G) we 
denote v,(Ext( G, Z)). 

Hiller, Huber, and Shelah [8] improved Theorem 0.4 and supplied a 
partial answer to Question 0.3: 

THEOREM 0.5. Assume V = L. Suppose that G is not free, and let 
p(G) =def Min { I BI + K,: B is a direct summand of the group G, and G/B is 
free}. Then v,(G) = 2p(G’, and for every prime vP( G) < vO( G). 
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ONTHESTRUCTUREOF Ext,(G,Z) 119 

Note that these results imply that (in L) there is no G such that 
Ext(G, Z) is the group of the rationals (which answers one of Nunke’s 
questions [ 133). In light of Theorem 0.5 it was natural to conjecture that 
v,,(G)= v,(G). But by any of [4, 16, 181 this is not true in general. The 
impression that there is no other restriction was contradicted by [16]: if 
the cardinality of G is weakly compact then v,(G) # IGI. On the other 
hand, recently Mekler and Shelah [ 121 proved the following: 

THEOREM 0.6. Assume V = L, and suppose 1 is a regular uncountable 
cardinal smaller than the first weakly compact. Then for every sequence 
{ AP < A + : p a prime} there exists a l-free group G of cardinality ;1 such that 

for every prime p, v,(G) = A,, but v,(G) = L+. 

However, this does not provide any information about the case when 
IGI = 3, is singular, for example, whether A = IGI < v,(G) < vO(G) is possible. 
The aim of this paper is to show that this is impossible when A is a strong 
limit cardinal of colinality N,. 

The structure of the paper. An answer will be presented to Question 0.3. 
In the next section we present a proof of the following theorem: 

THEOREM 1.0. Let I be a strong limit cardinal of cofinality No. For every 
abelian group G of cardinality 1 and prime p, either IExt,(G, Z)l < ,l or 
IExt,(G, Z)l = 2”. 

Combining Theorems 1.0 and 0.5 we obtain: 

COROLLARY 0.7. (Assume V = L.) Let 1 be a singular cardinal of 
cofinality No. For every group G of cardinality 1 we have that v,,(G) > 1 =j 
v,(G) = v,(G) = 2”. 

It is natural to ask: Is the corollary the best possible? Since Ext( ., Z) is a 
multiplicative functor, starting with the above example (from Theorem 
0.6), there exists a group G such that v,(G) < 1 but v,(G) = 2”. So it is clear 
that the assumption of Corollary 0.7 cannot be weakened to v,(G) < A. 

In the last section some generalizations will be discussed. The theorem 
mentioned in the abstract is presented. It is a generalization of 
Theorem 1.4, the main theorem of Section 1, which implies Theorem 1.0. 

Explanation of the proof of Theorem 1.0. First we show that it is 
enough to prove [G? (G*/p)] 2 J =z- [G? (G*/p)] 2 Ixo, which is the 
statement of Theorem 1.4 (for the terminology see Notation 1.2 in Sect. 1). 

We show that [GP: (G*/p)] > Ax0 by constructing a family of Ano 
elements of GP such that the difference of any two does not belong to the 
subgroup G*/p. How do we carry out the construction? Since cfL = NO, fix 
(G, : n < w > an increasing sequence of subgroups of G such that 
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120 GROSSBERG AND SHELAH 

JG,I =A,<1 and G=U,,, G,. For f E GP and g E G,* in Definition 1.5 we 
introduce a notion of rank such that rk(g, f) = co o there exists an 
element g’ E G* extending g such that f =g’/p. In order to show that 
[GP: (G*/p)] > Ax0 it is enough to find (f,, E GP; rl E B( T)} such that for 
every v], v E B(T) we have f, -fv 4 G*/p, where B(T) is the set of infinite 
branches of the tree T, which is defined as 

Tef {q&“’ k(Vn<w)q[n]<1,}. 

Hence by the above property of rk( ., .) we can ensure this by requiring 
the existence of a natural number n such that for every g E G,* and every 
q,v~T, ?InZvIn~rk(g,f,-f,)<co. 

The family {f, E GP: q E B(T)} is constructed by finite approximations by 
constructing {f, E GP: q E T} satisfying a strong induction hypothesis on 
explicit bounds on rk( g, f, -fv), which is why the rank is bounded. 

We have some lemmas which investigate the notion of rank and simplify 
the computation of bounds for it. The fact that we are working with groups 
is used quite heavily in many places: Lemma 1.8, Lemma 1.10, and in the 
last stage of the proof of Theorem 1.4. 

Additional remarks. The statement of Corollary 0.7 [v,(G) 2 1 =E. 
v,(G) = 2”] for A= K, is reminiscent of results on the number of classes of 
xi, n: equivalence relations of reals of Burgess, Silver, and Harrington 
and Shelah. 

Shelah has a theorem which has a conclusion similar to Corollary 0.7: 
Let A’ be a “nice” topological space. If the fundamental group of X is not 
finitely generated then it is generated by 2’O many elements (see [21]). 

Open problem. Is the statement of Theorem 1.0 true for singular strong 
limit cardinals with uncountable colinality? 

Notation. a, /?, y, 6, i, 5, [ stand for ordinals; 13, K, p, x are cardinal 
numbers. 1, n, m, k are integers, p is a prime number, w is the first infinite 
ordinal, and also stands for the set of natural numbers “1 is the set of 
sequences of length a whose elements are ordinals less than A, 
-/&def(JBsor 8A. We say that Ts@ 1 is a tree if for every q E T all its 
initial segments are also elements of T. We denote by ‘I, v sequences, for 
q E “A, /? c a q I /3 is the restriction of q to /?, i.e., rl 1 /I is the sequence v of 
length p such that for every y < /3 we have q I j?[y] = v[r]. B(T) is the set 
of limit points of T, i.e., sequences of length w, h(q, v) = Max(k: n I k = 
v ) k}-the length of the maximal common initial sequence, and I(q) is the 
length of the sequence r]. For a linearly ordered set S, [S]’ is the set of 
increasing pairs from S. 

Models will be denoted by the letters A4, N. L(M) is the similarity type 
(language, or signature) of the model M. 

Sh:302



ON THESTRUCTUREOF Ext,(G,Z) 121 

In this paper I will stand always for a strong limit cardinal (i.e., 1 
satisfies (VP < 1)2” < A) of cofinality K, (= there exists an increasing 
sequence of cardinals (I, : n < w ) such that 3, = U, co A,,). 

The end of a proof is denoted by 1; the end of the proof of Claim 1.7 is 
denoted by I,., . 

We are grateful to Gregory Cherlin for reading carefully this paper, 
making grammatical corrections, and rewriting parts of our proofs. 

1. THE MAIN THEOREM 

THEOREM 1.0. Let L be a strong limit cardinal of cofinality K,. For every 
torsion free abelian group G of cardinality 1 and prime p, IExt,(G, Z)l c A or 
IExt,(G, Z)l = 2’. 

Notation 1.1. Pick {A,, CA: n<w} satisfying A=C,<, A,,, and for all 
n c o, 1, is regular and 2An < A,, ,. Let {G, : n < o } be an increasing chain 
of subgroups of G such that G,= {0), G=UntoGn, and IG,+,I =&+,. 

Notation 1.2. Given a group H let Z-Z* = Hom(H, Z), and let 
HP = Hom(H, Z/pZ). For h E H* let h/p be the following element of HP 
defined as (h/p)(x) =def h(x) +pZ. (It is easy to show that h + h/p is a 
homomorphism of H* into HP.) For YS H* let Y/p = (h/p: he Y}. So 
H*fp is a subgroup of HP. 

We are interested in the cardinality of GP/(G*/p). This group is 
interesting because of the following basic observation (see Nunke [13, 
p. 2651 or [16]). 

Fact 1.3. For an abelian torsion free group G, and a prime number p 
we have that Ext,(G, Z) z GP/(G*/p). 1 

Using Fact 1.3 it is easy to verify that Theorem 1.0 follows from the 
following theorem. 

MAIN THEOREM 1.4. For any abelian group G of cardinality 1 we have 
[GP: (G*/p)] > A * [GP: (G*/p)] 3 Ax0 (notice that since 3, is strong limit of 
cofinality K, by cardinal arithmetic (see [ 11, (6.21)]) we have 2” = Ano). 

We will now describe the rank function used in the proof of the main 
theorem. 

DEFINITION 1.5. Let f E GP and let g E G,*. 

(1) If g/p =f ( G,, we say that (g, f) is a nice pair. 

(2) Define a ranking function rk( g, f ). First by induction on a, we 
define when rk( g, f) 2 a simultaneously for all g E U,, <w G,* : 
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122 GROSSBERG AND SHELAH 

(a) rk( g, f) > 0 iff (g, f) is a nice pair; 
(b) rk(g, f) 2 6 for a limit ordinal 6 iff for every /I < 6 

rk(g,f )>B; 
(c) rk(g, f) > /I + 1 iff (g, f) is a nice pair, and for the value of n 

which g E G,, there exists g’ E G,*+ , extending g such that rk( g’, f) > /I; 

(d) rk(g,f)> -1. 
(3) rk(g,f)=o! iff rk(g,f)>a and it is false that rk(g,f)>a+ 1. 
(4) rk( g, f) = co iff for every ordinal a we have rk(g, f) 2 a. 

The following two claims give the principal properties of rk( g, f). 

Claim 1.6. Let (g, f) be a nice pair. 

(1) The following statements are equivalent: 

(a) rkk, f) = 00. 
(b) There exists g’ E G* extending the function g such that g’/p =f: 

(2) If rk(g,f)<oo then rk(g,f)<A+. 
(3) If g’ is a proper extension of g and (g’, f) is also a nice pair then 

rU’,f) G Mg, fh and if rk( g, f) < co then the inequality is strict. 

Proof: (1) Statement (a) * (b). Let n be the value such that g E G,*. 
If we will be able to define { gk E Gz+k: k < o} such that (i) g,=g, 
fii) gkGgk+IT and (iii) rk( g,, f) = co then clearly we will be done since 
g’ =def IJ g, is as required. The definition is by induction on k. 

For k=O let g,=g. 
For k > 0, suppose g, is defined. By (iii) we have rk(g,,f) = co, there 

exists g* E G,*+,+ , exending gk such that rk(g*, f) = co, and let 
gk+, =defg*. 

Statement (b) =z- (a). Since g c g’, it is enough to prove by induction on 
u that for every k 2 n when gk =defg’ 1 G, we have that rk(g,, f) > a. 

For a = 0, since g’/p =f clearly for every kg,/p =f ) Gk so (gk, f) is a 
nice pair. 

For limit CC, by the induction hypothesis for every /I < a and every k, 
rk(g,, f) > /?. Hence by Definition 15(2)(b), rk(g,, f) > a. 

For a = /I + 1, by the induction hypothesis for every k, rk( gk, f) 2 /I. Let 
k, 2 n be given. Since gkO c gkO + , , and rk(gk,,+ , ,f) 2 j?. Definition 1.5(2)(c) 
implies that rk(g,,,,f) > j? + 1; i.e., for every k >n we have rk(g,, f) 2 a. 

(2) Let gE G,* and f~ GP be given. It is enough to prove that if 
rk( g, f) > A+ then rk(g, f) = co. Using part (1) it is enough to find g’ E G* 
such that g E g’ and g’/p =J 

We define by induction on k < o, g, E G,*, k such that g, E g, + , , and 
rk(g,,f)>~+. For k=O let gk=g. For k+l, for every a<A+, as 
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ON THESTRUCTUREOF Ext,(G,Z) 123 

rk(g,,f)>a by 1.5(2)(c) there is gk,orE Gn+k+, extending g, such that 
rk(g+,, f) > a. But the number of possible g,,, is 6 IG,*+k+ ,I < 
2”“+ k+ ’ < 1+ hence there are a function g and a set SE 1+ of cardinality 
1+ such that a E S * gk,, = g. Then take g, + I = g. 

(3) Immediate. 11,6 

LEMMA 1.7. ( 1) Let (g, f) be a nice pair, and let a be an integer. Then 
we have rk( g, f) < rk(ug, uf). 

(2) For every nice pair (g, f) uve hoe rk(g, f) = rk( -g, -f). 

Proof: (1) By induction on a prove that rk(g, f) > a =s rk(ag, af) 2 a 
(see more details in Lemma 1.8). 

(2) Apply part (1) twice. I,., 

LEMMA 1.8. Let n < o be fixed, and let g(g,, f,), (gz, fi) be nice pairs 
with g,E G,* (I= 1.2). 

(1) If (g,,f,), und (g2,f2) ure nice pairs then (gl+gz,fl +fi) is u 
nicepair, undrk(g,+g,, fi+fi)>Min{rk(g,,f,):1<2}. 

(2) Let (n,f,,g,) und(n,f,, gz) beusuboue. Vrk(g,,f,)#rk(g,,f,) 
then rk(g, +g,, f, +f2) = Min{rk(g,, fr): I< 2). 

Proof: (1) It is easy to show that the pair is nice. We show by induc- 
tion on a simultaneously for all n < w, and every g,, g, E G,* that 
Min{rk(g,,f,): 1<2}>a implies that rk(g,+g,,f,+f,)>a. 

When a = 0 or a is a limit ordinal this is easy. Suppose a = fi + 1, and 
that rk(g,, f,) > /? + 1; by the definition of rank there exists g; E G,*+, 
extending g, such that (g;, f,) is a nice pair and rk(g;, f,) > /?. By the 
induction assumption rk( g; + g;, f, + fi) > fi. Hence g; + g; is as required 
in the definition of rk(g, +g,, f, +fi)>fi+ 1. 

(2) Suppose w.1.o.g. that rk(g,, f,) < rk(g,, fJ, let al = rk(g,, f,), 
and let a,=rk(g,,fh BY part (I), rk(g,+g~,f,+f~)>a,, by 
Proposition 1.7, rk( -g,, -fi) = a2 > al. So we have 

al=rk(g17fl)=rk(gl+gz-gg,,fl+fz--f,) 

>Min{rUg, +gzIfl+fA rk(-g,, -fz)l 

=rk(g,+g,~f,+f~)~a,. 

Hence the conclusion follows. 1,.8 

Notation. By 0,” we denote the constant function whose domain is G, 
and its value is 0. 

The assumption of the theorem that [G? (G*/p)] 21 is used in 
Lemma 1.10 below. In order to formulate it we need a definition: 
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124 GROSSBERG AND SHELAH 

DEFINITION 1.9. Let a, =def Min { a: for every cardinal p < J. there exists 
{fi: i < p} c GP such that 

(a) for every i < p we have f, 1 G, = O,“, 
(b) for every i#j, rk(O,“, f, -4) > 0 implies rk(O,=, fi -fi) <a, and 

(~1 i#j*fi-fj$G*/p.f 

LEMMA 1.10. ( 1) a,, is well defined and is less than A+. 

(2) a,2an+L for every n < 0. 

(3) There exists n, c o and there exists a limit ordinal a such that for 
every n > n,, a, = a. 

(4) If u,, is a limit then cfu, c 1. 

Proof (1) We have to show that for every p < 1 there are 
{fiE G? i<p} and an ordinal a < Iz+ such that (a), (b), (c) of 
Definition 1.9 hold. Given n <w, p <A denote x= (~+2’~“‘)+. Since 
[G? (G*/p)] 2 1 there exists { gi E G? i < x} such that 

(#) i#j*gi-gj$G*/pe 
Since x is regular and greater than the number of functions from G, into 

Z (=2tGnl) there exists Ssx ISI=x such that i#jES+giJG,=gj( G,. 
Fix i,, = Min S, pick TS S - (i,} of cardinality p. Let {hi: i < p} = 

{gr: 5~ T}. For i<p define fi=h,-g,. Clearly {fi: i<p} satisfies (a) 
and (c). Why do we also have (b)? Suppose rk(OG,,fi -4) = 00 
then by Claim 1.6( 1) there exists g’ 2 0,” in G* such that fi -fi =g’/p 
contradicting ( # ). 

Let a =def Sup{rk(OG,, fi-A): i, j< p}. Why is a c A+? By Claim 1.6 
rk(OG,,h--fj) < I+. Since ~L<I+ and 1+ is regular we have that a<A+. 

(2) Given p < 1 let x = (21Gn+l’ + p)‘, and let ( fiE GP: i < I} exem- 
plify a,. As in (1) choose {fiEGP: i<p} such that i#j*f, IGn+, COG”+, 
and fi -fi = g, -g,=,. By Claim 1.6(3) rk(OGn+,, fi -A) < rk(O,“, L -fi) = 
rk(Ocn, g,, -iQ,) G %. Hence {hi: GP: i < p} exemplify a, + , < a,,. 

(3) Since there is no infinite descending sequence of ordinals there 
exists n, c w such that for every n, k>n, we have a, = uk. Taking the 
second clause of Claim 1.6(3) into account it follows easily that if a,, = a,+, 
then a,, is a limit ordinal. 

(4) Since 1 is singular and a,, <A+ (by (1)) cfan < 1. 

Remarks. ( 1) We change the enumeration of the sequence {a, : n < cu } 
omitting the first n, elements. So using Lemma 1.10(3) we may assume that 
all members of {IX, : n < o > are the constant limit ordinal a. 

(2) In part (4) of Lemma 1.10 it is possible to show that cfa, = N,, 
but since we do not use this, we skip its proof. 
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Proof of the Main Theorem 1.4. For n < o let T,, = XkQ,, &, 
T=dcfUn T,,. We will construct {fVEGP:qEB(T)} such that ~#vEB(T) 
*f,, - fV # G*/p. We define by induction on n < o { g,,i E GP: i c A,} and an 
ordinal y,, <IX (a is the ordinal from Lemma 1.10(3)) such that 

(1) g,,i I G,=OG. for all i<l,; 
(2) for all h E G,* and i < j< A,, if rk(h, g,,i-gg,i) < cc then 

WV gn,i-gn.j)G~n; 
(3) rk(Oc”,g,i-g,j)>y,-~ for i<j<L 

Having done so, we will set f, =x,<,, g,,,crl for q E T,,. Then define fq for 
VE B(T) using {f,,: VE T,, n <CD} as follows: Given qeB(T), f,, is the 
element of GP satisfying fq 1 G, = fq,,,. We show first that the construction is 
sufficient. and then that it can in fact be carried out. 

The Construction Is Sufficient 

PROPOSITION 1.11. Let q, v E B(T). If ‘1 # v then f,, -fV $ G*/p. 

Proof: Suppose toward contradiction that for some gs G* we have 
f,,-f,=glp. Let k=h(rl, v). For l>k let 5’ be rk(g I GI,f&+,-f,,,,,). 
We will reach a contradiction by showing that { 5’: k < I< o} is a strictly 
decreasing sequence of ordinals. 

For l=k, we show that tk<yk. Let i=q[k], j=v[k]. By the choice ofk 
i # j. In this case tk = rk(g 1 Gk, g,/g& < Yk by (2). 

Now we proceed inductively. We assume that <‘< tk and show that 
r ‘+i<g’. Let i=q[I+l], j=v[I+l], and l,=rk(gI G,+l,fq,I+,- 
f&+ d Observe: & < rk(g I Gl,fqll+ I -fVll+-A = ?. 

Ifi=j, thenf,,,+,-f,,,+,=f,,,+,-f,,,,, and hence 5’+‘=5r<5’. 
Suppose therefore that i#j. Then <“‘=rk(gI G,+l+Oc,+,,(fV,,+,- 

f”,,, 1) + (g1+ 1.i -g,+,,j))aMin(Clv WG,+,, gr+l.i-g/+l,j)} withequab 
if the last two ordinals differ. Since t1 Cc*< tk <yk<y,+ I <rk(O,,+,, 
gl+ l,i-g/+ 1.j) (by @I), we again find 5”’ = 51-c 5’. 

The Construction 

Fix yn-, < a (for n = 1, let y,, = 0). We will construct a family { gi: i < A.,} 
and an ordinal y, satisfying the conditions ( 1 ), (2), (3). 

We begin by fixing a sequence ( fpsi E GP: i < p), for each p < A, satisfy- 
ing the conditions (a), (b), (c) from the definition of a,,( =a). 

Claim 1.12. Let I < CD. For every cardinal x there exists a cardinal ,u 
such that x c p < 1 and there exists T E p I7J = x + such that for every 
i,ieS i<j~rk(OG,+,,f~,i-f~,j)>~~. 
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126 GROSSBERG AND SHELAH 

Proof: For every K 3 x, such that K < 1 let p = pLK 3 ( X,(K))'. Note that 
since ;1 is a strong limit we have p < A. Define a coloring F,,: [p]’ + {T, F} 
as 

By the Erdos Rado Theorem ([S], or see [ 11, Theorem 691) there exists 
s E p of cardinality K + such that exactly one of the following possibilities 
holds: 

( T)p for every i, j E S i<j~rk(Oc,+,,fi,r-f/,p))Y, 

(F), for every i, j E S i<j=>rk(Oo,+,,~,r-fj.~)~YI. 

Clearly if there exists a cardinal K, and p = pLK such that (T), holds, we 
are done. Otherwise, for every K 2 x we have a cardinal p= pK such that 
( F)p ; i.e., there exists a family of functions { gi: i < K+ } E {fi,, : j < p } such 
that MO,,+, , gi-gj)~Y,<~~a,+, violating the definition of a,+, as the 
first ordinal with this property. I,,,* 

To construct the family { gi: i < 2,) we will combine Claim 1.12 with a 
second application of the ErdGs Rado Theorem. 

Let rc = (Max{2”“, $a})’ < ;1. Let x =def a*(~)+. Apply Claim 1.12 to get 
a family { fi: i E I} satisfying: 

(a) fi I G,=Oo,, 
(b) for i#j, ~~-~<rk(O~~,fi-fi)<a with ZC_A, (II =x. 

For g E G,* such that g/p = 0,” define a coloring F, of [Z]’ by two colors 
according to the following scheme: (i, j, k) is 

red if Mg, fi -A) G rk(g, fi -fd; 

green if rk(g,f,-fi)>rUg,fi-Ii). 

By the Erdiis Rado Theorem there is a set JE Z, IJI = K such that each 
coloring is constant on [J13. Let the value of Fg on [J13 be denoted cg. 
Observe that cg is never green as this would produce a descending sequence 
of ordinals. We claim that {fi: i E J,} (J,, E J, lJ0l = I,) provides a set that 
can play the role of { gi: i < A,}. We show first 

rk(g,f, -fi) G rWGnvh -fd for i<j<k inJ. (*) 

In&d: rk(g9fi--fj)=rkk+Oonv (fk-fi)+ (fi-fk))~Min{rk(g,f,-fi), 
rWGn,fi-f,)) = Min{rk(g,f,-f,), rk(O,, fi-f,)} and we have equality 
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unless rk( g, fi -fk) = rk(O,“, fi -fk), in which case as rk( g,f, -fi) < 
rUg,fj-fk) (*I hold. 

Accordingly it will be sufficient to find ~,,<a such that 
rk(O,,,,fi -fi) < yn for all i, je J. Observe first that rk(OGn,fi -4.) < 
rk(OGn,f, -jr) for i < j < k < I in J. For B < K, clearly choose i(/?) <j(B) in J 
so that /?<v *j(B) c i(y). Then rk(O,“,&,-fits,) is a monotonically 
nondecreasing sequence of length K below a. Since cfa < K this sequence is 
bounded below a by some y,. It is easy to see that rk(O,“,fi-h)<Yn for 
all i, j E J. a ,,4 

2. GENERALIZATIONS 

The fact that we worked in Theorem 1.3 with Z or pZ and the specific 
mapping h/p are not important to the proof of the theorem. The following 
theorem is true, and has essentially the same proof as Theorem 1.3. 

Notation. Let H, H’ be abelian groups, suppose that cp: H + H’ --* 0 is 
exact. For a group G let cp: Hom(G, H) + Hom(G, H’) be the induced 
homomorphism by cp. Denote H$ = Hom(G, H’), and let H* = Hom(G, H). 

THEOREM 2.1. For every H, H’, cp and G as above and satisfying 
ICI > IHI . IH’I, if ICI is a strong limit of cofinafity N, then [H;: H*] 2 
JGI =s [H;: H*] = 2”‘. 

The last theorem can be generalized to non-abelian groups. The more 
general statement is given below as Theorem 2.2. Notice that there is no 
reference to the group G. 

THEOREM 2.2. (1) Suppose A is strong limit of cofinality N,, (i.e., Iz is 
countable or a singular strong limit cardinal). Let (G,, pr,,,“: n <m < o) be 
an inverse system whose inverse limit is G, such that IG,( <A and (G,I 2 1. 

(2) Let I be an index set of cardinality less than 1. For every t E I, let 
(Hk, h,,,: n <m < o) be an inverse system of groups and HL be the 
corresponding inverse limits. 

(3) Let for every t E I, h:: Hi + G, be homomorphisms such that all 
diagrams commute, and let h: be the induced homomorphism from H: 
into G,. 

(4) If for every p < 1 there are ( fi E G,: i< p) such that for every 
i#j (Vt ~1)[f,-fi#Range(h:)], then there are (fiEG,: i<lno) such that 
for every i #j (Vt E I)[f, -f;.$ Range(h:)]. 

Proof. Similar to the proof of Theorem 1.4. 

481/121,‘-9 
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