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For any property ¢ of a model (or graph), let u, (¢) be the fraction of models of power n
which satisfy ¢, and let p(¢) =1lim,_, ., p,(¢) if this limit exists. For first-order properties @, it is
known that u(¢) must be 0 or 1. We answer a question of K. Compton by proving in a strong
way that this 0-1 law can fail if we allow monadic quantification (that is, quantification over
sets) in defining the sentence ¢. In fact, by producing a monadic sentence which codes
arithmetic on n with probability u =1, we show that every recursive real is w(¢) for some
monadic ¢.

For any sentence ¢ of any logic, let w,(¢) be the fraction of models of
cardinality n which satisfy ¢. (A precise definition appears in Definition 1 below.)
Then let p(¢)=1lim,_,, u.(P), if this limit exists. Fagin [2] and independently
Glebskii, Kogan, Liogon’kii, and Talanov [4] proved that w(¢) is 0 or 1 for each
first-order sentence ¢ without function or constant symbols. A related result for
the space of countable models was proved by Gaifman [3]. For other related
references the reader may consult Lynch [5] and Compton [1].

In second-order logic one allows quantification over arbitrary relations. For this
logic the limit u(¢$) need not even exist; for example, if |A|=n then A satisfies
“there is a permutation of order 2 without fixed points’ iff n is even. This
example disappears if we restrict the second-order quantifiers to quantifiers over
sets. The resulting logic is called monadic second-order logic. Note that we allow
n-place relation symbols in the vocabulary. If the vocabulary is restricted to unary
predicates, then it is known that the 0-1 law holds. The following question of K.
Compton appears in [6]: does w(¢) exist and equal 0 or 1 for all monadic
second-order ¢? In this paper we answer this question negatively in a strong way
by proving Theorem 2 below. First let us formally give the requisite definition.
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Notation. We identify each natural number n with the set of its predecessors, i.e.
n={0,1,...,n—1}

Definition 1. Let L be a finite vocabulary. (Usually L will consist of a single
binary relation symbol R.) Let S,, be the space of all L-structures with universe

{0,1,...,n—1}=n. Then set u,(¢)={U € S,.: U ESY/|S,|. If lim, .. u.(¢) exists,
we denote this limit by w(¢).

We are about ready to state the main theorem and its consequence that answers
Compton’s question. Let + In denote {(x, y, z)enXnXn: x+y = z}; similarly for
X In. Notice that in first-order logic one may assert (of a finite model) that
n,d(x,y,2,...), ¥(x,y, z,...))=(n,+1n, X n), where n is the cardinality of the
model but this sentence does not depend on n. Let us abbreviate this sentence by

X, )y=(+,x)".

Theorem 1. There are monadic second-order formulas ¢.(x,y,z, P,R) and
é.(x,y, z, P, R), where R is a binary relation symbol and P is a sequence of unary
relation symbols, such that the following sentence has probability p = 1:

3ﬁ<¢+(x, ya Za P) R)’ ‘bx(x, ys Z> P3 R)) E<+’ X))
(where this abbreviation is defined above).

The followiﬁg result implies that there are sentences of monadic second-order
logic which have no limit and sentences with any recursive real as the limit.

Theorem 2. Let T be any recursively enumerable tree of finite sequences of zeros
and ones, without terminal nodes. Then there is a sentence ¢ of monadic second-
order logic such that the set of subsequential limits from (i, (¢): n eN) equals the set
of reals of the form Y {27'"': b(i)=1} for b ranging over the branches of T, i.e.
bl neT for all neN.

The solution given by Theorem 2 is due to Shelah. Before giving the proofs of
Theorems 1 and 2, we outline a simpler but less powerful example, due (indepen-
dently of Shelah) to Kaufmann and J. Schmerl, which hints at the power of
monadic second-order logic.

Suppose U =(A,R,...) is a finite structure with Rc A% If X< A, say
X is R-suitable if for all x,yeX there is acA such that
VzeX)(Rza < z=xvz=y). Let n(R) be the largest k such that every subset of
A of power k is R-suitable. Then there is a monadic second-order formula
dr(X) which says that X has power at most n(R). ¢r(X) is
VZI“XI<r|ZI”Vv(|Z| <z X A“Z is R-suitable)], where “|X|=<g|Z|” is

3X13X23X33213%3%[X =X 1 U X2 U X3
ANZ2Z,UZ,UZ;A N\ FP(VxeX;)(A'ueP)Rxu

1=si<3

AVueP)@A! xeX,)Rxu A(VzeZ)(A! ueP)Rzu A(VueP)(3z€Z)Rzu)],
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and “|X|<g|Z|” is similar except that Z2Z,UZ,UZ;. Let ¢dx(X) say that
| X]=n(R), ie. ¢r(X)AIy1dr(XU{y}). Now consider a vocabulary with 2
binary relations R and S. We claim that the following sentence does not have
probability 1: AX(Pr(X)Ads(X)), i.e. n(R)=n(S). This will be seen to follow
from the following observations.

(1) Let i, =least i such that y;(n(R)=i) is a maximum (for fixed j). Then
p(n(R)=n(S))=1ifflim; ,. w;(n(R)=i)=1.

(2) For all k, u(n(R)=k)=1.

3) It p;(n(R)=<i)>1-—¢ then u,;,(n(R)<i)> (1-¢)(1-276D),

(1) is easy to prove, and (2) is an easy consequence of the fact that a first-order
sentence ¢ holds in the countable universal homogeneous model iff w(¢p)=1 (cf.
Fagin [2]). To verify (3), given a random model of power j+1, pick a random
submodel of power j. Assuming w;(n(R)=<i)>1—¢, with probability >1—¢ this
submodel has a counterexample (X; a, b € X) to (i + 1)-suitability. The probability
that the element ¢ outside the submodel ‘restores’ X (i.e. Rac A Rbc A (VxeX)
(Rxc - x=avx=>b))is 27%Y, and (3) follows. Now by (1) and (2), if u(n(R)=
n(S))=1 then for all k there exist arbitrarily large j such that i;,, > i;> k. Setting
i = i; this contradicts (3). Therefore p,(n(R)=n(S))4 1.

Finally, since w(n(R)=n(S))# 1 (if indeed this limit exists at all), then since
. (n(R)>n(8S)) = p,(n(S) > n(R)) for all n, we see that u(n(R)>n(S)) is neither
0 nor 1. We do not know if u(n(R)=n(S)) exists. There is also a monadic
second-order sentence y asserting that n(R) is an even number. While it seems
likely that u(¥)=3, we do not even know whether w(y) exists.

We turn now to:

Proof of Theorem 1. Fix n, and let k be the unique integer satisfying 2** <sn <
23+ Also fix B={0,1,...,k—1}and C={0,1,...,10k—1}; then Bc C. We
will code arithmetic on 2* by coding all subsets of B, and then viewing these codes
as binary expansions of numbers less than 2*. Then we will view elements of n
(recall n={0,1,...,n—1}) as coding distinct subsets of C, and use this idea
together with the arithmetic on 2 to code arithmetic on n. We begin by proving
three claims which say that with probability 1, we can do such coding.

(1) Let ¢, say that for all A <B, there is a such that A ={l € B: IRa}. Then
(o) =1.

Proof. For each A<B and a <n the probability of “A ={leB:IRa}” is 27~
These are independent events as « varies over elements of n. Hence the
probability that (Waen) (A#{leB:IRa}) is (1-27%)"~e™*=<e ™, so the
probability that this occurs for some A =B is <2ke **<e™"

(2) Let 4, say that for all distinct a, B €C, {IeB: IRa}#{l e B: IRB}. Then
n(p)=1.

Proof. For each pair a# B the probability that {l e B: IRa}={l € B: IRB} is 27~.
So the probability that this holds for some a,BeC is at most |[C[*?27F=
100k2 27 <n~Y* for sufficiently large n.



Sh:201

288 M. Kaufmann, S. Shelah

(3) Let ¢, say that for all a <B <n,{le C: IRa}#{l e C: IRB}. Then n(y»)=1.
Proof. w,(—w,) <n?271C1<26k+D 3=10k _5—4k+6 _, () and (3) follows.

By (1), (2), and (3) we may assume henceforth that the model M=(n, R)
satisfies Yo A ; A,. No more probability arguments will appear. Rather, we will
expand M by adding various unary predicates so that addition and multiplication
restricted to n are definable in the expanded structure by certain formulas ¢ and ¢
(respectively). This of course yields the theorem. For a technical reason we also
assume 10k <[v2¥].

Our first step is to expand M to a structure M, (adding only unary predicates)
so that there is a linear order on B definable in M,. In fact, as B=
{0,1, ..., k—1} we would like the natural order on B to be definable in such an
expansion M,, and this is easily arranged as follows. For each i <k choose a; <n
such that {0,1,...,i}={j<k:jRa;}; this is possible as MFky,. Then let S=
{a;: i<k}. Clearly, for i, j <k we have i <j iff (3acS)(iRa A—jRa).

It will be convenient to allow quantification over two-place relations on B. This
practice keeps us in the realm of monadic second-order logic, however, as we now
show. First notice that since Mk, for every a# 8 from B(=k) there is some
X(ag) <n such that {a, B} ={l € B: IRx, z,}. For any relation S < B>, then, we may
associate sets X, Ycn so that X={x g a<pf<k and aSB} and Y=
{X(e8y: B<a <k and aSB}. Notice that if x, g =x(,5 then a =y and B =8. It is
then clear that S can be recovered from X and Y, so for any monadic 6(S,...)
there is a monadic 6'(X, Y, ...) such that in M, (or indeed, in any expansion of
M,), ( 3Sc B0 (3AX)3Y)0'(X, Y,...). Henceforth we will freely use quantifi-
cation over binary relations on B. In particular, + and X restricted to k =B are
definable in M,,.

Since MEy,A¥; we may extend C to represent all of the subsets of B. Hence
we may (monadically) expand M, to a structure M; which has the following
properties:

(4) The predicate “xeB” (i.e. x <k) is definable in M,, as is the usual order
on k. Also C is definable in M, (recall C={0,1,...,10k—1}),asisaset D=2C
of power 2* such that (VaeD) (VBeD) [a# B —{leB: IRa}#{l € B: IRB}]. We
may quantify over binary relations on B. In particular, arithmetic on B is
definable in M,.

Now define a function f: D — 2* by f(a) =Y {2': iRa, i e B}. We claim:

(5) The relation R, ={{a, B, v): @, B, yeD and f(y)=f(a)+f(B)} is definable .
in M.

For, let X< B =k be the set of places where there is a carry in the addition
f(a)+f(B), i.e. where Y. {2': jRa, j<i}+Y {2': jRB, j <i}=2'. Choose & € D such
that {l € B: IR8}=X. Now the requirements for f(y) =f(a)+ f(B) are local. That
is, f(v)=f(a)+f(B) iff for some §, the right thing happens at each coordinate;
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that is, iff: iRye[(iRa<iRB)«iR§] for all i<k; ~—10RS;
(i+1)R8<[(iR8 AiRa) Vv (IRE AIRB)V(iIRa AiRB)] for all i<k-1; and
f((k—1)R8A(k—1Ra)v((k—1)R8A(k—1)RB)v({(k—1)Ran(k—1)RB)] (so
that f(a)+f(B)<2*). Hence (5) holds. Now we prove

(6) The relation R, ={{a, B, y)e D?: f(a) - f(B) = f(y)} is definable in M,.

Given a, B € D with f(a) - f(B)<2*, we define y (uniformly in a and B) such
that f(a)- f(B)=f(y), as follows. Let f(a)=Y ;2" and f(B)=Y B;2'. Consider
the matrix S<B? formed (roughly) by putting ¥ ;2" in column j if 8;#0,
otherwise putting all zeros in column j. Formally, set S={(i,j)e B* j<i and
(i—j)Ra and jRB}. Now the intuitive idea is that f(a) - f(B) is the sum of the
columns of S, that is, ¥ {3 {2°: (i, j)€ S}: j <k}. So let T < B represent the partial
sums, that is, the jth column of T should represent the sum of the first j columns
of S. Formally, T is characterized by setting (i, 0)e Tiff (i, 0)e S, and (i,j+1)eT
iff there are §,m,v with {i<k:iR8}={i<k:(,j)eT}, {i<k:iRm}=
{i<k:(,j+1)eS}, and f(»)=f(8)+f(n) (which is definable, by (5)). Finally,
f(a) - f(B)=f(v) iff there are such S and T such that vy codes the last column of
T: (Vi<k) (iRy<>(i,k—1)eT). Since by (4) we are allowed quantification over
binary relations on B, this concludes the proof of (6).

At this point we turn to the problem of defining arithmetic on n rather than
merely on 2. As MEy, we can view n as a subset of 2/, The idea is to code each
element of M (i.e. of n) by the number of predecessors it has in M, under the
lexicographic order on 2'°!. We use the arithmetic available on 2* to carry out this
coding. Notice that by replacing M,; with an isomorphic copy (in which B and C
are fixed pointwise by the isomorphism), we may assume by (5) and (6) that:

(7) D=2*, and setting E ={l: [><2*}, we have ‘plus’ and ‘times’ on E defina-
ble in M,;. Also we can code binary relations on E in M;: for S < E?, consider
{i - [V2¥]+j: G, jHe S

We now prove:
(8) In M;, we can define the relation “xe EA|X|=x".

To see this, notice that for x € E, we have |X|=x iff there is S =x X 10k such
that for all i <x, {I<10k:iSI}={l<10k: IR'a} for some a € X, and conversely,
every a € X has this property for some unique i <x. By MF ¢, and the last clause
of (7), and since 10k = E (as we have assumed 10k <[+/2¥]), this argument proves
(3.

At least we are ready to begin to define arithmetic on n, in M,. Let m=
max(E), and for a <n let ||a}| be the number of elements which precede « in the
lexicographic order on 2!%, in the following sense:

llell=KB: for some I <10k, IRax A—IRB A(Vi<l)(iRa<>iRB)}.
Notice that the predicate ||8]|<|le|| is definable in M,. Thinking in base m, we
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see that there are unique p3,pl,...,pS<m such that |ja||=Y%_opim’ (as
m’>n). We claim:

(9) The relations “m’ divides |la||” (each i=1,2,...,6) and “p’,=1" (each
i=0,...,6) are definable in M,.

In fact (9) follows easily from (8). For example, m divides || iff for some
Xc{B:lBll<llel}U{a}, we have a € X and B,eX where ||By|=0, and for all
B, yeX with B <v, if (Vo)(Bll<llsl|<llvll =8¢ X) then [{5:[IBll=<|l8l|<|lvl}}=m.
The higher powers are treated similarly. For example, “m? divides ||a||” is defined
just like “m divides «”’, except that [{5: ||Bll<||8||<|lyll}l = m? for successive B <+
in X:(AY) BeYAyeYA(VB €Y) (Vy'eY) [(V8) (IBll<lsli<lyll— 8¢ V) —
K&: lIBll=<lisll<llv'}l = m]. The higher powers m' are handled similarly, that is,
{8: lIBll=<lidll<llv|lf = m* for successive B<+vy in X, and this can be said by
subdividing {8: ||gl|<||6l|<|l¥ll} (i —1) times. The predicates “p.,=1" are handled
similarly.

Finally, we can easily define {(a, B, v): lal+|iBl|=|ivll} in M,, using (9) and (7).
Also, by (9) and the distributive law, it is easy to reduce the problem of defining
{(a, B, ¥):llell - lIBll=~} in M, to the problem of finding, for all p,, p,<m, some
i, j <m such that p, - p, =im +j. But since we have defined arithmetic up to m? in
M,, this is also routine, and the proof is complete. [

Theorem 2 is a rather direct consequence of the following lemma, which we will
prove using Theorem 1.

Lemma. Suppose that f and g are recursive functions such that f(n) <g(n) for all n.
Then there is a sentence ¢ of monadic second-order logic and a finite~to-one
function h from N onto N such that lim,,_,.. () — f(h(n))/g(h(n))|=0.

In particular, given any recursively enumerable tree T of finite sequences of 0’s
and 1’s (as in Theorem 2), we may apply this lemma to recursive functions f and g
such that (f(n)/g(n): n eN) enumerates T. (Here we are of course identifying a
node seT with the corresponding fraction ¥ {27¢*V: s(i)=1}.) Then it is clear
that for every branch b of T we can choose a subsequence from {u,(¢): n <o)
converging to ¥ {27%*V: b(i) =1}, where ¢ is the sentence given by the lemma.
Conversely, if (u,(¢d): nel) is a convergent subsequence of {w,(¢): n eN), then
(f(h(n))/g(h(n)): n eI) converges, so since h is finite-to-one, there is a branch b
of T such that (f(h(n))/g(h(n)): n € I) converges to Y. {27¢*?: j e b}, and Theorem
2 follows.

Proof of Lemma. Recall that a function f is recursive if and only if it is definable
in (N, +, -, <) by a formula 3i6(x, y, #) where 0 is 4,, i.e. 6 has only bounded
quantifiers (those of the form Vv, <v,, 3v,<v,). We may assume that the
symbols + and - occur in 0 as ternary relation symbols. (Notice that this may



Sh:201

On random models of finite power and monadic logic 291

increase the length of i.) By replacing 3ié with 3z Ju, <z3Ju,<z - - - Ay <z, we
see that f is definable in (N, +, -, <) by a formula 3z6(x, y, z) where 0 is A, and
has + and - as relation symbols. Notice that for all n, if (n,+}n,- }n, <} n)k
3z6(i, j, z) then f(i) =j. Choose a similar formula 3z (x, y, z) for g. It is conve-
nient to assume further that NEVxVyVz[0(x,y, 2)vi(x, y,2) > x<zAy<z]A
Vx Vy; Yy, VzVw[O(x, y1, Z) AP(x, Y2, w) —> z = w]. The idea is that z is the least
number coding witnesses for both @ and . To be precise, simply replace 6(x, y, z)
by x<zAy<zA@v<z)@y'<z)@w<z)[0(x,y, v)AY(x, ¥, w)], and then re-
place this new formula 64(x, y, z) by 0¢(x, v, z2) A(Vu<z)—864(x, y, u); and change
Y similarly.
Next we define the function h. Given n, let m =[n'"*]. First suppose that

(*) n=m*+a+mb+m?c for some a,b,c<m such that NE@&(a, b, m)A

¥(a, c, m);

then set h(n) = a. Notice that such a, b, and ¢ are unique, so if (*) holds then h(n)
is well-defined. Moreover, for all a we may choose m such that NF
0(a, f(a), m)Ay(a, g(a), m), by choice of 8 and ¢; so h(m*+a+mf(a)+
m?g(a))=a, hence h is onto. Notice that there are unique b, ¢, m such that
8(a, b, m)Ay(a, c, m), so thus far, h is one—one. It remains to define h(n) if (*)
fails. In that case let h(n) equal the greatest a <m such that NF(3y<n)(Iz<m)
Bw<m)[6(a, y, w)Ay(a, z, w)]; if there is no such a (but this can happen for
only finitely many n), set h(n)=0. It is clear that h is finite-to-one.

Now let @ be the sentence given by Theorem 1, that is, @ says
($.(x,V, z, P, R), d.(x, v, z, P, R))=(+, X), and lim,_,.. u,(3PO) = 1. Consider the
following property of a model (n, R):

(1) (n, R)EIPO, h(n)#0, and [log,(n)+1]<[Vn].
'We will show that it suffices that ¢ have the following property:

(*) Whenever () holds for (n, R), then (n, R)k¢ iff for some i<f(h(n)),
Kk: kRk} =i (mod g(h(n))).

Tn order to define ¢ we use the following abbreviation. For X € n we can write
sucex(i, ) if ie X, je X, and k¢ X whenever i <k <j. Then ¢ should say:

() (VieX)(iRi);

(i) (Vi)(V)[succx (G, j)— {k: kRk and i<k <j}|=g(h(n))};

(iii) {k: kRk and max(X)<k}| <f(h(n)).
Now let us describe ¢. First, ¢ says that for some P, 8 (P) holds. Now we want ¢
to assert (i), (ii), and (iii) above; then (*) follows. Of course (i) presents no
problem, and since the formulas 8 and ¢ from the definitions of f and g are A,
(and by choice of h), f(h(n)) and g(h(n)) are definable in (n, P, R). (More
precisely, the f(h(n))th and g(h(n))th elements in the order defined by O (P) are
definable.) So to express (ii) and (iii) we need only express the cardinalities there.
Since h(n)#0, f(h(n))<[n'*] and g(h(n))<[n'*], so it suffices to define
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the relation “x <[n'*]A|X|=x>. This is similar to the proof of (8) in the
proof of Theorem 1. First notice that we can quantify over binary relations S
on [Vn], by coding S by {x+[nly: xSy}. Then for x <[n"?)], |X|=x iff |X|=
x AT(|X|=x+1); and for x<[n'*), |X|=x iff for some S < x x[log,(n)+1], we
have (Vi<x)Q {2':iSj}e X)A(Vi<j<x)(3k)(iSk<>jSk). Since [log,(n)+1]<
[Vn] if (1) holds, it follows that (*) holds for ¢.

The next task is to see that lim,,_,., w,(*‘(T) holds”’) = 1. But this is clear from the
choice of O, together with the fact that h is finite-to-one and lim, .. [log,(n)+
1J/[vn]=0.

Finally, let u' be the probability that |{k: kRk}|=i (mod m), where m=
g(h(n)). We claim:

tim (% u)-m@)=o0.

"%\ \k<f(h(n))

But this is clear from (*), together with the fact that lim,_,. (“(¥) holds”)=1.
Hence the lemma follows from

tim (2 wo)-L) -0

But this in turn follows from

n
(*+) for Osk<l<m, Ip."—u.'|<5( B])/Z".

For if (**) holds, then by Stirling’s formula there is a constant C (not depending
on n) such that |u* — p!|=<C/vn when 0k <I<m, and hence |u* —1/m|<C/vn
for 0=k <m. Then it follows that

‘( y “k)_f(h(n))
k<f(h(n)) g(h(n))
which has limit 0, as claimed.
To prove (+*) first notice that for 0k <I<m, p*=Y,(,")/2" and u'=
Y G /2™ Now if a; = (i;,)/2" and b; = (;,)/2", then we see that ag<by<a, <
b,<---<a,<b,, where p is greatest such that (p+1)m=<[3n], and also a,.,>

byi2>a,,3>b,.3>"-->a,>b,, where q is greatest such that gm +1=<n. Notice
that

c C 1
=7 fhm)<7=n"%

P

2 p_1
0<Y b—Y a<Y a;,+b,— i a; =b,—a,<b,,

i=0 i=0 i=0 i=0

and similarly

q q
0< Y a— Y bi<ap.o

i=p+2 i=p+2
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So we have
n
Ik — ] <b,tap2tapt+b,tag <5 [2] /2"
2

since (/2= () for all k. [

We close by remarking that by Theorem 1, one has second-order logic on [vn], in
the following sense. Suppose V¥ is a second-order sentence, i.e. we allow monadic
and binary quantification in ¥, but ¥ has no non-logical symbols (except
equality). Then there is a monadic second-order sentence @ (with one non-logical
symbol R, R a binary relation symbol) such that u[(n, R)F @ iﬂ_[x/r—t]k ¥]=1. This
is clear by a trick we have already used: binary relations on [v/n] can be coded by
subsets of n via the map (i, j)r——>i+[~/n]i.
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