ON RANDOM MODELS OF FINITE POWER AND MONADIC LOGIC

Matt KAUFMANN*
Purdue University, West Lafayette, IN 47907, USA
Saharon SHELAH \dagger
Mathematics Institute, Hebrew University, Jerusalem, Israel

Received 21 October 1983
Revised 31 August 1984

Abstract

For any property ϕ of a model (or graph), let $\mu_{n}(\phi)$ be the fraction of models of power n which satisfy ϕ, and let $\mu(\phi)=\lim _{n \rightarrow \infty} \mu_{n}(\phi)$ if this limit exists. For first-order properties ϕ, it is known that $\mu(\phi)$ must be 0 or 1 . We answer a question of K. Compton by proving in a strong way that this $0-1$ law can fail if we allow monadic quantification (that is, quantification over sets) in defining the sentence ϕ. In fact, by producing a monadic sentence which codes arithmetic on n with probability $\mu=1$, we show that every recursive real is $\mu(\phi)$ for some monadic ϕ.

For any sentence ϕ of any logic, let $\mu_{n}(\phi)$ be the fraction of models of cardinality n which satisfy ϕ. (A precise definition appears in Definition 1 below.) Then let $\mu(\phi)=\lim _{n \rightarrow \infty} \mu_{n}(\phi)$, if this limit exists. Fagin [2] and independently Glebskii, Kogan, Liogon'kii, and Talanov [4] proved that $\mu(\phi)$ is 0 or 1 for each first-order sentence ϕ without function or constant symbols. A related result for the space of countable models was proved by Gaifman [3]. For other related references the reader may consult Lynch [5] and Compton [1].

In second-order logic one allows quantification over arbitrary relations. For this logic the limit $\mu(\phi)$ need not even exist; for example, if $|A|=n$ then A satisfies "there is a permutation of order 2 without fixed points" iff n is even. This example disappears if we restrict the second-order quantifiers to quantifiers over sets. The resulting logic is called monadic second-order logic. Note that we allow n-place relation symbols in the vocabulary. If the vocabulary is restricted to unary predicates, then it is known that the $0-1$ law holds. The following question of K. Compton appears in [6]: does $\mu(\phi)$ exist and equal 0 or 1 for all monadic second-order ϕ ? In this paper we answer this question negatively in a strong way by proving Theorem 2 below. First let us formally give the requisite definition.

[^0]Notation. We identify each natural number n with the set of its predecessors, i.e. $n=\{0,1, \ldots, n-1\}$.

Definition 1. Let L be a finite vocabulary. (Usually L will consist of a single binary relation symbol R.) Let S_{n} be the space of all L-structures with universe $\{0,1, \ldots, n-1\}=n$. Then set $\mu_{n}(\phi)=\left|\left\{थ \in S_{n}: \mathscr{U} \vDash \phi\right\}\right| /\left|S_{n}\right|$. If $\lim _{n \rightarrow \infty} \mu_{n}(\phi)$ exists, we denote this limit by $\mu(\phi)$.

We are about ready to state the main theorem and its consequence that answers Compton's question. Let + in denote $\{\langle x, y, z\rangle \in n \times n \times n: x+y=z\}$; similarly for $\times i n$. Notice that in first-order logic one may assert (of a finite model) that $\langle n, \phi(x, y, z, \ldots), \psi(x, y, z, \ldots)\rangle \cong\langle n,+\mid n, \times n\rangle$, where n is the cardinality of the model but this sentence does not depend on n. Let us abbreviate this sentence by " $\langle\boldsymbol{\phi}, \boldsymbol{\psi}\rangle \cong\langle+, x\rangle$ ".

Theorem 1. There are monadic second-order formulas $\phi_{+}(x, y, z, \bar{P}, R)$ and $\phi_{\times}(x, y, z, \bar{P}, R)$, where R is a binary relation symbol and \bar{P} is a sequence of unary relation symbols, such that the following sentence has probability $\mu=1$:

$$
\exists \bar{P}\left(\left\langle\phi_{+}(x, y, z, \bar{P}, R), \phi_{\times}(x, y, z, \bar{P}, R)\right\rangle \cong\langle+, \times\rangle\right)
$$

(where this abbreviation is defined above).
The following result implies that there are sentences of monadic second-order logic which have no limit and sentences with any recursive real as the limit.

Theorem 2. Let T be any recursively enumerable tree of finite sequences of zeros and ones, without terminal nodes. Then there is a sentence ϕ of monadic secondorder logic such that the set of subsequential limits from $\left\langle\mu_{n}(\phi): n \in \mathbb{N}\right\rangle$ equals the set of reals of the form $\sum\left\{2^{-i-1}: b(i)=1\right\}$ for b ranging over the branches of T, i.e. $b \mid n \in T$ for all $n \in \mathbb{N}$.

The solution given by Theorem 2 is due to Shelah. Before giving the proofs of Theorems 1 and 2, we outline a simpler but less powerful example, due (independently of Shelah) to Kaufmann and J. Schmerl, which hints at the power of monadic second-order logic.

Suppose $\mathscr{Q}=(A, R, \ldots)$ is a finite structure with $R \subseteq A^{2}$. If $X \subseteq A$, say X is R-suitable if for all $x, y \in X$ there is $a \in A$ such that $(\forall z \in X)(R z a \leftrightarrow z=x \vee z=y)$. Let $n(R)$ be the largest k such that every subset of A of power k is R-suitable. Then there is a monadic second-order formula $\phi_{R}^{*}(X)$ which says that X has power at most $n(R)$. $\phi_{R}^{K}(X)$ is $\forall Z\left["|X|<_{R}|Z| " \vee\left("|Z|<_{R}|X| " \wedge " Z\right.\right.$ is R-suitable" $\left.)\right]$, where " $|X| \leqslant_{R}|Z| "$ is

$$
\exists X_{1} \exists X_{2} \exists X_{3} \exists Z_{1} \exists Z_{2} \exists Z_{3}\left[X=X_{1} \cup X_{2} \cup X_{3}\right.
$$

$$
\begin{aligned}
& \wedge Z \supseteq Z_{1} \cup Z_{2} \cup Z_{3} \wedge \bigwedge_{1 \leqslant i \leqslant 3} \exists P\left(\left(\forall x \in X_{i}\right)(\exists!u \in P) R x u\right. \\
& \left.\left.\wedge(\forall u \in P)\left(\exists!x \in X_{i}\right) R x u \wedge\left(\forall z \in Z_{i}\right)(\exists!u \in P) R z u \wedge(\forall u \in P)\left(\exists z \in Z_{i}\right) R z u\right)\right]
\end{aligned}
$$

and " $|X|<_{R}|Z|$ " is similar except that $Z \ni Z_{1} \cup Z_{2} \cup Z_{3}$. Let $\phi_{R}(X)$ say that $|X|=n(R)$, i.e. $\phi_{R}^{\zeta}(X) \wedge \exists y \neg \phi_{R}^{\kappa}(X \cup\{y\})$. Now consider a vocabulary with 2 binary relations R and S. We claim that the following sentence does not have probability 1: $\exists X\left(\phi_{R}(X) \wedge \phi_{S}(X)\right.$, i.e. $n(R)=n(S)$. This will be seen to follow from the following observations.
(1) Let $i_{j}=$ least i such that $\mu_{j}(n(R)=i$) is a maximum (for fixed j). Then $\mu(n(R)=n(S))=1$ iff $\lim _{j \rightarrow \infty} \mu_{j}\left(n(R)=i_{j}\right)=1$.
(2) For all $k, \mu(n(R) \geqslant k)=1$.
(3) If $\mu_{j}(n(R) \leqslant i)>1-\varepsilon$ then $\mu_{j+1}(n(R) \leqslant i)>(1-\varepsilon)\left(1-2^{-(i+1)}\right)$.
(1) is easy to prove, and (2) is an easy consequence of the fact that a first-order sentence ϕ holds in the countable universal homogeneous model iff $\mu(\phi)=1$ (cf. Fagin [2]). To verify (3), given a random model of power $j+1$, pick a random submodel of power j. Assuming $\mu_{j}(n(R) \leqslant i)>1-\varepsilon$, with probability $>1-\varepsilon$ this submodel has a counterexample $\langle X ; a, b \in X\rangle$ to $(i+1)$-suitability. The probability that the element c outside the submodel 'restores' X (i.e. $R a c \wedge R b c \wedge(\forall x \in X)$ $(R x c \rightarrow x=a \vee x=b)$) is $2^{-(i+1)}$, and (3) follows. Now by (1) and (2), if $\mu(n(R)=$ $n(S))=1$ then for all k there exist arbitrarily large j such that $i_{j+1}>i_{j}>k$. Setting $i=i_{j}$ this contradicts (3). Therefore $\mu_{n}(n(R)=n(S)) \nrightarrow 1$.

Finally, since $\mu(n(R)=n(S)) \neq 1$ (if indeed this limit exists at all), then since $\mu_{n}(n(R)>n(S))=\mu_{n}(n(S)>n(R))$ for all n, we see that $\mu(n(R)>n(S))$ is neither 0 nor 1. We do not know if $\mu(n(R)=n(S))$ exists. There is also a monadic second-order sentence ψ asserting that $n(R)$ is an even number. While it seems likely that $\mu(\psi)=\frac{1}{2}$, we do not even know whether $\mu(\psi)$ exists.

We turn now to:
Proof of Theorem 1. Fix n, and let k be the unique integer satisfying $2^{3 k} \leqslant n<$ $2^{3(k+1)}$. Also fix $B=\{0,1, \ldots, k-1\}$ and $C=\{0,1, \ldots, 10 k-1\}$; then $B \subseteq C$. We will code arithmetic on 2^{k} by coding all subsets of B, and then viewing these codes as binary expansions of numbers less than 2^{k}. Then we will view elements of n (recall $n=\{0,1, \ldots, n-1\}$) as coding distinct subsets of C, and use this idea together with the arithmetic on 2^{k} to code arithmetic on n. We begin by proving three claims which say that with probability 1 , we can do such coding.
(1) Let ψ_{0} say that for all $A \subseteq B$, there is α such that $A=\{l \in B: l R \alpha\}$. Then $\mu\left(\psi_{0}\right)=1$.
Proof. For each $A \subseteq B$ and $\alpha<n$ the probability of " $A=\{l \in B: l R \alpha\}$ " is 2^{-k}. These are independent events as α varies over elements of n. Hence the probability that $(\forall \alpha \in n)(A \neq\{l \in B: l R \alpha\})$ is $\left(1-2^{-k}\right)^{n} \sim \mathrm{e}^{-n / 2^{k}} \leqslant \mathrm{e}^{-2^{2 k}}$, so the probability that this occurs for some $A \subseteq B$ is $\leqslant 2^{k} \mathrm{e}^{-22^{2 k}} \leqslant \mathrm{e}^{-\sqrt{n}}$.
(2) Let ψ_{1} say that for all distinct $\alpha, \beta \in C,\{l \in B: l R \alpha\} \neq\{l \in B: l R \beta\}$. Then $\mu\left(\psi_{1}\right)=1$.
Proof. For each pair $\alpha \neq \beta$ the probability that $\{l \in B: l R \alpha\}=\{l \in B: l R \beta\}$ is 2^{-k}. So the probability that this holds for some $\alpha, \beta \in C$ is at most $|C|^{2} 2^{-k}=$ $100 k^{2} 2^{-k}<n^{-1 / 4}$ for sufficiently large n.
(3) Let ψ_{2} say that for all $\alpha<\beta<n,\{l \in C: l R \alpha\} \neq\{l \in C: l R \beta\}$. Then $\mu\left(\psi_{2}\right)=1$.

Proof. $\mu_{n}\left(\neg \psi_{2}\right) \leqslant n^{2} 2^{-|C|} \leqslant 2^{6(k+1)} 2^{-10 k}=2^{-4 k+6} \rightarrow 0$, and (3) follows.
By (1), (2), and (3) we may assume henceforth that the model $M=(n, R)$ satisfies $\psi_{0} \wedge \psi_{1} \wedge \psi_{2}$. No more probability arguments will appear. Rather, we will expand M by adding various unary predicates so that addition and multiplication restricted to n are definable in the expanded structure by certain formulas ϕ and ψ (respectively). This of course yields the theorem. For a technical reason we also assume $10 k<\left[\sqrt{2^{k}}\right]$.

Our first step is to expand \boldsymbol{M} to a structure \boldsymbol{M}_{0} (adding only unary predicates) so that there is a linear order on B definable in M_{0}. In fact, as $B=$ $\{0,1, \ldots, k-1\}$ we would like the natural order on B to be definable in such an expansion M_{0}, and this is easily arranged as follows. For each $i<k$ choose $\alpha_{i}<n$ such that $\{0,1, \ldots, i\}=\left\{j<k: j R \alpha_{i}\right\}$; this is possible as $M \vDash \psi_{0}$. Then let $S=$ $\left\{\alpha_{i}: i<k\right\}$. Clearly, for $i, j<k$ we have $i<j$ iff $(\exists \alpha \in S)(i R \alpha \wedge \neg j R \alpha)$.

It will be convenient to allow quantification over two-place relations on B. This practice keeps us in the realm of monadic second-order logic, however, as we now show. First notice that since $M \vDash \psi_{0}$, for every $\alpha \neq \beta$ from $B(=k)$ there is some $x_{\{\alpha, \beta\}}<n$ such that $\{\alpha, \beta\}=\left\{l \in B: l R x_{\{\alpha, \beta\}}\right\}$. For any relation $S \subseteq B^{2}$, then, we may associate sets $X, Y \subseteq n$ so that $X=\left\{x_{\{\alpha, \beta\}}: \alpha \leqslant \beta<k\right.$ and $\left.\alpha S \beta\right\}$ and $Y=$ $\left\{x_{\{\alpha, \beta\}}: \beta<\alpha<k\right.$ and $\left.\alpha S \beta\right\}$. Notice that if $x_{\{\alpha, \beta\}}=x_{\{\gamma, \delta\}}$ then $\alpha=\gamma$ and $\beta=\delta$. It is then clear that S can be recovered from X and Y, so for any monadic $\theta(S, \ldots)$ there is a monadic $\theta^{\prime}(X, Y, \ldots)$ such that in M_{0} (or indeed, in any expansion of $\left.M_{0}\right),\left(\exists S \subseteq B^{2}\right) \theta \leftrightarrow(\exists X)(\exists Y) \theta^{\prime}(X, Y, \ldots)$. Henceforth we will freely use quantification over binary relations on B. In particular, + and \times restricted to $k=B$ are definable in \boldsymbol{M}_{0}.

Since $M \vDash \psi_{0} \wedge \psi_{1}$ we may extend C to represent all of the subsets of B. Hence we may (monadically) expand M_{0} to a structure M_{1} which has the following properties:
(4) The predicate " $x \in B$ " (i.e. $x<k$) is definable in M_{1}, as is the usual order on k. Also C is definable in M_{1} (recall $C=\{0,1, \ldots, 10 k-1\}$), as is a set $D \supseteq C$ of power 2^{k} such that $(\forall \alpha \in D)(\forall \beta \in D)[\alpha \neq \beta \rightarrow\{l \in B: l R \alpha\} \neq\{l \in B: l R \beta\}]$. We may quantify over binary relations on B. In particular, arithmetic on B is definable in M_{1}.

Now define a function $f: D \rightarrow 2^{k}$ by $f(\alpha)=\sum\left\{2^{i}: i R \alpha, i \in B\right\}$. We claim:
(5) The relation $R_{+}=\{\langle\alpha, \beta, \gamma\rangle: \alpha, \beta, \gamma \in D$ and $f(\gamma)=f(\alpha)+f(\beta)\}$ is definable in M_{1}.

For, let $X \subseteq B=k$ be the set of places where there is a carry in the addition $f(\alpha)+f(\beta)$, i.e. where $\sum\left\{2^{j}: j R \alpha, j<i\right\}+\sum\left\{2^{j}: j R \beta, j<i\right\} \geqslant 2^{i}$. Choose $\delta \in D$ such that $\{l \in B: l R \delta\}=X$. Now the requirements for $f(\gamma)=f(\alpha)+f(\beta)$ are local. That is, $f(\gamma)=f(\alpha)+f(\beta)$ iff for some δ, the right thing happens at each coordinate;
that is, iff: $\quad i R \gamma \leftrightarrow[(i R \alpha \leftrightarrow i R \beta) \leftrightarrow i R \delta] \quad$ for all $i<k ; \quad \neg 0 R \delta$; $(i+1) R \delta \leftrightarrow[(i R \delta \wedge i R \alpha) \vee(i R \delta \wedge i R \beta) \vee(i R \alpha \wedge i R \beta)] \quad$ for \quad all $\quad i<k-1$; and $\neg[((k-1) R \delta \wedge(k-1) R \alpha) \vee((k-1) R \delta \wedge(k-1) R \beta) \vee((k-1) R \alpha \wedge(k-1) R \beta)]$ (so that $\left.f(\alpha)+f(\beta)<2^{k}\right)$. Hence (5) holds. Now we prove
(6) The relation $R_{\times}=\left\{\langle\alpha, \beta, \gamma\rangle \in D^{3}: f(\alpha) \cdot f(\beta)=f(\gamma)\right\}$ is definable in M_{1}.

Given $\alpha, \beta \in D$ with $f(\alpha) \cdot f(\beta)<2^{k}$, we define γ (uniformly in α and β) such that $f(\alpha) \cdot f(\beta)=f(\gamma)$, as follows. Let $f(\alpha)=\sum \alpha_{i} 2^{i}$ and $f(\beta)=\sum \beta_{i} 2^{i}$. Consider the matrix $S \subseteq B^{2}$ formed (roughly) by putting $\sum \alpha_{i} 2^{i+j}$ in column j if $\beta_{i} \neq 0$, otherwise putting all zeros in column j. Formally, set $S=\left\{\langle i, j\rangle \in B^{2}: j \leqslant i\right.$ and $(i-j) R \alpha$ and $j R \beta\}$. Now the intuitive idea is that $f(\alpha) \cdot f(\beta)$ is the sum of the columns of S, that is, $\sum\left\{\sum\left\{2^{i}:\langle i, j\rangle \in S\right\}: j<k\right\}$. So let $T \subseteq B^{2}$ represent the partial sums, that is, the j th column of T should represent the sum of the first j columns of S. Formally, T is characterized by setting $\langle i, 0\rangle \in T$ iff $\langle i, 0\rangle \in S$, and $\langle i, j+1\rangle \in T$ iff there are $\delta, \eta, \nu \quad$ with $\quad\{i<k: i R \delta\}=\{i<k:\langle i, j\rangle \in T\}, \quad\{i<k: i R \eta\}=$ $\{i<k:\langle i, j+1\rangle \in S\}$, and $f(\nu)=f(\delta)+f(\eta)$ (which is definable, by (5)). Finally, $f(\alpha) \cdot f(\beta)=f(\gamma)$ iff there are such S and T such that γ codes the last column of $T:(\forall i<k)(i R \gamma \leftrightarrow\langle i, k-1\rangle \in T)$. Since by (4) we are allowed quantification over binary relations on B, this concludes the proof of (6).

At this point we turn to the problem of defining arithmetic on n rather than merely on 2^{k}. As $M \vDash \psi_{2}$ we can view n as a subset of $2^{|C|}$. The idea is to code each element of M (i.e. of n) by the number of predecessors it has in M, under the lexicographic order on $2^{|C|}$. We use the arithmetic available on 2^{k} to carry out this coding. Notice that by replacing M_{1} with an isomorphic copy (in which B and C are fixed pointwise by the isomorphism), we may assume by (5) and (6) that:
(7) $D=2^{k}$, and setting $E=\left\{l: l^{2}<2^{k}\right\}$, we have 'plus' and 'times' on E definable in M_{1}. Also we can code binary relations on E in M_{1} : for $S \subseteq E^{2}$, consider $\left\{i \cdot\left[\sqrt{2^{k}}\right]+j:\langle i, j\rangle \in S\right\}$.

We now prove:
(8) In M_{1}, we can define the relation " $x \in E \wedge|X|=x$ ".

To see this, notice that for $x \in E$, we have $|X|=x$ iff there is $S \subseteq x \times 10 k$ such that for all $i<x,\{l<10 k: i S l\}=\left\{l<10 k: l R^{\prime} \alpha\right\}$ for some $\alpha \in X$, and conversely, every $\alpha \in X$ has this property for some unique $i<x$. By $M \neq \psi_{2}$ and the last clause of (7), and since $10 k \subseteq E$ (as we have assumed $10 k<\left[\sqrt{2^{k}}\right]$), this argument proves (8).

At least we are ready to begin to define arithmetic on n, in M_{1}. Let $m=$ $\max (E)$, and for $\alpha<n$ let $\|\alpha\|$ be the number of elements which precede α in the lexicographic order on $2^{10 k}$, in the following sense:

$$
\|\alpha\|=\mid\{\beta: \text { for some } l<10 k, l R \alpha \wedge \neg l R \beta \wedge(\forall i<l)(i R \alpha \leftrightarrow i R \beta)\} \mid .
$$

Notice that the predicate $\|\beta\|<\|\alpha\|$ is definable in M_{2}. Thinking in base m, we
see that there are unique $p_{\alpha}^{0}, p_{\alpha}^{1}, \ldots, p_{\alpha}^{6}<m$ such that $\|\alpha\|=\sum_{i=0}^{6} p_{\alpha}^{i} m^{i}$ (as $m^{7}>n$). We claim:
(9) The relations " m^{i} divides $\|\alpha\|$ " (each $i=1,2, \ldots, 6$) and " $p_{\alpha}^{i}=l$ " (each $i=0, \ldots, 6$) are definable in M_{1}.

In fact (9) follows easily from (8). For example, m divides $\|\alpha\|$ iff for some $X \subseteq\{\beta:\|\beta\|<\|\alpha\|\} \cup\{\alpha\}$, we have $\alpha \in X$ and $\beta_{0} \in X$ where $\left\|\beta_{0}\right\|=0$, and for all $\beta, \gamma \in X$ with $\beta<\gamma$, if $(\forall \delta)(\|\beta\|<\|\delta\|<\|\gamma\| \rightarrow \delta \notin X)$ then $\{\{\delta:\|\beta\| \leqslant\|\delta\|<\|\gamma\|\} \mid=m$.
 just like " m divides α ", except that $\mid\left\{\delta:\|\beta\| \leq\|\delta\|<\|\gamma\| \|=m^{2}\right.$ for successive $\beta<\gamma$ in $X:(\exists Y)\left(\beta \in \mathbf{Y} \wedge \gamma \in \mathbf{Y} \wedge\left(\forall \beta^{\prime} \in \mathbf{Y}\right)\left(\forall \gamma^{\prime} \in \mathbf{Y}\right)\left[(\forall \delta)\left(\left\|\beta^{\prime}\right\|<\|\delta\|<\left\|\gamma^{\prime}\right\| \rightarrow \delta \notin \mathbf{Y}\right) \rightarrow\right.\right.$ $\left.\mid\left\{\delta:\left\|\beta^{\prime}\right\| \leqslant\|\delta\|<\left\|\gamma^{\prime}\right\|\right\}=m\right]$. The higher powers m^{i} are handled similarly, that is, $\mid\left\{\delta:\|\beta\| \leqslant\|\delta\|<\|y\| \|=m^{i}\right.$ for successive $\beta<\gamma$ in X, and this can be said by subdividing $\{\delta:\|\beta\| \leq\|\delta\|<\|\gamma\|\}(i-1)$ times. The predicates " $p_{\alpha}^{i}=l$ " are handled similarly.
Finally, we can easily define $\{\langle\alpha, \beta, \gamma\rangle:\|\alpha\|+\|\beta\|=\|\gamma\|\}$ in M_{1}, using (9) and (7). Also, by (9) and the distributive law, it is easy to reduce the problem of defining $\{\langle\alpha, \beta, \gamma\rangle:\|\alpha\| \cdot\|\beta\|=\gamma\}$ in M_{1} to the problem of finding, for all $p_{1}, p_{2}<m$, some $i, j<m$ such that $p_{1} \cdot p_{2}=i m+j$. But since we have defined arithmetic up to m^{2} in M_{1}, this is also routine, and the proof is complete.

Theorem 2 is a rather direct consequence of the following lemma, which we will prove using Theorem 1.

Lemma. Suppose that f and g are recursive functions such that $f(n)<g(n)$ for all n. Then there is a sentence ϕ of monadic second-order logic and a finite-to-one function h from \mathbb{N} onto \mathbb{N} such that $\lim _{n \rightarrow \infty}\left|\mu_{n}(\phi)-f(h(n)) / g(h(n))\right|=0$.

In particular, given any recursively enumerable tree T of finite sequences of 0 's and 1's (as in Theorem 2), we may apply this lemma to recursive functions f and g such that $\langle f(n) / g(n): n \in \mathbb{N}\rangle$ enumerates T. (Here we are of course identifying a node $s \in T$ with the corresponding fraction $\sum\left\{2^{-(i+1)}: s(i)=1\right\}$.) Then it is clear that for every branch b of T we can choose a subsequence from $\left\langle\mu_{n}(\phi): n<\omega\right\rangle$ converging to $\sum\left\{2^{-(i+1)}: b(i)=1\right\}$, where ϕ is the sentence given by the lemma. Conversely, if $\left\langle\mu_{n}(\phi): n \in I\right\rangle$ is a convergent subsequence of $\left\langle\mu_{n}(\phi): n \in \mathbb{N}\right\rangle$, then $\langle f(h(n)) / g(h(n)): n \in I\rangle$ converges, so since h is finite-to-one, there is a branch b of T such that $\langle f(h(n)) / g(h(n)): n \in I\rangle$ converges to $\sum\left\{2^{-(i+1)}: i \in b\right\}$, and Theorem 2 follows.

Proof of Lemma. Recall that a function f is recursive if and only if it is definable in $(\mathbb{N},+, \cdot,<)$ by a formula $\exists \bar{u} \theta(x, y, \bar{u})$ where θ is Δ_{0}, i.e. θ has only bounded quantifiers (those of the form $\forall v_{1}<v_{2}, \exists v_{1}<v_{2}$). We may assume that the symbols + and \cdot occur in θ as ternary relation symbols. (Notice that this may
increase the length of \bar{u}.) By replacing $\exists \bar{u}$ with $\exists z \exists u_{1}<z \exists u_{2}<z \cdots \exists u_{l}<z$, we see that f is definable in $(\mathbb{N},+, \cdot,<)$ by a formula $\exists z \theta(x, y, z)$ where θ is Δ_{0} and has + and \cdot as relation symbols. Notice that for all n, if $(n,+|n, \cdot| n,<\eta n) \vDash$ $\exists z \theta(i, j, z)$ then $f(i)=j$. Choose a similar formula $\exists z \psi(x, y, z)$ for g. It is convenient to assume further that $\mathbb{N} \vDash \forall x \forall y \forall z[\theta(x, y, z) \vee \psi(x, y, z) \rightarrow x<z \wedge y<z] \wedge$ $\forall x \forall y_{1} \forall y_{2} \forall z \forall w\left[\theta\left(x, y_{1}, z\right) \wedge \psi\left(x, y_{2}, w\right) \rightarrow z=w\right]$. The idea is that z is the least number coding witnesses for both θ and ψ. To be precise, simply replace $\theta(x, y, z)$ by $x<z \wedge y<z \wedge(\exists v<z)\left(\exists y^{\prime}<z\right)(\exists w<z)\left[\theta(x, y, v) \wedge \psi\left(x, y^{\prime}, w\right)\right]$, and then replace this new formula $\theta_{0}(x, y, z)$ by $\theta_{0}(x, y, z) \wedge(\forall u<z) \neg \theta_{0}(x, y, u)$; and change ψ similarly.

Next we define the function h. Given n, let $m=\left[n^{1 / 4}\right]$. First suppose that
(*) $n=m^{4}+a+m b+m^{2} c$ for some $a, b, c<m$ such that $\mathbb{N} F \theta(a, b, m) \wedge$ $\psi(a, c, m)$;
then set $h(n)=a$. Notice that such a, b, and c are unique, so if $(*)$ holds then $h(n)$ is well-defined. Moreover, for all a we may choose m such that $\mathbb{N} F$ $\theta(a, f(a), m) \wedge \psi(a, g(a), m)$, by choice of θ and ψ; so $h\left(m^{4}+a+m f(a)+\right.$ $\left.m^{2} g(a)\right)=a$, hence h is onto. Notice that there are unique b, c, m such that $\theta(a, b, m) \wedge \psi(a, c, m)$, so thus far, h is one-one. It remains to define $h(n)$ if (*) fails. In that case let $h(n)$ equal the greatest $a<m$ such that $\mathbb{N}=(\exists y<n)(\exists z<m)$ $(\exists w<m)[\theta(a, y, w) \wedge \psi(a, z, w)]$; if there is no such a (but this can happen for only finitely many n), set $h(n)=0$. It is clear that h is finite-to-one.

Now let Θ be the sentence given by Theorem 1, that is, Θ says $\left\langle\phi_{+}(x, y, z, \bar{P}, R), \phi_{\times}(x, y, z, \bar{P}, R)\right\rangle \cong\langle+, x\rangle$, and $\lim _{n \rightarrow \infty} \mu_{n}(\exists \bar{P} \Theta)=1$. Consider the following property of a model (n, R) :
(\dagger) $(n, R) \vDash \exists \bar{P} \Theta, h(n) \neq 0$, and $\left[\log _{2}(n)+1\right]<[\sqrt{n}]$.
We will show that it suffices that ϕ have the following property:
(*) Whenever (\dagger) holds for (n, R), then $(n, R) \vDash \phi$ iff for some $i<f(h(n))$, $|\{k: k R k\}| \equiv i(\bmod g(h(n)))$.

In order to define ϕ we use the following abbreviation. For $X \subseteq n$ we can write $\operatorname{succ}_{\mathbf{X}}(i, j)$ if $i \in X, j \in X$, and $k \notin X$ whenever $i<k<j$. Then ϕ should say:
(i) $(\forall i \in X)(i R i)$;
(ii) $(\forall i)(\forall j)\left[\operatorname{succ}_{\mathrm{X}}(i, j) \rightarrow \mid\{k: k R k\right.$ and $\left.i \leqslant k<j\} \mid=g(h(n))\right]$;
(iii) $\mid\{k: k R k$ and $\max (X) \leqslant k\} \mid<f(h(n))$.

Now let us describe ϕ. First, ϕ says that for some $\bar{P}, \boldsymbol{\theta}(\bar{P})$ holds. Now we want ϕ to assert (i), (ii), and (iii) above; then (*) follows. Of course (i) presents no problem, and since the formulas θ and ψ from the definitions of f and g are Δ_{0} (and by choice of h), $f(h(n)$) and $g(h(n)$) are definable in (n, \bar{P}, R). (More precisely, the $f(h(n))$ th and $g(h(n))$ th elements in the order defined by $\Theta(\bar{P})$ are definable.) So to express (ii) and (iii) we need only express the cardinalities there. Since $h(n) \neq 0, f(h(n))<\left[n^{1 / 4}\right]$ and $g(h(n))<\left[n^{1 / 4}\right]$, so it suffices to define
the relation " $x<\left[n^{1 / 4}\right] \wedge|X|=x$ ". This is similar to the proof of (8) in the proof of Theorem 1. First notice that we can quantify over binary relations S on $[\sqrt{n}]$, by coding S by $\{x+[\sqrt{n}] y: x S y\}$. Then for $x<\left[n^{1 / 4}\right],|X|=x$ iff $|X| \geqslant$ $x \wedge \neg(|X| \geqslant x+1)$; and for $x \leqslant\left[n^{1 / 4}\right],|X| \geqslant x$ iff for some $S \subseteq x \times\left[\log _{2}(n)+1\right]$, we have $(\forall i<x)\left(\sum\left\{2^{j}: i S j\right\} \in X\right) \wedge(\forall i<j<x)(\exists k)(i S k \leftrightarrow \neg j S k)$. Since $\left[\log _{2}(n)+1\right]<$ $[\sqrt{n}]$ if (\dagger) holds, it follows that $(*)$ holds for ϕ.

The next task is to see that $\lim _{n \rightarrow \infty} \mu_{n}("(\dagger)$ holds") $=1$. But this is clear from the choice of Θ, together with the fact that h is finite-to-one and $\lim _{n \rightarrow \infty}\left[\log _{2}(n)+\right.$ $1] /[\sqrt{n}]=0$.

Finally, let μ^{i} be the probability that $|\{k: k R k\}| \equiv i(\bmod m)$, where $m=$ $g(h(n))$. We claim:

$$
\lim _{n \rightarrow \infty}\left(\left(\sum_{k<f(h(n))} \mu^{k}\right)-\mu_{n}(\phi)\right)=0
$$

But this is clear from (*), together with the fact that $\lim _{n \rightarrow \infty}("(\dagger)$ holds") $=1$. Hence the lemma follows from

$$
\lim _{n \rightarrow \infty}\left(\left(\sum_{k<f(h(n))} \mu^{k}\right)-\frac{f(h(n))}{g(h(n))}\right)=0 .
$$

But this in turn follows from

$$
(* *) \text { for } 0 \leqslant k<l<m, \quad\left|\mu^{k}-\mu^{l}\right|<5\binom{n}{\left[\frac{n}{2}\right]} / 2^{n}
$$

For if ($* *$) holds, then by Stirling's formula there is a constant C (not depending on n) such that $\left|\mu^{k}-\mu^{l}\right| \leqslant C / \sqrt{n}$ when $0 \leqslant k<l<m$, and hence $\left|\mu^{k}-1 / m\right| \leqslant C / \sqrt{n}$ for $0 \leqslant k<m$. Then it follows that

$$
\left|\left(\sum_{k<f(h(n))} \mu^{k}\right)-\frac{f(h(n))}{g(h(n))}\right| \leqslant \frac{C}{\sqrt{n}} f(h(n))<\frac{C}{\sqrt{n}} n^{1 / 4}
$$

which has limit 0 , as claimed.
To prove ($* *$) first notice that for $0 \leqslant k<l<m, \mu^{k}=\sum_{i}\left(i_{i m+k}^{n}\right) / 2^{n}$ and $\mu^{l}=$ $\sum_{i}\left({ }_{i m+1}^{n}\right) / 2^{n}$. Now if $a_{i}=\left({ }_{i m+k}^{n}\right) / 2^{n}$ and $b_{i}=\left({ }_{i m+1}^{n}\right) / 2^{n}$, then we see that $a_{0}<b_{0}<a_{1}<$ $b_{1}<\cdots<a_{p}<b_{p}$, where p is greatest such that $(p+1) m \leqslant\left[\frac{1}{2} n\right]$, and also $a_{p+2}>$ $b_{p+2}>a_{p+3}>b_{p+3}>\cdots>a_{q}>b_{q}$, where q is greatest such that $q m+l \leqslant n$. Notice that

$$
0<\sum_{i=0}^{\mathrm{p}} b_{i}-\sum_{i=0}^{\mathrm{p}} a_{i} \leqslant \sum_{i=0}^{\mathrm{p}-1} a_{i+1}+b_{p}-\sum_{i=0}^{\mathrm{p}} a_{i}=b_{\mathrm{p}}-a_{0}<b_{p}
$$

and similarly

$$
0<\sum_{i=p+2}^{q} a_{i}-\sum_{i=p+2}^{q} b_{i}<a_{p+2}
$$

So we have

$$
\left|\mu^{k}-\mu^{l}\right|<b_{\mathrm{p}}+a_{\mathrm{p}+2}+a_{\mathrm{p}+1}+b_{\mathrm{p}+1}+a_{q+1} \leqslant 5\binom{n}{\left[\frac{n}{2}\right]} / 2^{n},
$$

since $\binom{n}{n / 2} \geqslant\binom{ n}{k}$ for all k.
We close by remarking that by Theorem 1 , one has second-order logic on [$\sqrt{n}]$, in the following sense. Suppose Ψ is a second-order sentence, i.e. we allow monadic and binary quantification in Ψ, but Ψ has no non-logical symbols (except equality). Then there is a monadic second-order sentence Φ (with one non-logical symbol R, R a binary relation symbol) such that $\mu[(n, R) \vDash \Phi$ iff $[\sqrt{n}] \vDash \Psi]=1$. This is clear by a trick we have already used: binary relations on $[\sqrt{n}]$ can be coded by subsets of n via the map $\langle i, j\rangle \mapsto i+[\sqrt{n}] j$.

Acknowledgments

The first author thanks Jim Schmerl and Kevin Compton for interesting discussions on the subject. The authors also thank Central States Universities, Inc. for supporting the conference [6] in which Compton's question was brought to our attention.

References

[1] K. Compton, A logical approach to asymptotic combinatorics I, Advances in Math., to appear.
[2] R. Fagin, Probabilities on finite models, J. Symbolic Logic 41 (1976) 50-58.
[3] H. Gaifman, Concerning measures in first-order calculi, Israel J. Math. 2 (1964) 1-18.
[4] Y.V. Glebskii, D.I. Kogan, M.I. Liogon'kii and V.A. Talanov, Range and degree of realizability of formulas in the restricted predicate calculus, Cybernetics 5 (1969) 142-154 (translated 1972).
[5] J.F. Lynch, Almost sure theories, Ann. Math. Logic 18 (1980) 91-135.
[6] Conference, Decision Problems in Math. and Comp. Sci., Central States Universities, Inc. (1982).

[^0]: * Current address: Austin Research Centre, Burroughs Corporation, Austin, TX 78727, USA.
 \dagger Support from the NSF and the United States-Israel Binational Science Foundation is gratefully acknowledged.

