ON RANDOM MODELS OF FINITE POWER AND MONADIC LOGIC

Matt KAUFMANN*

Purdue University, West Lafayette, IN 47907, USA

Saharon SHELAH†

Mathematics Institute, Hebrew University, Jerusalem, Israel

Received 21 October 1983 Revised 31 August 1984

For any property ϕ of a model (or graph), let $\mu_n(\phi)$ be the fraction of models of power n which satisfy ϕ , and let $\mu(\phi) = \lim_{n \to \infty} \mu_n(\phi)$ if this limit exists. For first-order properties ϕ , it is known that $\mu(\phi)$ must be 0 or 1. We answer a question of K. Compton by proving in a strong way that this 0-1 law can fail if we allow monadic quantification (that is, quantification over sets) in defining the sentence ϕ . In fact, by producing a monadic sentence which codes arithmetic on n with probability $\mu = 1$, we show that every recursive real is $\mu(\phi)$ for some monadic ϕ .

For any sentence ϕ of any logic, let $\mu_n(\phi)$ be the fraction of models of cardinality n which satisfy ϕ . (A precise definition appears in Definition 1 below.) Then let $\mu(\phi) = \lim_{n\to\infty} \mu_n(\phi)$, if this limit exists. Fagin [2] and independently Glebskii, Kogan, Liogon'kii, and Talanov [4] proved that $\mu(\phi)$ is 0 or 1 for each first-order sentence ϕ without function or constant symbols. A related result for the space of countable models was proved by Gaifman [3]. For other related references the reader may consult Lynch [5] and Compton [1].

In second-order logic one allows quantification over arbitrary relations. For this logic the limit $\mu(\phi)$ need not even exist; for example, if |A| = n then A satisfies "there is a permutation of order 2 without fixed points" iff n is even. This example disappears if we restrict the second-order quantifiers to quantifiers over sets. The resulting logic is called monadic second-order logic. Note that we allow n-place relation symbols in the vocabulary. If the vocabulary is restricted to unary predicates, then it is known that the 0-1 law holds. The following question of K. Compton appears in [6]: does $\mu(\phi)$ exist and equal 0 or 1 for all monadic second-order ϕ ? In this paper we answer this question negatively in a strong way by proving Theorem 2 below. First let us formally give the requisite definition.

^{*} Current address: Austin Research Centre, Burroughs Corporation, Austin, TX 78727, USA.

[†] Support from the NSF and the United States-Israel Binational Science Foundation is gratefully acknowledged.

Notation. We identify each natural number n with the set of its predecessors, i.e. $n = \{0, 1, ..., n-1\}$.

Definition 1. Let L be a finite vocabulary. (Usually L will consist of a single binary relation symbol R.) Let S_n be the space of all L-structures with universe $\{0, 1, \ldots, n-1\} = n$. Then set $\mu_n(\phi) = |\{\mathcal{U} \in S_n : \mathcal{U} \models \phi\}|/|S_n|$. If $\lim_{n\to\infty} \mu_n(\phi)$ exists, we denote this limit by $\mu(\phi)$.

We are about ready to state the main theorem and its consequence that answers Compton's question. Let + n denote $\{\langle x, y, z \rangle \in n \times n \times n : x + y = z\}$; similarly for $\times n$. Notice that in first-order logic one may assert (of a finite model) that $\langle n, \phi(x, y, z, \ldots), \psi(x, y, z, \ldots) \rangle \cong \langle n, + n, \times n \rangle$, where n is the cardinality of the model but this sentence does not depend on n. Let us abbreviate this sentence by " $\langle \phi, \psi \rangle \cong \langle +, \times \rangle$ ".

Theorem 1. There are monadic second-order formulas $\phi_+(x, y, z, \bar{P}, R)$ and $\phi_{\times}(x, y, z, \bar{P}, R)$, where R is a binary relation symbol and \bar{P} is a sequence of unary relation symbols, such that the following sentence has probability $\mu = 1$:

$$\exists \bar{P}(\langle \phi_+(x, y, z, \bar{P}, R), \phi_\times(x, y, z, \bar{P}, R)\rangle \cong \langle +, \times \rangle)$$

(where this abbreviation is defined above).

The following result implies that there are sentences of monadic second-order logic which have no limit and sentences with any recursive real as the limit.

Theorem 2. Let T be any recursively enumerable tree of finite sequences of zeros and ones, without terminal nodes. Then there is a sentence ϕ of monadic second-order logic such that the set of subsequential limits from $\langle \mu_n(\phi) : n \in \mathbb{N} \rangle$ equals the set of reals of the form $\sum \{2^{-i-1} : b(i) = 1\}$ for b ranging over the branches of T, i.e. $b \upharpoonright n \in T$ for all $n \in \mathbb{N}$.

The solution given by Theorem 2 is due to Shelah. Before giving the proofs of Theorems 1 and 2, we outline a simpler but less powerful example, due (independently of Shelah) to Kaufmann and J. Schmerl, which hints at the power of monadic second-order logic.

Suppose $\mathscr{U} = (A, R, ...)$ is a finite structure with $R \subseteq A^2$. If $X \subseteq A$, say X is R-suitable if for all $x, y \in X$ there is $a \in A$ such that $(\forall z \in X)(Rza \leftrightarrow z = x \lor z = y)$. Let n(R) be the largest k such that every subset of A of power k is R-suitable. Then there is a monadic second-order formula $\phi_R^{\leq}(X)$ which says that X has power at most n(R). $\phi_R^{\leq}(X)$ is $\forall Z["|X| <_R |Z|" \lor ("|Z| <_R |X|" \land "Z \text{ is } R\text{-suitable}")]$, where " $|X| \le_R |Z|$ " is

$$\exists X_1 \exists X_2 \exists X_3 \exists Z_1 \exists Z_2 \exists Z_3 [X = X_1 \cup X_2 \cup X_3]$$

$$\land Z \supseteq Z_1 \cup Z_2 \cup Z_3 \land \bigwedge_{1 \le i \le 3} \exists P((\forall x \in X_i)(\exists! \ u \in P) Rxu)$$

 $\wedge (\forall u \in P)(\exists ! \ x \in X_i) Rxu \wedge (\forall z \in Z_i)(\exists ! \ u \in P) Rzu \wedge (\forall u \in P)(\exists z \in Z_i) Rzu)],$

and " $|X| <_R |Z|$ " is similar except that $Z \supseteq Z_1 \cup Z_2 \cup Z_3$. Let $\phi_R(X)$ say that |X| = n(R), i.e. $\phi_R^{\leq}(X) \land \exists y \neg \phi_R^{\leq}(X \cup \{y\})$. Now consider a vocabulary with 2 binary relations R and S. We claim that the following sentence does not have probability 1: $\exists X(\phi_R(X) \land \phi_S(X))$, i.e. n(R) = n(S). This will be seen to follow from the following observations.

- (1) Let $i_j = \text{least } i$ such that $\mu_j(n(R) = i)$ is a maximum (for fixed j). Then $\mu(n(R) = n(S)) = 1$ iff $\lim_{i \to \infty} \mu_i(n(R) = i) = 1$.
 - (2) For all k, $\mu(n(R) \ge k) = 1$.
 - (3) If $\mu_i(n(R) \le i) > 1 \varepsilon$ then $\mu_{i+1}(n(R) \le i) > (1 \varepsilon)(1 2^{-(i+1)})$.
- (1) is easy to prove, and (2) is an easy consequence of the fact that a first-order sentence ϕ holds in the countable universal homogeneous model iff $\mu(\phi) = 1$ (cf. Fagin [2]). To verify (3), given a random model of power j+1, pick a random submodel of power j. Assuming $\mu_j(n(R) \le i) > 1 \varepsilon$, with probability $> 1 \varepsilon$ this submodel has a counterexample $\langle X; a, b \in X \rangle$ to (i+1)-suitability. The probability that the element c outside the submodel 'restores' X (i.e. $Rac \land Rbc \land (\forall x \in X)$ $(Rxc \rightarrow x = a \lor x = b)$) is $2^{-(i+1)}$, and (3) follows. Now by (1) and (2), if $\mu(n(R) = n(S)) = 1$ then for all k there exist arbitrarily large j such that $i_{j+1} > i_j > k$. Setting $i = i_j$ this contradicts (3). Therefore $\mu_n(n(R) = n(S)) \not\rightarrow 1$.

Finally, since $\mu(n(R) = n(S)) \neq 1$ (if indeed this limit exists at all), then since $\mu_n(n(R) > n(S)) = \mu_n(n(S) > n(R))$ for all n, we see that $\mu(n(R) > n(S))$ is neither 0 nor 1. We do not know if $\mu(n(R) = n(S))$ exists. There is also a monadic second-order sentence ψ asserting that n(R) is an even number. While it seems likely that $\mu(\psi) = \frac{1}{2}$, we do not even know whether $\mu(\psi)$ exists.

We turn now to:

Proof of Theorem 1. Fix n, and let k be the unique integer satisfying $2^{3k} \le n < 2^{3(k+1)}$. Also fix $B = \{0, 1, ..., k-1\}$ and $C = \{0, 1, ..., 10k-1\}$; then $B \subseteq C$. We will code arithmetic on 2^k by coding all subsets of B, and then viewing these codes as binary expansions of numbers less than 2^k . Then we will view elements of n (recall $n = \{0, 1, ..., n-1\}$) as coding distinct subsets of C, and use this idea together with the arithmetic on 2^k to code arithmetic on n. We begin by proving three claims which say that with probability 1, we can do such coding.

(1) Let ψ_0 say that for all $A \subseteq B$, there is α such that $A = \{l \in B : lR\alpha\}$. Then $\mu(\psi_0) = 1$.

Proof. For each $A \subseteq B$ and $\alpha < n$ the probability of " $A = \{l \in B : lR\alpha\}$ " is 2^{-k} . These are independent events as α varies over elements of n. Hence the probability that $(\forall \alpha \in n)$ $(A \neq \{l \in B : lR\alpha\})$ is $(1-2^{-k})^n \sim e^{-n/2^k} \le e^{-2^{2k}}$, so the probability that this occurs for some $A \subseteq B$ is $\le 2^k e^{-2^{2k}} \le e^{-\sqrt{n}}$.

(2) Let ψ_1 say that for all distinct α , $\beta \in C$, $\{l \in B : lR\alpha\} \neq \{l \in B : lR\beta\}$. Then $\mu(\psi_1) = 1$.

Proof. For each pair $\alpha \neq \beta$ the probability that $\{l \in B: lR\alpha\} = \{l \in B: lR\beta\}$ is 2^{-k} . So the probability that this holds for some $\alpha, \beta \in C$ is at most $|C|^2 2^{-k} = 100k^2 2^{-k} < n^{-1/4}$ for sufficiently large n.

- (3) Let ψ_2 say that for all $\alpha < \beta < n$, $\{l \in C : lR\alpha\} \neq \{l \in C : lR\beta\}$. Then $\mu(\psi_2) = 1$. Proof. $\mu_n(\neg \psi_2) \le n^2 2^{-|C|} \le 2^{6(k+1)} 2^{-10k} = 2^{-4k+6} \to 0$, and (3) follows.
- By (1), (2), and (3) we may assume henceforth that the model M = (n, R) satisfies $\psi_0 \wedge \psi_1 \wedge \psi_2$. No more probability arguments will appear. Rather, we will expand M by adding various unary predicates so that addition and multiplication restricted to n are definable in the expanded structure by certain formulas ϕ and ψ (respectively). This of course yields the theorem. For a technical reason we also assume $10k < [\sqrt{2^k}]$.

Our first step is to expand M to a structure M_0 (adding only unary predicates) so that there is a linear order on B definable in M_0 . In fact, as $B = \{0, 1, \ldots, k-1\}$ we would like the natural order on B to be definable in such an expansion M_0 , and this is easily arranged as follows. For each i < k choose $\alpha_i < n$ such that $\{0, 1, \ldots, i\} = \{j < k : jR\alpha_i\}$; this is possible as $M \models \psi_0$. Then let $S = \{\alpha_i : i < k\}$. Clearly, for i, j < k we have i < j iff $(\exists \alpha \in S)(iR\alpha \land \neg jR\alpha)$.

It will be convenient to allow quantification over two-place relations on B. This practice keeps us in the realm of monadic second-order logic, however, as we now show. First notice that since $M \models \psi_0$, for every $\alpha \neq \beta$ from B(=k) there is some $x_{\{\alpha,\beta\}} < n$ such that $\{\alpha,\beta\} = \{l \in B: lRx_{\{\alpha,\beta\}}\}$. For any relation $S \subseteq B^2$, then, we may associate sets $X, Y \subseteq n$ so that $X = \{x_{\{\alpha,\beta\}}: \alpha \leq \beta < k \text{ and } \alpha S\beta\}$ and $Y = \{x_{\{\alpha,\beta\}}: \beta < \alpha < k \text{ and } \alpha S\beta\}$. Notice that if $x_{\{\alpha,\beta\}} = x_{\{\gamma,\delta\}}$ then $\alpha = \gamma$ and $\beta = \delta$. It is then clear that S can be recovered from X and Y, so for any monadic $\theta(S, \ldots)$ there is a monadic $\theta'(X, Y, \ldots)$ such that in M_0 (or indeed, in any expansion of M_0), $(\exists S \subseteq B^2)\theta \leftrightarrow (\exists X)(\exists Y)\theta'(X, Y, \ldots)$. Henceforth we will freely use quantification over binary relations on B. In particular, + and \times restricted to k = B are definable in M_0 .

Since $M \models \psi_0 \land \psi_1$ we may extend C to represent all of the subsets of B. Hence we may (monadically) expand M_0 to a structure M_1 which has the following properties:

(4) The predicate " $x \in B$ " (i.e. x < k) is definable in M_1 , as is the usual order on k. Also C is definable in M_1 (recall $C = \{0, 1, ..., 10k - 1\}$), as is a set $D \supseteq C$ of power 2^k such that $(\forall \alpha \in D)$ $(\forall \beta \in D)$ $[\alpha \neq \beta \rightarrow \{l \in B: lR\alpha\} \neq \{l \in B: lR\beta\}]$. We may quantify over binary relations on B. In particular, arithmetic on B is definable in M_1 .

Now define a function $f: D \to 2^k$ by $f(\alpha) = \sum \{2^i : iR\alpha, i \in B\}$. We claim:

(5) The relation $R_+ = \{ \langle \alpha, \beta, \gamma \rangle : \alpha, \beta, \gamma \in D \text{ and } f(\gamma) = f(\alpha) + f(\beta) \}$ is definable in M_1 .

For, let $X \subseteq B = k$ be the set of places where there is a carry in the addition $f(\alpha) + f(\beta)$, i.e. where $\sum \{2^i : jR\alpha, j < i\} + \sum \{2^j : jR\beta, j < i\} \ge 2^i$. Choose $\delta \in D$ such that $\{l \in B : lR\delta\} = X$. Now the requirements for $f(\gamma) = f(\alpha) + f(\beta)$ are local. That is, $f(\gamma) = f(\alpha) + f(\beta)$ iff for some δ , the right thing happens at each coordinate;

that is, iff: $iR\gamma \leftrightarrow [(iR\alpha \leftrightarrow iR\beta) \leftrightarrow iR\delta]$ for all i < k; $\neg 0R\delta$; $(i+1)R\delta \leftrightarrow [(iR\delta \land iR\alpha) \lor (iR\delta \land iR\beta) \lor (iR\alpha \land iR\beta)]$ for all i < k-1; and $\neg [((k-1)R\delta \land (k-1)R\alpha) \lor ((k-1)R\delta \land (k-1)R\beta) \lor ((k-1)R\alpha \land (k-1)R\beta)]$ (so that $f(\alpha) + f(\beta) < 2^k$). Hence (5) holds. Now we prove

(6) The relation $R_{\times} = \{ \langle \alpha, \beta, \gamma \rangle \in D^3 : f(\alpha) \cdot f(\beta) = f(\gamma) \}$ is definable in M_1 .

Given α , $\beta \in D$ with $f(\alpha) \cdot f(\beta) < 2^k$, we define γ (uniformly in α and β) such that $f(\alpha) \cdot f(\beta) = f(\gamma)$, as follows. Let $f(\alpha) = \sum \alpha_i 2^i$ and $f(\beta) = \sum \beta_i 2^i$. Consider the matrix $S \subseteq B^2$ formed (roughly) by putting $\sum \alpha_i 2^{i+j}$ in column j if $\beta_j \neq 0$, otherwise putting all zeros in column j. Formally, set $S = \{\langle i, j \rangle \in B^2 : j \leq i \text{ and } (i-j)R\alpha$ and $jR\beta$. Now the intuitive idea is that $f(\alpha) \cdot f(\beta)$ is the sum of the columns of S, that is, $\sum \{\sum \{2^i : \langle i, j \rangle \in S\} : j < k\}$. So let $T \subseteq B^2$ represent the partial sums, that is, the jth column of T should represent the sum of the first j columns of S. Formally, T is characterized by setting $\langle i, 0 \rangle \in T$ iff $\langle i, 0 \rangle \in S$, and $\langle i, j+1 \rangle \in T$ iff there are δ , η , ν with $\{i < k : iR\delta\} = \{i < k : \langle i, j \rangle \in T\}$, $\{i < k : iR\eta\} = \{i < k : \langle i, j+1 \rangle \in S\}$, and $f(\nu) = f(\delta) + f(\eta)$ (which is definable, by (5)). Finally, $f(\alpha) \cdot f(\beta) = f(\gamma)$ iff there are such S and T such that γ codes the last column of T: $(\forall i < k)$ $(iR\gamma \leftrightarrow \langle i, k-1 \rangle \in T)$. Since by (4) we are allowed quantification over binary relations on B, this concludes the proof of (6).

At this point we turn to the problem of defining arithmetic on n rather than merely on 2^k . As $M \models \psi_2$ we can view n as a subset of $2^{|C|}$. The idea is to code each element of M (i.e. of n) by the number of predecessors it has in M, under the lexicographic order on $2^{|C|}$. We use the arithmetic available on 2^k to carry out this coding. Notice that by replacing M_1 with an isomorphic copy (in which B and C are fixed pointwise by the isomorphism), we may assume by (5) and (6) that:

(7) $D=2^k$, and setting $E=\{l: l^2<2^k\}$, we have 'plus' and 'times' on E definable in M_1 . Also we can code binary relations on E in M_1 : for $S\subseteq E^2$, consider $\{i\cdot[\sqrt{2^k}]+i:\langle i,j\rangle\in S\}$.

We now prove:

(8) In M_1 , we can define the relation " $x \in E \land |X| = x$ ".

To see this, notice that for $x \in E$, we have |X| = x iff there is $S \subseteq x \times 10k$ such that for all i < x, $\{l < 10k : iSl\} = \{l < 10k : lR'\alpha\}$ for some $\alpha \in X$, and conversely, every $\alpha \in X$ has this property for some unique i < x. By $M \models \psi_2$ and the last clause of (7), and since $10k \subseteq E$ (as we have assumed $10k < [\sqrt{2^k}]$), this argument proves (8).

At least we are ready to begin to define arithmetic on n, in M_1 . Let $m = \max(E)$, and for $\alpha < n$ let $\|\alpha\|$ be the number of elements which precede α in the lexicographic order on 2^{10k} , in the following sense:

 $\|\alpha\| = |\{\beta : \text{ for some } l < 10k, lR\alpha \land \neg lR\beta \land (\forall i < l)(iR\alpha \leftrightarrow iR\beta)\}|.$

Notice that the predicate $\|\beta\| < \|\alpha\|$ is definable in M_2 . Thinking in base m, we

see that there are unique $p_{\alpha}^0, p_{\alpha}^1, \ldots, p_{\alpha}^6 < m$ such that $\|\alpha\| = \sum_{i=0}^6 p_{\alpha}^i m^i$ (as $m^7 > n$). We claim:

(9) The relations " m^i divides $||\alpha||$ " (each i = 1, 2, ..., 6) and " $p_{\alpha}^i = l$ " (each i = 0, ..., 6) are definable in M_1 .

In fact (9) follows easily from (8). For example, m divides $\|\alpha\|$ iff for some $X \subseteq \{\beta : \|\beta\| < \|\alpha\|\} \cup \{\alpha\}$, we have $\alpha \in X$ and $\beta_0 \in X$ where $\|\beta_0\| = 0$, and for all $\beta, \gamma \in X$ with $\beta < \gamma$, if $(\forall \delta)(\|\beta\| < \|\delta\| < \|\gamma\|) \to \delta \notin X$) then $\|\{\delta : \|\beta\| \le \|\delta\| < \|\gamma\|\} = m$. The higher powers are treated similarly. For example, " m^2 divides $\|\alpha\|$ " is defined just like "m divides α ", except that $\|\{\delta : \|\beta\| \le \|\delta\| < \|\gamma\|\} = m^2$ for successive $\beta < \gamma$ in $X: (\exists Y) \ (\beta \in Y \land \gamma \in Y \land (\forall \beta' \in Y) \ (\forall \gamma' \in Y) \ [(\forall \delta) \ (\|\beta'\| < \|\delta\| < \|\gamma'\| \to \delta \notin Y) \to \|\{\delta : \|\beta\| \le \|\delta\| < \|\gamma'\|\} = m$]. The higher powers m^i are handled similarly, that is, $\|\{\delta : \|\beta\| \le \|\delta\| < \|\gamma\|\} = m^i$ for successive $\beta < \gamma$ in X, and this can be said by subdividing $\{\delta : \|\beta\| \le \|\delta\| < \|\gamma\|\}$ (i-1) times. The predicates " $p_{\alpha}^i = l$ " are handled similarly.

Finally, we can easily define $\{\langle \alpha, \beta, \gamma \rangle : \|\alpha\| + \|\beta\| = \|\gamma\| \}$ in M_1 , using (9) and (7). Also, by (9) and the distributive law, it is easy to reduce the problem of defining $\{\langle \alpha, \beta, \gamma \rangle : \|\alpha\| \cdot \|\beta\| = \gamma \}$ in M_1 to the problem of finding, for all $p_1, p_2 < m$, some i, j < m such that $p_1 \cdot p_2 = im + j$. But since we have defined arithmetic up to m^2 in M_1 , this is also routine, and the proof is complete. \square

Theorem 2 is a rather direct consequence of the following lemma, which we will prove using Theorem 1.

Lemma. Suppose that f and g are recursive functions such that f(n) < g(n) for all n. Then there is a sentence ϕ of monadic second-order logic and a finite-to-one function h from $\mathbb N$ onto $\mathbb N$ such that $\lim_{n\to\infty} |\mu_n(\phi) - f(h(n))| = 0$.

In particular, given any recursively enumerable tree T of finite sequences of 0's and 1's (as in Theorem 2), we may apply this lemma to recursive functions f and g such that $\langle f(n)/g(n): n \in \mathbb{N} \rangle$ enumerates T. (Here we are of course identifying a node $s \in T$ with the corresponding fraction $\sum \{2^{-(i+1)}: s(i) = 1\}$.) Then it is clear that for every branch b of T we can choose a subsequence from $\langle \mu_n(\phi): n < \omega \rangle$ converging to $\sum \{2^{-(i+1)}: b(i) = 1\}$, where ϕ is the sentence given by the lemma. Conversely, if $\langle \mu_n(\phi): n \in I \rangle$ is a convergent subsequence of $\langle \mu_n(\phi): n \in \mathbb{N} \rangle$, then $\langle f(h(n))/g(h(n)): n \in I \rangle$ converges, so since h is finite-to-one, there is a branch b of T such that $\langle f(h(n))/g(h(n)): n \in I \rangle$ converges to $\sum \{2^{-(i+1)}: i \in b\}$, and Theorem 2 follows.

Proof of Lemma. Recall that a function f is recursive if and only if it is definable in $(\mathbb{N}, +, \cdot, <)$ by a formula $\exists \bar{u}\theta(x, y, \bar{u})$ where θ is Δ_0 , i.e. θ has only bounded quantifiers (those of the form $\forall v_1 < v_2, \exists v_1 < v_2$). We may assume that the symbols + and \cdot occur in θ as ternary relation symbols. (Notice that this may

increase the length of \bar{u} .) By replacing $\exists \bar{u}$ with $\exists z \exists u_1 < z \exists u_2 < z \cdots \exists u_l < z$, we see that f is definable in $(\mathbb{N}, +, \cdot, <)$ by a formula $\exists z \theta(x, y, z)$ where θ is Δ_0 and has + and \cdot as relation symbols. Notice that for all n, if $(n, + \upharpoonright n, \cdot \upharpoonright n, < \upharpoonright n) \vDash \exists z \theta(i, j, z)$ then f(i) = j. Choose a similar formula $\exists z \psi(x, y, z)$ for g. It is convenient to assume further that $\mathbb{N} \vDash \forall x \forall y \forall z [\theta(x, y, z) \lor \psi(x, y, z) \to x < z \land y < z] \land \forall x \forall y_1 \forall y_2 \forall z \forall w [\theta(x, y_1, z) \land \psi(x, y_2, w) \to z = w]$. The idea is that z is the least number coding witnesses for both θ and ψ . To be precise, simply replace $\theta(x, y, z)$ by $x < z \land y < z \land (\exists v < z)(\exists y' < z)(\exists w < z)[\theta(x, y, v) \land \psi(x, y', w)]$, and then replace this new formula $\theta_0(x, y, z)$ by $\theta_0(x, y, z) \land (\forall u < z) \neg \theta_0(x, y, u)$; and change ψ similarly.

Next we define the function h. Given n, let $m = \lfloor n^{1/4} \rfloor$. First suppose that

(*) $n = m^4 + a + mb + m^2c$ for some a, b, c < m such that $\mathbb{N} \models \theta(a, b, m) \land \psi(a, c, m)$;

then set h(n) = a. Notice that such a, b, and c are unique, so if (*) holds then h(n) is well-defined. Moreover, for all a we may choose m such that $\mathbb{N} \models \theta(a, f(a), m) \land \psi(a, g(a), m)$, by choice of θ and ψ ; so $h(m^4 + a + mf(a) + m^2g(a)) = a$, hence h is onto. Notice that there are unique b, c, m such that $\theta(a, b, m) \land \psi(a, c, m)$, so thus far, h is one—one. It remains to define h(n) if (*) fails. In that case let h(n) equal the greatest a < m such that $\mathbb{N} \models (\exists y < n)(\exists z < m)$ ($\exists w < m$)[$\theta(a, y, w) \land \psi(a, z, w$)]; if there is no such a (but this can happen for only finitely many n), set h(n) = 0. It is clear that h is finite-to-one.

Now let Θ be the sentence given by Theorem 1, that is, Θ says $\langle \phi_+(x, y, z, \bar{P}, R), \phi_\times(x, y, z, \bar{P}, R) \rangle \cong \langle +, \times \rangle$, and $\lim_{n \to \infty} \mu_n(\exists \bar{P}\Theta) = 1$. Consider the following property of a model (n, R):

(†)
$$(n, R) \models \exists \bar{P}\Theta, h(n) \neq 0$$
, and $[\log_2(n) + 1] < [\sqrt{n}]$.

We will show that it suffices that ϕ have the following property:

(*) Whenever (†) holds for (n, R), then $(n, R) \not\models \phi$ iff for some i < f(h(n)), $|\{k: kRk\}| \equiv i \pmod{g(h(n))}$.

In order to define ϕ we use the following abbreviation. For $X \subseteq n$ we can write $\operatorname{succ}_X(i,j)$ if $i \in X$, $j \in X$, and $k \notin X$ whenever i < k < j. Then ϕ should say:

- (i) $(\forall i \in X)(iRi)$;
- (ii) $(\forall i)(\forall j)[\operatorname{succ}_{\mathbf{X}}(i,j) \rightarrow |\{k: kRk \text{ and } i \leq k < j\}| = g(h(n))];$
- (iii) $|\{k: kRk \text{ and } \max(X) \leq k\}| < f(h(n))$.

Now let us describe ϕ . First, ϕ says that for some \bar{P} , $\Theta(\bar{P})$ holds. Now we want ϕ to assert (i), (ii), and (iii) above; then (*) follows. Of course (i) presents no problem, and since the formulas θ and ψ from the definitions of f and g are Δ_0 (and by choice of h), f(h(n)) and g(h(n)) are definable in (n, \bar{P}, R) . (More precisely, the f(h(n))th and g(h(n))th elements in the order defined by $\Theta(\bar{P})$ are definable.) So to express (ii) and (iii) we need only express the cardinalities there. Since $h(n) \neq 0$, $f(h(n)) < [n^{1/4}]$ and $g(h(n)) < [n^{1/4}]$, so it suffices to define

the relation " $x < [n^{1/4}] \land |X| = x$ ". This is similar to the proof of (8) in the proof of Theorem 1. First notice that we can quantify over binary relations S on $[\sqrt{n}]$, by coding S by $\{x + [\sqrt{n}]y : xSy\}$. Then for $x < [n^{1/4}]$, |X| = x iff $|X| \ge x \land \neg(|X| \ge x + 1)$; and for $x \le [n^{1/4}]$, $|X| \ge x$ iff for some $S \subseteq x \times [\log_2(n) + 1]$, we have $(\forall i < x)(\sum \{2^j : iSj\} \in X) \land (\forall i < j < x)(\exists k)(iSk \leftrightarrow \neg jSk)$. Since $[\log_2(n) + 1] < [\sqrt{n}]$ if (†) holds, it follows that (*) holds for ϕ .

The next task is to see that $\lim_{n\to\infty} \mu_n("(\dagger) \text{ holds"}) = 1$. But this is clear from the choice of Θ , together with the fact that h is finite-to-one and $\lim_{n\to\infty} [\log_2(n) + 1]/[\sqrt{n}] = 0$.

Finally, let μ^i be the probability that $|\{k: kRk\}| \equiv i \pmod{m}$, where m = g(h(n)). We claim:

$$\lim_{n\to\infty}\left(\left(\sum_{k< f(h(n))}\mu^k\right)-\mu_n(\phi)\right)=0.$$

But this is clear from (*), together with the fact that $\lim_{n\to\infty}$ ("(†) holds")=1. Hence the lemma follows from

$$\lim_{n\to\infty}\left(\left(\sum_{k< f(h(n))}\mu^k\right)-\frac{f(h(n))}{g(h(n))}\right)=0.$$

But this in turn follows from

(**) for
$$0 \le k < l < m$$
, $|\mu^k - \mu^l| < 5 \left(\frac{n}{2} \right) / 2^n$.

For if (**) holds, then by Stirling's formula there is a constant C (not depending on n) such that $|\mu^k - \mu^l| \le C/\sqrt{n}$ when $0 \le k < l < m$, and hence $|\mu^k - 1/m| \le C/\sqrt{n}$ for $0 \le k < m$. Then it follows that

$$\left|\left(\sum_{k < f(h(n))} \mu^k\right) - \frac{f(h(n))}{g(h(n))}\right| \leq \frac{C}{\sqrt{n}} f(h(n)) < \frac{C}{\sqrt{n}} n^{1/4},$$

which has limit 0, as claimed.

To prove (**) first notice that for $0 \le k < l < m$, $\mu^k = \sum_i \binom{n}{im+k}/2^n$ and $\mu^l = \sum_i \binom{n}{im+l}/2^n$. Now if $a_i = \binom{n}{im+k}/2^n$ and $b_i = \binom{n}{im+l}/2^n$, then we see that $a_0 < b_0 < a_1 < b_1 < \cdots < a_p < b_p$, where p is greatest such that $(p+1)m \le \lfloor \frac{1}{2}n \rfloor$, and also $a_{p+2} > b_{p+2} > a_{p+3} > b_{p+3} > \cdots > a_q > b_q$, where q is greatest such that $qm+l \le n$. Notice that

$$0 < \sum_{i=0}^{p} b_i - \sum_{i=0}^{p} a_i \leq \sum_{i=0}^{p-1} a_{i+1} + b_p - \sum_{i=0}^{p} a_i = b_p - a_0 < b_p,$$

and similarly

$$0 < \sum_{i=p+2}^{q} a_i - \sum_{i=p+2}^{q} b_i < a_{p+2}.$$

So we have

$$|\mu^{k} - \mu^{l}| < b_{p} + a_{p+2} + a_{p+1} + b_{p+1} + a_{q+1} \le 5 \binom{n}{\left[\frac{n}{2}\right]} / 2^{n},$$

since $\binom{n}{\lfloor n/2 \rfloor} \ge \binom{n}{k}$ for all k. \square

We close by remarking that by Theorem 1, one has second-order logic on $\lceil \sqrt{n} \rceil$, in the following sense. Suppose Ψ is a second-order sentence, i.e. we allow monadic and binary quantification in Ψ , but Ψ has no non-logical symbols (except equality). Then there is a monadic second-order sentence Φ (with one non-logical symbol R, R a binary relation symbol) such that $\mu[(n,R) \models \Phi \text{ iff } \lceil \sqrt{n} \rceil \models \Psi \rceil = 1$. This is clear by a trick we have already used: binary relations on $\lceil \sqrt{n} \rceil$ can be coded by subsets of n via the map $\langle i, j \rangle \mapsto i + \lceil \sqrt{n} \rceil j$.

Acknowledgments

The first author thanks Jim Schmerl and Kevin Compton for interesting discussions on the subject. The authors also thank Central States Universities, Inc. for supporting the conference [6] in which Compton's question was brought to our attention.

References

- [1] K. Compton, A logical approach to asymptotic combinatorics I, Advances in Math., to appear.
- [2] R. Fagin, Probabilities on finite models, J. Symbolic Logic 41 (1976) 50-58.
- [3] H. Gaifman, Concerning measures in first-order calculi, Israel J. Math. 2 (1964) 1-18.
- [4] Y.V. Glebskii, D.I. Kogan, M.I. Liogon'kii and V.A. Talanov, Range and degree of realizability of formulas in the restricted predicate calculus, Cybernetics 5 (1969) 142–154 (translated 1972).
- [5] J.F. Lynch, Almost sure theories, Ann. Math. Logic 18 (1980) 91-135.
- [6] Conference, Decision Problems in Math. and Comp. Sci., Central States Universities, Inc. (1982).