THE CONSISTENCY OF $\operatorname{Ext}(G, \mathbf{Z})=\mathbf{Q}$

BY
SAHARON SHELAH ${ }^{+}$

ABSTRACT
For abelian groups, if $V=L, \operatorname{Ext}(G, Z)$ cannot have cardinality $\boldsymbol{\aleph}_{0}$. We show that G.C.H. does not imply this. See Hiller and Shelah [2], Hiller, Huber and Shelah [3], Nunke [5] and Shelah [6, 7, 8] for related results. We use the method of [7].

Theorem 1. Suppose the universe V satisfies G.C.H., and K is a divisible countable (abelian) group (i.e. $|K| \leqq \boldsymbol{N}_{0}$). Then for some forcing notion \boldsymbol{F}, in V^{P} for some abelian group $G, \operatorname{Ext}(G, \mathbf{Z})=K$.

Corollary 2. It is consistent that for some group $G, \operatorname{Ext}(G, \mathbf{Z})=\mathbf{Q}(\mathbf{Q}-$ the rationals as an additive group, \mathbf{Z} - the integers as an additive group).

Remark. (1) This answers questions from Hiller and Shelah [2], Huber, Hiller and Shelah [3] and Nunke [5]; remember that if $V=L, \operatorname{Ext}(G, \mathbf{Z}) \neq \boldsymbol{N}_{0}$. The result was announced in [9].
(2) The group we get is \boldsymbol{N}_{1}-free and of power \boldsymbol{N}_{1}.
(3) Instead of " K countable", we can demand " $|K| \leqq \boldsymbol{N}_{2}$ "; the proof will not change significantly. We can change $|G|$ and $|K|$, but we have not checked carefully.
(4) It is well known that $\operatorname{Ext}(G, Z)$ is divisible.

Proof. Let K be the direct sum of K_{p} (p a prime natural number or zero), where K_{0} is torsion free and for $\mathbf{p} \neq 0\left(\forall x \in K_{\mathrm{p}}\right)(\exists n) \mathbf{p}^{n} x=0$. This is possible as K is divisible, and each K_{p} is divisible. Let $K_{\mathrm{p}}^{1}=\left\{x \in K_{\mathrm{p}}: \mathrm{p} x=0\right\}$, so K_{p}^{1} is a vector space over $\mathbf{Z} / \mathbf{p} \mathbf{Z}$. So let $B_{\mathrm{p}} \subseteq K_{\mathrm{p}}$ be a basis of K_{p}^{1} (as a vector space over the rationals for $\mathbf{p}=0$, and over $\mathbf{Z} / \mathbf{p} \mathbf{Z}$ otherwise). Let $B=\bigcup_{p} B_{p}$, so as K is countable, $|B| \leqq N_{0}$. Let $K_{\mathrm{p}}^{1} \subseteq K_{\mathrm{p}}\left[K^{\prime} \subseteq K\right]$ be the subgroup generated by $B_{\mathrm{p}}[B]$ (for $\mathbf{p}>0$ this is not new).

[^0]Choose S to be a stationary costationary set of limit ordinals $<\omega_{1}$. We shall define a group G of the following form: G is freely generated by $x_{i}\left(i<\omega_{1}\right)$ and $z_{\delta, n}(\delta \in S, n<\omega)$, with the only identities

$$
\mathbf{p}(\delta, n) z_{\delta, n}=x_{\delta}-\tau_{n}^{\delta} \quad \text { where } \tau_{n}^{\delta}=\sum_{\xi \in a(b, n)} x_{\xi}
$$

where $\mathbf{p}(\delta, n)$ is a strictly increasing function of \boldsymbol{n} (for each δ separable); for $\delta \in S, \eta_{\delta}$ is an increasing ω-sequence of successor ordinals converging to δ, $a(\delta, n)=\left\{n_{\delta}(l): l \leqq k_{\delta}(n), l>k_{\delta}(m)\right.$ for every $\left.m<n\right\}$.

Notation. If h is a function from ω_{1} to $\mathbf{Z}, \tau=\sum_{i=0}^{n} c_{i} x_{(i)}\left(c_{i} \in \mathbf{Z}\right)$ then $h(\tau)=\Sigma c_{i} h(l(i))$. We let \mathbf{p} be a prime number.

Fact A. $\operatorname{Ext}(G, \mathbf{Z})$ is isomorphic to E_{0} / E_{1}, where E_{0} is the set of functions from $S \times \omega$ into \mathbf{Z}, addition is defined coordinatewise; E_{1} is the subgroup of $f \in E_{0}$ such that for some $h: \omega_{1} \rightarrow \mathbf{Z}, f \approx \hat{h}$, i.e., $f(\delta, n)=\hat{h}(\delta, n) \bmod \mathbf{p}(\delta, n)$ (for every $(\delta, n) \in S \times \omega)$, where \hat{h} is defined by $\hat{h}(\delta, n)=h(\delta)-h\left(\tau_{n}^{\delta}\right)$.

Proof of Fact A. Like that of [10] 3.3.
Now we shall define the group G by defining the $a(\delta, n)$ and an embedding of B into E_{0} / E_{1}; we do it by forcing, to simplify the proof.
An element q of $P_{1}=Q_{0}$ is a triple:

$$
\begin{gathered}
a(\delta)^{q}=\left\langle\left\langle a(\delta, n)^{q}, \mathbf{p}(\delta, n)^{q}\right\rangle: n<\omega\right\rangle \text { for } \delta \in S, \quad \delta<\delta_{0}, \\
f_{s}^{q}(s \in B), \quad h_{s}^{q}\left(s \in B-B_{0}\right),
\end{gathered}
$$

such that the $\langle a(\delta, n): n<\omega\rangle$ are as mentioned above: $a(\delta, n)$ is a non-empty finite subset of $\delta, \max a(\delta, n)<\min a(\delta, n+1), \delta=\sup \{\min a(\delta, n): n<\omega\}, f_{s}^{q}$ is a function from ($S \cap \delta_{0}$) $\times \omega$ into \mathbf{Z}, and for $s \in B_{\mathrm{p}}, \mathbf{p} \neq 0, \mathbf{p} f_{s} \approx \hat{h}_{s}$ (where $\left.\left(\mathbf{p} f_{s}\right)(i)=\mathbf{p}\left(f_{s}(i)\right)\right)$ and $h_{s}: \delta_{0} \rightarrow \mathbf{Z}$.

Also $\mathbf{p}(\delta, n)$ is a prime natural number, $\mathbf{p}(\delta, n)<\mathbf{p}(\delta, n+1)$. The order is natural.

Clearly there is a P_{0}-name G defined by $\underset{\sim}{a}(\delta, n), \underset{\sim}{p}(\delta, n)$ and $f_{s}(s \in B)$, and let $f_{t}=\Sigma f_{s}$, where $t=\Sigma s_{i}, s_{i} \in B$ (i.e. $t \in K^{1}$). Clearaly $f_{c} \in E_{0}$.

Clearly in $V^{O_{0}}, \operatorname{Ext}(G, \mathbf{Z})$ is too big. So we define an iterated forcing P_{i} ($i \leqq \omega_{2}$), with countable support, $P_{i+1}=P_{i} * Q_{i}$ such that for each $i>0, Q_{i}$ "kills" an undesirable member of $\operatorname{Ext}(G, \mathbf{Z})$. More elaborately, for each i, f_{i} is a P_{i}-name of a member of E_{0}, such that for some $\mathbf{p}(i)$ either $\mathbf{p}(i)=0$, and $\phi \mathbb{r}^{p, "}(\forall n>0)\left(\forall t \in K^{\prime}\right)\left(n{\underset{\sim}{i}}_{i}-{\underset{\sim}{f}}_{i} \notin E_{1}\right) "$, or $\mathbf{p}=\mathbf{p}(i)$ is prime >0 and

$$
\phi \mathbb{r}^{P,} " \mathbf{p} f_{i} \in E_{0} \wedge(\forall n)\left(\forall t \in K_{p}^{1}\right)(0<n<\mathbf{p}) \rightarrow\left[n \tilde{\sim}_{i}-{\underset{\sim}{t}}_{t} \notin E_{0}\right] "
$$

Now in $V^{P_{r}}, Q_{1}=\{h:$ for some $\alpha, h: \alpha \rightarrow \mathbf{Z}$, and for every $\delta \leqq \alpha, \delta \in S$, $f_{i}(\delta, n)=h(\delta)-h\left(\tau_{n}^{\delta}\right) \bmod \mathbf{p}(\delta, n)$ (if $\delta=\alpha$ this means there is such $h(\delta)$)\}. The order: inclusion.

FACT B. (1) (in V^{P}) If $h \in Q_{i}$, $\operatorname{Dom} h=\alpha, \alpha \leqq \beta$, then there is h^{*}, $h \leqq h^{*} \in Q_{i}, \operatorname{Dom} h^{*}=\beta$. Moreover if h^{\prime} is a finite function from $[\alpha, \beta)$ to \mathbf{Z} we can demand $h^{\prime} \subseteq h^{*}$, except when $\alpha \in S \cap \operatorname{Dom} h^{\prime}$.
(2) (in $\left.V^{P_{i}}\right) \phi \Vdash^{Q_{i}}{ }^{\prime} f_{i} \in E_{1}$ ".

Proof. (1) By induction on β. For $\beta \notin S$, totally trivial; for $\beta \in S$, we first define $h^{*} \upharpoonright\left\{\eta_{\beta}(n): n<\omega, \alpha \leqq \eta_{\beta}(n)\right\}$ appropriately, and then define $h^{*} \upharpoonright \eta_{\beta}(n)$ by induction on n.
(2) Follows from (1).

So $P_{i}=\left\{p: \operatorname{Dom} p\right.$ is a countable subset of $i, p(j)$ a P_{j}-name of a member of Q, for $j \in \operatorname{Dom} p$, i.e., $\phi H^{P_{j}} " p(j) \in Q$ ""\}. (We shall write $p(i)(\xi)=c$ for $p \upharpoonright i \mathbb{H}^{P}$ " $p(i)(\xi)=c$ ".) The order is $p_{1} \leqq p_{2}$ if $i \in \operatorname{Dom} p_{1}$ implies $p_{2} \upharpoonright i \|^{P_{i}} " p_{1}(i) \leqq p_{2}(i) "$. As in [7]:

Fact C. (1) For every $p \in P_{i}$ there is $p^{\prime} \in P, p \leqq p^{\prime}$, and for some δ, $\forall \alpha \in \operatorname{Dom} p, \operatorname{Dom} p_{i}^{\prime}(\alpha)=\delta$ and $p^{\prime}(\alpha) \in V$. Such p^{\prime} is called of height δ.
(2) If p_{n} has height $\alpha_{n}, \quad p_{n} \leqq p_{n+1}, \quad \alpha_{n}<\alpha_{n+1}, \quad \bigcup_{n<\omega} \alpha_{n}=\delta \notin S$ then $\cup_{n<\omega} p_{n} \in P$.
(3) $P_{\omega_{2}}$ satisfies the κ_{2}-c.c. and does not add new ω-sequences. By suitable bookkeeping we can assume every $P_{\omega_{2}}$-name $\underset{\sim}{f}$ of a function as above is $\underset{\sim}{f}$ for some i.
(4) If in the forcing by $P_{\omega_{2}}$, it is forced that, for every t and p, ' $t \in K_{\mathrm{p}}^{1} \Rightarrow$ $f_{1} \notin E_{1}^{\prime \prime}$ then $\operatorname{Ext}(G, Z) \simeq K$ (note that E_{1} depends on the universe we are dealing with).

Proof. As in [7], (1), (2), (3) hold. Let us prove (4). Remember that by Fact $\mathrm{A}, \operatorname{Ext}(G, \mathbf{Z}) \simeq E_{0} / E_{1}$. As, e.g., by Fuchs [1], E_{0} / E_{1} is a divisible group; it is enough to check that:
(a) $t \in K^{1}, t \neq 0$ implies $f_{1} \notin E_{1}$,
(b) for $f \in E_{0}-E_{1}$, for some $n>0$, and $t \in K^{1}, n f \notin E_{1}$, and $n f-f_{1} \in E_{1}$.

Now (a) follows immediately by the hypothesis whereas (b) follows by Fact C3 (and the definition of Q_{1}).

So the rest of the proof is dedicated to the proof that the hypothesis of Fact C 4 holds. So suppose $t_{*} \in K_{p_{*}}^{1}, t_{*} \neq 0, \underset{\sim}{\boldsymbol{h}}$ a $P_{\omega_{2}}$-name, $q_{*} \in P_{\omega_{2}}$,

$$
\begin{equation*}
q_{*} \|^{P}{ }_{\omega_{2}} "{\underset{\sim}{t}}_{f_{4}}^{\approx} \hat{h^{\prime}} " . \tag{*}
\end{equation*}
$$

As $P_{\omega_{2}}$ satisfies the \boldsymbol{X}_{2}-chain condition, we can replace $P_{\omega_{2}}$ by $P_{i},\left(i<\omega_{2}\right)$ and choose a minimal such i (i.e., i minimal such that there are a P_{i}-name $\underset{\sim}{h}$ and $q_{*} \in P_{t}$, so that $q_{*} \mathbb{I}^{P_{i}} " \underset{\sim}{f} \underset{\sim}{f} \approx \underset{\sim}{\hat{h}}$ "). Those $i, t_{*}, p_{*}, q_{*}, \underset{\sim}{h}$ are fixed for the rest of the proof.

Before we prove we note some easy facts on the forcings.

FACT D. (1) If $\alpha<\beta, p \in P_{\alpha}, q \in P_{\beta},(q \backslash \alpha) \leqq p$, then $r=p \vee q$ is their least upper bound (where $\operatorname{Dom} r=\operatorname{Dom} p \cup \operatorname{Dom} q, r(j)$ is $p(j)$ for $j \in \operatorname{Dom} p$ and $q(j)$ for $j \in \operatorname{Dom} q-\operatorname{Dom} p$).
(2) If $p \in P_{\alpha}, \alpha_{0}<\cdots<\alpha_{n-1}<\alpha, h_{l}$ a finite function from ω_{1} to \mathbf{Z} for $l<n$ such that $p \backslash \alpha_{t} \Vdash^{P_{a_{1}}}$ " $\operatorname{Dom}\left(p\left(\alpha_{1}\right)\right)<\min \operatorname{Dom} h_{1}$ " then there is $q, p \leqq q \in P_{\alpha}$, such that for $l<n, q \backslash \alpha_{l} \Vdash^{P_{\alpha_{l}}}{ }^{\prime} h_{l} \subseteq q\left(\alpha_{l}\right)$ ".

Proof. (1) See [7]; easy to check.
(2) Prove by induction on α_{n-1}, using Fact B1.

FACT E. If $q \in P_{1}, \alpha_{0}<\cdots<\alpha_{n-1}<i, \bar{\alpha}=\left\langle\alpha_{0}, \cdots, \alpha_{n-1}\right\rangle$ then for some q^{\prime}, $q \leqq q^{\prime} \in P_{i}, q^{\prime}$ has height and for every $q^{\prime \prime}, q^{\prime} \leqq q^{\prime \prime} \in P_{i}, \operatorname{Pos}_{\bar{\alpha}}\left(q^{\prime}\right)=\operatorname{Pos}_{\bar{\alpha}}\left(q^{\prime \prime}\right)$ where $\operatorname{Pos}_{\bar{\alpha}}\left(q^{0}\right)=\left\{\left\langle c^{0}, \cdots, c^{2 m-1}\right\rangle\right.$: for every $\zeta_{0}<\omega_{1}$ for some successor $\zeta, \zeta_{0}<$ $\zeta<\omega_{1}$ and $r_{0}, \cdots, r_{m-1} \in P_{i}, \quad q^{0} \leqq r_{0}, \cdots, q^{0} \leqq r_{m-1}, \quad r_{0} \mid \alpha_{n-1}=r_{1} \backslash \alpha_{n-1}=\cdots=$ $\boldsymbol{r}_{m-1} \mid \alpha_{n-1}$, and $r_{l}\left(\alpha_{n-1}\right)(\zeta)=c^{2 l}$ (for $l<m$) and $r_{l} \Vdash^{P_{1}}$ " $h(\zeta)=c^{2 l+1 "}$ for $\left.l<m\right\}$. Note that $\alpha_{0}, \cdots, \alpha_{n-2}$ were not used, so $\operatorname{Pos}_{\bar{\alpha}}\left(q^{0}\right)$ depend only on q, α_{n-1}, and $\operatorname{Pos}_{\tilde{\alpha}}\left(q^{0}\right)$ decrease when α_{n-1}, q^{0} increase.

Proof. Easy by Fact C2.
So w.l.o.g.

Assumption E1. (1) Either (α) or (β) where
$(\alpha) i$ is a successor (ordinal) or of cofinality \boldsymbol{N}_{0}, and for arbitrarily large $\alpha<i$, $\operatorname{Pos}_{\langle\alpha\rangle}\left(q_{*}\right)=\operatorname{Pos}_{\langle\alpha\rangle}\left(q^{\prime}\right)$ for $q^{\prime} \in P_{i}, q^{\prime} \geqq q_{*} ;$
(β) i has cofinality α_{1}, and there is $\alpha_{*}<i$ such that $\operatorname{Pos}_{\left(\alpha_{*}\right)}\left(q_{*}\right)=\operatorname{Pos}_{\langle\alpha\rangle}\left(q^{\prime}\right)$ whenever $\alpha_{*} \leqq \alpha<i, q_{*} \leqq q^{\prime} \in q_{*}$.
(2) Also q_{*} has height γ^{*}.

Notation. An $\bar{\alpha}$ whose last element is among the α 's in (α) if (α) holds and is $\geqq \alpha_{*}$ if (β) holds, is called good.

Definition F. We call a candidate a sequence $\bar{u}=\left\langle\left\langle a_{n}, \mathbf{p}_{n}\right\rangle: n<n_{*}\right\rangle$ such that a_{n} is a finite non-empty subset of successor ordinals $<\omega_{1}, \max a_{m}<$ $\min a_{m+1}$ for $m<n_{*}, \mathbf{p}_{m}$ prime (so $\bar{u}^{i}=\left\langle\left\langle a_{n}^{i}, \mathbf{p}_{n}^{i}\right\rangle: n<n_{*}^{i}\right\rangle$ etc.).

For a good $\bar{\alpha}=\left\langle\alpha_{0}, \cdots, \alpha_{m-1}\right\rangle, 0 \leqq \alpha_{0}<\cdots<\alpha_{m-1}<i, \alpha_{0}=0 \Rightarrow p_{*} \neq 0$, and $g, g:$ Range $\bar{\alpha} \rightarrow \omega$ let

$$
\begin{gathered}
T(g, \bar{\alpha}, \bar{u})=\left\{t: t \text { a function from }\left\{\left\langle\alpha_{l}, k\right\rangle: l<m, g\left(\alpha_{i}\right) \leqq k<n_{*}\right\},\right. \\
\left.t\left(\alpha_{l}, k\right) \in\left\{c \in \mathbf{Z}: 0 \leqq c<\mathbf{p}_{k}\right\}\right\} .
\end{gathered}
$$

We call $\bar{q}=\left\{q_{t}: t \in T\right\}$ an $(g, \bar{\alpha}, \bar{u})$-tree, if $T=T(g, \bar{\alpha}, \bar{u}), q_{*} \leqq q_{t}\left(n_{*}-\right.$ from $\bar{u})$ and if $t \in T, l<l(\bar{\alpha}), g\left(\alpha_{l}\right) \leqq k<n_{*}$ then
(a) $t\left(\alpha_{t}, k\right)=q_{t}\left(\alpha_{t}\right)\left(\tau_{k}\right) \bmod p_{k}$ where $\tau_{k}=\Sigma_{\xi \in a_{k}} x_{\xi}$ and $\alpha_{t}>0$,
(b) if $t_{1} \upharpoonright\left(\alpha_{t} \times \omega\right)=t_{2} \upharpoonright\left(\alpha_{1} \times \omega\right)$ then $q_{t_{1}} \upharpoonright \alpha_{t}=q_{t_{2}} \mid \alpha_{l}$,
(c) if $\alpha_{0}=0$, then

$$
t\left(\alpha_{0}, k\right)=\sum_{s \in S} n_{s} h_{s}^{q_{1}}\left(\tau_{k}\right) \bmod p_{k} \quad \text { where } t_{*}=\sum_{s \in S} n_{s} t_{s} \quad\left(t_{s} \text { is from } B_{p_{0}}\right)
$$

Fact G. Suppose $g, \bar{\alpha}, \bar{u}, \bar{q}$ are as in Definition F. Then we can find $a_{n_{0}}, \mathbf{p}_{n_{n}}$, c_{*}, \bar{q}^{1} such that (it seems $c_{*}=0$ always)
(a) \bar{q}^{1} is a $\left(g, \bar{\alpha}, \bar{u}^{1}\right)$-tree,
(b) $\bar{u}^{1}=\bar{u}^{\wedge}\left\langle a_{n_{2}}, \mathbf{p}_{n_{s}}\right\rangle$,
(c) if $t_{1} \in T\left(g, \bar{\alpha}, \bar{u}^{1}\right), t \in T(g, \bar{\alpha}, \bar{u})$ and $t \subseteq t_{1}$ then $q_{t} \leqq q_{t_{1}}^{1}$,
(d) for every $t_{1} \in T\left(g, \bar{\alpha}, \bar{u}^{1}\right), q_{t_{t}} \Vdash{ }^{\prime} \underset{\sim}{h}\left(\tau_{m_{*}}\right) \neq c_{*} \bmod p_{n_{*}}$ ".

We delay the proof of Fact G, but first we prove from it the desired contradiction.

Let $\underset{\sim}{h}, q_{*} \in N<\left(H\left(\boldsymbol{N}_{2}\right), \in, P, \mathbb{H}\right), N$ countable, $\delta^{*}=N \cap \omega_{1} \in S$. We define by induction on $n, g^{n}, \bar{\alpha}^{n}, \bar{u}^{n}, \bar{q}^{n}$ such that
(a) \bar{q}^{n} is a $\left(g^{n}, \bar{\alpha}^{n}, \bar{u}^{n}\right)$-tree,
(b) $g^{n}, \bar{\alpha}^{n}, \bar{u}^{n} \in N, \bar{\alpha}^{n}$ good,
(c) $q_{*} \leqq q_{t}^{0}$ for every $t \in T\left(\bar{g}^{0}, \bar{\alpha}^{0}, \bar{u}^{0}\right)$,
(d) $g^{n} \subseteq g^{n+1}$, Range $\bar{\alpha}^{n} \subseteq$ Range $\bar{\alpha}^{n+1}, \bar{u}^{n+1} \mid n=\bar{u}^{n}, \bar{u}^{n}$ has length n,
(e) if $t \in T\left(\bar{g}^{n}, \bar{\alpha}^{n}, \bar{u}^{n}\right), t_{1}^{*} \in\left(\bar{g}^{n+1}, \bar{\alpha}^{n+1}, \bar{u}^{n+1}\right), t \subseteq t_{1}^{*}$ then $q_{1}^{n} \subseteq q_{1_{1}}^{n+1}$,
(f) $\delta^{*}=\bigcup_{n<\omega} \delta_{n}, \delta_{n}<\delta_{n+1}<\delta^{*}$ and $t \in T\left(g^{n+1}, \bar{\alpha}^{n+1}, \bar{u}^{n+1}\right)$ implies q_{1}^{n+1} is bigger than some condition of height $\beta_{i}^{n}, \delta_{n} \leqq \beta_{t}^{n}$ and every $\zeta \in N \cap i$ belongs to $\bigcup_{n<\omega}$ Range $\bar{\alpha}^{n}$ except 0 when $\mathbf{p}_{*}=0$,
(g) for every $n<\omega$ for some $c_{*}^{n}, c_{*}^{n} \in \mathbf{Z}, 0 \leqq c_{*}^{n}<\mathbf{p}_{n}^{n+1}$, and for every $t \in T\left(\bar{g}^{n+1}, \bar{\alpha}^{n+1}, \bar{u}^{n+1}\right), q_{1}^{n+1} \mathbb{H}^{P}$ " $\underset{\sim}{h}\left(\tau_{n}\right) \neq c_{*}^{n} \bmod \mathbf{p}_{n}^{n+1} "$.

The definition is possible by Fact G (plus a trivial work). We concentrate on the case $\mathbf{p}_{*}=0$.

Clearly there are $q^{n} \in Q_{0}$ such that for every $t \in T\left(\bar{g}^{n}, \bar{\alpha}^{n}, \bar{u}^{n}\right), q_{t}^{n}(0)=q^{n}$. Now clearly $q^{\omega}=\bigcup q^{n} \in Q_{0}$; and as in [7] 1.7, 1.8, for every $q^{\prime}, q^{\omega} \leqq q^{\prime} \in P_{0}$, if $\left.q^{\prime}\right|^{\prime \prime} a\left(\delta^{*}, n\right)=a_{n}^{n+1}, \mathbf{p}\left(\delta^{*}, n\right)=p_{n}^{n+1}$ for $n<\omega$ " there is $r, q^{\prime} \leqq r \in P_{i}, q_{*} \leqq r$, and for every n for some $t \in T\left(\bar{g}^{n}, \bar{\alpha}^{n}, \bar{u}^{n}\right), q_{1}^{n} \leqq r$.

So r forces that
(i) for every $n, \underset{\sim}{h}\left(\tau_{n}\right) \not \equiv c_{*}^{n} \bmod p_{n}^{n+1}$,
(ii) suppose $t_{*}=\Sigma_{s} n_{s} t_{s}\left(t_{s} \in B_{p_{*}}\right)$ then as $q_{*} \|^{\prime}$ " $f_{t_{*}} \approx \underset{\sim}{\dot{h}} ", q_{*} \leqq r$, clearly $\Sigma_{s} r_{s} f_{s}\left(\delta^{*}, n\right)=\underset{\sim}{\boldsymbol{h}}\left(\delta^{*}\right)-\underset{\sim}{\boldsymbol{h}}\left(\tau_{n}\right) \bmod \mathbf{p}_{n}^{n+1}$.

Notice that when choosing q^{\prime} we have total freedom to choose the $f_{\mathrm{lm}}\left(\delta^{*}, n\right) \in$ Z. So for each $c \in \mathbf{Z}$, for some n we can contradict the possibility $\underset{\sim}{\boldsymbol{h}}\left(\boldsymbol{\delta}^{*}\right)=c$. There is no problem to complete the definition of $f_{t}\left(\delta^{*}, n\right)(t \in B), h_{i}(\delta, n)$ ($t \in \bigcup_{p \neq 0} B_{p}$) to get q^{\prime}.

For $\mathbf{p}_{*} \neq 0$, the problem is that $h_{t} \upharpoonright \bigcup_{l<\omega} a\left(\delta^{*}, l\right)=h_{t} \upharpoonright \operatorname{Range}\left(\eta_{\delta^{*}}\right)$ in fact determine $f_{\mathrm{f}} \mid\left\{\left(\delta^{*}, n\right): n<\omega\right\}$, for $t \in B_{\mathrm{p} .}$; however, the definition of the tree provides us with enough freedom for the choice of $\boldsymbol{h}_{t_{.}}\left(\eta_{\delta}(l)\right)$, i.e., we choose $h_{s}(\delta)$. Let us enumerate $\mathbf{Z}: \mathbf{Z}=\left\{d_{n}: n<\omega\right\}$ and choose $h_{s}\left(\tau_{n}\right)(s \in S)$ (where $\left.t_{*}=\sum_{s \in S} n_{s} t\right)$ such that $\sum_{s \in S} n_{s} h_{s}(\delta)-d_{n}-\Sigma_{s \in S} n_{s} h_{s}\left(\tau_{n}\right)=c_{n}^{*} \bmod p(\delta, n)$.

So we are left with:
Proof of Fact G. Let $T=T(g, \bar{\alpha}, \bar{u})$. It is easy to see that

FACT H. If $\bar{q}^{0}=\left\langle q_{1}^{0}: t \in T\right\rangle$ is a $(g, \bar{\alpha}, \bar{u})$-tree, $t_{0} \in T, q_{t_{0}}^{0} \leqq q_{t_{0}}^{\prime} \in P_{i}$, then we can find $q_{1}^{\prime}\left(t \in T-\left\{t_{0}\right\}\right)$ such that $q_{1} \leqq q_{1}^{\prime}$ and $\left\langle q_{1}^{\prime}: t \in T\right\rangle$ is a $(g, \bar{\alpha}, \bar{u})$-tree.

Now the following fact is crucial.

Fact I. One of the following cases holds:
(a) there are $c(l) \quad(l=0,1,2)$ in \mathbf{Z} such that $c(1) \neq c(2)$ and $\langle c(0), c(1), c(0), c(2)\rangle \in \operatorname{Pos}_{\bar{\alpha}}\left(q_{*}\right)$,
(b) there are $c(l)(l=0,1,2,3,4,5)$ such that $\langle c(l): l<6\rangle \in \operatorname{Pos}_{\bar{\alpha}}\left(q_{*}\right)$, but $c(2 l) \mapsto c(2 l+1)$ is not a linear function, i.e., there are no rational numbers d_{1}, d_{2} such that $c(2 l+1)=d_{1} c(2 l)+d_{2}$,
(c) there are $c(l)(l<8)$ such that $\langle c(l): l<4\rangle \in \operatorname{Pos}_{\tilde{\alpha}}\left(q_{*}\right)\langle c(l): 4 \leqq l<8\rangle$ $\in \operatorname{Pos}_{\dot{\sigma}}\left(q_{*}\right)$ but $(c(3)-c(1)) /(c(2)-c(0)) \neq(c(7)-c(5)) /(c(6)-c(4))$ (both well defined).

Proof of Fact I. Let $\gamma=\alpha_{n_{0}-1}$ and ${\underset{\sim}{\gamma}}_{\gamma}$ be the P_{γ}-name of $\bigcup\{q(\gamma): q$ is in the generic set\}. So if (a) fails, then for some P_{γ}-name $\underset{\sim}{F}$

$$
q_{*} \mathbb{H}^{P}, " \underset{\sim}{h}(\zeta)=\underset{\sim}{\boldsymbol{F}}\left(\zeta, \underline{h_{\gamma}}(\zeta)\right) \text {)" for every successor } \zeta \geqq \gamma^{*}, \quad \zeta<\omega_{1}
$$

(so $\underset{\sim}{F}$ is a function from $\omega_{1} \times \mathbf{Z}$ to \mathbf{Z}). If also (b) fails then there are P_{γ}-names ${\underset{\sim}{d}}_{1}$, ${\underset{\sim}{d}}_{2}$ (of functions from ω_{1} to \mathbf{Z}) such that

$$
\left(q_{*} \mid \gamma\right) \Vdash^{P_{i}} " \underset{\sim}{F}(\zeta, c)={\underset{\sim}{d}}_{1}(\zeta) c+{\underset{2}{d}}_{2}(\zeta) \text { for every successor } \zeta<\omega_{1}, \zeta \geqq \gamma^{* "}
$$

If also (c) fails then $d_{1}(\zeta)=d_{1} \in \mathbf{Z}$ for some d_{1}.
So suppose (a), (b) and (c) fail, and let $G_{i} \subseteq P_{i}$ be generic, $q_{*} \in G_{i}$. Then in $V\left[G_{i}\right], f_{\gamma} \approx \hat{h}_{r}, f_{i} \approx \hat{h}$. Let $h^{*}=h-d_{1} h_{\gamma}$, then $f_{t}-d_{1} f_{\gamma} \approx \hat{h}^{*}$. Now $f_{v}, f_{\gamma} \in V\left[G_{\gamma}\right]$ (where $G_{\gamma}=G_{i} \cap P_{\gamma}$) so if we prove $h^{*} \in V\left[G_{\gamma}\right]$ we shall get a contradiction (to the requirement on ${\underset{\sim}{\gamma}}_{\gamma}$ in the definition of our iterated forcing). Now for $\zeta \geqq \gamma^{*}$ successor, $\boldsymbol{h}^{*}(\zeta)=\tilde{d}_{2}(\zeta)$, and the function d_{2} belongs to $V\left[G_{\gamma}\right]$. So $h^{*} \mid\{\zeta+$ $\left.1: \zeta \geqq \gamma^{*}\right\} \in V\left[G_{\gamma}\right]$. Also all our forcings do not add reals, hence $h^{*} \upharpoonright \gamma^{*} \in$ $V\left[G_{\gamma}\right]$. So $h^{*} \upharpoonright\left\{\zeta<\omega_{1}: \zeta\right.$ non limit $\} \in V\left[G_{\gamma}\right]$, but we can construct $h^{*} \upharpoonright\{\delta<$ $\omega_{1}: \delta$ limit $\}$ from $f_{t}, f_{r}, h^{*} \uparrow\left\{\zeta<\omega_{1}: \zeta\right.$ non limit $\}$, by the equations

$$
f_{t}(\delta, n)-d_{1} f_{\nu}(\delta, n)=h^{*}(\delta)-\sum_{\zeta \in a(\delta, n)} h^{*}(\zeta) \bmod \mathrm{p}(\delta, n)
$$

as all elements of $a(\delta, n)$ are successor ordinals. So we finish the proof of Fact I.
Continuation of the Proof of Fact G. Now we choose a prime natural number $\mathbf{p}_{n_{0}}>\mathbf{p}_{n_{0}-1}$ such that $c(2)-c(1) \neq 0 \bmod p_{n_{0}}$ if (a) holds and $(c(3)-c(1)) /(c(2)-c(0)) \neq(c(5)-c(1)) /(c(4)-c(0)) \bmod \mathrm{p}_{n_{0}}($ so $c(2)-c(0) \neq 0$ $\left.\bmod \mathbf{p}_{n_{n}}\right)$ if (b) holds, and $(c(3)-c(1)) /(c(2)-c(0)) \neq(c(7)-c(5)) /(c(6)-c(4))$ $\bmod p_{n_{0}}$ if (c) holds (and so that divisions are not by zero).

So now $T^{1}=T\left(g, \bar{\alpha}, \bar{u}^{\wedge}\left\langle\left\langle a_{n_{0}}, p_{n_{s}}\right\rangle\right\rangle\right)$ is defined, though $a_{n_{0}}$ is still not defined. Let for a finite set a of successor ordinals $<\omega_{1}$ but $>\operatorname{Max} a_{n \cdot-1}$ (a will be an initial segment of the a_{n}. we shall construct)

$$
R_{a}=\left\{\bar{r}: \bar{r}=\left\langle r_{t}: t \in T^{1}\right\rangle \quad \text { a } \quad\left(\bar{g}, \bar{\alpha}, \bar{u}^{\wedge}\left\langle\left\langle a, p_{n}\right\rangle\right\rangle\right)\right. \text {-tree }
$$

and $t_{0} \in T, t \in T^{1}, t_{0} \subseteq t$ implies $q_{t_{0}} \subseteq r_{t}$ and r_{t} determine $\underset{\sim}{h}(\zeta)$ for each $\left.\zeta \in a\right\}$.
It is easy to check that $R_{a} \neq \varnothing$, and that as T^{1} is finite it suffices to prove (for proving Fact G, thus finishing the poof)

FACT J. If $\vec{r}^{0} \in R_{a}, t_{1} \in T^{1}$, then we can find $a_{1}, a \subseteq a_{1}, \quad \operatorname{Max} a<$ $\operatorname{Min}\left(a_{1}-a\right)$, or $a_{1}-a=\varnothing$ and $\bar{r}^{\prime} \in R_{a_{1}}$ such that:
(1) for every $t \in T^{1}, r_{i}^{0} \leqq r_{t}^{1}$,
(2) $r_{t_{1}}^{\prime} \|^{P_{1}}{ }^{\prime} \Sigma_{\zeta \in a}, h(\zeta) \neq 0 \bmod p_{n_{2}}$ ",
(3) for $t \in T^{1}, t \neq t_{1} r_{1}^{1} \mathbb{H}^{\prime} \Sigma_{\zeta \in a_{1}-a} \underline{\sim}(\zeta)=0 \bmod p_{n_{*}}$ ".

Proof of Fact J. If $r_{i_{1}}^{0}+{ }^{\prime}$ " $\Sigma_{\zeta \in a} \underset{\sim}{h}(\zeta) \neq 0 \bmod p_{m_{2}}$ " we can let $a_{1}=a$. So assume this fails.

On R_{a} there is a natural order $\bar{r}^{2} \leqq \bar{r}^{3}$ iff $r_{t}^{2} \leqq r_{t}^{3}$ for every $t \in T^{1}$. As in Fact C it is easy to show that above every $\bar{r} \in R_{a}$ there is some \bar{r}^{\prime} of height α for some α (i.e., each $r_{1}^{\prime}\left(t \in T^{1}\right)$ has height α). Now we can define

$$
\begin{aligned}
\operatorname{Pos}^{a}(\bar{r})= & \left\{\left\langle c_{i}^{t}: t \in T^{1}, l \leqq l(\bar{\alpha})\right\rangle: \text { for every } \zeta_{0}<\omega_{1} \text { for some successor } \zeta,\right. \\
& \zeta_{n}<\zeta<\omega_{1} \text { there is } \bar{r}^{\prime} \in R_{a}, \bar{r} \leqq r^{1} \text { and } r_{i}^{1}\left(\alpha_{t}\right)(\zeta)=c_{l}^{t} \\
& \text { for } \left.l<l(\bar{\alpha}) \text { and } r_{t}^{1} \|^{\prime} \text { "h(} \zeta \text {) }=c_{\{\bar{\alpha})}^{t} "\right\} .
\end{aligned}
$$

As in the proof of Fact E, w.l.o.g. our \bar{r}^{0} is such that $\operatorname{Pos}^{a}\left(\bar{r}^{0}\right)=\operatorname{Pos}^{a}(\bar{r})$ for any $\bar{r}, \tilde{r}^{0} \leqq \bar{r} \in R_{a}$. Now we should consult Fact I, i.e., which of the three possibilities there holds. Note that we shall add many times ($\mathbf{p}_{n_{0}}-1$) instead of subtracting.

First assume that (a) holds and $c(l)(l<3)$ exemplifies it. By Fact H, there are $\left\langle c_{i}^{\prime}: t \in T^{1}, l \leqq l(\bar{\alpha})\right\rangle,\left\langle d_{i}^{\prime}: t \in T^{1}, l \leqq l(\bar{\alpha})\right\rangle$ in $\operatorname{Pos}^{a}(\vec{r})$ such that $c_{i}^{\prime}=d_{l}^{\prime}$ except for $t=t_{1}, l=l(\bar{\alpha})$, and $c_{l(\bar{\alpha})}^{\prime}=c(1), d_{l(\bar{\alpha})}^{\prime}=c(2)$; remember that in constructing a tree the interactions are only up to $\alpha_{n_{0}}-1$. So we can find $\zeta^{m}<\omega_{1,} \bar{r}^{m} \in R_{\alpha}$ by induction on $m \leqq \mathbf{p}_{n}$, such that:
(i) $\bar{r}^{m} \leqq \bar{r}^{m} \leqq r^{1}, \max (a)<\zeta^{m}<\zeta^{m+1}, \zeta^{m}$ a successor,
(ii) for every $t \in T^{1}$, and $l<l(\bar{\alpha})$ and $m>0$,

$$
r_{t}^{m+1}\left(\alpha_{l}\right)\left(\zeta^{m}\right)=c_{l}^{1}, \quad r_{i}^{1}\left(\alpha_{i}\right)\left(\zeta^{0}\right)=d_{l}^{\prime}
$$

(iii) for every $t \in T^{1}$

$$
r_{1}^{m+1} \mathbb{F}^{\prime} \underset{\sim}{h}\left(\zeta^{m}\right)=c_{l(\tilde{\alpha})}^{m} ", \quad r_{1}^{1} \mathbb{H} " \underset{\sim}{h}\left(\zeta^{1}\right)=d_{l(\hat{\alpha})}^{l} "
$$

So $\bar{r}^{\mathbf{p}},\left\{\zeta_{l}: l<\mathbf{p}\right\} \cup a$ (where $\mathbf{p}=\mathbf{p}_{n_{n}}$) are as required.
So we turn to case (b) and let $c(l)(l=0,1,2,3,4,5)$ exemplify this. We can find $k_{l}(l<3)$ such that $\Sigma_{l<3} k_{l} c(2 l)=0 \bmod p_{n} ; \Sigma_{l<3} k_{l}=0 \bmod p_{n_{m}}$ but $\Sigma_{i<3} k_{i} c(2 l+1) \neq 0 \bmod p_{n}$, w.l.o.g. $k_{i}>0$, let $k=\Sigma_{i<3} k_{i}$.

It is easy to see that we can find $\left\langle c_{i}^{i^{m}}: t \in T^{1}, l \leqq l(\bar{\alpha})\right\rangle \in R_{a}$, for $m=0,1,2$, such that $c_{i}^{t m}=c_{i}^{t 0}$ for $t \neq t_{1}$ or $l \leqq l(\bar{\alpha})-2$, and $c_{l(\alpha)-1}^{t_{1}, m}=c(2 m)$, $c_{l(\bar{\alpha})}^{t_{1}, m}=c(2 m+1)$.

Now we can define $\bar{r}^{\prime}, \zeta^{l}, m(l)(1 \leqq l \leqq k)$ by induction on l such that (\bar{r}^{0} is given) $\bar{r}^{\prime} \leqq \bar{r}^{l+1}, \operatorname{Max} a<\zeta^{1}, \quad \zeta^{\prime}<\zeta^{i+1}, \quad m(1)=\cdots=m\left(k_{0}\right)=0, \quad m\left(k_{0}+1\right)=$ $\cdots=m\left(k_{0}+k_{1}\right)=1, m\left(k_{0}+k_{1}+1\right)=\cdots=m\left(k_{0}+k_{1}+k_{2}\right)=2, \cdots, r_{i}^{l}\left(\alpha_{1}\right)\left(\zeta^{l}\right)$ $=c_{i}^{\prime m(l)}, r_{t}^{\prime} \mathbb{t}^{\prime} " \underset{\sim}{h}\left(\zeta^{l}\right)=c_{i}^{i m(l)}$, .

Clearly the last $\overline{\boldsymbol{r}}^{\prime}, \overline{\boldsymbol{r}}^{k}$ is the $\overline{\boldsymbol{r}}^{\prime}$ required in the Fact.
For the case (c) holds, the proof is similar.

References

1. L. Fuchs, Infinite Abelian Groups, Academic Press, 1970, 1972.
2. H. L. Hiller and S. Shelah, Singular cohomology in L, Israel J. Math. 26 (1977), 313-319.
3. H. L. Hiller, M. Huber and S. Shelah. The structure of $\operatorname{Ext}(G, Z)$ and $V=L$, Math. Z. 162 (1978), 39-50.
4. T. Jech, Set Theory, Academic Press, 1978.
5. R. K. Nunke, Whitehead Problem, Proc. Second New Mexico Abelian Group Symp. on Abelian Group Theory, Springer Verlag Lecture Notes 616, pp. 240-250.
6. S. Shelah, Infinite abelian groups. Whitehead problem and some constructions, Israel J. Math. 18 (1974), 243-256.
7. S. Shelah, Whitehead groups may not be free even assuming CH, Israel J. Math. 28 (1977), 193-203.
8. S. Shelah, On uncountable abelian groups, Israel J. Math. 32 (1979), 311-330.
9. S. Shelah, On well ordering and more on Whitehead problem, Notices Amer. Math. Soc. 26 (1979), A-442.
10. S. Shelah, Whitehead groups may not be free even assuming CH, II, Israel J. Math. 35 (1980), 257-285.

Institute of Mathematics
The Hebrew University of Jerusalem
Jerusalem, Israel

[^0]: ${ }^{\dagger}$ The author would like to thank the United States-Israel Binational Science Foundation for partially supporting this research by Grant No. 1110.

 Received February 12, 1980

