THE CONSISTENCY OF Ext(G, Z) = Q

BY

SAHARON SHELAH[†]

ABSTRACT

For abelian groups, if V = L, Ext(G, Z) cannot have cardinality \aleph_0 . We show that G.C.H. does not imply this. See Hiller and Shelah [2], Hiller, Huber and Shelah [3], Nunke [5] and Shelah [6, 7, 8] for related results. We use the method of [7].

THEOREM 1. Suppose the universe V satisfies G.C.H., and K is a divisible countable (abelian) group (i.e. $|K| \leq \aleph_0$). Then for some forcing notion P, in V^P for some abelian group G, $Ext(G, \mathbb{Z}) = K$.

COROLLARY 2. It is consistent that for some group G, $Ext(G, \mathbb{Z}) = \mathbb{Q}(\mathbb{Q} - the rationals as an additive group, \mathbb{Z} - the integers as an additive group).$

REMARK. (1) This answers questions from Hiller and Shelah [2], Huber, Hiller and Shelah [3] and Nunke [5]; remember that if V = L, $Ext(G, \mathbb{Z}) \neq \aleph_0$. The result was announced in [9].

(2) The group we get is \aleph_i -free and of power \aleph_i .

(3) Instead of "K countable", we can demand " $|K| \leq \aleph_2$ "; the proof will not change significantly. We can change |G| and |K|, but we have not checked carefully.

(4) It is well known that $Ext(G, \mathbb{Z})$ is divisible.

PROOF. Let K be the direct sum of K_p (**p** a prime natural number or zero), where K_0 is torsion free and for $\mathbf{p} \neq 0$ ($\forall x \in K_p$) ($\exists n$) $\mathbf{p}^n x = 0$. This is possible as K is divisible, and each K_p is divisible. Let $K_p^1 = \{x \in K_p : px = 0\}$, so K_p^1 is a vector space over \mathbf{Z}/\mathbf{pZ} . So let $B_p \subseteq K_p$ be a basis of K_p^1 (as a vector space over the rationals for $\mathbf{p} = 0$, and over \mathbf{Z}/\mathbf{pZ} otherwise). Let $B = \bigcup_p B_p$, so as K is countable, $|B| \leq \aleph_0$. Let $K_p^1 \subseteq K_p [K^1 \subseteq K]$ be the subgroup generated by $B_p[B]$ (for $\mathbf{p} > 0$ this is not new).

^{&#}x27;The author would like to thank the United States-Israel Binational Science Foundation for partially supporting this research by Grant No. 1110.

Received February 12, 1980

Choose S to be a stationary costationary set of limit ordinals $< \omega_1$. We shall define a group G of the following form: G is freely generated by x_i $(i < \omega_1)$ and $z_{\delta,n}$ ($\delta \in S$, $n < \omega$), with the only identities

$$\mathbf{p}(\delta, n) z_{\delta,n} = x_{\delta} - \tau_n^{\delta} \qquad \text{where} \ \tau_n^{\delta} = \sum_{\zeta \in a(\delta,n)} x_{\zeta}$$

where $\mathbf{p}(\delta, n)$ is a strictly increasing function of n (for each δ separable); for $\delta \in S$, η_{δ} is an increasing ω -sequence of successor ordinals converging to δ , $a(\delta, n) = \{n_{\delta}(l): l \leq k_{\delta}(n), l > k_{\delta}(m) \text{ for every } m < n\}.$

NOTATION. If h is a function from ω_1 to Z, $\tau = \sum_{i=0}^n c_i x_{l(i)}$ ($c_i \in \mathbb{Z}$) then $h(\tau) = \sum c_i h(l(i))$. We let **p** be a prime number.

FACT A. Ext(G, Z) is isomorphic to E_0/E_1 , where E_0 is the set of functions from $S \times \omega$ into Z, addition is defined coordinatewise; E_1 is the subgroup of $f \in E_0$ such that for some $h: \omega_1 \to \mathbb{Z}$, $f \approx \hat{h}$, i.e., $f(\delta, n) = \hat{h}(\delta, n) \mod p(\delta, n)$ (for every $(\delta, n) \in S \times \omega$), where \hat{h} is defined by $\hat{h}(\delta, n) = h(\delta) - h(\tau_n^{\delta})$.

PROOF OF FACT A. Like that of [10] 3.3.

Now we shall define the group G by defining the $a(\delta, n)$ and an embedding of B into E_0/E_1 ; we do it by forcing, to simplify the proof.

An element q of $P_1 = Q_0$ is a triple:

$$a(\delta)^{q} = \langle \langle a(\delta, n)^{q}, \mathbf{p}(\delta, n)^{q} \rangle : n < \omega \rangle \quad \text{for} \quad \delta \in S, \quad \delta < \delta_{0},$$
$$f_{s}^{q} \ (s \in B), \qquad h_{s}^{q} \ (s \in B - B_{0}),$$

such that the $\langle a(\delta, n) : n < \omega \rangle$ are as mentioned above: $a(\delta, n)$ is a non-empty finite subset of δ , max $a(\delta, n) < \min a(\delta, n+1)$, $\delta = \sup\{\min a(\delta, n) : n < \omega\}$, f_s^s is a function from $(S \cap \delta_0) \times \omega$ into Z, and for $s \in B_p$, $p \neq 0$, $pf_s \approx \hat{h}_s$ (where $(pf_s)(i) = p(f_s(i))$) and $h_s : \delta_0 \rightarrow \mathbb{Z}$.

Also $\mathbf{p}(\delta, n)$ is a prime natural number, $\mathbf{p}(\delta, n) < \mathbf{p}(\delta, n+1)$. The order is natural.

Clearly there is a P_0 -name \underline{G} defined by $\underline{a}(\delta, n)$, $\underline{p}(\delta, n)$ and \underline{f}_s ($s \in B$), and let $f_t = \sum f_{s_t}$ where $t = \sum s_i$, $s_i \in B$ (i.e. $t \in K^1$). Clearly $f_t \in E_0$.

Clearly in V^{Q_0} , $Ext(\underline{G}, \mathbf{Z})$ is too big. So we define an iterated forcing P_i $(i \leq \omega_2)$, with countable support, $P_{i+1} = P_i * Q_i$ such that for each i > 0, Q_i "kills" an undesirable member of $Ext(\underline{G}, \mathbf{Z})$. More elaborately, for each i, f_i is a P_i -name of a member of E_0 , such that for some $\mathbf{p}(i)$ either $\mathbf{p}(i) = 0$, and $\phi \Vdash^{P_i} (\forall n > 0) (\forall t \in K^1) (nf_i - f_i \notin E_1)$ ", or $\mathbf{p} = \mathbf{p}(i)$ is prime > 0 and

$$\phi \Vdash^{P_i} ``\mathbf{p} f_i \in E_0 \land (\forall n) (\forall t \in K_p^1) (0 < n < \mathbf{p}) \rightarrow [nf_i - f_i \notin E_0]''$$

Now in V^{P_i} , $Q_i = \{h : \text{ for some } \alpha, h : \alpha \to \mathbb{Z}, \text{ and for every } \delta \leq \alpha, \delta \in S, f_i(\delta, n) = h(\delta) - h(\tau_n^{\delta}) \mod p(\delta, n) \text{ (if } \delta = \alpha \text{ this means there is such } h(\delta))\}$. The order: inclusion.

FACT B. (1) (in V^{P_i}) If $h \in Q_i$, Dom $h = \alpha$, $\alpha \leq \beta$, then there is h^* , $h \leq h^* \in Q_i$, Dom $h^* = \beta$. Moreover if h' is a finite function from $[\alpha, \beta)$ to Z we can demand $h' \subseteq h^*$, except when $\alpha \in S \cap \text{Dom } h'$.

(2) (in V^{P_i}) $\phi \Vdash^{Q_i} "f_i \in E_1$ ".

PROOF. (1) By induction on β . For $\beta \notin S$, totally trivial; for $\beta \in S$, we first define $h^* \upharpoonright \{\eta_\beta(n) : n < \omega, \alpha \leq \eta_\beta(n)\}$ appropriately, and then define $h^* \upharpoonright \eta_\beta(n)$ by induction on n.

(2) Follows from (1).

So $P_i = \{p : \text{Dom } p \text{ is a countable subset of } i, p(j) \text{ a } P_j \text{-name of a member of } Q_j \text{ for } j \in \text{Dom } p, \text{ i.e., } \phi \Vdash^{P_j} ``p(j) \in Q_j ``\}.$ (We shall write $p(i)(\xi) = c$ for $p \upharpoonright i \Vdash^{P_i} ``p(i)(\xi) = c ``.)$ The order is $p_1 \leq p_2$ if $i \in \text{Dom } p_1$ implies $p_2 \upharpoonright i \Vdash^{P_i} ``p_1(i) \leq p_2(i)$ ''. As in [7]:

FACT C. (1) For every $p \in P_i$ there is $p' \in P_i$, $p \leq p'$, and for some δ , $\forall \alpha \in \text{Dom } p$, $\text{Dom } p'_i(\alpha) = \delta$ and $p'(\alpha) \in V$. Such p' is called of height δ .

(2) If p_n has height α_n , $p_n \leq p_{n+1}$, $\alpha_n < \alpha_{n+1}$, $\bigcup_{n < \omega} \alpha_n = \delta \not\in S$ then $\bigcup_{n < \omega} p_n \in P$.

(3) P_{ω_2} satisfies the \aleph_2 -c.c. and does not add new ω -sequences. By suitable bookkeeping we can assume every P_{ω_2} -name f of a function as above is f for some *i*.

(4) If in the forcing by P_{ω_2} , it is forced that, for every t and p, " $t \in K_p^1 \Rightarrow f_t \notin E_1$ " then $\text{Ext}(G, \mathbb{Z}) \simeq K$ (note that E_1 depends on the universe we are dealing with).

PROOF. As in [7], (1), (2), (3) hold. Let us prove (4). Remember that by Fact A, $Ext(\tilde{G}, \mathbb{Z}) \simeq E_0/E_1$. As, e.g., by Fuchs [1], E_0/E_1 is a divisible group; it is enough to check that:

(a) $t \in K^1$, $t \neq 0$ implies $f_t \notin E_1$,

(b) for $f \in E_0 - E_1$, for some n > 0, and $t \in K^1$, $nf \notin E_1$, and $nf - f_i \in E_1$.

Now (a) follows immediately by the hypothesis whereas (b) follows by Fact C3 (and the definition of Q_t).

Sh:125

So the rest of the proof is dedicated to the proof that the hypothesis of Fact C4 holds. So suppose $t_* \in K_{P^*}^1$, $t_* \neq 0$, h_* a P_{ω_2} -name, $q_* \in P_{\omega_2}$,

(*)
$$q_* \Vdash^{P_{w_2}} f_{i_*} \approx \hat{h}''.$$

As P_{ω_2} satisfies the \aleph_2 -chain condition, we can replace P_{ω_2} by P_i , $(i < \omega_2)$ and choose a minimal such *i* (i.e., *i* minimal such that there are a P_i -name \underline{h} and $q_* \in P_i$, so that $q_* \Vdash^{P_i} (f_i \approx \underline{h})$. Those *i*, t_* , p_* , q_* , \underline{h} are fixed for the rest of the proof.

Before we prove we note some easy facts on the forcings.

FACT D. (1) If $\alpha < \beta$, $p \in P_{\alpha}$, $q \in P_{\beta}$, $(q \mid \alpha) \leq p$, then $r = p \lor q$ is their least upper bound (where Dom $r = \text{Dom } p \cup \text{Dom } q$, r(j) is p(j) for $j \in \text{Dom } p$ and q(j) for $j \in \text{Dom } q - \text{Dom } p$).

(2) If $p \in P_{\alpha}$, $\alpha_0 < \cdots < \alpha_{n-1} < \alpha$, h_l a finite function from ω_1 to Z for l < n such that $p \upharpoonright \alpha_l \Vdash^{P_{\alpha_l}}$ "Dom $(p(\alpha_l)) < \min \text{Dom } h_l$ " then there is $q, p \leq q \in P_{\alpha}$, such that for l < n, $q \upharpoonright \alpha_l \Vdash^{P_{\alpha_l}} h_l \subseteq q(\alpha_l)$ ".

PROOF. (1) See [7]; easy to check.

(2) Prove by induction on α_{n-1} , using Fact B1.

FACT E. If $q \in P_i$, $\alpha_0 < \cdots < \alpha_{n-1} < i$, $\bar{\alpha} = \langle \alpha_0, \cdots, \alpha_{n-1} \rangle$ then for some q', $q \leq q' \in P_i$, q' has height and for every q'', $q' \leq q'' \in P_i$, $\operatorname{Pos}_{\bar{\alpha}}(q') = \operatorname{Pos}_{\bar{\alpha}}(q'')$ where $\operatorname{Pos}_{\bar{\alpha}}(q^0) = \{\langle c^0, \cdots, c^{2m-1} \rangle$: for every $\zeta_0 < \omega_1$ for some successor ζ , $\zeta_0 < \zeta < \omega_1$ and $r_0, \cdots, r_{m-1} \in P_i$, $q^0 \leq r_0, \cdots, q^0 \leq r_{m-1}$, $r_0 \upharpoonright \alpha_{n-1} = r_1 \upharpoonright \alpha_{n-1} = \cdots = r_{m-1} \upharpoonright \alpha_{n-1}$, and $r_l(\alpha_{n-1})(\zeta) = c^{2l}$ (for l < m) and $r_l \Vdash^{P_l} ``h_l(\zeta) = c^{2l+1:n}$ for l < m}. Note that $\alpha_0, \cdots, \alpha_{n-2}$ were not used, so $\operatorname{Pos}_{\bar{\alpha}}(q^0)$ depend only on q, α_{n-1} , and $\operatorname{Pos}_{\bar{\alpha}}(q^0)$ decrease when α_{n-1}, q^0 increase.

PROOF. Easy by Fact C2. So w.l.o.g.

Assumption E1. (1) Either (α) or (β) where

(α) *i* is a successor (ordinal) or of cofinality \aleph_0 , and for arbitrarily large $\alpha < i$, Pos_(α)(q_*) = Pos_(α)(q') for $q' \in P_i$, $q' \ge q_*$;

(β) *i* has cofinality \aleph_1 , and there is $\alpha_* < i$ such that $\operatorname{Pos}_{(\alpha_*)}(q_*) = \operatorname{Pos}_{(\alpha)}(q')$ whenever $\alpha_* \leq \alpha < i$, $q_* \leq q' \in q_*$.

(2) Also q_* has height γ^* .

S. SHELAH

NOTATION. An $\bar{\alpha}$ whose last element is among the α 's in (α) if (α) holds and is $\geq \alpha_*$ if (β) holds, is called good.

DEFINITION F. We call a *candidate* a sequence $\bar{u} = \langle \langle a_n, \mathbf{p}_n \rangle : n < n_* \rangle$ such that a_n is a finite non-empty subset of successor ordinals $\langle \omega_1, \max a_m \rangle$ min a_{m+1} for $m < n_*$, \mathbf{p}_m prime (so $\bar{u}^i = \langle \langle a_n^i, \mathbf{p}_n^i \rangle : n < n_*^i \rangle$ etc.).

For a good $\bar{\alpha} = \langle \alpha_0, \dots, \alpha_{m-1} \rangle$, $0 \leq \alpha_0 < \dots < \alpha_{m-1} < i$, $\alpha_0 = 0 \Rightarrow \mathbf{p}_* \neq 0$, and $g, g: \text{Range } \bar{\alpha} \rightarrow \omega$ let

$$T(g, \bar{\alpha}, \bar{u}) = \{t : t \text{ a function from } \{\langle \alpha_l, k \rangle : l < m, g(\alpha_l) \leq k < n_*\}, \\ t(\alpha_l, k) \in \{c \in \mathbb{Z} : 0 \leq c < p_k\}\}.$$

We call $\bar{q} = \{q_i : i \in T\}$ an $(g, \bar{\alpha}, \bar{u})$ -tree, if $T = T(g, \bar{\alpha}, \bar{u}), q_* \leq q_i$ $(n_* - \text{from } \bar{u})$ and if $t \in T$, $l < l(\bar{\alpha}), g(\alpha_l) \leq k < n_*$ then

- (a) $t(\alpha_l, k) = q_l(\alpha_l)(\tau_k) \mod \mathbf{p}_k$ where $\tau_k = \sum_{\zeta \in a_k} x_{\zeta}$ and $\alpha_l > 0$,
- (b) if $t_1 \upharpoonright (\alpha_l \times \omega) = t_2 \upharpoonright (\alpha_l \times \omega)$ then $q_{t_1} \upharpoonright \alpha_l = q_{t_2} \upharpoonright \alpha_l$,
- (c) if $\alpha_0 = 0$, then

$$t(\alpha_0, k) = \sum_{s \in S} n_s h_s^{q_t}(\tau_k) \mod \mathbf{p}_k \quad \text{where } t_* = \sum_{s \in S} n_s t_s \quad (t_s \text{ is from } B_{\mathbf{p}_*}).$$

FACT G. Suppose $g, \bar{\alpha}, \bar{u}, \bar{q}$ are as in Definition F. Then we can find a_n, p_n, c_*, \bar{q}^1 such that (it seems $c_* = 0$ always)

- (a) \bar{q}^1 is a $(q, \bar{\alpha}, \bar{u}^1)$ -tree,
- (b) $\bar{u}^{1} = \bar{u}^{\wedge} \langle a_{n_{\star}}, \mathbf{p}_{n_{\star}} \rangle$,
- (c) if $t_1 \in T(g, \bar{\alpha}, \bar{u}^1)$, $t \in T(g, \bar{\alpha}, \bar{u})$ and $t \subseteq t_1$ then $q_t \leq q_{t_1}^1$.
- (d) for every $t_1 \in T(g, \bar{\alpha}, \bar{u}^1)$, $q_{t_1} \Vdash \overset{\circ}{t_n}(\tau_{n_n}) \neq c_* \mod \mathbf{p}_{n_n}$.

We delay the proof of Fact G, but first we prove from it the desired contradiction.

Let $\underline{h}, q_* \in N < (H(\aleph_2), \in, P, \Vdash)$, N countable, $\delta^* = N \cap \omega_1 \in S$. We define by induction on $n, g^n, \bar{\alpha}^n, \bar{u}^n, \bar{q}^n$ such that

- (a) \bar{q}^n is a $(g^n, \bar{\alpha}^n, \bar{u}^n)$ -tree,
- (b) g^n , $\bar{\alpha}^n$, $\bar{u}^n \in N$, $\bar{\alpha}^n$ good,
- (c) $q_* \leq q_t^0$ for every $t \in T(\tilde{g}^0, \tilde{\alpha}^0, \tilde{u}^0)$,
- (d) $g^n \subseteq g^{n+1}$, Range $\bar{\alpha}^n \subseteq$ Range $\bar{\alpha}^{n+1}$, $\bar{u}^{n+1} \upharpoonright n = \bar{u}^n$, \bar{u}^n has length n,
- (e) if $t \in T(\bar{g}^n, \bar{\alpha}^n, \bar{u}^n)$, $t_1^* \in (\bar{g}^{n+1}, \bar{\alpha}^{n+1}, \bar{u}^{n+1})$, $t \subseteq t_1^*$ then $q_t^n \subseteq q_{t_1}^{n+1}$,

(f) $\delta^* = \bigcup_{n < \omega} \delta_n$, $\delta_n < \delta_{n+1} < \delta^*$ and $t \in T(g^{n+1}, \bar{\alpha}^{n+1}, \bar{u}^{n+1})$ implies q_i^{n+1} is bigger than some condition of height β_i^n , $\delta_n \leq \beta_i^n$ and every $\zeta \in N \cap i$ belongs to

 $\bigcup_{n < \omega} \operatorname{Range} \bar{\alpha}^n$ except 0 when $\mathbf{p}_* = 0$,

78

(g) for every $n < \omega$ for some c_*^n , $c_*^n \in \mathbb{Z}$, $0 \le c_*^n < \mathbf{p}_n^{n+1}$, and for every $t \in T(\bar{g}^{n+1}, \bar{\alpha}^{n+1}, \bar{u}^{n+1}), q_i^{n+1} \Vdash^{P_i} (\underline{h}(\tau_n) \ne c_*^n \mod \mathbf{p}_n^{n+1})$.

The definition is possible by Fact G (plus a trivial work). We concentrate on the case $\mathbf{p}_* = 0$.

Clearly there are $q^n \in Q_0$ such that for every $t \in T(\bar{g}^n, \bar{\alpha}^n, \bar{u}^n)$, $q_i^n(0) = q^n$. Now clearly $q^{\omega} = \bigcup q^n \in Q_0$; and as in [7] 1.7, 1.8, for every $q', q^{\omega} \leq q' \in P_0$, if $q' \Vdash ``a(\delta^*, n) = a_n^{n+1}$, $\mathbf{p}(\delta^*, n) = p_n^{n+1}$ for $n < \omega$ '' there is $r, q' \leq r \in P_i$, $q_* \leq r$, and for every n for some $t \in T(\bar{g}^n, \bar{\alpha}^n, \bar{u}^n)$, $q_i^n \leq r$.

So r forces that

(i) for every n, $h(\tau_n) \neq c_*^n \mod \mathbf{p}_n^{n+1}$,

(ii) suppose $t_* = \sum_s n_s t_s$ ($t_s \in B_{p_*}$) then as $q_* \Vdash "f_{t_*} \approx h$, $q_* \leq r$, clearly $\sum_s r_s f_{t_*}(\delta^*, n) = h(\delta^*) - h(\tau_n) \mod \mathbf{p}_n^{n+1}$.

Notice that when choosing q' we have total freedom to choose the $f_{i_m}(\delta^*, n) \in \mathbb{Z}$. Z. So for each $c \in \mathbb{Z}$, for some n we can contradict the possibility $\underline{h}(\delta^*) = c$. There is no problem to complete the definition of $f_t(\delta^*, n)$ $(t \in B)$, $h_t(\delta, n)$ $(t \in \bigcup_{p \neq 0} B_p)$ to get q'.

For $\mathbf{p}_* \neq 0$, the problem is that $h_t \upharpoonright \bigcup_{l < \omega} a(\delta^*, l) = h_t \upharpoonright \operatorname{Range}(\eta_{\delta^*})$ in fact determine $f_t \upharpoonright \{(\delta^*, n) : n < \omega\}$, for $t \in B_{\mathbf{p}_*}$; however, the definition of the tree provides us with enough freedom for the choice of $h_{i_*}(\eta_{\delta}(l))$, i.e., we choose $h_s(\delta)$. Let us enumerate $\mathbf{Z} : \mathbf{Z} = \{d_n : n < \omega\}$ and choose $h_s(\tau_n)$ ($s \in S$) (where $t_* = \sum_{s \in S} n_s t$) such that $\sum_{s \in S} n_s h_s(\delta) - d_n - \sum_{s \in S} n_s h_s(\tau_n) = c_n^* \mod \mathbf{p}(\delta, n)$.

So we are left with:

PROOF OF FACT G. Let $T = T(g, \bar{\alpha}, \bar{u})$. It is easy to see that

FACT H. If $\bar{q}^0 = \langle q_t^0 : t \in T \rangle$ is a $(g, \bar{\alpha}, \bar{u})$ -tree, $t_0 \in T$, $q_{t_0}^0 \leq q_{t_0}' \in P_i$, then we can find q'_i $(t \in T - \{t_0\})$ such that $q_i \leq q'_i$ and $\langle q'_i : t \in T \rangle$ is a $(g, \bar{\alpha}, \bar{u})$ -tree.

Now the following fact is crucial.

FACT I. One of the following cases holds:

(a) there are c(l) (l = 0, 1, 2) in **Z** such that $c(1) \neq c(2)$ and $\langle c(0), c(1), c(0), c(2) \rangle \in Pos_{\tilde{\alpha}}(q_*)$,

(b) there are c(l) (l = 0, 1, 2, 3, 4, 5) such that $\langle c(l) : l < 6 \rangle \in Pos_{\tilde{\alpha}}(q_*)$, but $c(2l) \mapsto c(2l+1)$ is not a linear function, i.e., there are no rational numbers d_1, d_2 such that $c(2l+1) = d_1c(2l) + d_2$,

(c) there are c(l) (l < 8) such that $\langle c(l) : l < 4 \rangle \in \text{Pos}_{\tilde{a}}(q_*) \langle c(l) : 4 \le l < 8 \rangle \in \text{Pos}_{\tilde{\sigma}}(q_*)$ but $(c(3) - c(1))/(c(2) - c(0)) \ne (c(7) - c(5))/(c(6) - c(4))$ (both well defined).

S. SHELAH

PROOF OF FACT I. Let $\gamma = \alpha_{n,-1}$ and \underline{h}_{γ} be the P_{γ} -name of $\bigcup \{q(\gamma): q \text{ is in the generic set}\}$. So if (a) fails, then for some P_{γ} -name \underline{F}

$$q_* \Vdash^{P_1} (\zeta) = F(\zeta, h_{\gamma}(\zeta))$$
 for every successor $\zeta \ge \gamma^*, \zeta < \omega_1$

(so \underline{F} is a function from $\omega_1 \times \mathbb{Z}$ to \mathbb{Z}). If also (b) fails then there are P_{γ} -names \underline{d}_1 , \underline{d}_2 (of functions from ω_1 to \mathbb{Z}) such that

$$(q_* \upharpoonright \gamma) \Vdash^{P_i} :: \underline{F}(\zeta, c) = \underline{d}_1(\zeta)c + \underline{d}_2(\zeta)$$
 for every successor $\zeta < \omega_1, \zeta \ge \gamma^*:$.

If also (c) fails then $d_1(\zeta) = d_1 \in \mathbb{Z}$ for some d_1 .

So suppose (a), (b) and (c) fail, and let $G_i \subseteq P_i$ be generic, $q_* \in G_i$. Then in $V[G_i], f_\gamma \approx \hat{h}_\gamma, f_i \approx \hat{h}$. Let $h^* = h - d_1 h_\gamma$, then $f_i - d_1 f_\gamma \approx \hat{h}^*$. Now $f_i, f_\gamma \in V[G_\gamma]$ (where $G_\gamma = G_i \cap P_\gamma$) so if we prove $h^* \in V[G_\gamma]$ we shall get a contradiction (to the requirement on f_γ in the definition of our iterated forcing). Now for $\zeta \ge \gamma^*$ successor, $h^*(\zeta) = \tilde{d_2}(\zeta)$, and the function d_2 belongs to $V[G_\gamma]$. So $h^* \upharpoonright \{\zeta + 1: \zeta \ge \gamma^*\} \in V[G_\gamma]$. Also all our forcings do not add reals, hence $h^* \upharpoonright \gamma^* \in V[G_\gamma]$. So $h^* \upharpoonright \{\zeta < \omega_1: \zeta \text{ non limit}\} \in V[G_\gamma]$, but we can construct $h^* \upharpoonright \{\delta < \omega_1: \delta \text{ limit}\}$ from $f_i, f_\gamma, h^* \upharpoonright \{\zeta < \omega_1: \zeta \text{ non limit}\}$, by the equations

$$f_{\iota}(\delta, n) - d_{1}f_{\gamma}(\delta, n) = h^{*}(\delta) - \sum_{\zeta \in a(\delta, n)} h^{*}(\zeta) \mod \mathbf{p}(\delta, n)$$

as all elements of $a(\delta, n)$ are successor ordinals. So we finish the proof of Fact I.

CONTINUATION OF THE PROOF OF FACT G. Now we choose a prime natural number $\mathbf{p}_{n_*} > \mathbf{p}_{n_*-1}$ such that $c(2) - c(1) \neq 0 \mod \mathbf{p}_{n_*}$ if (a) holds and $(c(3) - c(1))/(c(2) - c(0)) \neq (c(5) - c(1))/(c(4) - c(0)) \mod \mathbf{p}_{n_*}$ (so $c(2) - c(0) \neq 0 \mod \mathbf{p}_{n_*}$) if (b) holds, and $(c(3) - c(1))/(c(2) - c(0)) \neq (c(7) - c(5))/(c(6) - c(4)) \mod \mathbf{p}_{n_*}$ if (c) holds (and so that divisions are not by zero).

So now $T^1 = T(g, \bar{\alpha}, \bar{u}^{\langle \langle}(a_{n_*}, p_{n_*}\rangle))$ is defined, though a_{n_*} is still not defined. Let for a finite set *a* of successor ordinals $\langle \omega_1$ but \rangle Max $a_{n,-1}$ (*a* will be an initial segment of the a_{n_*} we shall construct)

$$R_a = \{\bar{r} : \bar{r} = \langle r_t : t \in T^1 \rangle \text{ a } (\bar{g}, \bar{\alpha}, \bar{u}^{\wedge} \langle \langle a, p_n \rangle \rangle) \text{-tree}$$

and $t_0 \in T$, $t \in T^1$, $t_0 \subseteq t$ implies $q_0 \subseteq r_t$ and r_t determine $h(\zeta)$ for each $\zeta \in a$.

It is easy to check that $R_a \neq \emptyset$, and that as T^1 is finite it suffices to prove (for proving Fact G, thus finishing the poof)

FACT J. If $\bar{r}^0 \in R_a$, $t_1 \in T^1$, then we can find a_1 , $a \subseteq a_1$, Max $a < Min(a_1 - a)$, or $a_1 - a = \emptyset$ and $\bar{r}' \in R_{a_1}$ such that: (1) for every $t \in T^1$, $r_1^0 \le r_1^1$,

Sh:125

(2) $\mathbf{r}'_{i_1} \Vdash^{P_i} :: \Sigma_{\zeta \in a_1} h(\zeta) \neq 0 \mod \mathbf{p}_n$.

(3) for $t \in T^1$, $t \neq t_1$ $r_1^1 \Vdash \cdots \Sigma_{\zeta \in a_1 - a} \underset{\sim}{h}(\zeta) = 0 \mod \mathbf{p}_n$.

PROOF OF FACT J. If $r_{i_1}^0 \Vdash : : \Sigma_{\zeta \in a} h(\zeta) \neq 0 \mod \mathbf{p}_n$ we can let $a_1 = a$. So assume this fails.

On R_a there is a natural order $\bar{r}^2 \leq \bar{r}^3$ iff $r_t^2 \leq r_t^3$ for every $t \in T^1$. As in Fact C it is easy to show that above every $\bar{r} \in R_a$ there is some \bar{r}' of height α for some α (i.e., each r_t' ($t \in T^1$) has height α). Now we can define

Pos^{*a*}(
$$\bar{r}$$
) = { $\langle c_i^t : t \in T^1, l \leq l(\bar{\alpha}) \rangle$: for every $\zeta_0 < \omega_1$ for some successor ζ ,
 $\zeta_0 < \zeta < \omega_1$ there is $\bar{r}^1 \in R_a$, $\bar{r} \leq r^1$ and $r_i^1(\alpha_i)(\zeta) = c_i^1$
for $l < l(\bar{\alpha})$ and $r_i^1 \Vdash ``h_i(\zeta) = c_{h\bar{\alpha}}''$ }.

As in the proof of Fact E, w.l.o.g. our \bar{r}^0 is such that $\text{Pos}^a(\bar{r}^0) = \text{Pos}^a(\bar{r})$ for any $\bar{r}, \bar{r}^0 \leq \bar{r} \in R_a$. Now we should consult Fact I, i.e., which of the three possibilities there holds. Note that we shall add many times $(\mathbf{p}_n - 1)$ instead of subtracting.

First assume that (a) holds and c(l) (l < 3) exemplifies it. By Fact H, there are $\langle c_i^{\prime} : t \in T^1, l \leq l(\bar{\alpha}) \rangle$, $\langle d_i^{\prime} : t \in T^1, l \leq l(\bar{\alpha}) \rangle$ in Pos^{*a*}(\bar{r}) such that $c_i^{\prime} = d_i^{\prime}$ except for $t = t_1, l = l(\bar{\alpha})$, and $c_{l(\bar{\alpha})}^{\prime \prime} = c(1), d_{l(\bar{\alpha})}^{\prime \prime} = c(2)$; remember that in constructing a tree the interactions are only up to $\alpha_{n_i} - 1$. So we can find $\zeta^m < \omega_1, \bar{r}^m \in R_a$ by induction on $m \leq \mathbf{p}_{n_i}$ such that:

(i) $\bar{r}^m \leq \bar{r}^m \leq r^1$, max $(a) < \zeta^m < \zeta^{m+1}$, ζ^m a successor,

(ii) for every $t \in T^1$, and $l < l(\bar{\alpha})$ and m > 0,

 $r_{i}^{m+1}(\alpha_{i})(\zeta^{m}) = c_{i}^{i}, \qquad r_{i}^{1}(\alpha_{i})(\zeta^{0}) = d_{i}^{i},$

(iii) for every $t \in T^1$

$$\boldsymbol{r}_{\iota}^{m+1} \Vdash ``\check{h}(\zeta^{m}) = \boldsymbol{c}_{\iota(\tilde{\alpha})}^{m} ;, \qquad \boldsymbol{r}_{\iota}^{1} \Vdash ``\check{h}(\zeta^{1}) = \boldsymbol{d}_{\iota(\tilde{\alpha})}^{\iota} .$$

So $\bar{r}^{\mathbf{p}}$, $\{\zeta_l : l < \mathbf{p}\} \cup a$ (where $\mathbf{p} = \mathbf{p}_n$) are as required.

So we turn to case (b) and let c(l) (l = 0, 1, 2, 3, 4, 5) exemplify this. We can find k_l (l < 3) such that $\sum_{l < 3} k_l c(2l) = 0 \mod \mathbf{p}_n$; $\sum_{l < 3} k_l = 0 \mod \mathbf{p}_n$, but $\sum_{l < 3} k_l c(2l + 1) \neq 0 \mod \mathbf{p}_n$ w.l.o.g. $k_l > 0$, let $k = \sum_{l < 3} k_l$.

It is easy to see that we can find $\langle c_l^{i,m} : t \in T^1, l \leq l(\bar{\alpha}) \rangle \in R_a$, for m = 0, 1, 2, such that $c_l^{i,m} = c_l^{i,0}$ for $t \neq t_1$ or $l \leq l(\bar{\alpha}) - 2$, and $c_{l(\alpha)-1}^{i,m} = c(2m)$, $c_{l(\bar{\alpha})}^{i,m} = c(2m+1)$.

Now we can define \bar{r}^{l} , ζ^{l} , m(l) $(1 \le l \le k)$ by induction on l such that $(\bar{r}^{0}$ is given) $\bar{r}^{l} \le \bar{r}^{l+1}$, Max $a < \zeta^{1}$, $\zeta^{l} < \zeta^{l+1}$, $m(1) = \cdots = m(k_{0}) = 0$, $m(k_{0}+1) = \cdots = m(k_{0}+k_{1}) = 1$, $m(k_{0}+k_{1}+1) = \cdots = m(k_{0}+k_{1}+k_{2}) = 2, \cdots, r_{l}^{l}(\alpha_{l})(\zeta^{l}) = c_{l}^{l,m(l)}, r_{l}^{l} \Vdash (h(\zeta^{l})) = c_{l}^{l,m(l)}$.

Clearly the last \bar{r}^i , \bar{r}^k is the \bar{r}' required in the Fact. For the case (c) holds, the proof is similar. 82

References

1. L. Fuchs, Infinite Abelian Groups, Academic Press, 1970, 1972.

2. H. L. Hiller and S. Shelah, Singular cohomology in L, Israel J. Math. 26 (1977), 313-319.

3. H. L. Hiller, M. Huber and S. Shelah. The structure of $Ext(G, \mathbb{Z})$ and V = L, Math. Z. 162 (1978), 39-50.

4. T. Jech, Set Theory, Academic Press, 1978.

5. R. K. Nunke, *Whitehead Problem*, Proc. Second New Mexico Abelian Group Symp. on Abelian Group Theory, Springer Verlag Lecture Notes **616**, pp. 240–250.

6. S. Shelah, Infinite abelian groups. Whitehead problem and some constructions, Israel J. Math. 18 (1974), 243-256.

7. S. Shelah, Whitehead groups may not be free even assuming CH, Israel J. Math. 28 (1977), 193-203.

8. S. Shelah, On uncountable abelian groups, Israel J. Math. 32 (1979), 311-330.

9. S. Shelah, On well ordering and more on Whitehead problem, Notices Amer. Math. Soc. 26 (1979), A-442.

10. S. Shelah, Whitehead groups may not be free even assuming CH, II, Israel J. Math. 35 (1980), 257-285.

INSTITUTE OF MATHEMATICS

THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL