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Abstract

It is consistent (relative to ZFC) that each union of max{b, g} many families in the Baire spaceωω which are not finitely
dominating is not dominating. In particular, it is consistent that for each nonprincipal ultrafilterU , the cofinality of the reduced
ultrapowerωω /U is greater than max{b, g}. Themodel is constructed by oracle chain condition forcing, to which we give a self-
contained introduction.
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1. Introduction

The undefined terminology used in this paper is as in [9,2]. A family Y ⊆ ωω is finitely dominatingif for each
g ∈ ωω there existk and f1, . . . , fk ∈ Y suchthat g(n) ≤ max{ f1(n), . . . , fk(n)} for all but finitely manyn. The
additivity numberfor classesY ⊆ Z ⊆ P(ωω) with

⋃
Y �∈ Z is

add(Y,Z) = min
{
|F| : F ⊆ Y and

⋃
F �∈ Z

}
.

Let D (respectively,Dfin) be the collection of all subsets ofωω which are not dominating (respectively, finitely
dominating). Define

cov(Dfin) = min
{
|F| : F ⊆ Dfin and

⋃
F = ωω

}
.

It is easy to see thatadd(Dfin,D) = cov(Dfin), so we will use this shorter notation.
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In [8] it is pointed out that

max{b, g} ≤ cov(Dfin),

the inequalityb ≤ cov(Dfin) being immediate from the definitions, and the inequalityg ≤ cov(Dfin) having been
implicitly proved in [5, Theorem 2.2]. (For the reader’s convenience, we give a short proof for this inCorollary 2.3.)
In [8] it is shown thatin all “standard” forcing extensions (e.g., those appearing in [2, Section 11]), equality holds. It
is conjectured in [8] that this equality is not provable. We prove this conjecture. In fact, we prove a stronger result:
Let M denote the ideal of meager sets of real numbers.

Theorem 1.1. It is consistent (relative to ZFC) thatℵ1 = non(M) = g < cov(Dfin) = cov(M) = c = ℵ2.

The statement ofTheorem 1.1determines the values of almost all standard cardinal characteristics of the continuum
in the model witnessing it: IfN is the ideal of null sets of real numbers, then by provable inequalities (see [9,2]),
we have thatp, t, h,add(N ),add(M), b, s, cov(N ), andnon(M) are all equal toℵ1, andcov(M),non(N ), r, d,
u, i, cof(M), andcof(N ) are all equal toℵ2 in this model.

In [8] i t is shown that for each nonprincipal ultrafilterU onω, cov(Dfin) ≤ cof(ωω/U).
Corollary 1.2. It is consistent (relative to ZFC) that for each nonprincipal ultrafilterU on ω, max{b, g} <

cof(ωω/U).
This corollary partially extends the closely related Theorems 3.1 and 3.2 of [7], which are proved using the same
machinery: Oracle chain condition forcing.

2. Making cov(Dfin) and cov(M) large

Fromnow on, byultrafilter we always mean a nonprincipal ultrafilter onω. We will use the following convenient
characterization. For functionsf, g ∈ ωω and an ultrafilterU we write f ≤U g for {n : f (n) ≤ g(n)} ∈ U .

Lemma 2.1 ([8] ). For each cardinal numberκ , the following are equivalent:

(1) κ < cov(Dfin);
(2) For eachκ-sequence〈(Uα, gα) : α < κ〉 with eachUα an ultrafilter and each gα ∈ ωω there exists g∈ ωω such

that for eachα < κ , gα ≤Uα g.

We first show how this characterization easily implies an assertion made in the introduction.

Definition 2.2. For A ∈ [ω]ω, define the functionA+ ∈ ωω by A+(n) = min{k ∈ A : n < k} for all n.

Corollary 2.3 ([5] ). g ≤ cov(Dfin).

Proof. We useLemma 2.1. Assume thatκ < g, and(Uα, gα), α < κ , are given with eachUα an ultrafilter and each
gα ∈ ωω. We must show that there existsg ∈ ωω such that for eachα < κ , gα ≤Uα g. We will use the following
“morphism”.

Lemma 2.4. For each f ∈ ωω and each ultrafilterU ,

GU , f = {A ∈ [ω]ω : f ≤U A+}
is groupwise dense.

Proof. Clearly,GU , f is closed under taking almost subsets. Assume that{[an,an+1) : n ∈ ω} is an interval partition
of ω. By merging consecutive intervals we may assume that for eachn, and eachk ∈ [an,an+1), f (k) ≤ an+2.

SinceU is an ultrafilter, there exists� ∈ {0,1,2} suchthat

A� =
⋃
n

[a3n+�,a3n+�+1) ∈ U

Take A = A�+2 mod 3. For eachk ∈ A�, let n be such thatk ∈ [a3n+�,a3n+�+1). Then f (k) ≤ a3n+�+2 = A+(k).
ThusA ∈ GU , f . �
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Thus, we can takeA ∈ ⋂α<κ GUα,gα andg = A+. �

How are we going force a large value forcov(Dfin)? If cov(Dfin) = ℵ1, then byLemma 2.1this is witnessed by
a sequence〈(Uα, gα) : α < ℵ1〉. To refute a single such witness, we will use the following forcing notion, where
Aα ∈ Uα for eachα < ℵ1.

Definition 2.5. Fix an ordinalγ . Assume thatAα ∈ [ω]ω andgα ∈ ωω for α < γ . Define a forcing notion

Q = Q(Aα, gα : α < γ ) = {(n,h, F) : n ∈ ω,h ∈ nω, F ∈ [γ ]<ℵ0},
with (n1,h1, F1) ≤ (n2,h2, F2) if n1 ≤ n2, h2 � n1 = h1, F1 ⊆ F2, and(∀α ∈ F1

)(∀n ∈ [n1,n2) ∩ Aα
)

gα(n) ≤ h2(n).

Observe thatQ is σ -centered.Q is a restricted variant of the Hechler forcing. Advanced readers are recommended
to skip the proof of the following lemma, which is the same as for the Hechler forcing.

Lemma 2.6. Assume that Aα ∈ [ω]ω ∩ V and gα ∈ ωω ∩ V for eachα < γ . Then for Q = Q(Aα, gα : α < γ ),
VQ |= (∃g ∈ ωω

)(∀α < γ
)

Aα ⊆∗ {n : gα(n) ≤ g(n)}.
Proof. Assume thatG is aQ-generic filter overV . Let g = ⋃

π2[G], whereπ2 denotes the projection on the second
coordinate. Clearly,g is a partial function fromω to ω. By density arguments, we have thatg is as required. To see
this, consider first the sets

Dm = {(n,h, F) ∈ Q : m ≤ n}
for m ∈ ω. Each Dm is dense inQ: Assume that(n,h, F) ∈ Q. If m ≤ n then[n,m) = ∅; therefore (n,h, F) ≤
(n,h, F ∪ {α}) ∈ Dm. Otherwise, defineh′ : m → ω by h′(k) = h(k) for k < n, andh′(k) = max{ fβ(k) : β ∈ F}
for k ∈ [n,m). Then(m,h′, F) is a member ofDm,α extending (n,h, F). Thedensity of the setsDm implies that
dom(g) = ω. Moreover, for eachα < γ the set

Eα = {(n,h, F) ∈ Q : α ∈ F}
is dense inQ (for each condition(n,h, F), (n,h, F ∪ {α}) is a stronger condition which belongs toEα). Now fix
α < γ and choose an element(n0,h0, F0) ∈ G∩Eα . For eachn ∈ Aα\n0 choose an element(n1,h1, F1) ∈ G∩Dn+1,
and a common extension(n2,h2, F2) of (n0,h0, F0) and(n1,h1, F1). Asα ∈ F0 andn ∈ [n0,n2)∩ Aα, we have that
gα(n) ≤ g(n). Since this holds for eachn ≥ n0, we have thatAα ⊆∗ {n : gα(n) ≤ g(n)}. �

Consequently, doing an iteration of forcing notions with the above forcing used cofinally often, withγ = ℵ1 and an
appropriate book-keeping, will increasecov(Dfin). We will be moreprecise in the proof ofTheorem 2.9.

Observe that the setsAα played no special role and in fact we could takeAα = ω for eachα (in this case we obtain
adominating real). However, this freedom to chooseAα will play a crucial role in the following, where we would like
to make sure thatb (or non(M)) andg remain small while we increasecov(Dfin).

We now make some easy observations concerning our planned forcing. We will construct our model by a finite
support iteration〈Pα,Qα : α < ℵ2〉 of c.c.c. forcing notionsQα which add reals for cofinally manyα < ℵ2.
Consequently,VP satisfiesc ≥ ℵ2, whereP = Pℵ2 = ⋃

α<ℵ2
Pα . The modelV we begin with will satisfyV = L (in

fact,♦∗ℵ1
and♦ℵ2(S

2
1), with S2

1 = {α < ℵ2 : cf(α) = ℵ1}, are enough). Consequently,V satisfies|P| = ℵ2 = 2ℵ1.

SinceP satisfies the c.c.c., (nice)P-names for reals are countable and therefore there are at most|P|ℵ0 = 2ℵ1 = ℵ2
names for reals inP, soVP |= c = ℵ2.

Since we are using a finite support iteration, Cohen reals are introduced cofinally often along the iteration, and this
is well known to implycov(M) ≥ ℵ2 in the final model (briefly: Each meagerset in the final model is contained in
an Fσ , and thus Borel, meager set. Each Borel set is coded by a real, and every real appears at a stageα < ℵ2, so
Cohen reals added later will not belong to the Borel meager set which is the interpretation of this code, and since this
property is absolute, they will not belong to the interpretation in the final model. Sinceℵ2 is regular, the codes forℵ1
many Borel meager sets all appear at an intermediate stage, so their union does not contain Cohen reals added later).

Corollary 2.7. In the final model,cov(M) = c = ℵ2 holds.
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Now we show how to impose some more constraints on our iteration〈Pα,Qα : α < ℵ2〉 so that inVPℵ2 ,
cov(Dfin) = ℵ2. Our exposition follows closely the treatment of names given in [4].

Choice 2.8. We fix a♦ℵ2(S
2
1)-sequence〈Sδ : δ ∈ S2

1〉 in the ground model. The idea is that stationarily oftenSδ will
guess a function

f : (ℵ1 × ℵ2) ∪ ℵ1 → ([ℵ2]≤ℵ0)ℵ0. (1)

(So for eachδ < ℵ2 of cofinalityℵ1, Sδ : (ℵ1 × δ) ∪ ℵ1 → ([δ]≤ℵ0)ℵ0.)
We identify ℵ2 with the partial orderPℵ2 weare about to build. Then[ℵ2]≤ℵ0 contains all of the maximal antichains.

Thus([ℵ2]≤ℵ0)ℵ0 contains a name for each subset ofω (which corresponds to an element ofωω). Now any sequence

〈(Uα, gα) : α < ℵ1〉
in the extension has a ground model functionf : (ℵ1 × ℵ2) ∪ ℵ1 → ([ℵ2]≤ℵ0)ℵ0, such that f (α) is a name forgα
and f (α, ·) is a name for an enumeration of the elements ofUα .

For each f as in Eq. (1),

{δ ∈ S2
1 : Sδ = f � δ}

is stationary inℵ2. We will inductively define anℵ2-stage finite support iteration and an injection functionFδ : Pδ →
ℵ2 for δ < ℵ2 such that the range of eachFδ is an initial segment ofℵ2 which includesδ, and forε < δ < ℵ2,
Fε ⊆ Fδ .

For δ < ℵ2 we will denote by name(Sδ) the sequence ofℵ1 sets ofrealsUα and ofℵ1 realsgα of the form〈({⋃
n∈ω

{n} × F−1
δ (Sδ(α, ξ)(n)) : ξ < δ

}
,
⋃
n∈ω

{n} × F−1
δ (Sδ(α)(n))

)
: α < ℵ1

〉
.

At stageδ ∈ S2
1 in the construction, if�Pδ “name(Sδ) is a sequence ofℵ1 ultrafilters andℵ1 functions”, then we

can takePδ-namesAα, α < ℵ1, such that�Pδ Aα ∈ (Uα) � δ, which means�Pδ “ Aα is in the first component of
name(Sδ)”.

Theorem 2.9. Let V |= ♦ℵ2(S
2
1) and letPℵ2 be any forcing as inChoice2.8. Then VPℵ2 |= cov(Dfin) = ℵ2.

Proof. If �Pℵ2
“〈(Uα, gα) : α < ℵ1〉 is a sequence of functions and ultrafilters”, then at club many stagesδ the

restriction of the names toδ is also forced to be a sequence of ultrafilters inVPδ . For a proof of this (even in the
countable support proper scenario) see [1]. But the restriction of the name toδ is guessed by name(Sδ) for stationarily
manyδ’s in this club. So at such a stageδ the forcingQδ adds a functionh suchthatgα ≤Uα h for all α < ℵ1 and this
shows that the sequence was not a witness forcov(Dfin) = ℵ1. �

3. Interlude: Oracle chain condition forcing

Usually, the major difficulty in forcing inequalities betweencombinatorial cardinal characteristics of the continuum
is to make sure that those which are required to be smaller (non(M) andg in our case) do indeed remain small in
the generic extension. In this section we describe one such method, which is suitable for our purposes: Oracle chain
condition forcing [6, Chapter IV] (see also [3,4]).

Oracle chain condition forcing is a method for forcing withℵ2-stage finite support iteration, in such a way that
some prescribed intersections ofℵ1 many (descriptively nice)sets which are empty in an intermediate model remain
empty in the final model.

Definition 3.1. An oracle(or ℵ1-oracle) is a sequenceM̄ = 〈Mδ : δ limit < ℵ1〉 of countable transitive models of a
sufficiently large finite portion of ZFC (henceforth denoted ZFC∗), such that for eachδ, δ ∈ Mδ is countable inMδ ,
and for eachA ⊆ ℵ1, the set

TrapM̄ (A) = {δ < ℵ1 : δ is a limit ordinal, andA ∩ δ ∈ Mδ}
is a stationary subset ofℵ1.
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Clearly,♦ implies the existence of an oracle. The sets TrapM̄ (A) generate a filter TrapM̄ , which isnormal and proper.
Moreover, for eachA, B ⊆ ℵ1, thereexistsC ⊆ ℵ1 such that TrapM̄ (C) = TrapM̄ (A) ∩ TrapM̄ (B).

Notation 3.2. Assume thatP ⊆ Q are forcing notions, andN is a set. ThenP <N Q means: Every predense subset
of P which belongs toN is predense inQ.

Lemma 3.3. (1) <N is transitive.
(2) If N ⊆ N′, thenP <N′ Q impliesP <N Q.
(3) If Q = ⋃

α<β Qα andP <N Qα for eachα, thenP <N Q. �

Definition 3.4. Assume thatM̄ is an oracle. A forcing notionP satisfies theM̄-chain condition if there exists an
injectionι : P → ℵ1, such that

{δ < ℵ1 : δ is a limit ordinal, andι−1[δ] <Mδ,ι P} ∈ TrapM̄ ,

whereMδ,ι = {ι−1[A] : A ⊆ δ andA ∈ Mδ}.
Thus each countable forcing notion satisfies theM̄-chain condition, and ifP satisfies theM̄-chain condition, thenP

has the c.c.c., and|P| ≤ ℵ1. Thedefinition of theM̄-chain condition can be extended to forcing notions of cardinality
ℵ2 [6, IV.1.5]; however this is not needed here.

Proving theM̄-chain condition according toDefinition 3.4is rather inconvenient. We give a useful method for
verifying the M̄-chain condition.

Proposition 3.5. Assume thatM̄ is an oracle,P = ⋃
α<ℵ1

Pα, for eachα < ℵ1, ια is a bijection fromPα onto a
countable ordinal, and〈Nα : α < ℵ1〉 is a sequence of countable transitive models of ZFC∗, such that the following
conditions hold:

(1) For eachα < β < ℵ1,
(a) Pα ⊆ Pβ with Pβ \ Pα countably infinite,
(b) ια ⊆ ιβ , and
(c) Nα ⊆ Nβ .

(2) For each (large enough)α < ℵ1,
(a) ια : Pα → ωα is bijective,
(b) Mωα, 〈Pα,≤Pα 〉, ια ∈ Nα , and
(c) Pα <Nα Pα+1.

ThenP satisfies theM̄-chain condition.

Proof. UsingLemma 3.3, we get by induction onβ that for eachα ≤ β ≤ ℵ1, Pα <Nα Pβ . In particular,Pα <Nα P

for eachα. Defineι = ⋃
α<ℵ1

ια . Thenι : P → ℵ1 is an injection.
Assume thatδ < ℵ1 is a (large enough) limit ordinal, and letα be such thatδ = ωα. Then

ι−1[δ] = ι−1[ωα] = ι−1
α [ωα] = Pα.

Assume thatA ⊆ δ, A ∈ Mδ , andι−1[A] = ι−1
α [A] is predense inPα . As ια ∈ Nα , ι−1

α [A] ∈ Nα . As Pα <Nα P,
ι−1
α [A] is predense inP.

This shows that forall (large enough) limit ordinalsδ < ℵ1, ι−1[δ] <Mδ,ι P. Obviously, this implies the requirement
in Definition 3.4. �

Proposition 3.5gives us a recipe for verifying thēM-chain condition: ConstructP by inductively constructingPβ ,
such that (1)(a) holds. Ifβ is a limit, takePβ = ⋃

α<β Pα. Otherwiseβ = α + 1 andPα is defined. Then there exists
ιβ such that (1)(b) and (2)(a) hold. ChooseNα as in (1)(c) and (2)(b) (and containing some other elements if needed),
and useNα to definePα+1 such that (2)(c) holds (this is the only tricky part in the construction). We can simplify the
last step in this recipe a bit further.

Lemma 3.6. Assume that N is a transitive model of ZFC∗, such that 〈P,≤P〉 ∈ N. Then:P <N Q if, and only if,
each open dense subset ofP which belongs to N is predense inQ.
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Proof. We need to prove(⇐). Assume thatI ∈ N is predense inP. ThenI ∗ = {p ∈ P : (∃q ∈ I ) p ≥ q} ∈ N, and
is open and dense inP. Thus,I ∗ is predense inQ, and thereforeI is predense inQ as well. �

Corollary 3.7. (2)(c) in Proposition3.5can be replaced by:

(2)(c′) Each open dense subset ofPα which belongs to Nα is predense inPα+1.

The following theorem exhibits the importance of the oracle chain condition for a single step forcing.

Theorem 3.8 ([6, IV.2.1]). Assume that V |= ♦, and ϕα(x), α < ℵ1, are Π 1
2 formulas1 (possibly with real

parameters), and

V |= ¬ (∃x) (∀α < ℵ1) ϕα(x).

If this continues to hold when we add a Cohen real to V , then there exists anoracle M̄ such that for each forcing
notion P satisfying theM̄-chain condition, VP |= ¬ (∃x) (∀α < ℵ1) ϕα(x).

The following consequence can be derived fromTheorem 3.8.

Lemma 3.9 ([6, IV.2.2]). Assume that♦ holds in V . There is an oraclēM in V such that for eachP satisfying the
M̄-c.c., if, in V , A is a nonmeager set of reals, then A is nonmeager in VP. Consequently, VP |= non(M) = ℵ1.

Oracle chain condition can (and is intended to) be used with finite support iterations.

Lemma 3.10 ([6, IV:3.2–3.3]). Assume thatM̄ is an oracle.

(1) For a finite support iteration〈Pα,Q˜ α
: α < γ 〉, if each Pα satisfies the M̄-chain condition, then so does

Pγ = ⋃
α<γ Pα.

(2) If |P| = ℵ1, andP satisfies theM̄-chain condition (in V ), then in VP there is an oracleM̄∗ such that for each
Q ∈ VP satisfying theM̄∗-chain condition,P �Q

˜
satisfies theM̄-chain condition (in V ).

Consider a finite support iteration〈Pα,Q˜ α
: α < ℵ2〉 of forcing notions, and letP = ⋃

α<ℵ2
Pα. Assume that

we wish to useTheorem 3.8for P. Then byLemma 3.10(1), it suffices to make sure that eachPα satisfies theM̄-
chain condition. ByLemma 3.10(2), this amounts to choosing eachQα in such a way that it satisfies the oracle chain
condition for the oracleM̄∗ corresponding to the oraclēM given inTheorem 3.8for Pα.

The nice thing is that we need not worry what exactly these oracles are, as long as we can make sure that for
any prescribed oraclēM , the forcing notion Qα used inthe iteration can be chosen so that it satisfies theM̄-chain
condition.

We sometimes have to make more than one oracle commitment. In fact, we may wish to add new commitments
cofinally often along the iteration (indeed, we do that in the proof ofTheorem 5.11). This can be achieved by coding
all of the oracles of interest (those introduced in earlier stages of the iteration as well as the new ones required in
the current iteration) in a single oracle. Since the length of the iteration isℵ2, the following lemma tells that this is
possible.

Lemma 3.11 ([6, IV.3.1]). If M̄α , α < ℵ1, are oracles in V , then there exists a single oracleM̄ such that for eachP
satisfying theM̄-chain condition,P satisfies theM̄α-chain condition for eachα.

4. Keeping non(M) small

The main lemma needed to carry out our constructions is the following.

Lemma 4.1. Assume thatM̄ is an oracle,and for eachα < ℵ1, Uα is an ultrafilter and gα ∈ ωω. Then there exist sets
Aα ∈ Uα , α < ℵ1, such thatQ = Q(Aα, gα : α < ℵ1) (Definition2.5) satisfies theM̄-chain condition.

1 That is, formulas of the form (∀a ∈ R) (∃b ∈ R) ψ , whereψ ∈ Lℵ1,ℵ0 (Lℵ1,ℵ0 is the extension of the first order language by allowing
countable conjunctions).
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Proof. We useProposition 3.5and the remarks following it (withP replaced byQ everywhere). We chooseAα by
induction onα. At stageα we define

Qα = Q(Aβ, gβ : β < α)
(so at the end,Q = ⋃

α<ℵ1
Qα and (1)(a) is guaranteed) andια as in (1)(b) and (2)(a), then we chooseNα suchthat

Nβ ⊆ Nα for eachβ < α, andgα ∈ Nα and (2)(b) holds.
Recall thatNα is countable, so we can choose an increasing sequence〈ak : k ∈ ω〉 of natural numbers such that for

eachg ∈ Nα , g(ak) < ak+1 for all but finitely manyk (to obtain such a sequence, take an increasing functionf ∈ ωω

which dominates all members ofωω ∩ Nα , anddefineak = f k(0)). SinceUα is an ultrafilter, there exists� ∈ {0,1}
suchthat

Aα :=
⋃
k∈ω

[a2k+�,a2k+1+�) ∈ Uα.

It remains to show that this definition guarantees (2)(c), that is,Qα <Nα Qα+1. We will use Corollary 3.7 for that.
Assume thatD ∈ Nα is an open dense subset of Qα, and p = (n,h, F) ∈ Qα+1 \ Qα (soα ∈ F). Define, for each
m> n, hm : m → ω by

hm(k) =
{

h(k) k < n

max{gβ(k) : β ∈ F} n ≤ k.

Then(n,h, F) ≤ (m,hm, F), and inparticular(n,h, F \ {α}) ≤ (m,hm, F \ {α}). Note that the mappingm �→ hm

belongs toNα .
Define f : ω → ω by letting f (k) be the minimal m such that there exists an element(m, h̃, F̃) ∈ D

which extends(k,hk, F \ {α}). Then f ∈ Nα , so thereexists k such that m := f (a2k+�−1) < a2k+�. Let
q0 = (a2k+�−1,ha2k+�−1, F \ {α}). By the definition of f , thereexists q1 := (m, h̃, F̃) ∈ D which extendsq0.
Let q2 = (m, h̃, F̃ ∪ {α}) ∈ Qα+1.

Then q1 ≤ q2 since they share the same domain. Sinceq1 ∈ D, it remains to show that(n,h, F) ≤ q2.
(n,h, F \ {α}) ≤ q0 ≤ q1; thus(n,h, F \ {α}) ≤ q2, and hence it suffices to show that for eachi ∈ [n,m) ∩ Aα,
gα(i ) ≤ h̃(i ). But since Aα ∩ [a2k+�−1,a2k+�) = ∅, [n,m) ∩ Aα ⊆ [n,a2k+�−1), and if i ∈ [n,a2k+�−1), then
h̃(i ) = ha2k+�−1(i ) = max{gβ(i ) : β ∈ F} ≥ gα(i ), sinceα ∈ F , and we are done. �

By Lemma 3.10, Lemma 4.1will enable us to keepnon(M) small. We now turn to the problem of keepingg small.

5. Keeping g small

First we state a sufficient condition forg being small.

Lemma 5.1. Assume that{Yζ : ζ < c} ⊆ [ω]ω, andκ is a cardinal such that:

(1) For each meager setB ⊆ [ω]ω, |{ζ : Yζ �∈ B}| = c.
(2) For each B∈ [ω]ω, |{ζ < c : B ⊆∗ Yζ }| < κ .

Theng ≤ κ .

Proof. By a result of Blass [2], g ≤ cf(c), so wecan assume thatκ ≤ cf(c). We now defineκ sets and then show that
theyare groupwise dense and that their intersection is empty.

Let 〈n̄ζ : ζ < c〉 list all strictly increasing sequences of natural numbers, each sequence appearing cofinally often.
By induction onζ < c wechooseεζ ≤ κ , γζ < c andCζ ∈ [ω]ω as follows.

If there is someε < κ such that for eachξ < ζ with εξ = ε we have[nζi ,nζi+1) �⊆ Cξ for all but finitely
manyi , then we take asεζ the minimal suchε. By the assumption (1), we can chooseγζ to be the minimalγ < c

suchthat γ �= γξ for all ξ < ζ and there are infinitely manyi suchthat [nζi ,nζi+1) ⊆ Yγ . In this case we set

Cζ = ⋃{[nζi ,nζi+1) : i ∈ ω, [nζi ,nζi+1) ⊆ Yγζ }. Otherwise we setεζ = κ andCζ = ω.
For eachξ < κ , define

Gξ = {B ∈ [ω]ω : (∃ζ < c) εζ ≥ ξ andB ⊆∗ Cζ }.
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We show that eachGξ is groupwise dense. Clearly, it is closed under almost subsets. Let an increasing sequencen̄ be
given. Then for eachν < ξ , there isby our construction someζ(ν) < c suchthatεζ(ν) = ν and[ni ,ni+1) ⊆ Cζ(ν)
for infinitely many i . As κ ≤ cf(c), ζ(∗) = sup{ζ(ν) : ν < ξ} < c. By the choice of〈n̄ζ : ζ < c〉 there is some
β ∈ (ζ(∗), c) suchthatn̄β = n̄. Soεβ ≥ ξ , and

⋃{[nβi ,nβi+1) : [nβi ,nβi+1) ⊆ Yγβ } = Cβ ∈ Gξ .
To see that

⋂{Gξ : ξ < κ} = ∅, assume thatB is infinite and for eachξ , B ∈ Gξ . Then for eachξ < κ , there is
βξ < c suchthatεβξ = ξ andB ⊆∗ Cβξ ⊆ Yγβξ . Sinceκ is regular, we can thin out and assume that ifξ1 < ξ2, then
εβξ1

�= εβξ2
. Thus we have that forξ1 < ξ2, βξ1 �= βξ2, andhenceγβξ1 �= γβξ2

. Consequently,|{γβξ : ξ < κ}| = κ . But
{γβξ : ξ < κ} ⊆ {ζ < c : B ⊆∗ Yζ }, contradicting the assumption (2).�

As we already stated in the previous sections, we shall use a finite support iteration〈Pδ,Qδ, : δ < ℵ2〉 of c.c.c.
forcing notions, and choose constant or increasing oraclesM̄δ , such thatPδ has theM̄δ-chain condition for eachδ.
We start with a ground model satisfying♦∗ℵ1

and♦ℵ2(S
2
1). Let 〈Sδ : δ ∈ S2

1〉 be a♦ℵ2(S
2
1)-sequence.

There are three possibilities forQδ. If cf(δ) = ℵ0 or if δ is a successor, thenQδ is the Cohen forcing.
If cf(δ) = ℵ1 and�Pδ “name(Sδ) is a sequence of ultrafiltersUα and of functionsgα, α < ℵ1”, then we chooseAα,

α < ℵ1 as inLemma 4.1but with additional provisos and force withQδ = Q(〈Aα, gα : α < ℵ1〉). For the premise of
this sentence we shortly say:Sδ guesses〈(Uα, gα) : α < ℵ1〉. Otherwise, we setQδ = {0}.
Definition 5.2. Forγ ≤ ℵ2 we consider the classKγ of γ -approximations

〈(Pδ,Qδ˜
, M̄δ,W1,W2) : δ < γ 〉

with the following properties:

(a) 〈Pδ,Qδ˜
: δ < γ 〉 is a finite support iteration of partial orders such that for eachδ < γ , |Pδ| ≤ ℵ1.

(b) 〈M̄δ : δ < γ 〉 is a constant sequence of oracles such that for allδ, Pδ satisfies theM̄δ-chain condition and for
δ + 1< γ , �Pδ “Qδ˜

satisfies the(M̄δ+1)∗-c.c.” (as inLemma 3.10(2)). The constant value of the oracle sequence
is some oracleM̄ as inLemma 3.9, keepingcov(M) = ℵ1.

(c) W1,W2 ⊆ ℵ2 \ S2
1, W1 andW2 are disjoint and ifγ is a limit of cofinalityℵ1, thenW1 ∩γ , W2 ∩γ are both cofinal

in γ .
(d) If β ∈ (W1 ∪ W2) ∩ γ thenQβ

˜
is the Cohen forcing adding the realrβ

˜
∈ ω2.

(e) If δ ∈ S2
1 ∩ γ and Sδ guesses〈(Uα(δ), gα(δ)) : α < ℵ1〉, then there is somestrictly increasing enumeration

〈ζα(δ) : α < ℵ1〉 of a cofinal part ofW2 ∩ δ, and for every α < ℵ1 there is�ζα(δ) ∈ {0,1} such that

Y
�ζα(δ)
ζα(δ)

:= r −1
ζα(δ)

({�ζα(δ)}) ∈ Uα, andQδ = Q(Y
�ζα(δ)
ζα(δ)

, gα(δ) : α < ℵ1).2

(f) For all δ ≤ γ , �Pδ “ (∀A ∈ [ω]ω) {β ∈ W1 ∩ δ : A ⊆∗ Y1
β

˜
} is at most countable”.3 Here, forδ = γ limit, Pγ is the

directlimit of 〈Pβ : β < γ 〉, and forδ = γ = β + 1, Pγ = Pβ �Q
˜ β

.

With the help of several lemmas we will prove the following.

Theorem 5.3. If V |= ♦∗ℵ1
and♦ℵ2(S

2
1), then for eachγ ≤ ℵ2, Kγ is not empty.

Let V fulfi ll the premises and letPℵ2 be the direct limit of the first components of anℵ2-approximation. IfG is
a Pℵ2-genericfilter andY1

ζ

˜
[Gℵ2] = Yζ for ζ ∈ W1, then we have in the final model a sequence〈Yζ : ζ < c〉 as in

Lemma 5.1with κ = ℵ1.

Corollary 5.4. VPℵ2 |= cov(M) = g = ℵ1 < cov(Dfin) = ℵ2.

We proveTheorem 5.3by induction onγ and we shall work with end extensions. For someγ ’s, one has to work
to show item (e). We will do this in our first lemma. For allγ ’s but maybe the successor steps of points not inS2

1, one
has to work to show that item (f) can be preserved in the induction. This will be done in the last three lemmas.

2 Theζα(δ), α < ℵ1, chosen here do not have to be coherent when regarding differentδ’s and we index them withδ because we need it. Strictly
speaking the�ζα(δ) is a function�ζα(δ)(δ). And also strictly speaking we should index byγ as well, but we are suppressing this because we are
anyway only working with end extensions when increasingγ .

3 Hereit is W1. We use the Cohens inW2 to build the forcings of typeQδ = Q(Y�ζα (δ)
ζα(δ)

, gα(δ) : α < ℵ1) and the CohensY1
ζ , ζ ∈ W1, to build

theYζ ’s as inLemma 5.1.
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Lemma 5.5. Consider a successorγ = δ + 1, δ ∈ S2
1. Given anyℵ1-oracle(M̄δ+1)∗, the sequence〈ζα(δ) : α < ℵ1〉

can be chosen as in(e)so that the forcings given in item(e)have the(M̄δ+1)∗-c.c.

Proof. This is a variation ofLemma 4.1. We suppress some of theδ’s. We choose〈ζα : α < ℵ1〉 enumeratingW2 ∩ δ
so that, given the oracle(M̄δ+1)∗ = 〈Nα : α < ℵ1〉, the Cohen realrζα is genericoverNα . For this it suffices that the
countable modelNα ∈ VPζα , which means thatζα just has to be sufficiently large. Let theak be chosen as in the proof
of Lemma 4.1. Then there are infinitely manyk suchthat

r −1
ζα
({�ζα }) ∩ [a2k+�−1,a2k+�) = ∅,

and as in the proof ofLemma 4.1this suffices. �

Choice 5.6. We start with M̄ as described. ByLemma 3.10, all thePδ, δ ≤ ℵ2, have theM̄-chain condition as soon as
we can arrange that all theQδ have the(M̄)∗-chain condition inVPδ . The Cohen forcing has thēM-chain condition
for any M̄. TheQδ in the stepsδ ∈ S2

1 can be chosen by the previous lemma so that they have the(M̄)∗-c.c.

Lemma 5.7. If δ ∈ S2
1, Qδ is chosen as inLemma5.5, andPδ satisfies(f) of Definition5.2, thenPδ+1 has the property

stated in item(f).

Proof. Suppose thatp �Pδ+1 “ A˜ ∈ [ω]ω and|{ζ ∈ W1 ∩ δ : A˜ ⊆∗ Y
�ζ
ζ

˜
}| = ℵ1”, and w.l.o.g. p �Pδ+1 “ A˜ ∈

[ω]ω and{ζ ∈ W1 ∩ δ : A˜ ⊆∗ Y˜
�ζ
ζ } is increasingly enumerated by{ξα : α < ℵ1} = W1(A)”.

We take forn ∈ ω a maximal antichain{pn,i : i ∈ ω} above p deciding the statementšn ∈ A˜ with truth value
tn,i . Let Cn,i = {ε ≤ δ : pn,i (ε) �= 1}. For ε ∈ Cn,i ∩ S2

1 with Qε �= {0}, let pn,i (ε) = (mn,i (ε),hn,i (ε), Fn,i (ε)).
Let F ′

n,i (ε) = {ζα(ε) : α ∈ Fn,i (ε)}. We assume thatall these are objects not just names. Forε ∈ Cn,i \ S2
1

let pn,i (ε) = hn,i (ε), mn,i (ε) = |hn,i (ε)| and set the other two components for simplicity to zero. Setmn,i =
max{mn,i (ε) : ε ∈ Cn,i }. Set

C̄ = 〈〈(mn,i (ε),hn,i (ε), Fn,i (ε), F ′
n,i (ε), 〈gα(ε) � mn,i : α ∈ Fn,i (ε)〉) : ε ∈ Cn,i 〉 : n, i ∈ ω〉.

For eachβ ∈ ℵ1, let pβ ≥ p, pβ �Pδ+1 “ A˜ ∩[sβ,∞) ⊆ Y˜
�ξβ
ξβ

” and pβ shall decide the value of�ξβ ∈ 2 andsβ ∈ ω.

Forβ < ℵ1 we setCβ = {ε ≤ δ : pβ(ε) �= 1}. If ε ∈ Cβ ∩ S2
1, thenpβ(ε) = (mβ(ε),hβ(ε), Fβ(ε)). If ε ∈ Cβ \ S2

1,
thenpβ(ε) = hβ(ε), β(ε) = |hβ(ε)| andFβ(ε) = ∅. For allβ, ε ∈ Cβ , let F ′

β(ε) = {ζα(ε) : α ∈ Fβ(ε)} ⊆ W2.
Set

Rβ(m) = 〈(mβ(ε),hβ(ε), Fβ(ε), F ′
β(ε), 〈gα(ε) � m : α ∈ Fβ(ε)〉) : ε ∈ Cβ〉.

These are finite arrays of finite sets.
Now we thinout: First weassume that for somek ∈ ω for all β < ℵ1, |Cβ | = k, sβ ≤ k. We apply the delta system

lemma toCβ ,β ∈ ℵ1, andget a rootC. We assume thatδ ∈ C, as this is thedifficult case. We apply the delta lemma for
eachε ∈ C to theFβ(ε), β ∈ ℵ1, andget a rootF(ε), and toF ′

β(ε), β ∈ ℵ1, andget a rootF ′(ε). We further assume
that for eachβ in the delta system and for allε ∈ C, all Fβ(ε) \ F(ε) are above max(

⋃
ε′∈C(F(ε

′)) ∪ (C \ {δ}))
and the same for the primed ones. We thin out further and assume that there are(m(ε),h(ε), F(ε)) such that for
all β < ℵ1, for all ε ∈ C, mβ(ε) = m(ε), hβ(ε) = h(ε) ∈ m(ε)ω, and for the ε ∈ Cβ \ C, the increasingly

enumeratedε’s in Cβ = {εβi : i < k} are isomorphic to the lexicographically first〈εi : i < k〉, i.e., mβ(ε
β
i ) = m(εi ),

hβ(ε
β
i ) = h(εi ) ∈ m(εi )ω, and weuse a delta system argument on theFβ(ε

β
i ) giving a rootF(εi ) and again impose on

the partsFβ(ε
β
i ) \ F(εi ) that they have to lie above

⋃
i<k F(εi ) and are all of the same size. The analogous thinning

out is done for the primed parts, that have to lie above max(
⋃

i<k(F
′(εi )) ∪ (C \ {δ})), be for all i of the same size

|F ′
β(ε

β
i )| independently ofβ (but depending oni ), and allof the〈F ′

β(ε
β
i ) : i < k〉 shall have the same≤ or ≥-relations

with the members ofCβ(εi ). Moreover, if ε is a Cohen coordinate inCβ , thenpβ(ε) does not depend onβ.
We letmmax be the maximum of them(ε) and of the lengths of all the finitely many Cohen coordinates for allβ in

the delta system. Let� denote theinitial segment relation for finite sequences. We thin out further and assume that all
the Rβ(mmax) have the same quantifier free(<ℵ1, �)-type over Ran(C̄) ∪ Ran(Ran(C̄)). Speaking about components
of five tuples(m,h, F, F ′, ḡ) separately is allowed as well as evaluatingḡ and the members of all involved finite sets.
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There are only countably many quantifier types in this language that can be fulfilled by a (finite) sequenceRβ(mmax)

in our delta system.
Let Gδ be a subset ofPδ that is generic overV suchthatW∗ = {γ ∈ W1(A) ∩ δ : pγ � δ ∈ Gδ} is uncountable.
Forγ ∈ W∗, let in V[Gδ],

Bγ = {n ∈ ω : ∃p′ ∈ Pδ+1, p′ ≥ pγ , p′ � δ ∈ Gδ, and p′ �Pδ+1 n ∈ A}.
Bγ ⊆∗ Y

�ξα
ξα

[G], and the latter is fully evaluated byG, becauseξα ∈ W1 ⊆ δ + 1 for α < ℵ1, andδ �∈ W1.
We shall show that for β, γ ∈ W∗, Bβ ∩ [k,∞) = Bγ ∩ [k,∞) = B ∈ V [G]. ThenB is a counterexample to

〈(Pε,Qβ,Mε,W1,W2) : ε ≤ δ, β < δ〉 ∈ Kδ.
Let ||Pδ+1 denote thecompatibility relation inPδ+1. If n ∈ Bβ , thenpβ ||Pδ+1 pn,i for the onei suchthat pn,i ∈ G,

and for thisi we havetn,i = true. The sameholds forn �∈ Bβ with false. Soour claim thatBβ∩[k,∞) = Bγ ∩[k,∞)

for all β, γ ∈ W∗ now follows from

Claim 5.8. For all β, γ in W∗:

pβ ||Pδ+1 pn,i iff pγ ||Pδ+1 pn,i .

Proof. The point is the coordinateδ, sincethe restrictions toδ are inGδ, andhence compatible. Assumepn,i (δ) =
(mn,i ,hn,i , Fn,i ), pβ(δ) = (mβ,hβ, Fβ), pγ (δ) = (mγ ,hγ , Fγ ). We donot write theδ at these points, but will not
suppress it completely. We assume thatpβ(δ) is compatible withpn,i (δ).

First case:mβ ≥ mn,i . Then pβ ||pn,i meanshβ � hn,i and for allα ∈ Fβ ∪ Fn,i for all m ∈ [mn,i ,mβ) ∩ Y
�ζα(δ)
ζα(δ)

,
(hβ(m) ≥ gα(δ)(m)).

We have to showthat the same holds for pγ . First, by our thinning outmβ = mγ , hβ = hγ , andhencehγ � hn,i ,
andFβ ∩ Fn,i = Fγ ∩ Fn,i .

1(a) We have to show: For allα ∈ Fn,i for all m ∈ [mn,i ,mγ ) ∩ Y
�ζα(δ)
ζα(δ)

(hγ (m) ≥ gα(δ)(m)).

And sincehβ = hγ , for all α ∈ Fn,i for all m ∈ [mn,i ,mγ ) ∩ Y
�ζα(δ)
ζα(δ)

, (hγ (m) ≥ gα(δ)(m)).

1(b) We also have to show: For allα ∈ Fγ for all m ∈ [mn,i ,mγ ) ∩ Y
�ζα(δ)
ζα(δ)

(hγ (m) ≥ gα(δ)(m)). Forα ∈ Fγ ∩ Fβ
the latter requirement is clearly fulfilled, ashβ = hγ . For the partFγ \ F(δ) we need to look closer: Suppose some

condition inpγ forced something aboutY
�ζα(δ)
ζα(δ)

. Thenpγ (ζα(δ)) �= 1 andhenceζα(δ) ∈ Cγ ∩W2. But then because of

the indiscernibility overmγ = mβ ≤ mmax (which is a component of̄C), ζα(δ) ∈ Cβ and hence it is in the rootC. So

pβ forced by our thinning out the same fact aboutY
�ζα(δ)
ζα(δ)

∩mmax. Hence, for allα ∈ Fγ for all m ∈ [mn,i ,mγ )∩Y
�ζα(δ)
ζα (δ)

,
(hγ (m) ≥ gα(δ)(m)). So, taking 1(a) and 1(b) together,pγ ||pn,i .

Second case:mβ ≤ mn,i . Then hβ � hn,i , and pβ ||pn,i means that for allα ∈ Fβ ∪ Fn,i for all m ∈
[mβ,mn,i ) ∩ Y

�ζα(δ)
ζα(δ)

, (hn,i (m) ≥ gα(δ)(m)). This latter statement doeshold also forFγ instead ofFβ andmγ instead
of mβ , becausemγ = mβ and(Fβ, 〈gα(δ) � mn,i : α ∈ Fβ 〉) and(Fγ , 〈gα(δ) � mn,i : α ∈ Fγ 〉) are part ofRβ(mmax)

andRγ (mmax) and hence indiscernible overhn,i for argumentsm ∈ Y
�ζα (δ)

ζα(δ)
, as for thesem’s, that are forced to be in

a Cohen part,ζα(δ) ∈ C and hence by our thinning out we havemmax ≥ m. Also hγ � hn,i , andhencepγ ||pn,i .
So the claim is proved and with it alsoLemma 5.7. �

Lemma 5.9. (1) If cf(γ ) = ℵ1 and Q
˜

and M̄γ are as in the previous lemma and if〈Pβ,Qβ

˜
, M̄β,W1,W2) : β <

γ 〉 ∈ Kγ , then

〈Pβ,Qβ

˜
, M̄β,W1,W2) : β < γ 〉ˆ 〈Pγ ,Q˜

, M̄γ 〉 ∈ Kγ+1.

(2) If cf(γ ) = ℵ0 and if 〈Pδ,Qβ

˜
, M̄β,W1,W2) : β < γ 〉 ∈ Kγ , then

〈Pβ,Qβ

˜
, M̄β,W1,W2) : β < γ 〉ˆ 〈Pγ ,C, M̄γ 〉 ∈ Kγ+1.

(3) If cf(γ ) = ℵ0 and if 〈Pβ,Qβ

˜
, M̄β,W1,W2) : β < γ 〉 � β ∈ Kβ for eachβ < γ , then〈Pβ,Qβ

˜
, M̄β,W1,W2) :

β < γ 〉 ∈ Kγ .
(4) If cf(γ ) = ℵ1 or γ = ℵ2, and if 〈Pβ,Qβ

˜
, M̄β,W1,W2) : β < γ 〉 � β ∈ Kβ for eachβ < γ , then

〈Pβ,Qβ

˜
, M̄β,W1,W2) : β < γ 〉 ∈ Kγ .
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Proof. (1) This was proved inLemma 5.7.
(2) If A is an almost subset of uncountably manyYζ ’s, then there is someγ0 < γ such that there are uncountably

many suchζ belowγ0. A is possibly a name using the last, new forcing. But this is just Cohen forcing. So there is
some finite part of a Cohen condition forcing thatA˜ is in uncountably manyYζ ’s. But then also the forcingPγ already
contains a name for some infiniteB ⊆ ω almost contained in the intersection of uncountably manyYζ ’s with ζ < γ0.
So Pγ does not fulfill property (f) and hence the induction hypothesis is not fulfilled.

(3) First we use the pigeonhole principle for theYζ ’s as inthe previous item. Then we use the following

Lemma 5.10. Assume

(a) 〈Pn : n ∈ ω〉 is a�-increasing sequence of c.c.c. forcing notions with unionP,
(b) Y is a set ofP0-names of infinite subsets ofω,
(c) for n ∈ ω wehave� Pn“ κ = cf(κ) > |{Y˜ ∈ Y : B˜ ⊆∗ Y˜ }|”, whenever B˜ is aPn-name of an infinite subset ofω.

Then condition(c) holds forP too.

Proof. SinceP is a c.c.c. forcing notion, also inVP we haveκ is a regular cardinal.
If the desired conclusion fails, then we can find aP-name B˜ of an infinite subset ofω and a sequence

〈(pα,Y˜ α,mα) : α < κ〉 suchthat

(α) mα ∈ ω,
(β) Y˜ α ∈ Y without repetitions,
(γ ) pα ∈ P, pα �P B˜ \ mα ⊆ Y˜ α .

Sincecf(κ) > ℵ0, for somen(∗),m(∗) ∈ ω the setS =df {α < κ : pα ∈ Pn(∗),mα = m(∗)} hascardinalityκ . We
identify it with κ .

Now for every large enoughα ∈ Swe have

pα �P κ = |{β ∈ S : pβ ∈ G˜ Pn(∗)}|.
Why? Else for an end segment ofα < κ there isqα ≥ pα such that for all but< κ manyβ ∈ S, qα � pβ �∈ G˜ Pn(∗) .

That means that for an end segment ofα < κ , w.l.o.g., for allα ∈ κ , Perpα := {β ∈ S : qβ ⊥ qα} contains an end
segment ofS. Then we take the diagonal intersectionD of all these end segments ofS. Sinceκ is regular,D contains
a club inκ . But then{qβ : β ∈ D} is an antichain inPn(∗) of sizeκ . Contradiction.

Let Gn(∗) be a subset ofPn(∗) generic overV , and letS∗ := {β ∈ S : pβ ∈ Gn(∗)}. We chooseGn(∗) suchthat
|S∗| = κ . We letB′ = ∩{Y˜ β \ m(∗) : β ∈ S∗}. Then inV [Gn(∗)], B′ is an infinite subset ofω included inκ members
of Y, contradicting the assumption. SoLemma 5.10is proved. �

(4) If Pδ adds someA, then this already comes earlier, say inVPε , ε < δ, becauseA ⊆ ω and because of the
c.c.c. If A ⊆∗ Yζ is forced, thenζ < ε. This contradicts the induction hypothesis forPε. This completes the proof of
Lemma 5.9. �

The lemmas together give that there is anℵ2-approximation, and the proof ofTheorem 5.3is completed. �

With some extra care our proof can be modified to yield the following (cf. [7,4]).

Theorem 5.11. It is consistent (relative to ZFC) that all of the following assertions hold:

(1) Each unbounded set ofωω contains an unbounded subset of sizeℵ1.
(2) Each nonmeager subset ofωω contains a nonmeager subset of sizeℵ1.
(3) g = ℵ1.
(4) cov(Dfin) = cov(M) = c = ℵ2.

Proof. This time we work with a version ofKγ with increasing oracles, which means that theM̄ε-chain condition
implies M̄δ-chain condition forε > δ and thatPδ � “P[δ,ε) has theM̄˜

δ+1-c.c.”, though the initial segment need not
yet fulfill it, and the name for this new oracle may not yet have an evaluation in an initial segmentPγ , γ < δ. The
new parts of the oracles take care of the unbounded and thenonmeager families that appear later in the iteration and
that are frozen by the next step if their intersection withVPδ is guessed by the diamond sequence and happens to be
unbounded or nonmeager at the current stageδ: The conservation of the unboundedness and nonmeagerness of the
intersection is written into all the oracles fromδ onwards. �
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