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We concern ourselves with the question of when an annihilator class {a class
closed under formation of arbitrary products and subgroups) of abelian groups is
cogenerated by a single group. We show that the class of p*-reduced groups (where
pis a prime and £ is an ordinal greater than w) is not singly cogenerated. If G is a
cotorsion-free group, we show that the torsion-free class cogenerated by G is not
singly cogenerated as an annihilator class. This result permits identification of all
singly cogenerated annihilator classes which are also closed under formation of
extensions, and so we characterize those singly generated radicals which are idem-
potent. They are precisely the radicals determined by annihilator classes singly
cogenerated by a pure injective. 31987 Academic Press. Inc.

1. INTRODUCTION

Classes of abelian groups closed under formation of products and sub-
groups are important classes; these classes are sometimes called annihilator
classes. They are, of course, epireflective subcategories of the category of
abelian groups. More generally, .if <7 is a class of groups, define for each
group G, R_,G=) {ker f: fe Hom(G, X), Xe =/ }. This defines a sub-
functor of the identity R_ which is a radical; that is, R ,(G/R_,G)=0 for
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all groups G. The annihilator class {G: R_,G =0} is the smallest class con-
taining &/ which is closed under formation of products and subgroups. The
correspondence between annihilator classes and radicals is bijective.

It is of interest to know when such an annihilator class is cogenerated by
a single group (equivalently, by a set of groups). An annihilator class < is
cogenerated by a group X provided G belongs to &/ precisely when G can
be embedded in a product of copies of X. In this case, we write R, instead
of R, or Ry,. The class of all torsion-free groups is cogenerated by the
group of rationals Q, and thus the torsion subgroup functor can be
described as Rg. Note that, in this case, the radical Ry, is idempotent. If R
is an arbitrary radical, it need not be idempotent; but it will determine an
idempotent radical in the following way: inductively define for each ordinal
«, R* by, for each group G, R**'G=R(R*G) and R*G=,;_, R*G if « is
a limit. For each group G, there is an ordinal p; = u so that R**'G = R*G.
Define R*G = R*G for each G. Then it follows that R is an idempotent
radical with R®G < RG for all G. Moreover, R® determines a torsion-
theory as the annihilator class of R™ is the smallest class containing the
annihilator class of R closed under formation of products, subgroups, and
extensions.

If p i3 a prime, then multiplication by p forms a radical, and for each
ordinal 4, p” is also a radical. The annihilator classes of p*-reduced groups
{G: p*G=0} are important classes of groups. It is clear that P" =Ry n
where 7 is a positive integer and Z{p") denotes the cyclic group of order p”.
It follows that p“=Rpz(»=Rgez(n. In [FOW2], it was shown that
p* # Ry for any X, that is the class {G|p®G =0} is not cogenerated by a
single group, and the question of whether or not the class of p*reduced
groups for A > w + 1 is cogenerated by a single group was raised as an open
question. In this paper we shall show the answer is no; that is, if A is an
ordinal greater than w, then p*# R, for any group X.

In a second section we shall show that for many radicals R, determined
by a single group, the idempotent radical R¥ is not determined by a single
group. Thus even though a class may be singly cogenerated to begin with,
the process of closing up the class under products, subgroups and exten-
sions often destroys the single cogeneratedness. In particular we show that
if G is cotorsion-free, then RE # R, for any X. This result is used to show
that Ry = R% if and only if R, = R, where Y is divisible or, if X is reduced,
Y is algebraically compact.

We conclude the paper with a section containing some results concerning
when a torsion-theory is singly cogenerated; these results are dependent
upon the set-theoretic assumption that there do not exist measurable car-
dinals {(ZR,,). All of the previously mentioned results above hold in ZFC.
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II. Tug CrASSES OF p*-REDUCED GROUPS

As mentioned in the Introduction, the classes of p*-reduced groups, for
A<, are each singly cogenerated. It is easy to see that the class of
p=-reduced groups is not singly cogenerated, for if p*=R,, then, for
some ordinal 4, p*X=0, and p*G=0 would imply p*G =0, which is
absurd. A similar argument shows that the class of all reduced groups is
not singly cogenerated.

In this section we show that for A >w, p* is not of the form R, for any
group X. We begin by showing the existence of groups for which we have
some control over their homomorphic images.

2.1. THEOREM. Let A be an infinite cardingl. Then there exists an abelian
p-group H=H; of cardinality 2™ such that:
(a) p"H=Z(p),
(b) if A4 is any abelian group of cardinality less than i, and
¢ Hom(H, 4), then ¢(p®H) is contained in the divisible part of A.

Proof. As usual, we identify A with {a: o <4}, the set of all ordinals less
than A. Define the sets T={J,_., T, and T* by:
T,={f: {0, 1,.,n—1}—»ixi},
T*={f o> (AxA)\4}.

We define the group H = H; by the following generators and relations:

Generators: elements of the form e, ; where ge 7 and f <4, elements of
the form a,, where fe T* and n <, and a distinguished element .

Relations: (a) p""'e,,=0if geT,,
(b} pago=aforall feT*
(¢} pa=0
(d)  Pagu1=pas,—(€f1n o) = s rnsigm) for all feT* and n<o.
Here f ['n denotes the restriction of f to n={0,1,.,n—1} and
fl)=(f%n), f1(n)).

It follows from the relations and by induction that p"**a,, =« and
hence ae p®H. Our first objective is to show that p“H = {(a).
Let H=H/{a); it is clear that H is given by generators and relations:

Generators: elements é, ; where ge T and ff </, and elements 4, where
feT* and n<w.
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Relations: (a) p™*'e,;=0for geT,,
(b) pa;,=0 for all feT*,
(C) pﬁf’n+1=£_lf,,,— (e-/‘ fn,fﬂ(n)_éf Pn,fl(n)) fOI’ all fE T* al’ld n<<aw.

We will show that H is separable (ie, p®H=0) and consequently
p*H={_ay=Z(p)

Define B= @ <€, taken over all ge T and f <A where the order of
.58 p”*!, m being that (unique) integer for which ge T,,. Let B denote
the torsion-completion of B. The elements d,,, defined by the infinite sums
A =20 1 €r 1 1900 — €5 tm i) P" " Tepresent elements of B. Note each
term in the sum has order p™* " and so 4, has order p™* . The collection
of all elements &, ; and d,,,, for ge T, p<4, fe T* and m < w, satisfy the
relations (a), (b), and (c) with “~” replaced by “~.”

Now let G be that subgroup of B generated by B and all the elements
ds,. Clearly G/B is divisible, and, as B is pure in B, G is pure in B.

For xe B, let [x] denote the support of x; that is, [x] S U,y (T, % 1)
is the set of all indices for which the corresponding entry of x is nonzero.
Let k, m<w and f, ge T* with f # g. Then for the generators d,,, and d,
of G, we have:

Las, ] la] s finite. (%)
For if this were infinite, then the set
{n:A{(f T 2, (f T f1(n)) ) {(g T, g°(n)), (g T, g'(n))} # O}

is infinite. This would imply that g [ #n=f | n for an infinite number of n’s
and therefore /= g contrary to the choice of f and g. This shows that 4,
and 4, , are independent modulo B and consequently

G/B= @ ({{a,,lm<w})>+B/B).

feT*

Indeed, if ¢: G — G/B denotes the natural map, then Pg(d,,, )= ¢(d,,,)
and the set of generators {¢(d,,): m<w} satisfy the appropriate relations
showing {{d;,:m<w})+B/B=Z(p™).

Define the homomorphisms o: H— G and t:G— H by (e, 5)=2,;,
o(@,)=d;,, ©(8,4)=8,4, and ©(d;,)=da,,. Clearly, o is well defined,
onto, and (*) implies that 7 is well defined. Since 76 =14, we have ¢ is an
isomorphism, and so H is separable.

Now let 4 be any group of cardinality less than A, and let
¢ € Hom(H, A). Let n be fixed and choose f, € T,. The set {e, z: f < i} has
cardinality 1 and, as |4| < 4, there exists a subset X,, of 4 of cardinality A
for which ¢(e, ,)=d(e;, ;) for all a, e X,,. Define £, ,,: {0, 1,..,n} > Ax 4
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by f,.1 Ta=f,and f,, (n)=(a, ) where o, fe X,, «# §. By induction,
and in this way, we can produce a function f={J,.,, f, belonging to 7*
having the property that ¢(e, , ou) = d(e, 1, s1ny) for all n < w.

From the relations satisfied in H, we have pé(a,,..)=d¢(a,,) and
#laso) = ¢{a). Consequently the subgroup generated by the images ¢(a,,)
is either zero or a copy of Z(p™).

2.2. COROLLARY. Let o be an ordinal greater than w. Then the radical p*
is not of the form Ry for any group X.

Proof. Suppose that p*= R, for some group 4. Then 4 must be
reduced, since p*4 =0. Let A be the cardinality of 4 (clearly 4> ) and let
H=H,; be the group constructed in the theorem. Since «>w+1,
R, H=p*H=0. But, by the theorem, every morphism ¢: H— 4 sends
p“H={a) to zero and so (a) < R, H, a contradiction.

IIT. CrassEs DETERMINED BY COTORSION-FREE (GROUPS

As already mentioned, the class of torsion-free groups is singly
cogenerated by the group of rationals Q. The class of all torsion-free
groups G enjoying p“G =0 is a radical class singly cogenerated by the
group of p-adic integers J,. The class of X,-free groups is a radical class
not cogenerated by a single group [DG] and the class of all cotorsion-free
groups is not cogenerated by a single group [DG]. The class of torsionless
groups is the annihilator class of the radical R, and hence is singly
cogenerated. As a consequence of results in this section, the idempotent
radical RY is not of the form R, for any group X. This answers an open
question posed in [FOW1]. Indeed, the main result of this section is that if
G is a cotorsion-free group, then RY is not of the form R for any X. Recall
that a group G is cotorsion-free provided it is torsion-free, reduced, and for
all primes p, Hom(J,, G)=0.

3.1. TusoreM. Let L be an infinite cardinal. Then there exists a short
exact sequence.

0-7Z—->A-C—0,

where C<I1,Z, and if G is any group Hausdorff in the Z-adic topology and
having |G| < A, then for every ¢ e Hom(A, G), ¢(Z) is contained in a cofor-
sion subgroup of G.

Proof. Let T,={f:{0,l,.,n—1}>AxAxZ} and T=),., T,. Let
T*={fio—>((AxA)—4)xZ}. We generate a free abelian group F by
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using generators e,,, for geT, a</, and neZ and a distinguished
element e. We write

F=eZ® @ e,,,72

TxixZ

Define the group P by

P=eZ® [| egunl

TxixZ

For feT*, let f(i)=(f°(), f'(i), f2(i)) for iew, f°i), f'(i)e4, and
fi)eZ Define x, by x,=e 2o () il +220 (€ ri o0 20—
er i o, san) 1! and observe that x.€ P. We let 4 be the pure subgroup of P
generated by F and by {x,: fe T*}. Since the x/’s are pairwise almost dis-
joint, it follows that eZ=eZnA. Hence AjeZ=AjelnA=
A +el/el <IT,Z and thus we have the exact sequence 0 »eZ - A —» C -0
with eZ =7 and C< 11, Z.

Next let meZ be a p-adic number. Then 7 has the representation
n=>%,1,il, t;6Z. Let G be a group of cardinality less than A and let
¢ e Hom(A, G). Using induction in a similar way as done in the proof of
Theorem 2.1, one can show that there exists an fe T* so that f%(i)= ¢, for
all ie @ and that

dles i o) = Pler i o)

for all ie w.

Therefore ¢(x,) = ¢(en) mod i! G for all ie N. Since G is Hausdorff in the
Z-adic topology, limits are unique, and it is clear that we may define
¢*: eZ — G by defining ¢*(n) = #(x,) where f is constructed as above. We
obtain ¢*(eZ) is an epimorphic image of an algebraically compact group
and thus ¢ carries eZ into a cotorsion subgroup of G.

3.2. COrROLLARY. If G is a cotorsion-free, then RZ is not of the form Ry
for any X.

Proof. Suppose that RE = R, for some group X. We first argue that X
must be cotorsion-free. From [DG] there exists an X,-free H such that
Hom(H, G)=0. Assume 0#£Cc X is cotorsion. Then there exists an
algebraically compact group 4 and an epimorphism ¢: 4 » C. Let F be a
nontrivial pure free subgroup of H and ¢:F— A be a nonzero
homomorphism with the property that #y: F— C is nonzero. Since A4 is
pure injective, there exists an extension of ¥ to all of H giving a nonzero
homomorphism from H to C and hence from H to X. This implies
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RyH+#H But ReH=H, so R® H=H, a contradiction. Thus X is cotor-
sion-free.

Let A be an infinite cardinal larger than the cardinality of X, and let 4 be
the group of the theorem. Since A/eZ <I1;Z, R{A/eZ)< R;(I1,Z}=0.
Let ¢: A > A/eZ be the natural map; if ae R; 4, then ¢{a)e Ry(A/eZ} =0,
and so aceZ Thus RgA=eZ Consequently, RZA=RZA=0. But
RyA=eZ, a contradiction.

We adopt some notation: if R is a radical, then o/, denotes the
annihilator class of R. We shall denote the p-torsion and torsion subgroup
functors by 7, and 1, respectively. The divisible p-torsion subgroup functor
is denoted by dr,. If M is a group then the socle determined by M, S,,, is
defined by S, A=> {Im /> fe Hom(M, 4)}.

33. LemvA. Let Y = Q @ [1yen Z(p™) ® I 1yen,—n Z(p) and M =

@penyno Z(pOO) @ (@p¢m(®nz(pn))) W/’lere @ # Ty & ﬂ:lg
{p: pprime}. Then

RE=S,=Y rqm< N pm>=z T+ Y dr,
peni—no

g ¢mo g¢my peny—mg

Proof. We have Ry=Ro " ((Npeny Rzp)) O peni—m Rzgpy) =
T enT)) O (Npen—n P)» and Ry is not idempotent for R,Z(p*) #
RYZ(p*)=0 for pem —mn,. Clearly, 3,070 (Npemon?™)=
2aem Tat Xpemnd,=Sy. Since RY<SRy, RY<(V,en mpP™
and so RY <S5, But as Hom(M, Y)=0, Ye.os,, hence o, < o7, and,
as S, is a radical, S,,< R,. It follows that S,, < RY since S, is a socle
contained in R,.

34. LemMA. Let Z=11,cn, Z(P)®1pers—mJ, and N=0"'®
(DB peny m (D Z(p™))) where n3#0 and mySny < {p: p prime}, and
0™ ={abeQ:(b,p)=1 if pénsj. Then R =S5"=(",cr, p™)0
(Npens—m (p?: 7)), where S°) denotes the smallest radical containing Sy
(see [FOW2T]).

Proof. We have Ry=(N,en, P)N{(Npeny_m P 7), and R, 1s not a
socle as Ry Z(p*) # R3Z(p*)=0for all pen,. We also have Sy = S,(m3) +
Dpen-mTpZ Xpen T, siNCE Som fixes Z(g") for all g¢ny and n>1. Let
S=58). If 4is fixed by RY (equivalently by R), then, without loss of
generality we may assume A is reduced, and we have p*4 = p4A =4 for all
pemn, and Hom(A4/t4, Jp)=0 for all pe ny— n,. The latter implies 4/t 4 is
p-divisible for all peny— 7, and so it follows that 4/t4 is p-divisible for
all pens. Thus 4/t4 is fixed by Sy(n;) and hence by S. Now if pen,,
then 1,A=0380 1t4=3,,,7,A<Sp(n;) 4 +3 7,4 so that 14 is

peny—m 'p
fixed by S. The stabilizer class of S is the smallest stabilizer class containing
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the stabilizer class of S, which is also closed under formation of extensions,
and thus, as A/t4 and 74 are fixed by S, it follows that S fixes 4. This
means RY <S. On the other hand, as Hom(¥N, Z)=0, S, <RY and so
§=S\?)<RZ. This shows that RY = (,cr, 2°) 0 (Npems—m, (P*: 7))

3.5. THEOREM. A radical of the form Ry is idempotent if and only if
Ry=Ry where Y=Q, [1,c. Z(p™), or [1,c. J, for some nonempty set of
primes 7.

Proof. We divide the proof into several cases. First assume X is torsion-
free. If X is not reduced, then X=dX@® 4 where dX=@ Q and 4 is
reduced. Then Ry=Ry N R, =1 R,. But as Hom(Z(p"), A)=0 for all p
and all n, 7, < R, for all p, so t< R, and Ry = Ry. If X is reduced, then X
cannot be cotorsion-free, so let m={p:J,<X} and set ¥Y=[],J,. Then
Ry is an idempotent radical and Ry<R, as Yes,. We have
R,y X=,p“X. Set R,X=Q and observe that Hom,(M, X)=
Homg, (M, Q) for all @™-modules M. Thus Ry =R, on the category of
Q™-modules. But as Q is cotorsion-free, this implies R, # R2, if Q #0 and
so R, X =0 which implies R, <R,, and we have equality. If X is mixed,
suppose X is not reduced. Let my={p: Z(p*)< X} and n, = {p: 7, X #0};
we have mocm;. Set Y=QO®I1,.,, Z(p*)®I1,cr, = Z(p) as in
Lemma 3.4. Then Ry =S, —qul Tyt pen —n @1, Clearly Ry <R, so
R¥ = Ry. But as Hom(M, X)=0, if n, — 7, #0, we have Sy <Ryand so
Ry=5,,=R7. But R is not of the form R, for any A. For if so, thus
letting 4, be the p-length of 4 for each prime p, we have (), .., ., P74A=
Nper—ng P?A. Let gen,—m, and let H=H,, ,, be Nunke’s simply
presented g-group of length Ag+1. Then as X, ., t,H=H and
Npeni—ng P H=qg*H=0, we have RyH=0 and so H<J],4. But
0£2(q) = ¢H = Lpn®WH A (Mpemorn PPH) < (Spem?, 0
(ﬂpemfno pAp)(HI A) = Zpstno ‘Cp N (mp€n1~n0 poo)(HIA) = 0 Thus
it must be the case that n,=n, and Ry=1n Rtz =2pengTp=
R, z(=)- If X is mixed, and reduced, then set 7,={p:Z(p)< X} and
ny=1{p:J,<II,X}. As X is not cotorsion-free, both =, and =, cannot
be empty and 7, S7;. Set N and Z as in Lemma 34, and S=S§°.
Since Ze.y,, Ry<R, so Ry<R%. But as Hom(N, X)=0, we have
Sy< Ry so S’ <R, and hence Ry=RZ. If n,#0, then RZ is not of
the form R, for any 4 (repeat the argument in the preceding case with
H=H,,  , for gen,). Thus it must be the case that 7,=0 and so Ry=R,
where Z=T11,,J,.

Conversely, Rg =7 is idempotent, and Ry, z(,«), =2, ¢ » T, is idempotent.
If Y=T1I,J,, then for any A, R, A is pure in A as A/R, A is a subgroup of
a product of copies of ¥ and hence is torsion-free. Hence any map
fiRyA— Y extends to a map f:A4— Y which implies f=0. Thus
R34=R,A4 and R, is idempotent.
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The next proposition shows that cotorsion-free groups are not the only
groups which lead to non-singly cogenerated radical classes.

3.6. PROPOSITION. There exists a non-cotorsion-free group G with R% not
of the form R for any X.

Proof. Let p and g be distinct primes and Z, and Z, denote the
localizations of Z at p and ¢ respectively. Let Zq denote the p-adic com-
pletion of 7, and set G=27,87, If M is a Z,module, then
Homy(M, G)=Homg (M, 7,) and we may repeat the arguments above to
show that R¥ is not of the form Ry in the category of Z -modules. This at
the same time implies RZ is not of the form R, in the category of abelian
groups.

Our next result identifies the idempotent radicals that can appear as RZ
with G a non-cotorsion-free Z,-module. We denote the torsion subgroup
functor by 7, the divisible subgroup functor by 4, and the functor d: 7 is
defined by d: 1 is that subgroup of 4 containing t4 satisfying the equation
(d:tAd)jrA=d(A/tA).

37. TueoreM. If G is a non-cotorsion-free Z -module, then
Rz e{0,1,d,dr.d: 1}

Proof. Since G is not cotorsion-free, G contains at least one of the
following groups: @, Z'*", Z(p), Jp.

FZ(pT)<G, then R=RZ=0.If Q <G, then Rg< Ry =1;1f G is tor-
sion-free, then R;=R¥ =1; if G is not torsion-free, then Z{p)< G so
Rs< ptand so R =4t

If G is reduced and Z{p)< G, then RZ =d. If G is reduced and torsion-
free, then J,<G and 1< R;. Let X be any group, Y=X/tX and
Y=dY @ Z. The group Z is torsion-free reduced and hence can be embed-
ded in a product of copies of J,, and thus R;Z=0, so Rs(Y)=dY, and
consequently, R =d: .

3.8. Remark. If G is a non-cotorsion-free S-module where S is any dis-
crete valuation domain which is not a field, nor complete, then the above
theorem remains valid in the category of S-modules.

3.9. CorOLLARY. Let S be a proper subring of Q containing Z.
(a} If G is a cotorsion-free S-module, then R is not of the form Ry
for any X.

(b) RE not of the form Ry for any X holds if and only if G is coior-
sion-free is equivalent to S being local.
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IV. ALMOST STRONGLY COTORSION-FREE GROUPS

In this section, under the additional set-theoretic assumption that there
exists no measurable cardinal, we show that torsion theories singly
cogenerated by an almost strongly cotorsion-free group are not singly
generated. We also give some open problems of a set-theoretic nature.

A group X is almost strongly cotorsion-free if there exists a cardinal x,,
less than the first measurable cardinal X,,, such that Hom(Z,, X)=0 for
all k2 xk,, where Z,=7"/7=<" and Z<*= {feZ": |support of f| <k}.

5.1. THEOREM. (AK,,) Assume there is no measurable cardinal, and let X
be almost strongly cotorsion-free. Then the torsion theory T, singly
cogenerated by X is not singly generated.

Proof. Assume Ty is generated by H. Since X is almost strongly cotor-
sion-free, Hom(Z,., X)=0 for all regular cardinals x > x,. Therefore Z,
belongs to the torsion class generated by H, which implies
Hom(H, Z,)#0. Now by choosing x big enough and applying the
Wald-Los Lemma ([W1], see also Lemma 2.6 of [DG]), we obtain that
Z is a summand of H. This means 7', = (Z-mod, 0) a contradiction.

5.2. COROLLARY. (2R,,) Assume there exists no measurable cardinal. If
the torsion theory

T':({@aEv Q} (A)7 {H’ E, S} (B))

is singly generated and singly cogenerated, then Hom(Z,, B)#0 for
arbitrarily large k.

We conclude with some open problems. It is known [W2] that under
the assumption V' = L, cotorsion-free is equivalent to almost strongly cotor-
sion-free.

5.3. QuestioN. Can (V= L) be replaced by (2X,,)?

5.4. QUeSTION. Is there a “minimal” set-theoretic axiom making the
torsion theory T, not singly generated? That is, is there an axiom
equivalent to T, being singly generated?
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