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THE JOURNAL OF SYMBOLIC LoGic 

Volume 65. Number 4. Dec. 2000 

MORE ON ENTANGLED ORDERS 

OFER SHAFIR AND SAHARON SHELAH 

Introduction. This paper grew as a continuation of [Sh462] but in the present form 
it can serve as a motivation for it as well. We deal with the same notions, all defined 
in 1.1, and use just one simple lemma from there whose statement and proof we 
repeat as 2.1. Originally entangledness was introduced, in [BoSh210] for example, 
in order to get narrow boolean algebras and examples of the nonmultiplicativity of 
c.c-ness. These applications became marginal when other methods were found and 
successfully applied (especially Todorcevic walks) but after the pcf constructions 
which made their debut in [Sh-g] and were continued in [Sh462] it seems that this 
notion gained independence. 

Generally we aim at characterizing the existence of strong and weak entangled 
orders in cardinal arithmetic terms. In [Sh462, ?6] necessary conditions were shown 
for strong entangledness which in a previous version was erroneously proved to be 
equivalent to plain entangledness. In ? 1 we give a forcing counterexample to this 
equivalence and in ?2 we get those results for entangledness (certainly the most 
interesting case). A new construction of an entangled order ends this section. In 
?3 we get weaker results for positively entangledness, especially when supplemented 
with the existence of a separating point (Definition 2.2). An antipodal case is 
defined in 3.10 and completely characterized in 3.11. Lastly we outline in 3.12 a 
forcing example showing that these two subcases of positive entangledness comprise 
no dichotomy. The work was done during the fall of 1994 and the winter of 1995. 
The second author proved Theorems 1.2, 2.14, the result that is mentioned in Re- 
mark 2.11 and what appears in this version as Theorem 2.10(a) with the further 
assumption den(I)0 < /u. The first author is responsible for waving off this as- 
sumption (actually by showing that it holds in the general case), for Theorems 2.12 
and 2.13 in Section 2 and for the work which is presented in Section 3. 

Our only notational idiosyncrasy is obeying the Jerusalem convention -the 
stronger forcing condition is the greater one. We also abuse the logic by writing the 
assumption "There is a such-and-such order" as "I is such-and-such". We thank 
Shani Ben David for the beautiful typing. 

?1. Entangledness is not strong entangledness. 

DEFINITION 1.1. (a) A linear order (I, <) is called (,u, a)-entangled if for any 
matrix of distinct elements from it (tr I i < Ia, E < u,) (a, < a) and it c a, there 
are ae < f, < ,u satisfying VE < a, (t- <tK +-+ E c u). 
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1824 OFER SHAFIR AND SAHARON SHELAH 

(b) A linear order (I, <) is called (,u, u)-strongly entangled if for any matrix 
(tE i < ,u, < u,) (a1 < u) and u c a, s.t. Vao < uEVO C uVE6 C ol\u(t' z to') 
there are ae < f, < ,u satisfying VE < a, (t< ? t E 6 C u). 

(c) A linear order is called (,u, a) positively [positively*] entangled if for every 
a1 < a and any matrix (t- I E < a,, a < u) s.t. VE < aIVa, fl < ,u(t' 74 t') and 
u C {0}, a, there are ae < fl [a Z ,B] satisfying VE < a1 (t- < t E - C u). 

(d) The phrase "I is (,u, a) entangled with minimal ,u" stands for "I is (,I, a) 
entangled but not (,u', a) entangled for any ,u' < u". 

THEOREM 1.2. For any cardinals ) = )i< > 0, cfu = n > ) there is a cardinal 
preserving forcing adding a (u, 0+)-entangled order with minimal . In particular, it 
is not (,u, 0+) strongly entangled. 

PROOF. Fix (,u; I i < cfu) increasing to ,u and define IP = {p I domp C 

[,u]', for some ae < ) ranp C 2, p is 1-1, Va(2a C domp +-4 2a + 1 C domp) 
Vo, fl C [/i,,ui +,u) (p(2a) < p(2/3) +-+ p(2a+ 1) < p(2/+ 1)) } where < is the lex- 
icographic order. p < q iffdomp c domq and Va C domp (p(ae) <q(oa)). Easily P 
is )-closed. In order to see that it is also ?+-c.c. (hence cardinals preserving) note that 
Va < iVpo, p , p', p' c `2(po <] pO Ap I <] p' A po :i p I (Po < pl I+ Po < p')? 

so that if (p. I ce < A+) are from IP wlog {dompa I ce < )+} is a A system and for 
some p* C IP Va < )+Vi C dompa (pa (i) = p* (otp dompa n i)). Now define for 
ae < ,B < )+ 

(x) - pa (X) AO x C dompa 

) pp(x)AI x C domp# \ domp, 

and this element from IP satisfies pa, pp < q. Any IP-generic set induces A = (e 
a < u) c '2 which are distinct and satisfy Vao4 C [/,?/u + u i) (e2a < e2p ++ 

e2a+l < e2pX+i). Again, A is ordered lexicographically. This shows that (A,<) 
is not (,ui, 2)-entangled for all ,uI < ,u. Suppose by contradiction that A is not 
(,u, .)-entangled. In that case there is p C IP and p lF"(tr I i < ,u, E < ).), 

).1 < i u = {2p I p < ).} is a counterexample". For i < ,u pick p < pi and 
(o(, i) 6E < ).I) c dompi such that p; IF"A<;, tj- = ea(,i)". Wlog for some 

p* C PVi < ,uVj C dompi(pi(j) = p*(otpdomp n j)). 
We can assume also that for every i < ,u {e,() I E < Aj } c dompi and that 

(otpdompi n a(6, i) 6 E < ).1) does not depend on i (here we use the inequality 
K > ).) By the )+-c.c. we have two comparable elements, call them pi, p;. Now 
define 

Pi (y)O 
A y = a(i,2p) 

p1(y)A1 y=a(i,2p+1) 

q(Y) = P., (Y) A? y =- o(j, 2p +1) 

p,(y)AO y C domp; not as above 

p, (y) 
A O y C domp 1 not as above 

But p < q I-" t is not a counterexample by looking at i, j", a contradiction. 

For the second claim of the theorem apply [Sh462, 6.24(2)]. H 
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MORE ON ENTANGLED ORDERS 1825 

?2. Positive results on entangled orders. First we quote the useful lemma [Sh462, 
1.2(4)]. 

LEMMA 2.1. If I is (u, 2) entangled then the density of I is smaller than ,U. 

PROOF. Otherwise define inductively a sequence of intervals ((as, a 1 ) I a < ,U) 
s.t. (aO, a') exemplifies the nondensity of {ao, a'l / f < a} in I, i.e., disjoint to this 
set. Now the matrix {a' I i < 2, ar < fu} contradicts the entangledness with respect 
to u = {O}. 

DEFINITION 2.2. For a linear order I and x, y c I we define (x, y): = (x, y)I U 
(y,x)I. Wecallthepointxu-separativeif {Iy c I y < x}j, I{y I y > x}I > ,U. 

Let f (x) = minyEI\{Xv.} I (x, y) l. 

The following theorem states a basic property of entangled orders. 
THEOREM 2.3. If 0+ is infinite and (I, <) is (Hu, )-entangled linear order with 

minimal ,u then I{x C I f (x) < u} < t. 

PROOF. Suppose first ,u is limit. We assume that III = ,u if III < ,t the 
conclusion is trivial, and if II I > ,u we take any subset of I of cardinality ,U. Fix a 
strictly increasing sequence of successor cardinals converging to ,U, (,Ua I o1 < cf~U). 
Define on I the equivalence relation xEy -+ I (x, y) < 1u. We look for disjoint 
intervals (Ia I a < cf~u) satisfying IaI > fua. If the conclusion of the theorem 
fails then the union of the equivalent classes which have more than one element 
is of power 1u. If there are ,u many such classes choose (axz a/'|/3 < ,u) with 

no repetitions s.t. Vfl, ar < ,uVi, j C {0, 1 }(a'?Ear +-+ = /3) which contradicts 

(iu, 2)-entangledness with respect to u = {0}. So there are less than U classes. If 
any equivalence class has power smaller than JU then choose by induction for Ia 
any sufficiently large but yet unchosen class. Otherwise fix one class J, IJI = . 
Pick x C J and wlog I{y C I I y > x}I = fu (inversion of the order does not 
affect the entangledness). Choose inductively (xa I a < cfu) where xa will be 
taken as any element above the previous ones and if ar = / + 1 for some /3 then 

I(x/3, x)I I > fut. Set Ia = (xa, xa+l)I. Next choose counterexamples for (,uac, A)- 

entangledness Kt I E < 0,1i C [EZ<att, ta)ju u = (26 6 < 0). For any 

ar < cf~u choose different elements Kt I E C {t0, 0 + I}, i CE [Z UtI AU), in 

IC \ Kt E < 0, i c [Z,<ttta) (this is possible as by the entangledness 

0 < 20 < iu). Wlog all the tj above are with no repetitions. This contradicts the 
(ju, A))-entangledness with respect to u' = u U {0}. For a successor cardinal the 
proof is simpler since we may disregard the counterexamples. H 

DEFINITION 2.4. For a linear order I c.c. (I) is the first cardinality in which there is 
no family of disjoint nonempty open intervals. We define h.c.c.(I) = min{c.c.(J) 
J C [I]II}. 

LEMMA 2.5. If 0+ and I is (,u, ))-entangled linear order with minimal fu then 
for any {a; I i < 0t} c h.c.c.(I) we have '71i<oQ < cffu. 

PROOF. Assume not. After throwing away less than fu points of I we ensure that 
Vx C I (f (x) = A) (by Lemma 2.3). Suppose the theorem fails for {a; i < 0}. 
Choose for every i < 0 a collection of disjoint intervals {IQ I ar < Ci} and distinct 
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1826 OFER SHAFIR AND SAHARON SHELAH 

functions in HJl<(oa, (f, I a < cf~u). Fix counterexamples tj, u and cardinals (,Ua 

oa < cf~u) as above. For any E < 0 choose Kt0?26, t1Q+26+l C [Zji<a /' Mu) ) 

different elements from If.() \ { 6 < 0, i C [Efl<Ctj/, 8a) (remember that 

JI,] = ,u). Wlog all the to are with no repetitions and so (tE I E < 20, i < u) 
contradicts the (,u,)A) entangledness with respect to u' = u U (0 + 2E 6 E < 0). H 

LEMMA 2.6. If ) 0+ and I is (,u, ) entangled linear order with minimal , then 
K = h.c.c.(I) satisfies no < cf/u . 

PROOF. Choose (a; I i < cft,) unbounded in S. If cft, < 0 then ,&) = I-<CfKsv < 
cfu by Lemma 2.5. Otherwise by the same lemma Va < n((7 < cf~u) so that 

= n- Ei<cf, ac< < cf~u (remember that n < cfu). H 

The next corollary strengthens [Sh462, 6.17(a)] where I was assumed to be (u).) 
strongly entangled and we got only VO < )(20 < u). 

COROLLARY 2.7. If I is (,uH.) entangled linear order with density % then VO < 
)(Zf < U). 

PROOF. Fix 0 < A. Wlogi= 01- and ,u is minimal for which I is (,u, A) entangled. 
Let n = h.c.c.(I). We know that n c {X, X+}. By Lemma 2.6 we have to consider 
only the case = pu. By the proof above it follows that cfi > 0 and ,u = n 'i<cf, a(I 
(we keep the same notation) so that n = u = cfu. < ,u = n holds by 2.1 and we 
can use Lemma 2.5 to get the desired conclusion. H 

REMARK 2.8. The case % < K = u (- %+ follows) occurs for example in the 
construction from [BoSh210] if we assume CH (here X = 1o andu = l)- 

CONCLUSION 2.9. If I is (,u, A) entangled, ,u is regular, 0 < i and (t| i < fu, E < 0) 
is a matrix of different elements from I then for A c [,u]Y and a sequence of mutually 
disjoint intervals (I, I E < O)Vi c AVE < 0(t; c I,). 

PROOF. This is immediate from Corollary 2.7 and [Sh462, 1.2(3)]. H 

THEOREM 2.10. (a) If I is a (,u, A) entangled order with minimal /1 and 0+ 
then ) < h.c.c.(I) < cfu. (b) If I is a (,u, A) entangled order with minimal ,u and 
cftu a cf), < ) then its density X satisfies ) < X. 

PROOF. (a) Assume the contrary. By 2.6 h.c.c.(I) < cfjlso here ) > h.c.c.(I). 
For any x c I choose a strictly increasing sequence converging to it with minimal 
(hence a regular cardinal) length (ax I a < r(x)). By the assumption Vx (r(x) <). 
As IrangrI < Ou{0} = 0 < ) < cf~u (byLemma3.1) forsomea = (x i < 
,u) c I and some a < Vx C A (r(x) = a). Wlog Vx c I (f (x) = u). Define 
(to i < u, E < a) by induction on i: for any E < a choose to c (ani, a"1 ) different 
from previously chosen t's. This contradicts the (,u, A) entangledness with respect 
to U = (2E 6 E < a). (b) Assume not. Since cfu a cf for some 0+ < ) I is (,u, 0+) 
entangled with minimal ,u hence we get the conclusion of Theorem 2.3. Now in the 
proof of (a) r is into i since h.c.c.(I) < Z+ and we can ensure only its boundedness 
on a large A c I. Now take tj to be in (a',' a'i) where E6 is E modulo r(xi). H 

REMARK 2.1 1. Note that the conclusion of 2.10(a) () < cfu) is tight in view of 
Theorem 1.2. For inaccessible ) we have a forcing example of a (8,? i) entangled 
order with minimal ,u and cfu = A. 
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MORE ON ENTANGLED ORDERS 1827 

Next we give a weakening of Conclusion 2.9 which is valid also for singular ,u. 
THEOREM 2.12. If I is (u, ))-entangled then for any 0 < i and for any matrix 

(to 6 E < 0, i < u) of distinct elements there is a sequence of disjoint intervals 
(1E 6 < 0) such that all the at's and /3's in the definition of entangledness can be 
chosen to satisfy V6 < 0 (t-, t C 6IJ). 

PROOF. Suppose the theorem fails for I with density X. By Conclusion 2.9 u is 
singular. Let (,ui I i < cf~u) be a strictly increasing sequence of successor cardinals 
and (to I E < 0, i < u) a counterexample to the theorem. As Zo < u wlog /uO > X( 
and by induction on i we can choose (I' I E < 0, i < cf~u) such that (I,' I E < 0) are 

disjoint for all i < cfu, for i < cf~u {v c E,,<i ,i) Ve < 0(t C i u)} i 

-wlog this set is [Iu,,, -) and Vi < cf/u:j(i) < cf tVj > j(i)3E < 0 I. n 
a<i 

{tV ' v [Z/A/1I)} <j H hence wlog Vi, j < cfu(i IE I He < O(I1 oi= 

0)). As (tg i < u, E < 0) is a counterexample, for any i < cf/u there is ui c 0 such 

that Voe, C [Z Mu,,,ui)]E < 0t' < to -+ E 6 u. By a previous lemma 20 < cfu 
oz<i 

so wlog the us's are the same u. Now (sj I i < /, E < 30) defined by sE = K 
+ = 3j+1, - 3i+2 (i < /, E < 0) contradicts the (u, ))-entangledness with 

respect to u' = u U [0, 20). H 

THEOREM 2.13. If I is (u, 0+)-entangled with minimal ,u then there are two 0+- 
closed -c.c. posets whose product is not -c.c. 

PROOF. Let (xa I a < ,u) be distinct elements of I. Denote by -- the partial 
order on E {(X2,, X2a+i) I a < A} which is the product of <I with itself. Let 
A {a c [E]<? I a is -< -chain} and B = {a C [E]<? I 3x,y C a(x -C y)}. 
A and B are 0+-closed when ordered by inclusion and A x B is not /u-c.c. since 
{ ((x2a, X2a+1), (X2a, X2a+ i)) I a < ,u } is an antichain in it. If (a, a < u) C [E]?() 
then look at any matrix (t; I i < /, E < 0) satisfying VWo < yf{(tc, t+ 1) 6 < 0} D 
as, and apply Theorem 2.1 1 with respect to u 0 to see that it is not an A-antichain 
and with respect to u = {23 /1 < 0 } to see that it is not a B-antichain. This proves 
the theorem. H 

By previous theorems the existence of a (i+, A) entangled order implies that 
-' = A. Below we give sufficient conditions. 
THEOREM 2.14. If ). > Z7, and 2 )=A then there is a (i+? ) entangled 

order (also strongly as - 

PROOF. Fix an enumeration of all the triples (y, CE) where 6, y < i and C 

(,c I ay < y) c 6) is a sequence of different functions, ((ya, 1,6a) E a <A 
(remember that ).<X= - ). By [Sh460, 3.5] <'< = i > -1 implies that there 
are i disjoint stationary subsets of i (Sa I a < A) s.t. for each ar < i DI(Sj) 
holds. We remind the reader that Di(Sa) is a weakening of diamond and here 
we use the following form of it: there is a sequence (Pa I cl C Sa) s.t. P/I is 
a family of less than i sequences of length y, of functions from At. and given 
any sequence of length y, of functions from 2), (f; I i < y,), for stationary 
many ,1 C Sa(fi f I3 i < ye) C Pp. Since 22 - )A there is a cofinal and 
increasing sequence of functions (f , I a < A+ ) in ( i, <*) where <* means eventual 
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1828 OFER SHAFIR AND SAHARON SHELAH 

dominance. Now set A = {ff c At < A (26 < y# A a C St A ily') < f)} 

and define Il=(fa, Ia<A+) and f <I g iff f Aa Am f(e)< g(e) where 
oz min{/3 < A I f (f/) 4 g(/3)}. To prove that I is as required let y < A, u c y and 
(faj ,6 < i+, v < y) be as in Definition 1.1. To simplify the notation we write f{, 

for fa. Wlog (e,/'3 < A+) is increasing for all v < y, (for this replace the set of 
indices by an inductively chosen sequence of length A+) y is an infinite cardinal and 
u = (2a I a < y). For every / < A+ there is 6(,6) < A s.t. (f{3 E[(fl) I v < y) are 
distinct so that on B c [i+ ]) 

- 
all E (fl) are equal to some E * and all (f { 3 E ([,) I v < y) 

are the same, to be denoted by a*. Let fi be s.t. (y, a*, 6*) = (yp, /, 6p). If some 
60 < A and = a < y) c %? A satisfy that for all i < A+ and s < A there is C B 
s.t. = (fT [Eo r < y) and min{J j(so) I r < y4 > s then we are clearly done (take 
such 4 with respect to (0, 0) then such ;' with respect to (S. sup{f i(E, 0) I v < y 
Otherwise for every 7 as above there are witnesses for its failure, i (a7) and s (7) . Since 

<'d = A the supremum of i (Q) over all relevant 7 is less than i', denote it by i*. 
Defined: S A+ )iby 6 (a) = sup{() I 7 c P, } < A and using the cofinality of the 
fa 's find 4 c B \ i * for which s <* f, S[S. Now using Di (Si) there is ar c SJ/ s.t. 
(f4Fe [ v < y) cPa, moreoverwecanget a > supmin{6 USE S# 1(6) > f (E) 
so min fV (a) > Gz(a) >? (( f a[)), a contradiction. H 

REMARK 2.15. Notice that for A as in the theorem the construction in [BoSh210] 
gives only a (A+, 1o) entangled order. However, their proof gives also a (rI, 1o) 
entangled order and that is done assuming only cf2'0 = i I. Remember that under 
MA + 2'o > 81, there is no such an order at all. 

?3. Results on positively entangled orders. 

THEOREM 3.1. If I is a (u, A) [positively*] [positively] entangled linear order with 
minimal ,p then cftu > cfA. 

PROOF. Suppose not. We deal with positive entangledness (the other cases are 
similar). Fix (,ua I < cfpu) increasing to ,p and (a I a < cf~u) s.t. for every 
or < cfuA, < A and I is not (,ua, A+) positively entangled and counterexamples 

KtE K/ta, 6 {z E,, E ) j wlog all with respect to u 0 (here E stands for 
i<i j~i 

ordinal summation). In each row E choose fillers (t I -ua < i < ,u) different from 
(t i < 8oa). As E Ai < A this contradicts the (u, )-positively entangledness 

i<cfll 
with respect to u 0. H 

LEMMA 3.2. If a (u, A) positively* entangled linear order I has a -separative point 
then VO < A (20 < u). 

PROOF. Let x be such a point and suppose by contradiction 0 < A, 20 > ,U. Fix 
distinct functions (f, a a < u) c 02. Define (ti I E < 0, i < ,u) inductively on i: 
choose any x0 < x < xl different from previously chosen t's and put t x6+ Xe for 
? c {0, 1} if fi(E) 0 and ti6+e e else. This contradicts the (u, A)positively* 
entangledness. H 

COROLLARY 3.3. (a) If I is (,u, A) positively* entangled then X = denI > A. (b) If 
I is (u, A) positively* entangled then it is not (R, 2) entangled. 
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MORE ON ENTANGLED ORDERS 1829 

PROOF. Assume I is a counterexample for (a). Wlog ,u is the minimal cardinal 
s.t. I is (,u, x+) positively* entangled. If there is no ,t-separating point in I we can 
define inductively a monotone sequence in I of length cf/i which is greater than X by 
Theorem 3.1, a contradiction. If there is a ,t-separating point then by Lemma 2.3 
2x < u, a contradiction. (b) follows from (a) and Lemma 2.1 [Sh462, 1.2(4)]. -1 

THEOREM 3.4. If I is (u, A) positively entangled then VO < )(20 < u). 

PROOF. Suppose this fails for some 0. Wlog i = 0+. In view of Lemma 3.2 we can 
assume that I has no ,t-separating point. It follows that cfu < u. For any ,uI < u 
there is a ,u t-separating point, otherwise wlog Vx C Ij{y E I j y < x}I < ,Ut, so 
we can define an increasing sequence of length u I + 1 and pick the last element of 
it. By Lemma 3.2 I is not (,u , A) positively* entangled for any 1uI < 1U. But now 
if (,u, I a < cf~u) are increasing to ,u, ((tE I E < 0,i C [Utaztai+)) I < cf/t) 
are counterexamples for (jua, A) positively* entangledness and (I, I a < cf~u) is 
an inductively chosen monotone sequence of intervals s.t. IIa > ua (here we use 
the nonexistence of a ,t-separating point) then pick for every ar < cfu different 
({ i C [/1c t,+j1)) from Ia to contradict the (iu, A) positively entangledness with 

Et l< 0, i<,U). 

THEOREM 3.5. If I is (H. A) positively entangled with minimal ,U which has a t- 

separative point and i = 0+ then 20 < cfu. In particular i < cfu. 

PROOF. Let x c I be ,p-separating and assume that 20 > cfu. Fix distinct 
(fa ao < cfu) c 02 and choose (tr I E < Oi c [,ua,, a+i)) counterexamples for 
(,Ua, A) positively entangledness, wlog all with respect to u 0. For every E < 0 
choose by induction on aexo < x < xl different from previously chosen elements 
and put tt+, = Xe for X C {0, 1} if fp(E) = 0 and to+- = xi-e else (here fi is 
s.t. ar C [,u#,u+1)). (t a |o < tu E < 0 + 0) contradicts the (,ut) positively 
entangledness. H 

Notice that below one cannot wave off the assumption cftu :& cfX (see Re- 
mark 2.1 1). 

COROLLARY 3.6. If I is (Hu, ) positively entangled with minimal ,t which has a t- 

separative point and cftu : cfX then VO < X(20) < cfu) and i < cfu . 

PROOF. As cftu :& cfX there is 01 < i such that I is (,u, 0+) entangled with minimal 
,u for every 01 < 0 < i so we can use Theorem 3.5. Note that the possibility i = cf~u 
is excluded by the assumption. -1 

DEFINITION 3.7. A linear order I is called hereditarily separative if every A E 

[I]III has a III-separative point. The assumption below (X is singular strong limit 
X ppX =+ 22) is not known to be independent of ZFC. See [Sh-g]. 

THEOREM 3.8. If I is hereditarily separative (H,. X)-positively entangled with mini- 
mal t, cfau : cfX and (X is singular strong limit X#> ppX =+ 22) then ><2 < cf'u. 

PROOF. If i is not strong limit then for some 01 < i we have i < 20' and 
by Theorem 3.5 VO < X(Git < 20+01 < cf~u). If i is inaccessible >2 - i so 
we can apply Corollary 3.6. We are left with the case i is strong limit singular, 
ppX =+ 22. Fix 0 < A. By the trivial direction of [Sh410, 3.7] there are functions 
(f a I a< (O) C 0Xs.t.Va <fi< X0ge <0(f, < fB(E)). Assume thatXo > cfa.I 
If A is an equivalence class of the equivalence relation xEy " I (x, y)j I < u and 
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1830 OFER SHAFIR AND SAHARON SHELAH 

is of cardinality pu then pick any x E A. Wlog I{y E A: y > x}j = u. Since 
I is hereditarily separative {y E A I y > x } has ya-separative point, call it z. In 
particular I (x, z)jI = u so xJz, a contradiction. We conclude that any equivalence 
class of E is of size less than ,u which implies that there are at least cf~u many such 
classes. By Corollary 3.6 i < cfu and as i is strong limit (20) + < A. Choosing any 
(20) + distinct equivalence classes of E they inherit the order I since they are convex 
subsets of it so by the Erdds-Rado theorem 0 many from them form a monotone 
sequence, call it (J., a < 0). Replacing it by (J,' a a < 0) where J' = convex 
(J2, U J2 + i ) we ensure also Va ( J,' I = u), (this is as J' contains an interval between 
two nonequivalent points). Of course, this can be done for any r < i instead of 
0. Starting from any such, wlog, increasing sequence (J., a < cfX) (remember 
that cf < A) we fix a strictly monotone sequence of cardinals converging to i, 
( a., I a < cf). Any J, is also hereditarily separative so it contains by the same 
argument monotone sequence of length i,, of intervals of power yu (J3 ,I < i,). If 
in one J, there is no increasing sequence of length i, then starting from decreasing 
intervals (Jar I a < cf~u) inside this J, we can take all the sequences decreasing. 
Otherwise we take them all increasing. Concatenating them yields a monotone 
sequence of intervals (I,, a < A), Va(l = iu). Now choose (,u, I a < cf~u) 
(tc I a < u, E < 0) as in the proof of Theorem 3.5. For all E < 0 choose by 
induction on a to+ C IfX(E) \ {t+ I y < a} where a e [,u13, ,u#+). This is always 
possible because Va (lI,, I = u). Now check that (tc I a < u, E < 0 + 0) contradicts 
the (,u, X)-positively entangledness. We conclude that V0 < X(X() < cfu). AsX < cf~u 
this gives the desired inequality 1 

Compare the following with Theorem 2.10(b). 

COROLLARY 3.9. If I is (Hu, ) positively entangled hereditarily separative linear 
order with minimal u and with density y, cfiu : cfA < i and (A is strong limit singular 

- ppA =~- 22) then y > A. 

PROOF. Assume that I is a counterexample and deduce by Corollary 3.3(a) that 
= A. Fix A E [I]f dense in I. For every x E I find a well ordered sequence of 

elements from A converging to x of minimal length (a' I a < r (x)). By minimality 
r (x) is always a regular cardinal hence smaller than A. By Theorem 3.8 2<d < cfu so 
there are two distinct points in I with the same sequences, a clear contradiction. -A 

Below we deal with a typical example of orders I that (usually) have no II - 
separative points. 

DEFINITION 3.10. If u is a singular cardinal then a linear order I is called "of type 

s/1l if it contains for some (equivalently any) sequence of cardinals converging to yu 
(u, a a < cfu) an isomorphic copy of Ua,<cf,,,{I } X #e ordered by (a, ,) < (aI, PlI) 
iff a < a, or a= al and f > PI. We say that "s,, is (,u, A) positively entangled" if 
some (equivalently any) order of type sp has this property. 

THEOREM 3.1 1. Sp is (H, 0+) -positively entangled iff 0 < cfya and (cfi) 0 < u. 

PROOF. Throughout the proof fix a sequence of successor cardinals (,u, I a < 
cfu) strictly increasing to 1u. First assume (cfyu)0 < yu and 0 < cf~u. Given any 
(tg I a > 1u,E < 0) as in Definition 1.1(c) then, as (cf~u) 0 < ,u, there is A < y 
of cardinality (20)+ for which if a, ,6 E A and E < 0 then t' and t[ have the 
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MORE ON ENTANGLED ORDERS 1831 

same first coordinate. Now we can find a, /3 E A satisfying Ve < 0(tg > t[) and 
a < P3. Otherwise color [A]2 with f ({a, P}) = min{e < 0 | tc < to} (here a < 16) 
and using Erdds-Rado get a homogeneous set of size 0 giving rise to a decreasing 
sequence of ordinals of this length, a contradiction. To get the other condition 
observe that U,<0 {oa < u I to? > tj } is of cardinality less than 1u as it is a union of 
size less than cf~u of initial segments of sp, which is of order type ,u. For any a in 
its complements we have Ve < 0 (t? < tS ). We conclude that s1l is (1u, 0 +)-positively 
entangled. 

Suppose (cfiu)0 > 1u, hence there are distinct (fox I a < Al) C 0 (cf~u). Wlog 
VaW > u, (min f, > a). For E < 0 P = po, + y < po+l define tg = (fdE), y) E s1. 
Now fix any a < cf~u and choose a partition of Ua+2 to jIra1 unbounded sets 
(All 3 s < 1uc,,). For any E < 0 look at the relation on uc,+, \ uc, defined by 
P6 <E y +-+ ft (E) < , (E). -E is a partial order with no infinite decreasing sequences 
so we can define a rank function g. into YUa+2 satisfying P6 -s y -- g, (16) < g (y) 
by --recursion: g,(l) = minAf \ sup{g,(y) I y <E P}. For P3 E +1 \ AUd, 

set t13 = (a + 2, gE (16)). By the construction the t's are different in each u-row. 
If 16 < y < u then either Hoa < cfu(,uc, ? 1 < ,< < uc,+,) in this case since the 
fto's are distinct there is E < 0 for which f#(E) f f,(E); or fp#(E) < f ,(E) so 

tf < t' or ffi(6) > ft (E) which implies P >A y, g, (P) > g (y) and tfl < t)+ 

We summarize that VPl < y < juie < 0 + 0(tg < t') which means that sp is not 
(,u, 0+)-positively entangled. 

Finally we show that sl cannot be (lu, (cf~u)+)-positively entangled. For this 
partition cf~u into cf~u mutually disjoint stationary sets (A,, a a < cf~u) and enu- 
merate their elements A,, = (aiz i < cf~u). Wlog Va(a" > a). For any 
6 < fob16 /iA + y < uoz+l set t1 - (as, y) E sl. These t's are different in 

each P-row. Now if for some 16 < y < 1u Ve < cfu (to < t"') holds then necessarily 
there are distinct a, a < cf~u s.t. 16 E [/uouql)? y E [,u0,,u,?+). The function 
f {(a, a ) 6 E < cfu} is a one to one regressive function with domain A. which 
is stationary a contradiction. - 

By the above theorem one can see that Theorem 3.5 does not hold generally. (For 
any 0 take = (20)+?O. Now s, is (1u, 0+) positively entangled but cfu = 0+ < 20). 

THEOREM 3.12. There is a ccc. forcing adding a (RK ,o) positively entangled linear 
order of density to (in particular not of type sizj which has no tK,,-separative point. 

PROOF. Fix any n < co and define P = {ff is a function, domf E [n x tce]<`, 
ranf c 2<'Jift,.1 < a < 16 < ,areindomf then '3i < n((i,a),(iP) C 

domf A f(ia) <ef f (i, P))}. The order is f < g iff domf D domg and 
Vx E dorng(g(x) < f (x)). If G is P generic we define I - U,,.,<,,m + {x E 
2"' 1 Vi < wo-f E G y E n x [p, 511?al+I)(f(y) = x Li)} after identifying 20' with 
Cantor set. The rest is almost identical to the proof of Theorem 1.1. -A 
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