Two cardinal invariants of the continuum ($\mathfrak{d}<\mathfrak{a}$) and FS linearly ordered iterated forcing

by
SAHARON SHELAH
The Hebrew University of Jerusalem
Jerusalem, Israel

Contents

§0. Introduction.

$\S 1 . \operatorname{CON}(\mathfrak{a}>\mathfrak{d})$. We prove the consistency of the inequality mentioned in the title, relying on the theory of CS-iteration of nep forcing (from [S8], this proof is a concise version).
§2. On $\operatorname{CON}(\mathfrak{a}>\mathfrak{d})$ revisited with $F S$, non-transitive memory of non-well-ordered length. This does not depend on $\S 1$. We define "FSI-template", a depth on the subsets on which we shall do induction; we are interested just in the cases where the depth is some ordinal (and not ∞). Now the iteration is defined and its properties are proved simultaneously by induction on the depth. After we have understood such iterations sufficiently well, we proceed to prove the consistency in details.
§3. Eliminating the measurable. In §2, for checking the criterion which appears there for having " \mathfrak{a} large", we have used ultrapower by some \varkappa-complete ultrafilter. Here we construct templates of cardinality, e.g. \aleph_{3}, which satisfy the criterion; by constructing them such that any sequence of ω-tuples of appropriate length has a (big) subsequence which is "convergent", so some complete \varkappa-complete filter behaves for an appropriate \varkappa sequence of names of reals as if it is an ultrafilter and as if the sequence has appropriate limit.
§4. On related cardinal invariants. We prove, e.g., the consistency of $\mathfrak{u}<\mathfrak{a}$. Here the forcing notions are not so definable, so this gives a third proof of the main theorem (but the points which repeat $\S 3$ are not repeated).

[^0]
0. Introduction

We deal with the theory of iteration of forcing notions for the continuum, and prove $\operatorname{CON}(\mathfrak{a}>\mathfrak{d})$ and related results. We present it in several perspectives; so $\S \S 2$ and 3 do not depend on $\S 1$; and $\S 4$ does not depend on $\S \S 1,2$ and 3 . In $\S 2$ we introduce and investigate iterations which are of finite support but with non-transitive memory and linear, non-well-ordered length, and prove $\operatorname{CON}(\mathfrak{a}>\mathfrak{d})$ using a measurable. In $\S 4$ we also answer related questions $(u<\mathfrak{a})$; in $\S 3$, relying on $\S 2$ we eliminate the use of a measurable, and in $\S 1$ we rely heavily on [S8].

Very basically, the difference we use between \mathfrak{a} on one hand and \mathfrak{b} and \mathfrak{d} on the other hand is that \mathfrak{a} speaks on a set, whereas \mathfrak{b} is witnessed by a sequence and \mathfrak{d} by a quite directed family; it essentially deals with cofinality; so every unbounded subsequence is a witness as well, i.e. the relevant relation is transitive; when $\mathfrak{b}=\mathfrak{d}$ things are smooth, otherwise the situation is still similar. This manifests itself by using ultrapowers for some \varkappa-complete ultrafilter (in model-theoretic outlook), and by using "convergent sequences" (see [S1], or the existence of Av, the average, in [S3]) in $\S \S 2$ and 3, respectively. The meaning of "model-theoretic outlook" is that by experience set theorists starting to hear an explanation of the forcing tend to think of an elementary embedding $\mathbf{j}: \mathbf{V} \rightarrow M$, and then the limit practically does not make sense (though of course we can translate). Note that ultrapowers by, e.g., an ultrafilter on \varkappa, preserve any witness for a cofinality of a linear order being $\geqslant \varkappa^{+}$(or the cofinality of a \varkappa^{+}-directed partial order), as the set of old elements is cofinal and a cofinal subset of a cofinal subset is a cofinal subset. On the other hand, the ultrapower always "increases" a set of cardinality at least \varkappa, the completeness of the ultrafilter.
"Is $\mathfrak{a} \leqslant \mathfrak{d}$?" is one of the oldest problems and well known on cardinal invariants of the continuum (see [D]). It was mostly thought (certainly by me) that consistently $\mathfrak{a}>\mathfrak{d}$ and that the natural way to proceed is by CS-iteration $\left\langle\mathbf{P}_{i}, \mathbf{Q}_{i}: i<\omega_{2}\right\rangle$ of proper ${ }^{\omega} \omega$-bounding forcing notions, starting with $\mathbf{V} \vDash \mathrm{GCH}$, and $\left|\mathbf{P}_{i}\right|=\aleph_{1}$ for $i<\omega_{2}$ and \mathbf{Q}_{i} "deal" with one MAD family $\mathcal{A}_{i} \in \mathbf{V}^{\mathbf{P}_{i}}, \mathcal{A}_{i} \subseteq[\omega]^{\aleph_{0}}$, adding an infinite subset of ω almost disjoint to every $A \in \mathcal{A}_{i}$. The needed iteration theorem holds by [S4, Chapter $\left.V, \S 4\right]$, saying that in $\mathbf{V}^{\mathbf{P}} \boldsymbol{\omega}_{2}$, $\mathfrak{d}=\mathfrak{b}=\aleph_{1}$ and no cardinal is collapsed, but the single step forcing is not known to exist. This has been explained in details in [S5].

We do not proceed in this way but in a totally different direction involving making the continuum large, so we still do not know the answer to the following problem.

Problem 0.1. Is $\mathrm{ZFC}+2^{\aleph_{0}}+\aleph_{2}+\mathfrak{a}>\mathfrak{d}$ consistent?
To clarify our idea, let D be a normal ultrafilter on \varkappa, a measurable cardinal, and consider a c.c.c. (countable chain condition) forcing notion \mathbf{P} and
(a) a sequence $\bar{f}=\left\langle{\underset{\sim}{\alpha}}^{f}: \alpha<\varkappa^{+}\right\rangle$of \mathbf{P}-names such that $\vdash_{\mathbf{P}} "\left\langle{\underset{\sim}{\alpha}}^{f_{\alpha}}: \alpha<\varkappa^{+}\right\rangle$is $<^{*}$ increasing cofinal in ${ }^{\omega} \omega^{\prime \prime}$ (so that \bar{f} exemplifies $\Vdash_{\mathbf{P}}{ }^{" \mathfrak{b}}=\mathfrak{d}=\varkappa^{+} "$), and
(b) a sequence $\left\langle\underset{\sim}{A_{\alpha}}: \alpha<\alpha^{*}\right\rangle$ of \mathbf{P}-names such that $\Vdash_{\mathbf{P}^{\prime \prime}}\left\{\underset{\sim}{A_{\alpha}}: \alpha<\alpha^{*}\right\}$ is MAD, that is, $\alpha \neq \beta \Rightarrow{\underset{\sim}{\alpha}}_{\alpha}^{A_{\alpha}}{\underset{\sim}{A}}_{\beta}$ is finite and ${\underset{\sim}{\alpha}}_{\alpha}^{A_{\alpha}} \in[\omega]^{\aleph_{0}} "$.

Now $\mathbf{P}_{1}=\mathbf{P}^{\varkappa} / D$ also is a c.c.c. forcing notion by Loś' theorem for $\mathbf{L}_{\varkappa, \varkappa} ;$ let $\mathbf{j}: \mathbf{P} \rightarrow \mathbf{P}_{1}$ be the canonical embedding; moreover, under the canonical identification we have $\mathbf{P} \prec_{\mathbf{L}_{\varkappa, x}} \mathbf{P}_{1}$. So also $\Vdash_{\mathbf{P}_{1}}$ " ${\underset{\sim}{\alpha}}^{\mathcal{D}^{\omega}}{ }^{\omega}$ ", recalling that $\underset{\sim}{f}{ }_{\alpha}$ actually consists of ω maximal antichains of \mathbf{P} (or think of $(\mathcal{H}(\chi), \in)^{x} / D, \chi$ large enough). Similarly $\Vdash_{\mathbf{P}_{1}}$ " $f_{\alpha}<{ }^{*} f_{\beta}$ if $\alpha<\beta<\varkappa^{+}$".
 $\vdash_{\mathbf{P}}$ " $g_{\varepsilon}<^{*} f_{\alpha}$ for $\varepsilon<\varkappa$ ". Hence by Loś' theorem $\Vdash_{\mathbf{P}_{1}} " g{ }_{\sim}<^{*} f_{\alpha}$ " (so before the identification this means $\left.\Vdash_{\mathbf{P}_{1}} " \underset{\sim}{g}<^{*} \mathbf{j}\left(f_{\alpha}\right) "\right)$, so $\left\langle{\underset{\sim}{\alpha}}^{f_{\alpha}}: \alpha<\varkappa^{+}\right\rangle$exemplifies also $\Vdash_{\mathbf{P}_{1}} " \mathfrak{b}=\mathfrak{d}=\varkappa^{+} "$.

On the other hand, $\left\langle{\underset{\sim}{\alpha}}_{\alpha}: \alpha<\alpha^{*}\right\rangle$ cannot exemplify that $\mathfrak{a} \leqslant \varkappa^{+}$in $\mathbf{V}^{\mathbf{P}_{1}}$ because $\alpha^{*} \geqslant \varkappa^{+}$ (as ZFC $\vDash \mathfrak{b} \leqslant \mathfrak{a}$), so $\langle\underset{\sim}{A}{\underset{\sim}{\alpha}}: \alpha<\mathcal{X}\rangle / D$ exemplifies that $\vdash_{\mathbf{P}_{1}}$ " $\left\{{\underset{\sim}{A}}_{\alpha}: \alpha<\alpha^{*}\right\}$ is not MAD".

Our original idea here is to start with an FS-iteration $\overline{\mathbf{Q}}^{0}=\left\langle\mathbf{P}_{i}^{0}, \mathbf{Q}_{i}^{0}: i<\varkappa^{+}\right\rangle$of nep c.c.c. forcing notions, \mathbf{Q}_{i}^{0} adding a dominating real (e.g. dominating real $=$ Hechler forcing), for \varkappa a measurable cardinal, and let D be a \varkappa-complete uniform ultrafilter on \varkappa and $\chi \gg \varkappa$. Then let $L_{0}=\varkappa^{+}$, and let $\overline{\mathbf{Q}}^{1}=\left\langle\mathbf{P}_{i}^{1}, \mathbf{Q}_{i}^{1}: i \in L_{1}\right\rangle$ be $\overline{\mathbf{Q}}^{0}$ as interpreted in $\left(\mathcal{H}(\chi), \in,<_{\chi}^{*}\right)^{\varkappa} / D$. It looks like $\overline{\mathbf{Q}}^{0}$ replacing \varkappa^{+}by $\left(\varkappa^{+}\right)^{\varkappa} / D$. We look at $\operatorname{Lim}\left(\overline{\mathbf{Q}}^{0}\right)=$ $\bigcup_{i} \mathbf{P}_{i}$ as a subforcing of $\operatorname{Lim}\left(\overline{\mathbf{Q}}^{1}\right)$ identifying \mathbf{Q}_{i} with $\mathbf{Q}_{\mathbf{j}_{0}(i)}, \mathbf{j}_{0}$ being the canonical elementary embedding of \varkappa^{+}into $\left(\varkappa^{+}\right)^{\varkappa} / D$ (no Mostowski collapse!). We continue to define $\overline{\mathbf{Q}}^{n}$ and then $\overline{\mathbf{Q}}^{\omega}$ as the following limit: for the original $i \in \varkappa^{+}$, we use the definition, otherwise we use direct limit ("founding father's privilege" you may say). So $\mathbf{P}^{i}=\operatorname{Lim}\left(\overline{\mathbf{Q}}^{i}\right)$ is $<$-increasing, continuous when $\mathrm{cf}(i)>\aleph_{0}$; so now we have a kind of iteration with non-transitive memory and a non-well-founded base. We continue \varkappa^{++}times. Now in $\mathbf{V}^{\text {Lim }\left(\overline{\mathbf{Q}}^{\varkappa^{++}}\right)}$, the original \varkappa^{+}generic reals exemplify $\mathfrak{b}=\mathfrak{d}=\varkappa^{+}$, so we know that $\mathfrak{a} \geqslant \varkappa^{+}$. To finish assume that $p \Vdash^{\text {" }}\left\{\underset{\sim}{A_{\gamma}}: \gamma<\varkappa^{+}\right\} \subseteq[\omega]^{\aleph_{0}}$ is a MAD family". Each name $\underset{\sim}{A}$ is a "countable object" and so depends on countably many conditions, so all of them are in $\operatorname{Lim}\left(\overline{\mathbf{Q}}^{i}\right)$ for some $i<\varkappa^{++}$. In the next stage, $\overline{\mathbf{Q}}^{i+1},\left\langle\underset{\sim}{A_{\gamma}}: \gamma<\varkappa\right\rangle / D$ is a name of an infinite subset of ω almost disjoint to $\underset{\sim}{A_{\beta}}$ for each $\beta<\varkappa^{+}$, a contradiction.

All this is a reasonable scheme. This is done in $\S 1$ but rely on "nep forcing" from [S 8]. But another self-contained approach is in $\S \S 2$ and 3 , where the meaning of the iteration is more on the surface (and also, in $\S 3$, help to eliminate the use of large cardinals). In $\S 4$ we deal with the case of an additional cardinal invariant, u.

Note that just using FS-iteration on a non-well-ordered linear order L (instead of an ordinal) is impossible by a theorem of Hjorth. On non-linear orders for iterations (history and background) see [S10]. On iteration with non-transitive memory see [S6], [S7], and
in particular $[\mathrm{S} 7, \S 3]$. Continuing this work J. Brendle has proved the consistency of $\boldsymbol{a}=\aleph_{0}$ (note that in Lemma 3.5 we have assumed that $\lambda=\lambda^{\aleph_{0}}$ in \mathbf{V}, and hence $\boldsymbol{c f}(\lambda)>\aleph_{0}$ even in $\mathbf{V}^{\mathbf{P}}$).

I thank Heike Mildenberger and Juris Steprans for their helpful comments.

1. On $\operatorname{Con}(\mathfrak{a}>\mathfrak{d})$

In this section, we look at it in the context of [S8] and we use a measurable.
Definition 1.1. (1) Given sets A_{l} of ordinals for $l<n$, we say that \mathcal{T} is an $\left(A_{0}, \ldots, A_{n-1}\right)$-tree if $\mathcal{T}=\bigcup_{k<\omega} \mathcal{T}_{k}$, where

$$
\mathcal{T}_{k} \subseteq\left\{\left(\eta_{0}, \ldots, \eta_{l}, \ldots, \eta_{n-1}\right): \eta_{l} \in{ }^{k}\left(A_{l}\right) \text { for } l<n\right\}
$$

and \mathcal{T} is ordered by $\bar{\eta} \leqslant \mathcal{T} \bar{\nu} \Leftrightarrow \bigwedge_{l<n} \eta_{l} \unlhd \nu_{l}$, and we let $\bar{\eta} 1 k_{1}:=\left\langle\eta_{l} \upharpoonright k_{1}: l<n\right\rangle$ and demand that $\bar{\eta} \in \mathcal{T}_{k} \& k_{1}<k \Rightarrow \bar{\eta} \mid k_{1} \in \mathcal{T}_{k_{1}}$. We call \mathcal{T} locally countable if $k \in[1, \omega) \& \bar{\eta} \in \mathcal{T}_{k} \Rightarrow$ $\left|\left\{\bar{\nu} \in \mathcal{T}_{k+1}: \bar{\eta} \leqslant \mathcal{T} \bar{\nu}\right\}\right| \leqslant \aleph_{0}$. Let

$$
\lim (\mathcal{T})=\left\{\left\langle\eta_{l}: l<n\right\rangle: \eta_{l} \in^{\omega}\left(A_{l}\right) \text { for } l<k \text { and } m<\omega \Rightarrow\left\langle\eta_{l} \upharpoonright m: l<n\right\rangle \in \mathcal{T}\right\}
$$

Lastly for $n_{1} \leqslant n$ we let
$\operatorname{prj} \lim _{n_{1}}(\mathcal{T})=\left\{\left\langle\eta_{l}: l<n_{1}\right\rangle:\right.$ for some $\eta_{n_{1}}, \ldots, \eta_{n-1}$ we have $\left.\left\langle\eta_{l}: l<n\right\rangle \in \lim (\mathcal{T})\right\} ;$
and if n_{1} is omitted we mean $n_{1}=n-1$.
(2) We let
$\mathfrak{K}=\{\overline{\mathcal{T}}:$ for some sets A and B of ordinals we have
(i) $\overline{\mathcal{T}}=\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$;
(ii) \mathcal{T}_{1} is a locally countable (A, B)-tree;
(iii) \mathcal{T}_{2} is a locally countable (A, A, B)-tree;
(iv) $\mathbf{Q}_{\overline{\mathcal{T}}}:=\left(\operatorname{prj} \lim \left(\mathcal{T}_{1}\right), \operatorname{prj} \lim \left(\mathcal{T}_{2}\right)\right)$ is a c.c.c. forcing notion absolutely under c.c.c. forcing notions (see below) \}.
(2A) We say that $\mathbf{Q}_{\overline{\mathcal{T}}}$ is c.c.c. absolutely for c.c.c. forcing if: for c.c.c. forcing notions $\mathbf{P} \lessdot \mathbf{R}$ we have $\mathbf{P} * \mathbf{Q}_{\overline{\mathcal{T}}} \lessdot \mathbf{R} * \mathbf{Q}_{\bar{T}}$ (though not necessarily $\mathbf{Q}_{\overline{\mathcal{T}}}{ }^{\mathbf{P}} \lessdot \mathbf{Q}_{\overline{\mathcal{T}}}{ }^{\mathbf{R}}$ in $\mathbf{V}^{\mathbf{R}}$), so that membership, order, non-order, compatibility, non-compatibility, and being predense over p in the universe $\mathbf{V}^{\mathbf{P}}$, are preserved in passing to $\mathbf{V}^{\mathbf{R}}$; note that the predense sets belong to $\mathbf{V}^{\mathbf{P}}$ (the $\mathbf{Q}_{\overline{\mathcal{T}}}$'s are snep, from [S8] with slight restriction). Similarly we
define " $\mathbf{Q}_{\overline{\mathcal{T}}} \lessdot \mathbf{Q}_{\overline{\mathcal{T}}}$ absolutely under c.c.c. forcing" (compare with clause (A)(a)(iii) in Definition 2.6).
(3) For a set or class A of ordinals, $\mathfrak{K}_{A}^{\varkappa}$ is the family of $\overline{\mathcal{T}} \in \mathfrak{K}$ which are a pair of objects, the first an (A, B)-tree and the second an (A, A, B)-tree for some B such that $\left|\mathcal{T}_{1}\right| \leqslant \varkappa$ and $\left|\mathcal{T}_{2}\right| \leqslant \varkappa$. For a cardinal \varkappa and a pairing function pr with inverses pr_{1} and pr_{2}, let $\mathfrak{K}_{\mathrm{pr}_{1}, \gamma}^{\varkappa}=\mathfrak{K}_{\left\{\alpha: \mathrm{pr}_{1}(\alpha)=\gamma\right\}}^{\varkappa}$ and $\mathfrak{K}_{\mathrm{pr}_{1},<\gamma}^{\varkappa}=\mathfrak{K}_{\left\{\alpha: \mathrm{pr}_{1}(\alpha)<\gamma\right\}}^{\varkappa}$. Let $|\overline{\mathcal{T}}|=\left|\mathcal{T}_{1}\right|+\left|\mathcal{T}_{2}\right|$.
(4) Let $\overline{\mathcal{T}}, \overline{\mathcal{T}}^{\prime} \in \mathfrak{K}$. We say that \mathbf{f} is an isomorphism from $\overline{\mathcal{T}}$ onto $\overline{\mathcal{T}}^{\prime}$ when $\mathbf{f}=\left(f_{1}, f_{2}\right)$ and for $m=1,2$ we have: f_{m} is a one-to-one function from \mathcal{T}_{m} onto \mathcal{T}_{m}^{\prime} preserving the level (in the respective trees), preserving the relations $x=y \upharpoonleft k, x \neq y 1 k$, and if $f_{2}\left(\left(\eta_{1}, \eta_{2}, \eta_{3}\right)\right)=$ $\left(\eta_{1}^{\prime}, \eta_{2}^{\prime}, \eta_{3}^{\prime}\right), f_{1}\left(\left(\nu_{1}, \nu_{2}\right)\right)=\left(\nu_{1}^{\prime}, \nu_{2}^{\prime}\right)$, then $\left[\eta_{1}=\nu_{1} \Leftrightarrow \eta_{1}^{\prime}=\nu_{1}^{\prime}\right]$ and $\left[\eta_{2}=\nu_{1} \Leftrightarrow \eta_{2}^{\prime}=\nu_{1}^{\prime}\right]$.

In this case let $\hat{\mathbf{f}}$ be the isomorphism induced by \mathbf{f} from $\mathbf{Q}_{\overline{\mathcal{T}}}$ onto $\mathbf{Q}_{\overline{\mathcal{T}}^{\prime}}$.
Definition 1.2. For $\overline{\mathcal{T}}^{\prime}, \overline{\mathcal{T}}^{\prime \prime} \in \mathfrak{K}$ let $\overline{\mathcal{T}}^{\prime} \leqslant{ }_{\mathfrak{K}} \overline{\mathcal{T}}^{\prime \prime}$ mean:
(a) $\mathcal{T}_{l}^{\prime} \subseteq \mathcal{T}_{l}^{\prime \prime}$ (as trees) for $l=1,2$;
(b) if $l \in\{1,2\}, \bar{\eta} \in \mathcal{T}_{l}^{\prime \prime} \backslash \mathcal{T}_{l}^{\prime}$ and $\bar{\eta} \mid k \in \mathcal{T}_{l}^{\prime}$ then $k \leqslant 1$;
(c) $\mathbf{Q}_{\overline{\mathcal{T}}}$ $\lessdot \mathbf{Q}_{\overline{\mathcal{T}}^{\prime \prime}}$ (absolutely under c.c.c. forcing); note that by (a) and (b) we have:

$$
x \in \mathbf{Q}_{\overline{\mathcal{T}}^{\prime}} \Longrightarrow x \in \mathbf{Q}_{\overline{\mathcal{T}}^{\prime \prime}} \quad \text { and } \quad \mathbf{Q}_{\overline{\mathcal{T}}^{\prime}} \vDash x \leqslant y \Longrightarrow \mathbf{Q}_{\overline{\mathcal{T}}^{\prime \prime}} \vDash x \leqslant y
$$

Remark. The definition is tailored such that the union of an increasing chain will give a forcing notion which is the union.

Claim/Definition 1.3. (0) The relation $\leqslant_{\mathfrak{K}}$ is a partial order of \mathfrak{K}.
(1) Assume that $\langle\overline{\mathcal{T}}[i]: i<\delta\rangle$ is $\leqslant_{\mathfrak{K}}$-increasing and that $\overline{\mathcal{T}}$ is defined by $\overline{\mathcal{T}}=\bigcup_{i} \overline{\mathcal{T}}[i]$, that is, $\mathcal{T}_{m}=\bigcup_{i<\delta} \mathcal{T}_{m}[i]$ for $m=1,2$. Then
(a) $i<\delta \Rightarrow \overline{\mathcal{T}}[i] \leqslant_{\mathfrak{K}} \overline{\mathcal{T}}$;
(b) $\mathrm{Q}_{\overline{\mathcal{T}}}=\bigcup_{i<\delta} \mathbf{Q}_{\overline{\mathcal{T}}[i]}$.
(2) Assume $\overline{\mathcal{T}}^{\prime}, \overline{\mathcal{T}} \in \mathfrak{K}$. Then there is $\overline{\mathcal{T}}^{\prime \prime} \in \mathfrak{K}$ such that $\overline{\mathcal{T}}^{\prime} \leqslant_{\mathfrak{K}} \overline{\mathcal{T}}^{\prime \prime}$ and $\mathbf{Q}_{\overline{\mathcal{T}}^{\prime \prime}}$ is isomorphic to $\mathbf{Q}_{\overline{\mathcal{T}}}, *{\underset{\sim}{\mathcal{T}}}^{\bar{\tau}}$, and this is absolute by c.c.c. forcing. Moreover, there is such an isomorphism extending the identity map from $\mathbf{Q}_{\overline{\mathcal{T}}}$, into $\mathbf{Q}_{\overline{\mathcal{T}}^{\prime \prime}}$.
(3) There is $\overline{\mathcal{T}} \in \mathfrak{K}_{\omega}^{\aleph_{0}}$ such that $\mathbf{Q}_{\overline{\mathcal{T}}}$ is the trivial forcing.
(4) There is $\overline{\mathcal{T}} \in \mathfrak{K}_{\omega}^{\aleph_{0}}$ such that $\mathbf{Q}_{\overline{\mathcal{T}}}$ is the dominating real forcing.

Proof. See [S8].
Claim 1.4. (1) Assume that $\overline{\mathcal{T}}[\gamma] \in \mathfrak{K}_{\mathrm{pr}_{1}, \gamma}$ for $\gamma<\gamma(*)$. Then for each $\alpha \leqslant \gamma(*)$ there is $\overline{\mathcal{T}}\langle\alpha\rangle \in \mathfrak{K}_{\mathbf{p r}_{1},<\alpha}$ such that $\mathbf{Q}_{\overline{\mathcal{T}}\langle\alpha\rangle}$ is \mathbf{P}_{α}, where $\left\langle\mathbf{P}_{\gamma}, \mathbf{Q}_{\beta}: \gamma \leqslant \gamma(*), \beta<\gamma(*)\right\rangle$ is an FS-iteration, $\mathbf{Q}_{\beta}=\left(\mathbf{Q}_{\overline{\mathcal{T}}[\beta]}\right)^{\mathbf{V}\left[\mathbf{P}_{\beta}\right]}, \overline{\mathcal{T}}\langle\alpha\rangle \in \mathfrak{A}_{\mathrm{pr}_{1},<\alpha}, \overline{\mathcal{T}}\left\langle\alpha_{1}\right\rangle \leqslant \mathfrak{r} \overline{\mathcal{T}}\left\langle\alpha_{2}\right\rangle$ for $\alpha_{1} \leqslant \alpha_{2} \leqslant \gamma(*)$ and $\overline{\mathcal{T}}[\gamma] \leqslant \mathfrak{K} \mathcal{T}\langle\alpha\rangle$ for $\gamma<\alpha \leqslant \gamma(*)$. We write $\overline{\mathcal{T}}\langle\alpha\rangle=\sum_{\gamma<\alpha} \overline{\mathcal{T}}[\gamma]$.
(2) In part (1), for each $\gamma<\gamma(*)$ there is $\overline{\mathcal{T}}^{\prime} \in \mathfrak{K}_{\mathrm{pr}_{1}, \gamma}$ such that $\overline{\mathcal{T}}^{\prime}$ and $\overline{\mathcal{T}}$ are isomorphic over $\overline{\mathcal{T}}[\gamma]$. Hence $\mathbf{Q}_{\overline{\mathcal{T}}}$, and $\mathbf{Q}_{\overline{\mathcal{T}}}$ are isomorphic over $\mathbf{Q}_{\overline{\mathcal{T}}}{ }_{[\gamma]}$.
(3) If in addition $\mathcal{T}[\gamma] \leqslant \mathfrak{K}^{\prime}[\gamma] \in \mathfrak{K}_{\mathbf{p r}_{1}, \gamma}$ for $\gamma<\gamma(*)$, and $\left\langle\mathbf{P}_{\gamma}, \mathbf{Q}_{\beta}^{\prime}: \gamma \leqslant \gamma(*), \beta<\gamma(*)\right\rangle$ is an FS-iteration as above with $\mathbf{P}_{\gamma(*)}^{\prime}=\mathbf{Q}_{\overline{\mathcal{T}}^{\prime}}$, then we find such a $\overline{\mathcal{T}}^{\prime}$ with $\overline{\mathcal{T}} \leqslant_{\mathfrak{R}} \overline{\mathcal{T}}^{\prime}$.

Proof. This is straightforward.
Theorem 1.5. Assume that
(a) \varkappa is a measurable cardinal;
(b) $\varkappa<\mu=\operatorname{cf}(\mu)<\lambda=\operatorname{cf}(\lambda)=\lambda^{\varkappa}$ and $(\forall \alpha<\mu)\left(|\alpha|^{N_{0}}<\mu\right)$ for simplicity.

Then for some c.c.c. forcing notion \mathbf{P} of cardinality λ, in $\mathbf{V}^{\mathbf{P}}$ we have $2^{\aleph_{0}}=\lambda, \mathfrak{d}=\mathfrak{b}=\mu$ and $\mathfrak{a}=\lambda$.

Proof. We choose by induction on $\zeta \leqslant \lambda$ the following objects satisfying the following conditions:
(a) a sequence $\langle\overline{\mathcal{T}}[\gamma, \zeta]: \gamma\langle\mu\rangle$;
(b) $\overline{\mathcal{T}}[\gamma, \zeta] \in \mathfrak{K}_{\text {pr }_{1}, \gamma}^{\lambda}$;
(c) $\xi<\zeta \Rightarrow \overline{\mathcal{T}}[\gamma, \xi] \leqslant \mathfrak{R} \overline{\mathcal{T}}[\gamma, \zeta]$;
(d) if ζ is limit then $\overline{\mathcal{T}}[\gamma, \zeta]=\bigcup_{\xi<\zeta} \overline{\mathcal{T}}[\gamma, \xi]$;
(e) if $\gamma<\mu$ and $\zeta=1$, then $\mathbf{Q}_{\overline{\mathcal{T}}}[\gamma, \zeta]$ is the dominating real forcing $=$ Hechler forcing;
(f) if $\gamma<\mu, \zeta=\xi+1>1$ and ξ is even, then $\overline{\mathcal{T}}[\gamma, \zeta]$ is isomorphic to $\overline{\mathcal{T}}\langle\gamma+1, \xi\rangle$ over $\overline{\mathcal{T}}[\gamma, \xi]$, say by $\mathbf{j}_{\gamma, \xi}$, where $\overline{\mathcal{T}}\langle\gamma+1, \xi\rangle:=\sum_{\beta \leqslant \gamma} \overline{\mathcal{T}}[\beta, \xi]$; let $\hat{\mathbf{J}}_{\gamma, \xi}$ be the isomorphism induced from $\mathbf{Q}_{\overline{\mathcal{T}}\langle\gamma+1, \xi\rangle}$ onto $\mathbf{Q}_{\overline{\mathcal{T}}}[\gamma, \zeta]$ over $\mathbf{Q}_{\overline{\mathcal{T}}}[\gamma, \xi]$;
(g) if $\gamma<\mu, \zeta=\xi+1$ and ξ is odd, then $\overline{\mathcal{T}}[\gamma, \zeta]$ is almost isomorphic to $(\overline{\mathcal{T}}[\gamma, \xi])^{x} / D$ over $\overline{\mathcal{T}}_{[\gamma, \xi]}$, say that $\mathbf{j}_{\gamma, \xi}$ is an isomorphism from $(\overline{\mathcal{T}}[\gamma, \xi])^{x} / D$ onto $\overline{\mathcal{T}}[\gamma, \zeta]$ such that $\langle x: \varepsilon<\varkappa\rangle / D$ is mapped onto x by $\mathbf{j}_{\gamma, \xi}$.

There is no problem to carry out the induction. Let $\mathbf{P}_{\zeta}=\mathbf{Q}_{\overline{\mathcal{T}}\langle\mu, \zeta\rangle}$, where we have $\overline{\mathcal{T}}\langle\mu, \zeta\rangle:=\sum_{\gamma<\mu} \overline{\mathcal{T}}[\gamma, \zeta]$ for $\zeta \leqslant \lambda, \mathbf{P}=\mathbf{P}_{\lambda}$ and $\mathbf{P}_{\gamma, \zeta}=\mathbf{Q}_{\overline{\mathcal{T}}(\gamma, \zeta\rangle}$. Now the following holds.
\boxtimes_{1} It is true that $|\mathbf{P}| \leqslant \lambda$. (Why? As we prove by induction on $\zeta \leqslant \lambda$ that each $\overline{\mathcal{T}}[\gamma, \zeta]$ and $\sum_{\gamma \leqslant \mu} \overline{\mathcal{T}}[\gamma, \lambda]$ has cardinality $\leqslant \lambda$. Hence for $\gamma<\mu$ we have that the forcing notion $\mathbf{Q}_{\overline{\mathcal{T}}[\gamma, \lambda]}$ in the universe $\mathbf{V}^{\mathbf{Q}_{\overline{\mathcal{T}}\langle\gamma, \lambda\rangle}}$ has cardinality $\leqslant \lambda^{\aleph_{0}}=\lambda$.)
\boxtimes_{2} In $\mathbf{V}^{\mathbf{P}}$ we have $\mathfrak{b}=\mathfrak{d}=\lambda$. (Why? Let η_{γ} be the $\mathbf{Q}_{\overline{\mathcal{T}}}^{[\gamma, 1]}$-name of the dominating real (see clause (e)). As $\overline{\mathcal{T}}[\gamma, 1] \leqslant_{\mathfrak{K}} \overline{\mathcal{T}}[\gamma, \lambda]$, clearly η_{γ} is also a $\mathbf{Q}_{\overline{\mathcal{T}}}[\gamma, \lambda]$-name of a dominating real. This is preserved by \mathbf{P}_{γ}, so $\vdash_{\mathbf{P}_{\gamma+1}}$ " ${\underset{\sim}{\gamma}}$ dominate $\left({ }^{\omega} \omega\right)^{\mathbf{V}\left[\mathbf{P}_{\gamma, \lambda}\right] \text { ". But }\left\langle\mathbf{P}_{\gamma, \lambda}: \gamma<\mu\right\rangle}$ is $<-$ increasing with union \mathbf{P} and $\operatorname{cf}(\mu)=\mu>\aleph_{0}$, so $\Vdash_{\mathbf{P}} "\langle{\underset{\sim}{\gamma}}: \gamma<\mu\rangle$ is $<^{*}$-increasing and dominating". The conclusion follows.)

We shall prove below that $\mathfrak{a} \geqslant \lambda$, and together this finishes the proof. (Note that it implies $2^{\aleph_{0}} \geqslant \lambda$, and hence as $\lambda=\lambda^{\aleph_{0}}$ by \boxtimes_{1} we get $2^{\aleph_{0}}=\lambda$.)
\boxtimes_{3} It is true that $\vdash_{\mathbf{P}} " \mathfrak{a} \geqslant \lambda$ ".

So assume that $p \Vdash$ " $\mathcal{A}=\left\{{ }_{\sim} A_{i}: i<\theta\right\}$ is a MAD family, i.e. ($\theta \geqslant \aleph_{0}$ and)
(i) ${\underset{i}{i}}_{A_{i}} \in[\omega]^{\aleph_{0}}$;
(ii) $i \neq j \Rightarrow\left|A_{i} \cap A_{j}\right|<\aleph_{0}$;
(iii) \mathcal{A} is maximal under (i) and (ii)".

Without loss of generality $\Vdash_{\mathbf{P}}$ " ${\underset{i}{i}} \in[\omega]^{\aleph_{0}} "$.
As always $\mathfrak{a} \geqslant \mathfrak{b}$, by \boxtimes_{2} we know that $\theta \geqslant \mu$, and toward contradiction assume $\theta<\lambda$. For each $i<\theta$ and $m<\omega$ there is a maximal antichain $\left\langle p_{i, m, n}: n<\omega\right\rangle$ of \mathbf{P} and a sequence $\left\langle\mathbf{t}_{i, m, n}: n<\omega\right\rangle$ of truth values such that $p_{i, m, n} \Vdash_{\mathbf{P}}{ }^{"} n \in{\underset{\sim}{i}}_{i}$ if and only if $\mathbf{t}_{i, m, n}$ is truth". We can find a countable $w_{i} \subseteq \mu$ such that $\left[\bigcup_{m, n<\omega} \operatorname{Dom}\left(p_{i, m, n}\right) \subseteq w_{i}\right], p_{i, m, n} \in$ $\mathbf{Q}_{\Sigma\left\{\overline{\mathcal{T}}[\gamma, \lambda]: \gamma \in w_{i}\right\}} ;$ moreover, $\gamma \in \operatorname{Dom}\left(p_{i, m, n}\right) \Rightarrow p_{i, m, n}(\gamma)$ is a $\mathbf{Q}_{\Sigma\left\{\overline{\mathcal{T}}[\beta, \lambda]: \beta \in \gamma \cap w_{i}\right\}}$-name. Note that $\mathbf{Q}_{\sum\left\{\overline{\mathcal{T}}[\beta, \lambda]: \beta \in \gamma \cap w_{i}, i<\theta\right\}} \lessdot \mathbf{Q}_{\sum\left\{\mathcal{T}_{\beta}: \beta<\gamma\right\}}$, see $[\mathrm{S} 8]$.

Clearly for some even $\zeta<\lambda$, we have $\left\{p_{i, m, n}: i<\theta, m<\omega\right.$ and $\left.n<\omega\right\} \subseteq \mathbf{Q}_{\Sigma\{\overline{\mathcal{T}}[\beta, \zeta \zeta ; \beta<\mu\}}$. Now for some stationary $S \subseteq\{\delta<\mu: \operatorname{cf}(\delta)=\varkappa\}$ and w^{*} we have $\delta \in S \Rightarrow w_{\delta} \cap \delta=w^{*}$ and $\alpha<\delta \in S \Rightarrow w_{\alpha} \subseteq \delta$. Let $\left\langle\delta_{\varepsilon}: \varepsilon<\varkappa\right\rangle$ be an increasing sequence of members of S, and $\delta^{*}=$ $\bigcup_{\varepsilon<\varkappa} \delta_{\varepsilon}$. The definition of $\langle\overline{\mathcal{T}}[\gamma, \zeta+1]: \gamma<\mu\rangle,\langle\bar{T}[\gamma, \zeta+2]: \gamma<\mu\rangle$ was made to get a name of an infinite $\underset{\sim}{A} \subseteq \omega$ almost disjoint to every ${\underset{\sim}{\beta}}_{\beta}$ for $\beta<\theta$ (in fact, $\left(\sum_{\gamma<\mu} \mathbf{Q}_{\bar{\tau}[\gamma, \zeta]}\right)^{x} / D$ can be \lessdot-embedded into $\left.\sum_{\gamma<\mu} \mathbf{Q}_{\bar{\tau}[\gamma, \zeta+2]}\right)$.

Remark. In later proofs in $\S 2$ we give more details.

2. On $\operatorname{Con}(\mathfrak{a}>\mathfrak{d})$ revisited with FS, with non-transitive memory of non-well-ordered length

We first define the FSI-templates, telling us how to iterate along a linear order L; we think of having for each $t \in L$, a forcing notion \mathbf{Q}_{t}, say adding a generic ν_{\sim}, and \mathbf{Q}_{t} will really be $\bigcup\left\{\mathbf{Q}^{\mathbf{V}\left[\left\langle\nu_{s}: s \in A\right\rangle\right]}: A \in I_{t}\right\}$, where I_{t} is an ideal of subsets of $\left\{s: s<_{L} t\right\}$; so \mathbf{Q}_{t} in the nice case is a definition. In our application this definition is constant, but we treat a more general case, so \mathbf{Q}_{t} may be defined using parameters from $\mathbf{V}\left[\left\langle\nu_{s}: s \in K_{t}\right\rangle\right], K_{t}$ being a subset of $\left\{s: s<_{L} t\right\}$, and so the reader may consider only the case $t \in L \Rightarrow K_{t}=\varnothing$. In part (3), instead of distinguishing " ζ successor, ζ limit" we can consider the two cases for each ζ. The depth of L is the ordinal on which our induction rests (as order type of L is inadequate).

Definition 2.1. (1) An FSI-template (= finite support iteration template) \mathfrak{t} is a sequence $\left\langle I_{t}: t \in L\right\rangle=\left\langle I_{t}^{\mathfrak{t}}: t \in L^{\mathfrak{t}}\right\rangle=\left\langle I_{t}[\mathfrak{t}]: t \in L[\mathfrak{t}]\right\rangle$ such that
(a) L is a linear order (but we may write $x \in \mathfrak{t}$ instead of $x \in L$ and $x<_{\mathfrak{t}} y$ instead of $x<_{L} y$);
(b) I_{t} is an ideal of subsets of $\{s: L \vDash s<t\}$.

We say that \mathfrak{t} is locally countable if $t \in L^{\mathfrak{t}} \&\left(\forall B \in[A]^{\aleph_{0}}\right)\left(B \in I_{t}\right) \Rightarrow A \in I_{t}$, we say that \mathfrak{t}^{1} and \mathfrak{t}^{2} are equivalent if $L^{\mathfrak{t}^{1}}=L^{\mathfrak{t}^{2}}$ and $t \in L^{\mathfrak{t}^{1}} \&|A| \leqslant \aleph_{0} \Rightarrow\left(A \in I_{t}^{\mathfrak{t}^{1}} \equiv A \in I_{t}^{\mathfrak{t}^{2}}\right)$, and we say that \mathfrak{t} is globally countable if $t \in L^{\mathrm{t}} \& A \in I_{t}^{\mathfrak{t}} \Rightarrow|A| \leqslant \aleph_{0}$.
(2) Let \mathfrak{t} be an FSI-template.
(c) We say that $\bar{K}=\left\langle K_{t}: t \in L^{\dagger}\right\rangle$ is a \mathfrak{t}-memory choice if
(i) $K_{t} \in I_{t}^{\mathfrak{t}}$ is countable;
(ii) $s \in K_{t} \Rightarrow K_{s} \subseteq K_{t}$.
(d) We say that $L \subseteq L^{\mathrm{t}}$ is \bar{K}-closed if $t \in L \Rightarrow K_{t} \subseteq L$.
(e) For \bar{K} a \mathfrak{t}-memory choice and $L \subseteq L^{\mathfrak{t}}$ which is \bar{K}-closed, we say that $\bar{K}^{\prime}=\bar{K} \upharpoonright L$ if $\operatorname{Dom}\left(\bar{K}^{\prime}\right)=L$ and K_{t}^{\prime} is K_{t} for $t \in L$ (it is a $(\mathfrak{t} \mid L)$-memory choice, see part (5)).
(3) For an FSI-template \mathfrak{t}, \mathfrak{t}-memory choice \bar{K} and \bar{K}-closed $L \subseteq L^{\mathfrak{t}}$, we define $\operatorname{Dp}_{\mathfrak{t}}(L, \bar{K})$, the \mathfrak{t}-depth (or (\mathfrak{t}, \bar{K})-depth) of L, by defining by induction on the ordinal ζ when $\operatorname{Dp}_{\mathbf{t}}(L, \bar{K}) \leqslant \zeta$.

For $\zeta=0: \mathrm{Dp}_{\mathfrak{t}}(L, \bar{K}) \leqslant \zeta$ when $L=\varnothing$.
For ζ a successor ordinal: $\operatorname{Dp}_{\mathfrak{t}}(L, \bar{K}) \leqslant \zeta$ if and only if
(a) there is L^{*} such that $L^{*} \subseteq L,\left|L^{*}\right| \leqslant 1,(\forall t \in L)\left(\forall A \in I_{t}^{\mathrm{t}}\right)\left(A \cap L^{*}=\varnothing\right)$; hence $L \backslash L^{*}$ is \bar{K}-closed, $\operatorname{Dp}_{\mathfrak{t}}\left(L \backslash L^{*}, \bar{K}\right)<\zeta$ and for every $t \in L^{*}$ we have $\boxtimes_{t, L} L \backslash L^{*} \in I_{t}^{\mathrm{t}}$ and $\left({ }^{\mathbf{1}}\right)$ it is \bar{K}-closed.
For $\zeta>0$ a limit ordinal: $\operatorname{Dp}_{\mathfrak{t}}(L, \bar{K}) \leqslant \zeta$ if and only if
(b) there is a directed partial order M and a sequence $\left\langle L_{a}: a \in M\right\rangle$ with union L such that the sequence is increasing, i.e. $M \vDash a \leqslant b \Rightarrow L_{a} \subseteq L_{b}$, each L_{b} is \bar{K}-closed, $(\forall b \in M)\left(\zeta>\mathrm{Dp}_{\mathfrak{t}}\left(L_{b}, \bar{K}\right)\right)$ and $t \in L \& A \in I_{t} \& A \subseteq L \Rightarrow(\exists a \in M) A \subseteq L_{a}$.

So we have $\mathrm{Dp}_{\mathfrak{t}}(L, \bar{K})=\zeta$ if and only if $\mathrm{Dp}_{\mathfrak{t}}(L, \bar{K}) \geqslant \zeta \&(\forall \xi<\zeta) \mathrm{Dp}_{\mathfrak{t}}(L, \bar{K}) \nless \xi$, and $\operatorname{Dp}_{\mathbf{t}}(L, \bar{K})=\infty$ if and only if $(\forall$ ordinals $\zeta)\left[\mathrm{Dp}_{\mathbf{t}}(L, \bar{K}) \notin \zeta\right]$.
(c) If $a_{\alpha} \in M, w_{\alpha} \in\left[L_{a}\right]^{<\aleph_{0}}$ and $A_{\alpha, t} \subseteq L_{a_{\alpha}}$ is from I_{t}^{t} for $\alpha<\omega_{1}$ and $t \in w_{\alpha}$, then there are an unbounded $S \subseteq \omega_{1}$ and $b \in M$ such that $\left\langle\bigcup\left\{A_{\alpha, t} \cup\{t\} \backslash L_{b}: t \in w_{\alpha}\right\}: \alpha \in S\right\rangle$ is a sequence of pairwise disjoint sets (we can waive this if we use only σ-linked forcing notions below (where for each of the ω parts, membership is absolute too)).
(4) We say that \bar{K} is a smooth \mathfrak{t}-memory choice if $\mathrm{Dp}_{\mathbf{t}}\left(L^{\mathbf{t}}, \bar{K}\right)<\infty$ and \bar{K} is a \mathfrak{t} memory choice.
(5) If \bar{K} is omitted we mean that it is the trivial \bar{K}, that is, $K_{t}=\varnothing$ for $t \in L^{t}$. We say that \mathfrak{t} is smooth if the trivial \bar{K} is a smooth \mathfrak{t}-memory choice. For $L \subseteq L^{\mathfrak{t}}$ let $\mathfrak{t} \mid L=\left\langle I_{t} \cap \mathcal{P}(L): t \in L\right\rangle$.
(6) Let $L_{1} \leqslant_{\mathfrak{t}} L_{2}$ mean $L_{1} \subseteq L_{2} \subseteq L^{\mathfrak{t}}$ and $t \in L_{1} \& A \in I_{t}^{\mathfrak{t}} \Rightarrow A \cap L_{2} \subseteq L_{1}$.

[^1]Definition 2.2. Let $\mathfrak{t}=\left\langle I_{t}: t \in L^{\mathfrak{t}}\right\rangle$ be an FS-iteration template and \bar{K} a \mathfrak{t}-memory choice.
(1) We say that \bar{L} is a (\mathfrak{t}, \bar{K})-representation of L if (c) of Definition 2.1 (3) is valid and
(a) $L \subseteq L^{\mathfrak{t}}$ is \bar{K}-closed;
(b) $\bar{L}=\left\langle L_{a}: a \in M\right\rangle$;
(c) M is a directed partial order;
(d) \bar{L} is increasing, that is, $a<_{M} b \Rightarrow L_{a} \subseteq L_{b}$;
(e) $L=\bigcup_{a \in M} L_{a}$;
(f) each L_{a} is \bar{K}-closed;
(g) if $t \in L, A \in I_{t}^{\mathfrak{t}}, A \subseteq L$ then $(\exists a \in M)\left(A \subseteq L_{a}\right)$.
(2) We say that L^{*} is a $(\mathfrak{t}, \bar{K})-{ }^{*}$ representation of L if
(a) $L \subseteq L^{\boldsymbol{t}}$ is \bar{K}-closed;
(b) $L^{*} \subseteq L, L^{*}$ a singleton;
(c) if $t \in L$ and $A \in I_{t}^{\mathfrak{t}}$ then $A \cap L^{*}=\varnothing$ (so $L \backslash L^{*} \leqslant_{\mathfrak{t}} L$);
(d) if $t \in L^{*}$ then $L \backslash L^{*} \in I_{t}^{\mathrm{t}}$.

Claim 2.3. Let \mathfrak{t} be an FSI-template and \bar{K} a \mathfrak{t}-memory choice.
(0) The family of \bar{K}-closed sets is closed under (arbitrary) unions and intersections. Also if $L \subseteq L^{\mathfrak{t}}$ then $L \cup \bigcup\left\{K_{t}: t \in L\right\}$ is \bar{K}-closed.
(1) If $L_{2} \subseteq L^{t}$ is \bar{K}-closed and L_{1} is an initial segment of L_{2}, then L_{1} is \bar{K}-closed.
(2) If $L_{1} \subseteq L_{2} \subseteq L^{\mathfrak{t}}$ are \bar{K}-closed then
(α) $\mathrm{Dp}_{\mathfrak{t}}\left(L_{1}, \bar{K}\right) \leqslant \mathrm{Dp}_{\mathfrak{t}}\left(L_{2}, \bar{K}\right)$; moreover,
(β) $\left(\exists t \in L_{2}\right)\left[L_{1} \in I_{t}^{t}\right]$ implies that $\mathrm{Dp}_{t}\left(L_{1}, \bar{K}\right)<\mathrm{Dp}_{\mathbf{t}}\left(L_{2}, \bar{K}\right)$ or both are ∞.
(3) If $L_{1} \subseteq L_{2} \subseteq L^{\mathfrak{t}}$ are \bar{K}-closed then $\mathfrak{t} \upharpoonright L_{2}$ is an FSI-template, L_{1} is $\left(\mathfrak{t} \upharpoonright L_{2}\right)$-closed and $\mathrm{Dp}_{\mathbf{t} \mid L_{2}}\left(L_{1}, \bar{K} \upharpoonright L_{2}\right)=\mathrm{Dp}_{\mathfrak{t}}\left(L_{1}, \bar{K}\right)$.

Proof. (0) and (1) are trivial-read the definitions.
(2) We prove by induction on the ordinal ζ that
$(*)_{\zeta}(\alpha)$ if $\mathrm{Dp}_{\mathfrak{t}}\left(L_{2}, \bar{K}\right)=\zeta$ (and L_{1} and L_{2} are \bar{K}-closed) then $\mathrm{Dp}_{\mathfrak{t}}\left(L_{1}, \bar{K}\right) \leqslant \zeta$;
(β) if in addition $\left(\exists t \in L_{2}\right)\left(L_{1} \in I_{t}^{\mathfrak{t}}\right)$ then $\mathrm{Dp}_{\mathbf{t}}\left(L_{1}, \bar{K}\right)<\zeta$.
So assume $\mathrm{Dp}_{\mathfrak{t}}\left(L_{2}, \bar{K}\right)=\zeta$, so that $\mathrm{Dp}_{\mathfrak{t}}\left(L_{2}, \bar{K}\right) \ngtr \zeta+1$, and hence one of the following cases occurs.

First case: $\zeta=0$. This is trivial; note that clause (β) is empty.
Second case: ζ is a successor. It follows that L_{2} has a (\mathfrak{t}, \bar{K})-* representation L^{*} such that $\mathrm{Dp}_{\mathfrak{t}}\left(L_{2} \backslash L^{*}, \bar{K}\right)<\zeta$; see Definition $2.2(2)$.

Let $L_{2}^{-}:=L_{2} \backslash L^{*}$; if $L_{1} \subseteq L_{2}^{-}$then by the induction hypothesis we have $\operatorname{Dp}_{\mathrm{t}}\left(L_{1}, \bar{K}\right) \leqslant$ $\operatorname{Dp}_{\mathfrak{t}}\left(L_{2}^{-}, \bar{K}\right)<\zeta$; so assume that $L_{1} \nsubseteq L_{2}^{-}$, and so only clause (α) is relevant. Now letting
$L_{1}^{-}=L_{1} \backslash L^{*}$ we have $\left[L_{1}^{-}\right.$and L_{2}^{-}are \bar{K}-closed] $\& L_{1}^{-} \subseteq L_{2}^{-} \& \mathrm{Dp}_{\mathfrak{t}}\left(L_{2}^{-}, \bar{K}\right)<\zeta$, and hence $\operatorname{Dp}_{\mathfrak{t}}\left(L_{1}^{-}, \bar{K}\right)<\zeta$ by the induction hypothesis. Let $L_{1}^{*}=L_{1} \cap L^{*}$, so that $L_{1}^{*} \subseteq L_{1}, L_{1}$ is \bar{K} closed, $L_{1} \backslash L_{1}^{*}=\left(L_{2} \backslash L_{2}^{*}\right) \cap L_{1}$ is \bar{K}-closed, $\mathrm{Dp}_{\mathbf{t}}\left(L_{1} \backslash L_{1}^{*}, \bar{K}\right)=\mathrm{Dp}_{\mathbf{t}}\left(L_{1}^{-}, \bar{K}\right)<\zeta$ and necessarily L_{1}^{*} has exactly one element. Also easily $t \in L_{1}^{*}$ implies $L_{1}^{-} \in I_{t}^{\mathfrak{t}}$, so that L_{1}^{*} is a (\mathfrak{t}, \bar{K}) *representation of L_{1}. So clearly $\mathrm{Dp}_{\mathrm{t}}\left(L_{1}, \bar{K}\right) \leqslant \mathrm{Dp}_{\mathrm{t}}\left(L_{1}^{-}, \bar{K}\right)+1 \leqslant \zeta$.

Third case: ζ is limit and $\left\langle L_{a}: a \in M\right\rangle$ is $a(t, \bar{K})$-representation of L_{2} such that $a \in M \Rightarrow \mathrm{Dp}_{\mathbf{t}}\left(L_{a}, \bar{K}\right)<\zeta$.

Let $L_{a}^{2}:=L_{a}$ and $L_{a}^{1}:=L_{a} \cap L_{1}$, so that $\left\langle L_{a}^{1}: a \in M\right\rangle$ is increasing, $\bigcup_{a \in M} L_{a}^{1}=L_{1}$, each L_{a}^{1} is \bar{K}-closed (as L_{a}^{2} and L_{1} are \bar{K}-closed, see part (0)), and $t \in L_{1} \& A \in I_{t}^{\mathrm{t}} \& A \subseteq L_{1} \Rightarrow$ $(\exists a \in M)\left(A \subseteq L_{a}^{2} \cap L_{1}=L_{a}^{1}\right)$. Also by the induction hypothesis, $b \in M \Rightarrow \mathrm{Dp}_{\mathfrak{t}}\left(L_{b}^{2}, \bar{K}\right)<\zeta$. By the last two sentences (and Definition 2.1) we get $\operatorname{Dp}_{\mathrm{t}}\left(L_{1}, \bar{K}\right) \leqslant \zeta$, as required in clause (α). For clause (β) we know that there is $t \in L_{2}$ such that $L_{1} \in I_{t}^{\mathrm{t}}$. Hence by clause (f) of Definition 2.2 (1) for some $b \in M$ we have $L_{1} \subseteq L^{b}$, and we can use the induction hypothesis on ζ for L_{1}, L_{b}.
(3) This is easy.

Claim 2.4. (1) If for $l=1,2$ we have that \bar{L}^{l} is a (\mathfrak{t}, \bar{K})-representation of $L, \bar{L}^{l}=$ $\left\langle L_{a}^{l}: a \in M_{l}\right\rangle$ and $M=M_{1} \times M_{2}$, then $\bar{L}=\left\langle L_{a} \cap L_{b}:(a, b) \in M\right\rangle$ is a (\mathbf{t}, \bar{K})-representation of L.
(2) If L_{l}^{*} is a (\mathfrak{t}, \bar{K})-* representation of L for $l=1,2$ then $L_{1}^{*}=L_{2}^{*}$.

Proof. (1) This is straightforward.
(2) This is easy, too.

Discussion 2.5. (1) Our next aim is to define iteration for any \bar{K}-smooth FSItemplate \mathfrak{t}; for this we define and prove the relevant things; of course, by induction on the depth. In the following Definition 2.6, in clause (A)(a), we avoid relying on [S8]; moreover the reader may consider only the case $K_{t}=\varnothing$, omit ${\underset{\sim}{t}}$ and have ${\underset{\sim}{\mathbf{Q}}}_{t, \bar{\varphi}_{t}^{\prime}}$ be the dominating real forcing $=$ Hechler forcing.
(2) We may more generally than here allow η_{t} to be, e.g., a sequence of ordinals, and members of ${\underset{\sim}{\mathbf{Q}}}_{t, \varphi, \underline{\eta}_{t}}$ be $\subseteq \mathcal{H}_{<\mathcal{N}_{1}}$ (Ord), and even K_{t} large but increasing L; we then need more "information" from $\eta_{t} \upharpoonright \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \upharpoonright L)$. We may change to: ${\underset{\sim}{\mathbf{Q}}}_{t}$ is a definition of nep c.c.c. forcing ([S8]) or just "Souslin c.c.c. forcing (=snep)" or just absolute enough c.c.c. forcing notion. All those cases do not make real problems (but when the parameter ${\underset{\sim}{l}}_{t}$ have length $\geqslant \varkappa$ it changes in the ultrapower!, i.e. $\mathbf{j}\left({\underset{\sim}{t}}^{\prime}\right)$ has length greater than the length of η_{t}).
(3) If we restrict ourselves to σ-centered forcing notions (which is quite reasonable), maybe we can in Definition $2.1(3)(\mathrm{a})$ omit $\boxtimes_{t, L}$ if in Definition 2.6 below in (A)(b), second case, we add that $t \in L^{*} \Rightarrow p \upharpoonright\left(L \backslash L^{*}\right)$ forces a value to $\underset{\sim}{f}(p(t))$ where ${\underset{\sim}{t}}_{t}:{\underset{\sim}{\mathbf{Q}}}_{t} \rightarrow \omega$
witnessed σ-centerness and is absolute enough (or just assume that $\mathbf{Q}_{t} \subseteq \omega \times \mathbf{Q}_{t}^{\prime}$ and that $f_{t}(p(t))$ is the first coordinate). More carefully, probably we can do this with σ-linked instead of σ-centered.

Definition/Claim 2.6. Let \mathfrak{t} be an FSI-template and $\bar{K}=\left\langle K_{t}: t \in L^{t}\right\rangle$ be a smooth t -memory choice.

By induction on the ordinal ζ we shall define and prove:
(A) (Definition) For $L \subseteq L^{\mathrm{t}}$ which is \bar{K}-closed of (\mathfrak{t}, \bar{K})-depth $\leqslant \zeta$ we define:
(a) when $\overline{\mathbf{Q}}=\left\langle\mathbf{Q}_{t, \bar{\varphi}_{t}, \eta_{t}}: t \in L\right\rangle$ is a (t, \bar{K})-iteration of def-c.c.c. forcing notions, but we can let ${\underset{\sim}{\eta}}_{t}$ code $\bar{\varphi}_{t}$ so that we may omit $\bar{\varphi}_{t}$;
(b) $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$ for $\overline{\mathbf{Q}}$ as in (A)(a).
(B) (Claim) For $L_{1} \subseteq L_{2} \subseteq L^{\mathfrak{t}}$ which are \bar{K}-closed of (\mathfrak{t}, \bar{K})-depth $\leqslant \zeta$ and a (\mathfrak{t}, \bar{K})iteration of def-c.c.c. forcing notions $\overline{\mathbf{Q}}=\left\langle\mathbf{Q}_{t, \overline{\varphi_{t}}, \underline{\eta}_{t}}: t \in L_{2}\right\rangle$ we prove:
(a) $\overline{\mathbf{Q}} \upharpoonright L_{1}$ is a ($\left.t, \bar{K} \upharpoonright L_{1}\right)$-iteration of def-c.c.c. forcing notions.
(b) $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \mid L_{1}\right) \subseteq \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$ as quasi-orders.
(c) If $L_{1} \leqslant_{\mathfrak{t}} L_{2}$ (see Definition $2.1(6)$) and $p \in \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$, then $p \upharpoonright L_{1} \in \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{1}\right)$ and $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}}) \vDash " p \upharpoonright L_{1} \leqslant p$ ".
(d) If $L_{1} \leqslant \mathfrak{t} L_{2}, p \in \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$ and $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{1}\right) \vDash "\left(p \upharpoonright L_{1}\right) \leqslant q "$, then $q \cup\left(p \upharpoonright\left(L_{2} \backslash L_{1}\right)\right)$ is a least upper bound of $\{p, q\}$ in $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$; hence $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{1}\right) \lessdot \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$.
(e) $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{1}\right)<\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$, i.e. $\left({ }^{2}\right)$
(i) $p \in \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \mid L_{1}\right) \Rightarrow p \in \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$;
(ii) $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{1}\right) \vDash p \leqslant q \Rightarrow \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}}) \vDash p \leqslant q$;
(iii) if $\mathcal{I} \subseteq \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{1}\right)$ is predense in $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{1}\right)$, then \mathcal{I} is predense in $\operatorname{Lim}(\overline{\mathbf{Q}})$ (hence if $p, q \in \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$ are incompatible in $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{1}\right)$ then they are incompatible in $\operatorname{Lim}(\overline{\mathbf{Q}})$).
(f) Assume that $L_{0} \subseteq L_{2}$ is \bar{K}-closed and $L=L_{0} \cap L_{1}$; if $p \in \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{0}\right)$ and $q \in$ $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \upharpoonright L)$ satisfies $\left(\forall r \in \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \upharpoonright L)\right)\left[q \leqslant r \rightarrow p\right.$ and r are compatible in $\left.\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{0}\right)\right]$, then $\left(\forall r \in \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{1}\right)\right)\left[q \leqslant r \rightarrow p\right.$ and r are compatible in $\left.\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{2}\right)\right]$. (Explanation: this means that if q forces for $\vdash_{\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \mid L)}$ that $p \in \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{0}\right) / \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \upharpoonright L)$, then q forces for $\vdash_{\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \mid L_{1}\right)}$ that $p \in \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}}) / \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{1}\right)$.)
(g) If $\left\langle L_{a}: a \in M_{1}\right\rangle$ is a (\mathfrak{t}, \bar{K})-representation of L_{1} then we have $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{1}\right)=$ $\bigcup_{a \in M_{1}} \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{a}^{1}\right)$.
(h) If L^{*} is a (\mathbf{t}, \bar{K})-*representation of L_{1}, then $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{1}\right)$ is as defined in (A)(b) of our definition below, second case, from L^{*}.
(i) (α) If $p_{1}, p_{2} \in \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$ and $t \in \operatorname{Dom}\left(p_{1}\right) \cap \operatorname{Dom}\left(p_{2}\right) \Rightarrow p_{1}(t)=p_{2}(t)$, then $q=$ $p_{1} \cup p_{2}$ (i.e. $\left.p_{1} \cup\left(p_{2} \backslash \operatorname{Dom}\left(p_{1}\right)\right)\right)$ belongs to $\operatorname{Lim}_{\mathfrak{t}}(\bar{Q})$ and is a least upper bound of p_{1}, p_{2};
$\left({ }^{2}\right)$ Here we do not assume $L_{1} \leqslant{ }_{\mathfrak{t}} L_{2}$.
(β) $p \in \operatorname{Lim}_{\mathbf{t}}(\overline{\mathbf{Q}})$ if and only if p is a function with domain a finite subset of L_{2} such that for every $t \in \operatorname{Dom}(p)$, for some $A \in I_{t}^{\mathfrak{t}}, A$ is \bar{K}-closed, $K_{t} \subseteq A$ and $\Vdash_{\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \mid A)}$ " $p(t) \in \mathbf{Q}_{t, \eta_{t}}$ " (so if $p \in \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$ then for some countable $L \subseteq L_{2}$ we have $p \in \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \upharpoonright L)$);
$(\gamma) \operatorname{Lim}_{t}(\overline{\mathbf{Q}}) \vDash p \leqslant q$ if and only if $p, q \in \operatorname{Lim}_{t}(\overline{\mathbf{Q}})$, for every $t \in \operatorname{Dom}(p)$ we have $t \in \operatorname{Dom}(q)$, and for some \bar{K}-closed $A \in I_{t}^{\mathfrak{t}}$ we have $q \upharpoonright A \in \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \upharpoonright A)$ and $q \upharpoonright A \mid \vdash_{\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \mid A)}$ " $p(t) \leqslant q(t)$ in $\mathbf{Q}_{t, \eta_{t}}$ (as interpreted in $\mathbf{V}^{\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \mid A)}$ of course)".
(j) $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$ is a c.c.c. forcing notion and $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})=\bigcup\left\{\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \upharpoonright L): L \in\left[L_{2}\right]^{\leqslant \aleph_{0}}\right\}$.
(k) $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$ has cardinality $\leqslant\left|L_{2}\right|^{\aleph_{0}}$ (here we use the assumption that η_{t} and members of $\mathbf{Q}_{t, \eta_{t}}$ are reals; see definition in (A)(a)(i) and (ii)) below).

Let us carry out the induction.
Part (A) (Definition). Assume $\operatorname{Dp}_{\mathfrak{t}}(L, \bar{K}) \leqslant \zeta$. If $\operatorname{Dp}_{\mathfrak{t}}(L, \bar{K})<\zeta$ we have already defined (\mathfrak{t}, \bar{K})-iteration and $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \upharpoonright L)$, so assume $\mathrm{Dp}_{\mathfrak{t}}(L, \bar{K})=\zeta$.

Clause (A)(a). (i) η_{t} is a $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \backslash K_{t}\right)$-name of a real (i.e. from ${ }^{\omega} 2$, used as a parameter) (legal as $K_{t} \subseteq \tilde{L} \& K_{t} \in I_{t} \& t \in L$, hence by Claim $2.3(2)$, clause (β), we have $\operatorname{Dp}_{\mathfrak{t}}\left(K_{t}, \bar{K}\right)<\operatorname{Dp}_{\mathfrak{t}}\left(K_{t} \cup\{t\}, \bar{K}\right) \leqslant \mathrm{Dp}_{\mathfrak{t}}(L, \bar{K}) \leqslant \zeta$, and so $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{t}\right)$ is a well-defined forcing notion by the induction hypothesis and Claim $2.3(2)$, clause $(\beta))$.
(ii) $\bar{\varphi}_{t}$ is a pair of formulas with the parameters η_{t} defining in $\mathbf{V}^{\operatorname{Lim}}\left(\overline{\mathbf{Q}} \mid K_{t}\right)$ a forcing notion denoted by $\mathbf{Q}_{t, \bar{\varphi}_{t}, \underline{\eta}_{t}}$ whose elements are contained in $\mathcal{H}\left(\aleph_{1}\right)$.
(iii) In $\mathbf{V}_{1}=\mathbf{V}^{\operatorname{Lim}}\left(\overline{\mathbf{Q}} \mid K_{t}\right)$, if $\mathbf{P}^{\prime} \lessdot \mathbf{P}^{\prime \prime}$ are c.c.c. forcing notions then $\mathbf{Q}=\mathbf{Q}_{t, \bar{\varphi}_{t}, \eta_{t}}$ as interpreted in $\mathbf{V}_{2}=\left(\mathbf{V}_{1}\right)^{\mathbf{P}^{\prime}}$ is a c.c.c. forcing notion there, and $\mathbf{P}^{\prime} * \mathbf{Q}_{t, \bar{\varphi}_{t}, \eta_{t}}$ is a $\lessdot-$ subforcing of $\mathbf{P}^{\prime \prime} * \mathbf{Q}_{t, \bar{\varphi}, \eta_{t}}$, where $\mathbf{Q}_{t, \bar{\varphi}, \eta_{t}}$ means as interpreted in $\left(\mathbf{V}^{\operatorname{Lim}_{\boldsymbol{t}}\left(\overline{\mathbf{Q}} \mid \bar{K}_{t}\right)}\right)^{\mathbf{P}^{\prime}}$ or in $\left(\mathbf{V}^{\operatorname{Lim}_{\mathrm{t}}\left(\overline{\mathbf{Q}} \mid K_{t}\right)}\right)^{\mathbf{P} "}$ respectively (i.e. " $p \leqslant q$ ", " p and q incompatible" and " $\left.p_{n}: n<\omega\right\rangle$ is predense" (so the sequence is from the smaller universe) are preserved).
(iv) Assume that $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright K_{t}\right) \lessdot \mathbf{P}_{0} \lessdot \mathbf{P}_{l} \lessdot \mathbf{P}_{3}$ are c.c.c. forcing notions for $l=1,2$, $\mathbf{P}_{1} \cap \mathbf{P}_{2}=\mathbf{P}_{0}, \mathbf{P}_{3}^{\prime}$ is a forcing notion, $\mathbf{P}_{l} \lessdot \mathbf{P}_{3}^{\prime}$ for $l=1,2$ (in fact, $\mathbf{P}_{3}^{\prime}=\mathbf{P}_{1} *_{\mathbf{P}_{\mathbf{0}}} \mathbf{P}_{2}$ is all right) and $G_{3} * G^{3}$ is a generic subset of $\mathbf{P}_{3} * \mathbf{Q}_{t, \bar{\varphi}_{t}, \eta_{t}}$, and let $G_{l} * G^{l}=\left(G_{3} * G^{3}\right) \cap\left(\mathbf{P}_{l} * \mathbf{Q}_{t, \bar{\varphi}_{t}, \eta_{t}}\right)$. If $\left(p_{l}, q_{l}\right) \in G_{l} * G^{l}$ for $l=1,2$, then for some $p_{l}^{\prime} \in \mathbf{P}_{l}$ satisfying $\mathbf{P}_{l} \vDash p_{l} \leqslant p_{l}^{\prime}$ for $l=1,2$ we have: if $p^{*} \in \mathbf{P}_{3}$ is above p_{1}^{\prime} and above p_{2}^{\prime}, then $\left.p^{*}\right|_{\mathbf{P}_{3}} " q_{1}$ and q_{2} are compatible in $\mathbf{Q}_{t, \bar{\varphi}_{t}, \eta_{t}} "$.

Clause (A)(b).
First case: $\zeta=0$. This is trivial.
Second case: ζ is a successor. So let L^{*} be a (\mathfrak{t}, \bar{K})-*representation of L. Define: $p \in \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$ if and only if p is a finite function, $\operatorname{Dom}(p) \subseteq L, p \upharpoonright\left(L \backslash L^{*}\right) \in \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright\left(L \backslash L^{*}\right)\right)$, and if $t \in L^{*} \cap \operatorname{Dom}(p)$, then $p(t)$ is a $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright\left(L \backslash L^{*}\right)\right)$-name of a member of $\mathbf{Q}_{t, \bar{\varphi}_{t}, \underline{\eta}_{t}}$; and
the order is $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}}) \vDash p \leqslant q$ if and only if
(i) $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright\left(L \backslash L^{*}\right)\right) \vDash$ " $\left(p \upharpoonright\left(L \backslash L^{*}\right)\right) \leqslant\left(q \upharpoonright\left(L \backslash L^{*}\right)\right)$ ", and
(ii) if $t \in L^{*} \cap \operatorname{Dom}(p)$ then $q \upharpoonright\left(L \backslash L^{*}\right) \vdash_{\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \mid\left(L \backslash L^{*}\right)\right)}$ " $p(t) \leqslant q(t)$ ".

Clearly $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$ is a quasi-order. But we should prove that $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$ is well defined, which means that the definition does not depend on the representation. So we prove that
\boxtimes_{1} if $\mathrm{Dp}_{\mathfrak{t}}(L, \bar{K})=\zeta$, and for $l=1,2$ we have that L_{l}^{*} is a $(\mathfrak{t}, \bar{K})-{ }^{*}$ representation of L with $\mathrm{Dp}_{\mathfrak{t}}\left(L \backslash L_{l}^{*}, \bar{K}\right)<\zeta$, and \mathbf{Q}^{l} is $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \mid L)$ as defined by L_{l}^{*} above, then $\mathbf{Q}^{1}=\mathbf{Q}^{2}$.

This is immediate by Claim $2.4(2)$ and the induction hypothesis clause (B)(h).
Third case: ζ is limit. There are a directed partial order M and $\bar{L}=\left\langle L_{a}: a \in M\right\rangle$, a (\mathfrak{t}, \bar{K})-representation of L, such that $a \in M \Rightarrow \mathrm{Dp}_{\mathfrak{t}}\left(L_{a}, \bar{K}\right)<\zeta$. By the induction hypothesis, $a \leqslant_{M} b \Rightarrow L_{a} \subseteq L_{b} \& \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{a}\right) \subseteq \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{b}\right)$.

We let $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \upharpoonright L)=\bigcup_{a \in M} \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{a}\right)$, so we have to prove that
\boxtimes_{2} the choice of \bar{L} is immaterial.
So we just assume that for $l=1,2$ we have that M_{l} is a directed partial order, $\bar{L}^{l}=$ $\left\langle L_{a}^{l}: a \in M_{l}\right\rangle, L_{a}^{l} \subseteq L, M_{l} \vDash a \leqslant b \Rightarrow L_{a}^{l} \subseteq L_{b}^{l}$ and $(\forall t \in L)\left(\forall A \in I_{t}\right)\left[A \subseteq L \rightarrow\left(\exists a \in M_{l}\right)\left(A \subseteq L_{a}^{l}\right)\right.$ and $\left.\mathrm{Dp}_{\mathrm{t}}\left(L_{a}^{l}, \bar{K}\right)<\zeta\right]$.

We should prove that $\bigcup_{a \in M_{1}} \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{a}^{1}\right)$ and $\bigcup_{a \in M_{2}} \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{a}^{2}\right)$ are equal, as quasi-orders of course.

Now let $M:=M_{1} \times M_{2}$, with $\left(a_{1}, a_{2}\right) \leqslant\left(b_{1}, b_{2}\right) \Leftrightarrow a_{1} \leqslant M_{1} b_{1} \& a_{2} \leqslant M_{2} b_{2}$, be a directed partial order. We let $L_{\left(a_{1}, a_{2}\right)}=L_{a_{1}}^{1} \cap L_{a_{2}}^{2}$, so clearly $L_{\left(a_{1}, a_{2}\right)} \subseteq L^{\mathfrak{t}}, \operatorname{Dp}_{\mathfrak{t}}\left(L_{\left(a_{1}, a_{2}\right)}, \bar{K}\right)<\zeta$, $\left(a_{1}, a_{2}\right) \leqslant_{M}\left(b_{1}, b_{2}\right) \Rightarrow L_{\left(a_{1}, a_{2}\right)} \subseteq L_{\left(b_{1}, b_{2}\right)}$ and $\left\langle L_{\left(a_{1}, a_{2}\right)}:\left(a_{1}, a_{2}\right) \in M\right\rangle$ is a (\mathfrak{t}, \bar{K})-representation of L by Claim 2.4(1). So by transitivity of equality, it is enough to prove for $l=1,2$ that $\bigcup_{a \in M_{l}} \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{a}^{l}\right)$ and $\bigcup_{(a, b) \in M} \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{(a, b)}\right)$ are equal as quasi-orders. By the symmetry in the situation, without loss of generality, $l=1$.

Now for every $a \in M_{1}, \bar{L}=\left\langle L_{(a, b)}: b \in M_{2}\right\rangle$ satisfies: $L_{a}^{1} \subseteq L, \operatorname{Dp}\left(L_{a}^{1}\right)<\zeta, L_{(a, b)} \subseteq L_{a}^{1}$, $L_{a}^{1}=\bigcup_{b \in M_{2}} L_{(a, b)}$ and $b_{1} \leqslant M_{2} b_{2} \Rightarrow L_{\left(a, b_{1}\right)} \subseteq L_{\left(a, b_{2}\right)}$. Also we know that $(\forall t \in L)\left(\forall A \in I_{t}^{\mathfrak{t}}\right)$ $\left(\exists b \in M_{2}\right)\left(A \subseteq L \rightarrow A \subseteq L_{b}^{2}\right)$, and hence $\left(\forall t \in L_{a}^{1}\right)\left(\forall A \in I_{t}^{t}\right)\left(A \subseteq L_{a}^{1} \rightarrow\left(\exists b \in M_{2}\right)\left(A \subseteq L_{(a, b)}\right)\right)$. Hence by the induction hypothesis for clause $(\mathbf{B})(\mathrm{g})$ we have that $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \mid L_{a}^{1}\right)$ and $\bigcup_{b \in M_{2}} \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{(a, b)}\right)$ are equal as quasi-orders. As this holds for every $a \in M_{1}$ and M_{1} is directed, we get that $\bigcup_{a \in M_{1}} \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{a}^{1}\right)$ and $\bigcup_{a \in M_{1}} \bigcup_{b \in M_{2}} \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{(a, b)}\right)$ are equal as quasi-orders. But the second is equal to $\bigcup_{(a, b) \in M} \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{(a, b)}\right)$, and so we are done.

Part (B).
First case: $\zeta=0$. This is trivial.
Second case: ζ is a successor. Similar to usual iteration, and easy using the definition and the induction hypothesis, except for clause (f), which we prove in detail.

Clause (f). Let p, q, L and L_{0} be as in the assumption of clause (f). Let $r \in$ $\operatorname{Lim}_{\mathfrak{t}}\left(\mathbf{Q} \upharpoonright L_{1}\right)$ be above q there (and we should prove that p and r are compatible in $\left.\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \backslash L_{2}\right)\right)$. Let t be the maximal member of L_{2}, and set $L_{l}^{-}:=L_{l} \backslash t$ and $L^{-}:=L \backslash t$. If $\left(t \notin L_{0} \vee t \notin L_{1}\right)$ or just $t \notin \operatorname{Dom}(p) \cap \operatorname{Dom}(r)$, then by the induction hypothesis applied to $L_{1}^{-}, L_{2}^{-}, L^{-}, L_{0}^{-}, p \upharpoonright L_{0}^{-}, q \upharpoonright L^{-}$and $r \upharpoonright L_{2}^{-}$we can find a common upper bound r^{*} of $p \upharpoonright L_{0}^{-}$ and $r \upharpoonright L_{1}^{-}$in $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{2}^{-}\right)$, and $r^{*} \cup p \upharpoonright\{t\} \cup r \upharpoonright\{t\}$ is a common upper bound of p and r as required.

So assume that $t \in \operatorname{Dom}(p) \cap \operatorname{Dom}(r) \subseteq L_{0} \cap L_{1}$, and let $\mathbf{P}:=\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L^{-}\right)$and $\mathbf{P}_{l}:=$ $\operatorname{Lim}_{\mathbf{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{l}^{-}\right)$for $l=0,1,2$. Let \mathbf{P}_{2}^{\prime} be $\mathbf{P}_{0} * \mathbf{P} \mathbf{P}_{1}$, and let $G_{2} * G^{2}$ be a generic subset of $\mathbf{P}_{2}^{\prime} * \mathbf{Q}_{t, \bar{\varphi}_{t}, \eta_{t}}$ to which p and r belong. Now we get p^{\prime} and r^{\prime} by applying clause (A)(a)(iv) for t with

$$
\mathbf{P}, \mathbf{P}_{0}, \mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{2}^{\prime},\left(p \upharpoonright L_{0}^{-}, p(t)\right),\left(r \upharpoonright L_{1}^{-}, r(t)\right), p_{1}^{\prime} \text { and } p_{2}^{\prime}
$$

here standing for

$$
\mathbf{P}_{0}, \mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \mathbf{P}_{3}^{\prime},{\underset{\sim}{q}}_{1},{\underset{\sim}{q}}_{2}, p^{\prime} \text { and } r^{\prime}
$$

there, respectively.
By the induction hypothesis in \mathbf{P}_{2} for the conditions p^{\prime} and r^{\prime} we can find a common upper bound p^{*}. So clearly $p^{*} \Vdash_{\mathbf{P}_{2}}$ " $p(t)$ and $q(t)$ are compatible inside $\mathbf{Q}_{t, \bar{\varphi}_{t}, \eta_{\underline{t}}}$ ", and we can finish.

Third case: ζ is limit. Let $\left\langle L_{a}^{2}: a \in M\right\rangle$ be a (\mathbf{t}, \bar{K})-representation of L_{2} with $a \in M \Rightarrow$ $\operatorname{Dp}_{\mathfrak{t}}\left(L_{a}, \bar{K}\right)<\zeta$, and let $L_{a}^{1}=L_{1} \cap L_{a}$.

Clause (B)(a). This is trivial.
Clause (B)(b). Clearly $\operatorname{Dp}_{\mathfrak{t}}\left(L_{1}, \bar{K}\right) \leqslant \zeta$ by Claim $2.3(2)(\alpha)$. Hence $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \mid L_{1}\right)$ is well defined by (A)(b), which we have already above, i.e. $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})=\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{2}\right)=$ $\bigcup_{a \in M_{2}} \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{a}^{2}\right)$ as quasi-orders.

Clearly $\left\langle L_{a}^{1}=L_{1} \cap L_{a}^{2}: a \in M\right\rangle$ is a (\mathfrak{t}, \bar{K})-representation of L_{1}. Hence by the induction hypothesis (if $\mathrm{Dp}_{\mathfrak{t}}\left(L_{1}, \bar{K}\right)<\zeta$) or by the uniqueness proved in (A)(b) (if $\mathrm{Dp}_{\mathfrak{t}}\left(L_{1}, \bar{K}\right)=\zeta$), we know that $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{1}\right)=\bigcup_{a \in M} \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{a}^{1}\right)$ as quasi-orders, and by the induction hypothesis for (B)(b) we know that $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{a}^{1}\right) \subseteq \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{a}^{2}\right)$ as quasi-orders (for $a \in M$), and we can easily finish.

Clause (B)(c), (d). Use the proof of clause (B)(b) noting that $L_{a}^{1} \leqslant_{t} L_{a}^{2}$, and so we can use the induction hypothesis (i.e. if $p \in \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{2}\right)$, as M is directed there is $a \in M$ such that $\operatorname{Dom}(p) \subseteq L_{a}^{2}$; now $a \leqslant_{M} b \Rightarrow p \upharpoonright L_{b}^{1}=p \upharpoonright L_{a}^{1}$, and we can finish easily).

Clause (B)(e). The statements (i) and (ii) hold by clause (b). The statement (iii) holds: let \mathcal{I} be a predense subset of $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{1}\right)$ and let $p \in \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$, so that for some
$a \in M$ we have $p \in \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \mid L_{a}^{2}\right)$. By the induction hypothesis, applying clause (B)(e) to L_{a}^{1} and L_{a}^{2}, we have $\operatorname{Lim}_{\mathfrak{t}}\left(\mathbf{Q} \mid L_{a}^{1}\right)<\operatorname{Lim}_{\mathfrak{t}}\left(\mathbf{Q} \mid L_{a}^{2}\right)$. Hence as $p \in \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \mid L_{a}^{1}\right)$ clearly there is $q \in \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \mid L_{a}^{1}\right)$ such that p is compatible with r in $\operatorname{Lim}_{\mathfrak{t}}\left(\mathbf{Q} \upharpoonright L_{a}^{2}\right)$ whenever $\operatorname{Lim}_{\mathfrak{t}}\left(\mathbf{Q} \upharpoonright L_{a}^{1}\right) \vDash$ " $q \leqslant r$ ". Now by the assumption on " $\mathcal{I} \subseteq \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \mid L_{1}\right)$ is dense", as $q \in \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \mid L_{1}\right)$ (by clause (B)(b)) we can find $q_{0} \in \mathcal{I}$ and q_{1} such that $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \mid L_{1}\right) \vDash q_{0} \leqslant q_{1} \& q \leqslant q_{1}$, and so for some $b \in M$ we have $q, q_{0}, q_{1} \in L_{b}^{1}$ and $a \leqslant M b$ (as M is directed). Now we consider $p, q, L_{a}^{1}, L_{a}^{2}, L_{b}^{1}, L_{b}^{2}$ and apply clause (B)(f).

Clause (B)(f). This is easy to check using clause (f) for the L_{a}^{2}, s , which holds by the induction hypothesis.

Clause (B)(g). Let $M_{2}:=M$ (and recall M_{1} that is from clause (B)(g)). For each $a_{1} \in M_{1}$, clearly $\mathrm{Dp}_{\mathfrak{t}}\left(L_{a}, \bar{K}\right) \leqslant \zeta$ as $L_{a} \subseteq L_{2},\left\langle L_{a_{1}} \cap L_{a_{2}}^{2}: a_{2} \in M_{2}\right\rangle$ is a (\mathfrak{t}, \bar{K})-representation of L_{a} and $\mathrm{Dp}_{\mathfrak{t}}\left(L_{a_{1}} \cap L_{a_{2}}^{2}, \bar{K}\right) \leqslant \mathrm{Dp}_{\mathfrak{t}}\left(L_{a_{2}}^{2}, \bar{K}\right)<\zeta$. Hence by (A)(b) we know that

$$
\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{a_{1}}\right)=\underset{a_{2} \in M_{2}}{ } \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright\left(L_{a_{1}} \cap L_{a_{2}}^{2}\right)\right) .
$$

The rest should be clear.
Clause (B)(h). This is easy.
Clause (B)(i). This is easy.
Clause (B)(j). So let $p_{\alpha} \in \operatorname{Lim}(\overline{\mathbf{Q}})$ for $\alpha<\omega_{1} ;$ let $w_{\alpha}=\operatorname{Dom}\left(p_{\alpha}\right)$, and without loss of generality assume that $\left\langle w_{\alpha}: \alpha<\omega_{1}\right\rangle$ is a Δ-system with heart w. So for some $a \in M$ we have $w \subseteq L_{a}^{2}$. For each α, for some $a_{\alpha} \in M$, we have $a \leqslant M a_{\alpha}$ and $p_{\alpha} \in \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \mid L_{a_{\alpha}}^{2}\right)$.

We can choose a countable set $A_{\alpha, t} \in I_{t}^{t}$ such that $A_{\alpha, t} \subseteq L_{a_{\sigma}}$ for $t \in w_{\alpha}$ and $p_{\alpha}(t)$ is a $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{a_{\alpha}}\right)$-name. So by clause (c) of Definition 2.1 there are an unbounded $S \subseteq \omega_{1}$ and $b \in M$ such that $\left\langle\bigcup\left\{A_{\alpha, t} \cup\{t\} \backslash L_{b}: t \in w_{\alpha}\right\}: \alpha \in S\right\rangle$ is a sequence of pairwise disjoint sets. Without loss of generality, $\alpha \in S \Rightarrow b \subseteq a_{\alpha}$. By clause (B)(e), for each $\alpha \in S$ there is $p_{\alpha}^{*} \in \operatorname{Lim}_{\mathfrak{l}}\left(\overline{\mathbf{Q}} \mid L_{b}\right)$ such that if $p_{\alpha}^{*} \leqslant q \in \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \mid L_{b}\right)$ then p_{α} and q are compatible. By clause (B)(j) of the induction hypothesis, for some $\alpha<\beta$ from S the conditions p_{α}^{*} and p_{β}^{*} are compatible in $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{b}\right)$. Let q exemplify this, and by clause (B)(f) we can finish easily.

Clause (k). This is easy.
Claim 2.7. (1) Assume that
(a) \mathfrak{t} is an FSI-template, $\mathrm{Dp}_{\mathfrak{t}}(L, \bar{K})<\infty$, i.e. \bar{K} is a smooth \mathfrak{t}-memory choice;
(b) $\overline{\mathbf{Q}}=\left\langle\mathbf{Q}_{t, \eta_{t}}: t \in L\right\rangle$ is a (\mathfrak{t}, \bar{K})-iteration of def-c.c.c. forcing notions;
(c $\left.c_{1}\right) L_{1}, L_{2} \subseteq L, L_{1}<L_{2}\left(i . e .\left(\forall t_{1} \in L_{1}\right)\left(\forall t_{2} \in L_{2}\right)\left(L^{\mathrm{t}}=t_{1}<t_{2}\right)\right)$ and $t \in L_{2} \Rightarrow L_{1} \in I_{t}^{\mathrm{t}}$, or at least $t \in L_{2} \& L^{\prime} \subseteq L_{1} \&\left|L^{\prime}\right| \leqslant \aleph_{0} \Rightarrow L^{\prime} \in I_{t}^{\ell}$ and $L=L_{1} \cup L_{2}$.

Then
(α) $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$ is actually a definition of a forcing (in fact a c.c.c. one), and so meaningful in bigger universes; moreover, for extensions $\mathbf{V}_{1} \subseteq \mathbf{V}_{2}$ of $\mathbf{V}=\mathbf{V}_{0}$ (with the same ordinals of course), we get $\left[\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})\right]^{\mathbf{V}_{1}} \subseteq\left[\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})\right]^{\mathbf{V}_{\mathbf{2}}},\left({ }^{3}\right)$ and every maximal antichain \mathcal{I} of $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$ from \mathbf{V}_{1} is a maximal antichain of $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})\left(\right.$ in $\left.\mathbf{V}_{2}\right)$;
$(\beta) \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$ is in fact the composition $\mathbf{Q}_{1} * \mathbf{Q}_{2}$, where $\mathbf{Q}_{1}=\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}}\left\lceil L_{1}\right)\right.$ and $\mathbf{Q}_{2}=\left[\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{2}\right)\right] \mathbf{V}\left[\mathcal{Q}_{\mathbf{1}}\right]$.
(2) Assume clauses (a) and (b) of part (1), and
$\left(\mathrm{c}_{2}\right)$ suppose that L has a last element t^{*} and let $L^{-}=L \backslash\left\{t^{*}\right\}$.
Then for any $G^{-} \subseteq \operatorname{Lim}_{\mathbf{t}}\left(\overline{\mathbf{Q}} \mid L^{-}\right)$generic over \mathbf{V}, letting $\eta_{t^{*}}=\eta_{t^{*}}\left[G^{-}\right]$in $\mathbf{V}\left[G^{-}\right]$we have: the forcing notion $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}}) / G^{-}$is equivalent to $\bigcup\left\{\mathbf{Q}_{t^{*}, \eta_{t^{*}}}^{\mathbf{V}\left[G_{-}^{-}\right]}: A \in I_{t^{*}}^{\mathbf{t}}\right.$ is \bar{K}-closed $\}$, where $G_{A}^{-}:=G^{-} \cap \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \upharpoonright A)$ and $\eta_{t_{\mathbf{i}}^{*}}=\eta_{t^{*}}\left[G^{-}\right]$.
(3) Assume clauses (a) and (b) of part (1), and
(c_{3}) suppose that $\left\langle L_{i}: i<\delta\right\rangle$ is an increasing continuous sequence of initial segments of L with union L, and that δ is a limit ordinal.

Then $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$ is $\bigcup_{i<\delta} \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{i}\right) ;$ moreover, $\left\langle\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{i}\right): i<\delta\right\rangle$ is $\lessdot-$ increasing continuous.
(4) Assume that \mathfrak{t}^{1} and \mathfrak{t}^{2} are FSI-templates, that $L^{\mathfrak{t}^{1}}=L^{\mathfrak{t}^{2}}$, call it L, that for every $t \in L, I_{t}^{\mathfrak{t}^{1}} \cap[L]^{\leqslant \aleph_{0}}=I_{t}^{\mathrm{t}^{2}} \cap[L] \leqslant \aleph_{0}$, that \bar{K} is a smooth \mathfrak{t}^{l}-memory choice, and that $\overline{\mathbf{Q}}=\left\langle\mathbf{Q}_{t, \bar{\varphi}_{t}, \eta_{t}}: t \in L\right\rangle$ is a $\left(\mathfrak{t}^{l}, \bar{K}\right)$-iteration of def-c.c.c. forcing notions for $l=1,2$. Then $\operatorname{Lim}_{\mathfrak{t}^{1}}(\overline{\mathbf{Q}})=\operatorname{Lim}_{\mathfrak{t}^{2}}(\overline{\mathbf{Q}})$.

Proof. This is straightforward (or read [S8]).
We now give sufficient conditions for: "if we force by $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$ from Definition 2.6, then some cardinal invariants are small or equal/bigger than some μ ". The necessity of such a claim in our framework is obvious; we deal with two-place relations only as this is the case in the popular cardinal invariants, in particular those we deal with.

CLAIM 2.8. Assume that \mathfrak{t} is a smooth FSI-template, that $\bar{K}=\left\langle K_{t}: t \in L^{\mathfrak{t}}\right\rangle$ and $\overline{\mathbf{Q}}=$ $\left\langle\mathbf{Q}_{t, \eta_{t}}: t \in L^{\mathbf{t}}\right\rangle$ are as in Definition 2.6 and that $\mathbf{P}=\operatorname{Lim}_{\mathbf{t}}(\overline{\mathbf{Q}})$.
(1) Assume that
(a) R is a Borel $\left({ }^{4}\right)$ two-place relation on ${ }^{\omega} \omega$ (we shall use $<^{*}$);
(b) $L^{*} \subseteq L^{\mathrm{t}}$;
(c) for every countable \bar{K}-closed $A \subseteq L^{\mathfrak{t}}$, for some $t \in L^{*}$, we have $A \in I_{t}^{\mathfrak{t}}$;
(d) for $t \in L^{*}$ and \bar{K}-closed $A \in I_{t}^{\mathrm{t}}$ which includes K_{t}, in $\mathbf{V}^{\operatorname{Lim}_{\mathrm{t}}(\overline{\mathbf{Q}} \mid A)}$ we have $\vdash_{{\underset{\mathbf{Q}}{t, \eta_{t}}}}{ }_{\nu_{\sim}} \in \in^{\omega} \omega$ is an R-cover of the old reals, i.e. $\varrho \in\left({ }^{\omega} \omega\right)^{\mathbf{V}\left[\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \mid A)\right]} \Rightarrow \varrho R{\underset{\sim}{\nu}}_{\nu}$ ", where ${\underset{\sim}{\nu}}_{t}$
${ }^{3}$) Of course possibly $L_{1}=\varnothing$.
$\left({ }^{4}\right)$ Here and below just enough absoluteness is enough, of course.
is a name in the forcing $\mathbf{Q}_{t, \eta_{t}}$, i.e. all this is in $\left(\mathbf{Q}_{t, \eta_{t}[G]}\right) \mathbf{V}[G], \underset{\sim}{G}$ the generic subset of $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \upharpoonright A)$, not depending on A (usually ν_{t} is the generic real of $\mathbf{Q}_{t, \eta_{t}}$, hence $\mathbf{Q}_{t, \eta_{t}}$ is interpreted in the universe $\mathbf{V}^{\operatorname{Lim}_{t}(\overline{\mathbf{Q}} \backslash A)}$, and so η_{t} is determined by the generic; normally we assume this absolutely).

Then $\Vdash_{\mathbf{P}} "\left(\forall \varrho \in{ }^{\omega} \omega\right)\left(\exists t \in L^{*}\right)\left(\varrho R \nu_{\tau}\right)$, i.e. $\left\{\nu_{\tau}: t \in L^{*}\right\}$ is an R-cover, which, if $R=<^{*}$, means $\mathfrak{d} \leqslant\left|L^{*}\right|^{\prime \prime}$.
(1A) If we weaken assumption (d) to "for some $\nu_{t} a \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright K_{t}^{\prime}\right)$-name", where $K_{t}^{\prime}=K_{t}$, or we use $\bar{K}^{\prime}=\left\langle K_{t}^{\prime}: t \in L^{*}\right\rangle, K_{t}^{\prime} \subseteq L_{\leqslant t}^{t}$, then we get $\Vdash_{\mathbf{P}}$ " $\left\{\nu_{t}: t \in L^{*}\right\}$ is an R cover". If we weaken assumption (d) $t o \Vdash_{\mathbf{P}}$ "for every $\varrho \epsilon^{\omega} \omega$, for some $t \in L^{\mathfrak{t}}$ and $\nu \in$ $\mathbf{V}\left({ }^{\omega} \omega\right){ }^{\mathbf{V}\left[\operatorname{Lim}_{t}\left(\overline{\mathbf{Q}} \mid K_{t}^{\prime}\right)\right]}$, we have $\varrho R \nu^{\prime \prime}$, then

$$
\Vdash_{\mathbf{P}} "\left(\forall \varrho \in{ }^{\omega} \omega\right)\left(\exists t \in L^{*}\right)\left(\exists \nu \in \mathbf{V}^{\operatorname{Lim}_{t}\left(\overline{\mathbf{Q}} \mid K_{t}^{\prime}\right)}\right)[\varrho R \nu] " .
$$

This implies that in $\mathbf{V}^{\mathbf{P}}$, if $R=<^{*}$ then $\mathfrak{D} \leqslant \sum_{t \in L^{\star}}\left|K_{t}^{\prime}\right|$; we could use a sequence \bar{K}^{\prime} indexed by other sets.
(2) Assume that
(a) R is a Borel two-place relation on ${ }^{\omega} \omega$ (we shall use <*);
(b) μ is a cardinality;
(c) if $L^{*} \subseteq L^{t}$ and $\left|L^{*}\right|<\mu$, then for some $t \in L^{t}$ and \bar{K}-closed $L^{* *} \supseteq L^{*}$ we have
 $\underset{\sim}{\nu}$ is the generic real of $\mathbf{Q}_{t, \nu_{1}}$; this we assume absolutely).

Then $\Vdash_{\mathbf{P}} "\left(\forall X \in\left[{ }^{\omega} \omega\right]^{<\mu}\right)\left(\exists \nu \in^{\omega} \omega\right)\left(\bigwedge_{\varrho \in X} \varrho R \nu\right)$ " (so for $R=<^{*}$ this means $\mathfrak{b} \geqslant \mu$).
(3) Assume that
(a) R is a Borel two-place relation $\left(^{5}\right.$) on ${ }^{\omega} \omega$ (we use $R=\left\{(\varrho, \nu): \varrho, \nu \in{ }^{\omega} 2\right.$ and $\varrho^{-1}\{1\}, \nu^{-1}\{1\}$ are infinite with finite intersection $\}$);
(b) \varkappa and θ are cardinals, and $\varkappa \leqslant \theta \leqslant \lambda$;
(c) if $t_{i, n} \in L^{\mathfrak{t}}$ for $i<i(*), n<\omega, \varkappa \leqslant i(*)<\theta$, and each $\left\{t_{i, n}: n<\omega\right\}$ is \bar{K}-closed, then we can find $t_{n} \in L^{\mathrm{t}}$ for $n<\omega$ such that $\left\{t_{n}: n<\omega\right\} \subseteq L^{\mathfrak{t}}$ is \bar{K}-closed and
(*) for every $i<i(*)$, for some $j<\varkappa, j \neq i$, and the mapping $t_{i, n} \mapsto t_{i, n}$, $t_{j, n} \mapsto t_{n}$ is a partial isomorphism of $(\mathbf{t}, \overline{\mathbf{Q}})$ (see Definition 2.9 below).

Then in $\mathbf{V}^{\mathbf{P}}$ we have:
$\boxtimes_{\theta, \varkappa}^{R}$ if $\varrho_{i}, \nu_{i} \in^{\omega} \omega$ for $i<i(*), \varkappa \leqslant i(*)<\theta$ and $i \neq j \Rightarrow \nu_{i} R \varrho_{j}$, then we can find $\varrho \in^{\omega} \omega$ such that $i<i(*) \Rightarrow \nu_{i} R \varrho$.

Proof. This is straightforward, but being requested we give details:
(1) Let ϱ be a \mathbf{P}-name of a member of $\left({ }^{\omega} \omega\right)^{\mathbf{V}^{\mathbf{P}}}$, so that as \mathbf{P} satisfies the c.c.c. (see Definition $2.6(\mathrm{~B})(\mathrm{j})$), for each n there is a maximal antichain $\left\{p_{n, i}: i<i_{n}\right\}$ such
$\left(^{5}\right)$ So R is defined in V; if R is from $V^{\operatorname{Lim}_{t}(\bar{Q} \mid K)}$ we need a partial isomorphism (see below) of $(\mathbf{t}, \overline{\mathbf{Q}})$ extending id_{K}.
that $p_{n, i}$ forces a value of $\varrho(n)$ and, of course, i_{n} is countable. Let $M=\{a: a$ is a countable \bar{K}-closed subset of $\left.L^{t}\right\}$. Then obviously M is closed under countable unions and $\bigcup\{a: a \in M\}=L^{t}$. Let $L_{a}=a$ for $a \in M$, so that by Definition 2.6(B)(i)(β) we have $p \in \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}}) \Leftrightarrow \bigcup\left\{\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{a}\right): a \in M\right\}$ but $\mathbf{P}=\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$. Hence for $n<\omega$ and $i<i_{n}$, for some $a_{n, i} \in M$ we have $p_{n, i} \in \operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{a}\right)$. But M is \aleph_{1}-directed, so for some $a \in M$ we have $\left\{a_{n, i}: n<\omega\right.$ and $\left.i<i_{n}\right\} \subseteq\left\{c: c<_{M} a\right\}$. Also by Definition $2.6(\mathrm{~B})(\mathrm{e})$ we know that $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{a}\right) \lessdot \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})=\mathbf{P}$, so $\underset{\sim}{\varrho}$ is a $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright L_{a}\right)$-name. Now by assumption (c) of what we are proving, as $L_{a} \subseteq L$ is countable, we can find $t \in L^{*} \subseteq L^{\mathrm{t}}$ such that $L_{a} \in I_{t}^{\mathrm{t}}$. Also we know that $K_{t} \in I_{t}^{\mathfrak{t}}$ (see Definition $2.1(2)(\mathrm{c})$), hence $A:=K_{t} \cup L_{a}$ belongs to $I_{t}^{\mathfrak{t}}$ and is \bar{K}-closed; and easily also $B=A \cup\{t\}$ is \bar{K}-closed.

Then $A \subseteq B \subseteq L^{\mathfrak{t}}$ are \bar{K}-closed, so as above $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \upharpoonright A) \lessdot \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \upharpoonright B) \lessdot \operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})=\mathbf{P}$

Now by assumption (d), in $\mathbf{V}^{\operatorname{Lim}_{t}(\overline{\mathbf{Q}} \mid A)}$ we have $\Vdash_{\mathbf{Q}_{t, \eta_{t}}} \underline{\varrho}{ }_{\sim} R \nu_{\tau}$ ", and therefore by Claim $2.7(2)$ we know that $\operatorname{Lim}_{\mathfrak{q}}(\overline{\mathbf{Q}} \upharpoonright B)=\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \upharpoonright A) *{\underset{\sim}{\mathbf{Q}}}_{t, \eta_{t}}$. So together $\vdash_{\operatorname{Lim}_{\mathfrak{t}}(B)}$ " ${\underset{\sim}{e}} R{\underset{\sim}{\nu}}_{t} "$, and hence by the previous sentence and obvious absoluteness we have $\vdash^{\mathbf{P}}$ " ${\underset{\sim}{~}} R{\underset{\sim}{\nu}}^{\nu}$ ". So as ϱ was any P-name of a member of $\left({ }^{\omega} \omega\right)^{\mathbf{V}^{\mathbf{P}}}$, we are done.
(1A) The proof is the same as above.
(2) Assume $p \Vdash_{\mathbf{P}}$ " $\underset{\sim}{X} \subseteq{ }^{\omega} \omega$ has cardinality $<\mu$ ". As we can increase p without loss of generality, for some $\theta<\mu$ we have $p \vdash_{\mathbf{P}} "|\underset{\sim}{X}|=\theta$ ", so we can find a sequence $\left\langle\underline{\sim}_{\alpha}: \alpha<\theta\right\rangle$ of P-names of members of $\left({ }^{\omega} \omega\right) \mathbf{V}^{\mathbf{P}}$ such that $p \nvdash_{\mathbf{P}} " \underset{\sim}{X}=\{{\underset{\alpha}{\underset{\alpha}{\alpha}}}: \alpha<\theta\}$ ". Let $\left\{p_{\alpha, n, i}: i<i_{\alpha, n}\right\}$ be a maximal antichain of \mathbf{P}, with $p_{\alpha, n, i}$ forcing a value to $\varrho_{\alpha}(n)$ and $i_{\alpha, n}$ countable.

Define $M=\left\{a \subseteq L^{t}: a\right.$ is countable and \bar{K}-closed $\}$, so that for each $\alpha<\theta, n<\omega$, $i<i_{\alpha, n}$, for some $a_{\alpha, n, i} \in M$ we have $p_{\alpha, n, i} \in \operatorname{Lim}_{t}\left(\overline{\mathbf{Q}} \upharpoonright L_{a_{\alpha, n, i}}\right)$. Then for some \bar{K}-closed $L^{* *} \subseteq L^{\mathfrak{t}}$ and $t \in L^{\mathfrak{t}}$ we have $L^{* *} \in I_{t}^{\mathfrak{t}}$ and $a_{\alpha, n, i} \subseteq L^{* *}$ for $\alpha<\theta, n<\omega$ and $i<i_{\alpha, n}$. We now continue as in part (1).
(3) Assume $i(*) \in[\varkappa, \theta)$ and $\Vdash_{\mathbf{P}}{ }^{\prime}{\underset{\sim}{\nu}}_{i}, \varrho_{i} \in{ }^{\omega} \omega$ and $i \neq j \Rightarrow{\underset{\sim}{\nu}}_{i} R \underline{\sim}_{j}$ ". So as above we can find a countable \bar{K}-closed $K_{i}^{*} \subseteq L^{t}$ such that $\underset{\sim}{\nu_{i}}$ and ${\underset{\sim}{~}}_{i}$ are $\left.\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}}\rceil K_{i}^{*}\right)$-names; without loss of generality, $K_{i}^{*} \neq \varnothing$ and even $\left|K_{i}^{*}\right|=\aleph_{0}$; this is impossible only if $L^{\mathfrak{t}}$ is finite, and then all is trivial. Let $\left\langle t_{i, n}: n\langle\omega\rangle\right.$ be a list of the members of K_{i}^{*} with no repetitions. Let $f_{i, j}$ be the mapping from K_{j}^{*} to K_{i}^{*} defined by $f_{i, j}\left(t_{j, n}\right)=t_{i, n}$.

We define the two-place relations E_{1} and E_{2} on $i(*)$ and on $i(*) \times i(*)$ respectively by - $i E_{1} j$ if and only if $f_{i, j}$ is a partial isomorphism of $(\mathfrak{t}, \overline{\mathbf{Q}})$ such that $\hat{f}_{i, j}$ (see claim (B) of Definition 2.9 below) maps ($\left.\varrho_{j},{\underset{\sim}{j}}_{j}\right)$ to $\left(\varrho_{\sim},{\underset{\sim}{\nu}}^{\nu}\right)$;

- $\left(i_{1}, i_{2}\right) E_{2}\left(j_{1}, j_{2}\right)$ if and only if $i_{1} E_{1} j_{1}, i_{2} E_{2} j_{2}$ and $f_{i_{1}, j_{1}} \cup f_{i_{2}, j_{2}}$ is a partial isomorphism of $(\mathbf{t}, \overline{\mathbf{Q}})$.

We easily have that
\otimes (i) E_{1} and E_{2} are equivalence relations over their domain;
(ii) $f_{j, i}=f_{i, j}^{-1}$.

As $\left|i(*) / E_{1}\right|<\operatorname{cf}(\varkappa)$ (by clause (c) of the assumption) and we can replace $i(*)$ by $i(*)+\varkappa$, without loss of generality, $i<\varkappa \Rightarrow 0 E_{1} i$. Now we apply assumption (c), and get $\left\langle t_{n}: n<\omega\right\rangle$. By (*) of clause (c) and clause (A)(b) of Definition 2.9 below, for any i and j clearly $K_{i}^{*} \cup K_{j}^{*}$ and $K_{i}^{*} \cup\left\{t_{n}: n<\omega\right\}$ are \bar{K}-closed (see the definition below). For any $i<i(*)$ let $j_{i}<\varkappa$ be as in ($*$) of clause (c), which means that $j_{i} \neq i$ and the following mapping g_{i} is a partial isomorphism of $(\mathfrak{t}, \overline{\mathbf{Q}}): \operatorname{Dom}\left(g_{i}\right)=\left\{t_{i, n}, t_{j_{i}, n}: n<\omega\right\}, g_{i}\left(t_{i, n}\right)=t_{i, n}$ and $g_{i}\left(t_{j, n}\right)=t_{n}$.

Let $\underset{\sim}{\nu}$ and ϱ @ be $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright K^{*}\right)$-names such that for some, equivalently any, i, \hat{g}_{i} maps $\nu_{j_{i}}, \varrho_{j_{i}}$ to ν, ϱ, respectively (this is all right as for any i_{1} and i_{2} we have $j_{i_{1}} E_{1} j_{i_{2}}$ because $j_{i_{1}} E_{1} j_{i_{2}}$ and hence $\left.g_{i_{2}} \circ f_{j_{i_{2}}}, j_{i_{1}}=g_{i_{1}} \backslash K_{j_{i_{1}}}^{*}\right)$. Now for any $i<i(*)$, as $j_{i} \neq i$, we know that
 proved $\boxtimes_{\theta, \varkappa}^{R}$ and Claim 2.8.

In Definition 2.9 below we note that isomorphisms (or embeddings) of t's tend to induce isomorphisms (or embeddings) of $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$, and we deal (in Definitions 2.10 and 2.11) with some natural operation. In Definition 2.9 we could use two t's, but this can trivially be reduced to one.

Definition/Claim 2.9. Assume that \mathfrak{t}, \bar{K} and $\overline{\mathbf{Q}}=\left\langle\mathbf{Q}_{t, \eta_{t}}: t \in L^{\dagger}\right\rangle$ are as in Definition 2.6. By induction on ζ we define and prove the following: $\left({ }^{6}\right)$
(A) (Definition) We say that f is a partial isomorphism of $(\mathfrak{t}, \overline{\mathbf{Q}})$ of depth $\leqslant \zeta$ if (omitting ζ means for some ordinal ζ; writing \mathfrak{t} instead of $(\mathfrak{t}, \overline{\mathbf{Q}})$ means that we assume $\mathbf{Q}_{t, \eta_{t}}=\mathbf{Q}$, i.e. constant, $K_{t}=\varnothing$ for every $t \in L^{t}$, and that we may say "t-partial isomorphism")
(a) f is a partial one-to-one function from L^{t} to L^{t};
(b) $\operatorname{Dom}(f)$ and $\operatorname{Rang}(f)$ are (\mathfrak{t}, \bar{K})-closed sets of depth $\leqslant \zeta$;
(c) for $t \in \operatorname{Dom}(f)$ and $A \subseteq \operatorname{Dom}(f)$ we have $A \in I_{t}^{t} \Leftrightarrow f^{\prime \prime}(A) \in I_{f(t)}^{t}$;
(d) for $t \in \operatorname{Dom}(f)$, we have that f maps K_{t} onto $K_{f(t)}$, and $f \upharpoonright K_{t}$ maps η_{t} to $\eta_{f(t)}$; more exactly, the isomorphism \hat{f} which f induces from $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright K_{t}\right)$ onto $\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \upharpoonright K_{f(t)}\right)$ does this.
(B) (Claim) (a) f induces naturally an isomorphism, which we call \hat{f}, from $\operatorname{Lim}(\overline{\mathbf{Q}} \upharpoonright \operatorname{Dom}(f))$ onto $\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}} \upharpoonright \operatorname{Rang}(f))$.

Proof. This is straightforward.
$\left({ }^{6}\right)$ If $K_{t}=\varnothing$ and all $\mathbf{Q}_{t, \eta}$ have the same definition of forcing notion as in our main case, we can separate the definition and claim.

Definition 2.10. (1) We say that $\boldsymbol{t}=\boldsymbol{t}^{1}+\mathbf{t}^{2}$ if
(a) $L^{t}=L^{t}+L^{t^{2}}$ (as linear orders);
(b) for $t \in L^{\mathbf{t}^{1}}, I_{t}^{\mathbf{t}^{1}}=I_{t}^{\mathbf{t}}$;
(c) for $t \in L^{\mathbf{t}^{2}}, I_{t}^{\mathfrak{t}^{2}}=\left\{A \subseteq L^{\mathfrak{t}}: A \cap L^{\mathfrak{t}^{2}} \in I_{t}^{\mathbf{t}^{2}}\right\}$.

So $\mathfrak{t}^{1}+\mathfrak{t}^{2}$ is well defined if \mathbf{t}^{1} and \mathfrak{t}^{2} are disjoint, i.e. $L^{\boldsymbol{t}^{1} \cap L^{t^{2}}}=\varnothing$.
(2) We say that $\mathfrak{t}^{1} \leqslant{ }_{w k} t^{2}$ if and only if
(a) $L^{\mathbf{t}^{1}} \subseteq L^{\mathbf{t}^{2}}$ (as linear orders) and $t \in L^{\mathbf{t}^{\mathbf{1}}} \Rightarrow I_{t}^{\mathbf{t}^{1}} \subseteq I_{t}^{\mathbf{t}^{2}}$;
(b) for every countable $\left({ }^{7}\right) A \subseteq L^{\mathfrak{t}^{1}}$ and $t \in L^{\mathfrak{t}^{1}}$ we have $A \in I_{t}^{\mathfrak{t}^{1}} \Leftrightarrow A \in I_{t}^{\mathfrak{t}^{2}}$.
(3) If $\left\langle\mathbf{t}^{\boldsymbol{\xi}}: \zeta<\xi\right\rangle$ is $\leqslant \mathbf{w k}$-increasing, with ξ a limit ordinal, we define $\mathfrak{t}^{\xi}:=\bigcup_{\zeta<\xi} \mathfrak{t}^{\zeta}$ by

$$
\begin{aligned}
L^{t^{\xi}} & =\bigcup_{\zeta<\zeta} L^{t^{\varsigma}} \quad(\text { as linear orders }), \\
I_{t}^{t^{\xi}} & =\bigcup\left\{I_{t}^{t^{\varsigma}}: \zeta<\xi \text { and } t \in L^{t_{\zeta}}\right\} .
\end{aligned}
$$

Clearly $\zeta<\xi \Rightarrow \mathfrak{t}^{\boldsymbol{\zeta}} \leqslant \leqslant_{\mathbf{w k}} \mathfrak{t}^{\xi}$. Such a \mathfrak{t}^{ξ} is the limit of $\left\langle\mathbf{t}^{\zeta}: \zeta<\xi\right\rangle$; now a \leqslant_{wk}-increasing sequence $\left\langle\mathfrak{t}^{\zeta}: \zeta<\xi\right\rangle$ is continuous if for every limit ordinal $\delta<\xi$ we have $\mathfrak{t}^{\delta}=\bigcup_{\zeta<\delta} \mathfrak{t}^{\zeta}$.
(4) If $\left\langle\mathbf{t}^{\zeta}: \zeta<\xi\right\rangle$ are pairwise disjoint (i.e. $\zeta \neq \varepsilon \Rightarrow L^{\mathfrak{t}^{\zeta}} \cap L^{\mathfrak{t}^{\epsilon}}=\varnothing$), we define $\sum_{\zeta<\xi} \mathfrak{t}^{\zeta}$ by induction on ξ naturally: for $\xi=1$ it is \mathfrak{t}^{0}, for ξ limit it is $\bigcup_{\zeta<\xi}\left(\sum_{\zeta<\varepsilon} \mathfrak{t}^{\varsigma}\right)$, and for $\xi=\varepsilon+1$ it is $\left(\sum_{\zeta<\varepsilon} \mathfrak{t}^{\zeta}\right)+\mathfrak{t}^{\varepsilon}$; so $\xi_{1} \leqslant \xi_{2} \Rightarrow \sum_{\zeta<\xi_{1}} \mathfrak{t}^{\zeta} \leqslant \mathrm{wk} \sum_{\zeta<\xi_{2}} \mathfrak{t}^{\boldsymbol{\zeta}}$ (even an initial segment).
(5) We can replace \mathfrak{t}^{ζ} in (1)-(4) above by ($\mathbf{t}^{\zeta}, \bar{K}^{\zeta}$).

Claim 2.11. Let \mathfrak{t} be an FSI-template.
(1) If $L^{\mathfrak{t}}=\varnothing$ or just finite, and $\left\{s: L^{\mathfrak{t}} \vDash s<t\right\} \in I_{t}^{\mathfrak{t}}$, then \mathfrak{t} is smooth.
(2) If \mathfrak{t}^{1} and \mathfrak{t}^{2} are disjoint FSI-templates, then $\mathfrak{t}^{1}+\mathfrak{t}^{2}$ is an FSI-template and $l \in\{1,2\} \Rightarrow \mathfrak{t}^{l} \leqslant \mathrm{wk} \mathbf{t}^{1}+\mathbf{t}^{2}$.
(3) If \mathfrak{t}^{1} and \mathfrak{t}^{2} are disjoint smooth FSI-templates, then $\mathfrak{t}^{1}+\mathfrak{t}^{2}$ is a smooth FSItemplate; moreover, $\mathrm{Dp}_{\mathfrak{t}}\left(L^{\mathbf{t}}\right) \leqslant \mathrm{Dp}_{\mathfrak{t}^{1}}\left(L^{\mathbf{t}^{1}}\right)+\mathrm{Dp}_{\mathbf{t}^{2}}\left(L^{\mathbf{t}^{2}}\right)$ and $\mathrm{Dp}_{\mathfrak{t}}\left(L^{\mathbf{t}^{l}}\right)=\mathrm{D} \mathrm{p}_{\mathfrak{t}^{l}}\left(L^{\mathfrak{t}^{t}}\right)$.
(4) If $\left\langle\mathrm{t}^{\zeta}: \zeta<\xi\right\rangle$ is $a \leqslant \mathrm{wk}$-increasing sequence (see Definition 2.10 (2)) of FSI-templates and ξ is a limit ordinal, then $\mathfrak{t}^{\xi}:=\bigcup_{\zeta<\xi} \mathfrak{t}^{\zeta}$ is an FSI-template and $\zeta<\xi \Rightarrow \mathfrak{t}^{\zeta} \leqslant{ }_{\mathrm{wk}} \mathfrak{t}^{\xi}$.
(5) If $\left\langle\mathfrak{t}^{\zeta}: \zeta<\xi\right\rangle$ is an increasing continuous sequence (see Definition $2.10(3)$) of smooth FSI-templates and ξ is a limit ordinal, then $\mathfrak{t}^{\xi}:=\bigcup_{\zeta<\xi} \mathfrak{t}^{\zeta}$ is a smooth FSI-

(6) If $\left\langle\mathfrak{t}^{\zeta}: \zeta<\xi\right\rangle$ is a sequence of pairwise disjoint (smooth) FSI-templates, then $\sum_{\zeta<\xi} \mathfrak{t}^{\zeta}$ is a (smooth) FSI-template and $\left\langle\sum_{\zeta<\varepsilon} \mathfrak{t}^{\zeta}: \varepsilon \leqslant \zeta\right\rangle$ is increasing continuous.
(7) We can expand \mathfrak{t}^{ζ} by \bar{K}^{ζ}.

[^2](8) We can restrict ourselves to locally countable t's (so that the sums are locally countable if the summands are) or to globally countable ones.
(9) Assume that \mathbf{J} is a linear order, \mathfrak{t}_{x} is a smooth template for every $x \in \mathbf{J}$ and $\left\langle L^{t_{x}}: x \in \mathbf{J}\right\rangle$ are pairwise disjoint (for notational simplicity). We define \mathfrak{t} by $L^{\mathbf{t}}=\sum_{x \in \mathbf{J}} L^{t_{x}}$ (so that $L^{\mathfrak{t}} \vDash s<t$ if and only if $\left.(\exists x, y)\left(s \in L^{t_{x}} \wedge t \in L^{t_{y}} \wedge x<\mathbf{J} y\right) \vee(\exists x \in \mathbf{J})\left(L^{t_{x}} \vDash s<t\right)\right)$ and
\[

$$
\begin{aligned}
I_{t}^{\mathrm{t}}=\left\{A \subseteq L^{\mathrm{t}}:\right. & (\forall s \in A)\left(s<_{L^{t}} t\right) \text { and letting } t \in \in^{x} \text { we have } \\
& \left.A \cap L^{t_{x}} \in I_{t}^{t_{x}} \text { and }\left\{y: y<\mathrm{J} x, A \cap L^{t_{y}} \neq \varnothing\right\} \text { is finite }\right\} .
\end{aligned}
$$
\]

Then \mathfrak{t} is a smooth template (can be expanded by \bar{K} 's) (this will be used in §3).
Proof. This is easy. For example, part (3) is proved by induction on $\mathrm{Dp}_{\mathfrak{t}}\left(L^{\mathfrak{t}}\right)$, part (6) by induction on ξ, and in part (7) let M be $[\mathbf{J}]^{<\aleph_{0}}$ ordered by inclusion and $L_{\{x(1), \ldots, x(n)\}}=\bigcup\left\{L^{\mathfrak{t}_{x}(l)}: l=1, \ldots, n\right\}$ for any $x(1), \ldots, x(n) \in \mathbf{J}$.

Discussion 2.12. To prove our desired result $\operatorname{CON}(\mathfrak{a}>\mathfrak{d})$ we need to construct an FSI-template \mathfrak{t} of the right form. Now we do it by using a measurable cardinal. The point is that if we are given $\left\langle\left\langle t_{i, n}: n<\omega\right\rangle: i<i(*)\right\rangle, L^{\ddagger}, i(*) \geqslant \varkappa$, and D is a normal ultrafilter on \varkappa, then in $\mathfrak{t}^{\varkappa} / D$ the ω-sequence $\left\langle\left\langle t_{i, n}: i<\varkappa\right\rangle / D: n<\omega\right\rangle$ is as required in Claim 2.8 (3)(c), considering \mathfrak{t}^{\star} / D as an extension of \mathfrak{t}.

Definition 2.13. For a template \mathfrak{t} and a $\left(2^{\aleph_{0}}\right)^{+}$-complete ultrafilter D on \varkappa, we define $\mathfrak{t}^{*}:=\mathfrak{t}^{x} / D, \mathbf{j}_{D, \mathfrak{t}}$ and $\mathbf{j}_{D, \mathfrak{t}}(\mathfrak{t})$ as follows:
(a) We define \mathfrak{t}^{*} by

$$
L^{t^{*}}=\left(L^{t}\right)^{x} / D \quad \text { as a linear order, }
$$

and if $t^{*}=\left\langle t_{i}: i<\varkappa\right\rangle / D$, where $t_{i} \in L^{\mathrm{t}}$, then we let $I_{t^{*}}^{\mathrm{t}^{*}}=\left\{A\right.$: we can find $A_{i} \in I_{t_{i}}^{\mathrm{t}}$ for $i<\varkappa$ such that $\left.A \subseteq \prod_{i<\varkappa} A_{i} / D\right\}$.
(b) We then let $\mathbf{j}_{D, \mathfrak{t}}$ be the canonical embedding of \mathfrak{t} into $\mathfrak{t}^{\boldsymbol{x}} / D$, i.e. $\mathbf{j}_{D, \mathfrak{t}}(t)=$ $\langle t: i<x\rangle / D$ for every $t \in L^{t}$.
(c) Let finally $\mathfrak{t}^{\prime}=\mathbf{j}_{D, \mathfrak{t}}(\mathfrak{t})$ be defined by $L^{t^{\prime}}=L^{\mathbf{t}^{\mathbf{t}}}\left\{\left\{\mathbf{j}_{D, \mathfrak{t}}(s): s \in L^{\mathbf{t}}\right\}\right.$ and $I_{\mathbf{j}_{D, \mathfrak{t}}(s)}^{\mathbf{t}^{\prime}}=$ $\left\{\left\{\mathbf{j}_{D, t}(t): t \in A\right\}: A \in I_{s}^{\mathbf{t}}\right\}$.
(We can deal with \bar{K} if D is $\left(\bigcup_{t \in L^{t}}\left|K_{t}\right|^{+}\right)$-complete, which holds here as each K_{t} is countable, and we can also deal with $\overline{\mathbf{Q}}$ if we have less than $\operatorname{com}(D)$ kinds of $\bar{\varphi}_{t}$ (letting η_{i} vary), which holds here too.)

Claim 2.14. In Definition 2.13,

(1) \mathfrak{t}^{\star} / D is also an FSI-template, $\mathbf{j}_{D, \mathfrak{t}}(\mathfrak{t}) \leqslant \mathrm{wk}^{\mathrm{t}^{\chi} / D}$ and $\mathbf{j}_{D, \mathrm{t}}$ is an isomorphism from \mathfrak{t} onto $\mathbf{j}_{D, \mathfrak{t}}(\mathfrak{t})$;
(2) if \mathfrak{t} is a smooth FSI-template, then $\mathfrak{t}^{\boldsymbol{x}} / D$ is a smooth FSI-template;
(3) moreover, $\mathrm{Dp}_{\mathrm{t}^{x} / D}\left(L^{\mathfrak{t}^{x} / D}\right) \leqslant\left(\mathrm{DP}_{\mathrm{t}}\left(L^{\mathfrak{t}}\right)\right)^{x} / D$.

Proof. This is straightforward.
Now Definition 2.15 and Observation 2.16 below are used only in the short proof of Conclusion 2.17, depending on $\S 1$, so you may ignore them.

Definition 2.15. Fix $\aleph_{0}<\varkappa<\mu=\operatorname{cf}(\mu)<\lambda=\operatorname{cf}(\lambda)=\lambda^{\varkappa}$ and D, a \varkappa-complete (or just $\left(2^{\aleph_{0}}\right)^{+}$-complete) uniform ultrafilter on \varkappa. We define, by induction on $\zeta \leqslant \lambda$, a smooth FSI-template $\mathfrak{t}_{\gamma, \zeta}$ for $\gamma<\mu$ such that
(a) $\mathfrak{t}_{\gamma, \zeta}$ is an FSI-template;

(c) for $\xi<\zeta$ we have $\boldsymbol{t}_{\gamma, \xi} \leqslant{ }_{\mathrm{wk}} \boldsymbol{t}_{\gamma, \zeta}$;
(d) if ζ is limit then $\mathfrak{t}_{\gamma, \zeta}=\bigcup_{\xi<\zeta} \mathfrak{t}_{\gamma, \xi}$, see Definition 2.10 (3) and Claim 2.11 (6);
(e) if $\zeta=\xi+1$ and ξ is even, then there is an isomorphism $\mathbf{j}_{\gamma, \zeta}$ from $\sum_{\beta \leqslant \gamma} \mathfrak{t}_{\beta, \xi}$ onto $\mathfrak{t}_{\gamma, \zeta}$ which is the identity over $\mathfrak{t}_{\gamma, \xi}$;
(f) if $\zeta=\xi+1$ and ξ is odd, then there is an isomorphism $\mathbf{j}_{\gamma, \zeta}$ from $\left(\mathbf{t}_{\gamma, \xi}\right)^{x} / D$ onto $\mathfrak{t}_{\gamma, \zeta}$ which extends the inverse of $\mathbf{j}_{D, \mathfrak{t}_{\gamma, \xi}}$.

Observation 2.16. Definition 2.15 is legitimate.
Proof. This follows by the previous claims.
Conclusion 2.17. Assume that \varkappa is measurable and $\varkappa<\mu=\operatorname{cf}(\mu)<\lambda=\operatorname{cf}(\lambda)=\lambda^{\varkappa}$. Then for some c.c.c. forcing notion \mathbf{P} of cardinality λ, in $\mathbf{V}^{\mathbf{P}}$ we have $\mathfrak{a}=\lambda$ and $\mathfrak{b}=\mathfrak{d}=\mu$.

Short proof (depending on §1). Let $\mathfrak{t}_{\gamma, \zeta}$ (for $\gamma<\mu$ and $\zeta \leqslant \lambda$) be as in Definition 2.15. Let $\mathfrak{t}=\sum_{\gamma<\mu} \mathfrak{t}_{\gamma, \lambda}, \bar{K}=\left\langle K_{t}: t \in L^{\mathfrak{t}}\right\rangle, K_{t}=\varnothing$ and $\overline{\mathbf{Q}}=\left\langle\mathbf{Q}_{t}: t \in L^{\mathfrak{t}}\right\rangle$ with \mathbf{Q}_{t} being constantly the dominating real forcing (= Hechler forcing). Lastly let $\mathbf{P}=\operatorname{Lim}_{\mathfrak{t}}(\overline{\mathbf{Q}})$.

The rest is as at the end of $\S 1$.
Alternative presentation of the proof of Conclusion 2.17, self-contained, not depending on Definition 2.15 and Observation 2.16. We define an FSI-template \mathfrak{t}^{ζ} for $\zeta \leqslant \lambda$ by induction on ζ.

Case 1: $\zeta=0$. Let \mathfrak{t}^{ζ} be defined by

$$
L^{\mathfrak{t}^{\varsigma}}=\mu, \quad I_{\alpha}^{\mathfrak{t}^{\varsigma}}=\{A: A \subseteq \alpha\} .
$$

Case 2: $\zeta=\xi+1$. We choose \mathfrak{f}^{ζ} such that there is an isomorphism \mathbf{j}_{ζ} from $L^{t^{\zeta}}$ onto $\left(L^{\mathbf{t}^{\xi}}\right)^{x} / D$ satisfying that $\mathbf{j}_{\zeta} \backslash L^{t^{\xi}}$ is the canonical embedding $\mathbf{j}_{D, \mathfrak{t} \xi}$, and if $x \in L^{t^{\varsigma}}$ and $\mathbf{j}_{\zeta(x)}=$
$\left\langle x_{\varepsilon}: \varepsilon<\chi\right\rangle / D \in\left(L^{\mathfrak{t}^{\xi}}\right)^{\varkappa} / D$, then $A \in I_{x}^{\mathfrak{\epsilon}^{\varsigma}}$ if and only if for some $\bar{A}=\left\langle A_{\varepsilon}: \varepsilon<\varkappa\right\rangle$ we have $A_{\varepsilon} \in I_{x_{\varepsilon}}^{\epsilon^{\xi}}$ and $\left\{\mathbf{j}_{\zeta}(y): y \in A\right\} \subseteq\left\{\left\langle y_{\varepsilon}: \varepsilon<x\right\rangle / D:\left\{\varepsilon<\varkappa: y_{\varepsilon} \in A_{\varepsilon}\right\} \in D\right\}$.

Case 3: ζ is limit. We choose \mathfrak{t}^{ζ} from

$$
L^{t^{\zeta}}=\bigcup_{\xi<\zeta} L^{t^{\xi}} \quad \text { as linear orders. }
$$

Subcase 3A. If $x \in L^{t^{0}}$ then $I_{x}^{t^{\varsigma}}=\left\{A: A \subseteq\left\{s: L^{t^{\varsigma}} \vDash " s<x "\right\}\right\}$.
Subcase 3B. If $x \notin L^{\mathbf{t}^{0}}$ but $x \in L^{\mathbf{t}^{5}}$, then $\left({ }^{8}\right)$
$I_{x}^{\mathbf{t}^{\varsigma}}=\left\{A\right.$: for some $\xi<\zeta$ we have $x \in L^{\mathfrak{t}^{\xi}}$, and if $y=\min \left\{y \in L^{\mathbf{t}^{0}}: L^{\mathbf{t}^{\zeta}}=\right.$ " $\left.x<y "\right\}$, which is in $L^{t^{0}}$ (and is always well defined, see clause (b) of (*) below), then $A \backslash\left\{t \in L^{t^{\varsigma}}: L^{\mathbf{t}^{\zeta}} \vDash " t<z "\right.$ for some z such that $\left.L^{\mathbf{t}^{0}} \vDash " z<y "\right\}$ belongs to $I_{x}^{\epsilon^{\xi}}$ (and hence is a subset of $\left.\left.L^{\mathfrak{t}^{\xi}}\right)\right\}$.

We now prove by induction on $\zeta \leqslant \lambda$ that
$(*)(\mathrm{a}) \mathfrak{t}^{\zeta}$ is an FSI-template;
(b) $L^{t^{0}}$ is an unbounded subset of $L^{t^{\zeta}}$;
(c) \mathfrak{t}^{5} is smooth;
(d) $\mathfrak{t}^{\xi} \leqslant \mathrm{wk} \mathfrak{t}^{\boldsymbol{t}}$ for $\xi<\zeta$;
(e) if $x \in L^{\mathfrak{t}^{\varsigma}}$ then $\left\{z\right.$: for some $y \in L^{\mathbf{t}^{0}}$ we have $L^{\mathfrak{t}^{\varsigma}}{ }^{\text {" }}$ " $\left.z \leqslant y<x "\right\} \in I_{x}^{\mathbf{t}^{\zeta}}$;
(f) $L^{t^{\varsigma}}$ has cardinality $\leqslant(\mu+|\zeta|)^{x}$;
(g) $\left\langle\mathfrak{t}^{\varepsilon}: \varepsilon \leqslant \zeta\right\rangle$ is $\leqslant \mathrm{wk}$-increasing continuous;
(h) we have $\mathfrak{t}^{\zeta}=\sum_{\gamma<\mu} \mathfrak{s}^{\gamma, \zeta}$, where $\mathfrak{s}^{\gamma, \zeta}=\mathfrak{t}^{\zeta}\left\lceil\left\{x \in L^{\mathfrak{t}^{\zeta}}: L^{\mathfrak{t}^{\zeta}}=" x<\gamma^{"}\right\}\right.$.
(Why? This is easy. For example, why do clauses (a) and (c) hold? For $\zeta=0$ by Claim 2.11 (1) and (6). For $\zeta=\xi+1$ by Claim 2.14 (2). For ζ limit, for any $t \in L^{t^{0}}$ clearly $\mathfrak{s}^{\gamma, \zeta}$ is the union of the increasing continuous sequence $\left\langle\mathfrak{s}^{\gamma, \varepsilon}: \varepsilon<\zeta\right\rangle$, and is hence a smooth FSI-template by clause (h) and Claim 2.11 (5). Now also t^{5} is a smooth FSI-template by Claim 2.11 (6). Of course, we let $\bar{K}^{\zeta}=\left\langle K_{t}^{\zeta}: t \in L^{\mathfrak{t}^{\zeta}}\right\rangle, K_{t}^{\zeta}=\varnothing$ and \mathbf{Q}_{t} be a dominating real forcing.)

Lastly let for $\zeta \leqslant \lambda, \mathbf{P}_{\zeta}=\operatorname{Lim}_{\mathfrak{t}}\left(\overline{\mathbf{Q}} \mid L^{t^{\boldsymbol{t}}}\right)$. Now
$(\alpha) \mathbf{P}_{\lambda}$ is a c.c.c. forcing notion of cardinality $\leqslant \lambda^{\aleph_{0}}$, and hence $\mathbf{V}^{\mathbf{P}_{\lambda}} \vDash 2^{\aleph_{0}} \leqslant \lambda$ by Definition $2.6(\mathrm{~B})(\mathrm{j})$ as $\lambda=\lambda^{\star}$;
(β) in $\mathbf{V}^{\mathbf{P}_{\boldsymbol{\lambda}}}$ we have $\mathfrak{d} \leqslant \mu$, by Claim $2.8(1)$ applied with $R=<^{*}$ and $L^{*}=L^{\mathbf{t}^{0}}$ using $(*)(\mathrm{b})$ and (e);
(γ) in $\mathbf{V}^{\mathbf{P}_{\lambda}}$ we have $\mathfrak{b} \geqslant \mu$ by Claim $2.8(2)$ applied with $R=<^{*}$;
($\delta) \mathfrak{b}=\mathfrak{d}=\mu$ and $\mathfrak{a} \geqslant \mu$ by (β) and (γ), as it is well known that $\mathfrak{b} \leqslant \mathfrak{d}$ and $\mathfrak{b} \leqslant \mathfrak{a}$.

[^3]But in order to sort out the value of \mathfrak{a}, we intend to use Claim 2.8 (3) with θ there chosen as λ here.

But why does the demand (c) from Claim 2.8 (3) holds? Assume that $i(*) \in[\varkappa, \lambda)$ and $t_{i, n} \in L^{t^{\lambda}}$, for $i<i(*)$ and $n<\omega$, are given. As λ is regular and $>i(*)$, necessarily for some $\xi<\lambda$ we have $\left\{t_{i, n}: i<i(*)\right.$ and $\left.n<\omega\right\} \subseteq L^{t^{\xi}}$. Now let $t_{n} \in L^{t^{\xi+1}}$ be such that $\mathbf{j}_{\xi+1}\left(t_{n}\right)=$ $\left\langle t_{i, n}: i<\varkappa\right\rangle / D$; easily $\left\langle t_{n}: n<\omega\right\rangle$ is as required (note that the number of isomorphism types of ω-sequences $\left\langle t_{n}: n<\omega\right\rangle$ in \mathfrak{t} is trivially $\left.\leqslant \beth_{2}\right) .\left({ }^{9}\right)$ So
(ε) in $\mathbf{V}^{\mathbf{P}_{\lambda}}$ we have $\mathfrak{a} \geqslant \varkappa \Rightarrow \mathfrak{a} \geqslant \lambda$ by Claim 2.8 (3).
Thus we are done.

3. Eliminating the measurable

Without a measurable cardinal our problem is to verify condition (c) in Claim 2.8 (3). Toward this it is helpful to show that for some \aleph_{1}-complete filter D on \varkappa, for any $i(*) \in[\varkappa, \lambda)$ and $t_{i, n} \in L^{\mathrm{t}}$, for $i<i(*)$ and $n<\omega$, we have: for some $B \in D^{+}$, for every $j<i(*)$ some $A \in D$ satisfies that for any $i_{0}, i_{1} \in A \cap B$, the mapping $t_{j, n} \mapsto t_{j, n}, t_{i_{0}, n} \mapsto t_{i_{1}, n}$ is a partial isomorphism of t. So D behaves as an \aleph_{1}-complete ultrafilter for our purpose.
(If you know enough model theory, this is the problem of finding convergent sequences, see [S1, Chapter II]. For stable first-order T with $\varkappa=\varkappa_{r}(T)$, any indiscernible sequence (equivalently set) $\left\langle\bar{a}_{\alpha}: \alpha<\alpha^{*}\right\rangle$ of cardinality $\geqslant \varkappa$ is convergent. Why? As for any $\overline{\mathbf{b}} \in{ }^{\varkappa>} \mathbb{C}$, for all but $<\varkappa$ ordinals $\alpha<\alpha^{*}, \overline{\mathbf{b}}^{\wedge} \bar{a}_{\alpha}$ has a fixed type so that average is definable. In [S1, Chapter II], we deal with it in general (harder to prove existence, which we do there under the relevant assumptions).)

Lemma 3.1. Assume $2^{\aleph_{0}}<\mu=\operatorname{cf}(\mu)<\lambda=\operatorname{cf}(\lambda)=\lambda^{\aleph_{0}}$. Then for some \mathbf{P} we have:
(a) \mathbf{P} is a c.c.c. forcing notion of cardinality λ;
(b) in $\mathbf{V}^{\mathbf{P}}, \mathfrak{b}=\mathfrak{d}=\mu$ and $\mathfrak{a}=2^{\aleph_{0}}=\lambda$.

Proof. We rely on Definition 2.6 and Claim 2.8. Let L_{0}^{+}be a linear order isomorphic to λ, let L_{0}^{-}be a linear order anti-isomorphic to λ (and $L_{0}^{-} \cap L_{0}^{+}=\varnothing$) and let $L_{0}=L_{0}^{-}+L_{0}^{+}$.

Let \mathbf{J} be the following linear order:
(a) its set of elements is ${ }^{\omega>}\left(L_{0}\right)$;
(b) $\eta<\mathbf{J} \nu$ if and only if for some $n<\omega$ we have $\eta \upharpoonright n=\nu \upharpoonright n$ and $\lg (\eta)=n \& \nu(n) \in L_{0}^{+}$ or $\lg (\nu)=n \& \eta(n) \in L_{0}^{-}$, or we have $\lg (\eta)>n \& \lg (\nu)>n \& L_{0} \vDash \eta(n)<\nu(n)$.
(See more on such orders in [L], [S2, Appendix] and [S9, XIII, §2], but we are selfcontained.)
$\left({ }^{9}\right)$ In fact, it is $\leqslant 2^{\aleph_{0}}$ by the construction, but this is irrelevant here.

Note that
\square_{1} every interval of \mathbf{J}, as well as \mathbf{J} itself, has cardinality λ;
\square_{1}^{+}if $\aleph_{0}<\theta=\operatorname{cf}(\theta)<\lambda$ or $\theta=1$ or $\theta=0$ and $\left\langle t_{i}: i<\theta\right\rangle$ is a strictly decreasing sequence in \mathbf{J}, then $\mathbf{J} \upharpoonright\left\{y \in \mathbf{J}:(\forall i<\theta)\left(y<\mathbf{J} t_{i}\right)\right\}$ has cofinality λ if non-empty;
\square_{1}^{-}the inverse of \mathbf{J} satisfies \square_{1}^{+}and is moreover isomorphic to \mathbf{J};
\square_{2} if $\theta=\operatorname{cf}(\theta)>\aleph_{0}$ and $s_{\alpha}, t_{\alpha} \in \mathbf{J}$ for $\alpha<\theta$, then we can find a function $f: \theta \rightarrow \theta$ which is regressive and a club E of θ such that: if $\alpha_{l}<\beta_{l}$ are from E for $l=1,2$ and $f\left(\alpha_{1}\right)=$ $f\left(\beta_{1}\right)=f\left(\alpha_{2}\right)=f\left(\beta_{2}\right)$, then $t_{\alpha_{1}}<\mathbf{J} s_{\beta_{1}} \Leftrightarrow t_{\alpha_{2}}<\mathbf{J} s_{\beta_{2}}$ and $t_{\alpha_{1}}=s_{\beta_{1}} \Leftrightarrow t_{\alpha_{2}}=s_{\beta_{2}}$ (we can add $t_{\alpha_{1}}<_{J} t_{\beta_{1}} \Leftrightarrow t_{\alpha_{2}}<_{J} t_{\beta_{2}}$, etc., but this can be deduced using the above several times).

We now define by induction on $\zeta<\mu$ FSI-templates \mathfrak{t}_{ζ} such that
$(*)_{\zeta}^{1}$ the set of members of $L^{t_{\zeta}}$ is a set of finite sequences starting with ζ, hence disjoint to $\mathfrak{t}_{\varepsilon}$ for $\varepsilon<\zeta$; for $x \in L^{\mathfrak{t}_{\zeta}}$ let $\xi(x)=\zeta$.

Defining \mathfrak{t}_{ζ}. Case 1: $\zeta=0, \zeta$ a successor or $\operatorname{cf}(\zeta)=\aleph_{0}$. Let $L^{\mathfrak{t}_{\zeta}}=\{\langle\zeta\rangle\}$ and $I_{\langle\zeta\rangle}^{\mathfrak{t}_{\zeta}}=\{\varnothing\}$.
Case 2: $\operatorname{cf}(\zeta)>\aleph_{0}$. Let $h_{\zeta}: \mathbf{J} \rightarrow \zeta$ be a function such that $\varepsilon<\zeta \Rightarrow h_{\zeta}^{-1}\{\varepsilon\}$ is a dense subset of \mathbf{J}. The set of elements of \mathfrak{t}_{ζ} is

$$
\{\langle\zeta\rangle\} \cup\left\{\langle\zeta\rangle^{\wedge}\langle\eta\rangle^{\wedge} x: \eta \in \mathbf{J} \text { and } x \in \bigcup_{\varepsilon \leqslant h_{\zeta}(\eta)} L^{\mathbf{t}_{\varepsilon}}\right\} .
$$

The order $<_{t_{\zeta}}$ is defined by:

- $\langle\zeta\rangle$ is maximal;
- $\langle\zeta\rangle^{\wedge}\left\langle\eta_{1}\right\rangle^{\wedge} x_{1}<_{\mathrm{t}_{\zeta}}\langle\zeta\rangle^{\wedge}\left\langle\eta_{2}\right\rangle^{\wedge} x_{2}$ if and only if

$$
\eta_{1}<\mathbf{J} \eta_{2} \vee\left(\eta_{1}=\eta_{2} \& \xi\left(x_{1}\right)<\xi\left(x_{2}\right)\right) \vee\left(\eta_{1}=\eta_{2} \& \xi\left(x_{1}\right)=\xi\left(x_{2}\right) \& x_{1}<_{\mathfrak{t}_{\xi\left(x_{1}\right)}} x_{2}\right)
$$

Lastly, for $y \in \mathfrak{t}_{\zeta}$ we define the ideal $I=I_{y}^{\mathfrak{t}_{\zeta}}$:
(α) if $y=\langle\zeta\rangle$ then $I=\left\{Y: Y \subseteq L^{t^{\iota}} \backslash\{\langle\zeta\rangle\}\right\}$;
(β) if $y=\langle\zeta\rangle^{\wedge}\langle\nu\rangle^{\wedge} x$ then I is the family of sets Y satisfying the following conditions:
(i) $Y \subseteq L^{\mathfrak{t}_{\varsigma}}$;
(ii) $(\forall z \in Y)\left(z<_{\mathfrak{t}_{\zeta}} y\right)$;
(iii) for each $\eta \in \mathbf{J}$ and $\xi<h_{\zeta}(\eta)$ we have

$$
\left\{z:\langle\zeta\rangle^{\wedge}\langle\eta\rangle^{\wedge} z \in Y, \xi(z)=\xi \text { and } z \neq\langle\xi\rangle\right\} \in I_{\langle\xi\rangle}^{\mathbf{t}_{\xi}}
$$

(iv) the set $\left\{\eta \in \mathbf{J}:(\exists x)\left(\langle\zeta\rangle^{\wedge}\langle\eta)^{\wedge} x \in Y\right)\right\}$ is finite.

Why is \boldsymbol{t}_{ζ} really an FSI-template? We prove, of course, by induction on ζ that
$(*)_{\zeta}^{2}$ (i) $L^{\mathfrak{t}_{\zeta}}$ is a linear order;
(ii) $I_{t}^{\mathbf{t}_{\zeta}}$ is an ideal of subsets of $\left\{s \in I_{t}^{\mathbf{t}_{\zeta}}: s<t\right\}$;
(iii) \mathfrak{t}_{ζ} is an FSI-template;
(iv) \mathfrak{t}_{ζ} is disjoint to $\mathfrak{t}_{\varepsilon}$ for $\varepsilon<\zeta$.
(Why? By Claim 2.11 and looking at the definitions.)
Next we prove, by induction on ζ, that \mathfrak{t}_{ζ} is a smooth FSI-template. Assume that \mathfrak{t}_{ξ} is a smooth FSI-template for all $\xi<\zeta$.
$(*)_{\zeta}^{3}$ For $\eta \in \mathbf{J}$ and $\varepsilon \leqslant h_{\zeta}(\eta)+1$, we have that $\mathfrak{t}_{\zeta} \upharpoonright\left\{\langle\zeta\rangle^{\wedge}\langle\eta\rangle^{\wedge} \varrho: \varrho \in \bigcup_{\xi<\varepsilon} \mathfrak{t}_{\xi}\right\}$ is a smooth FSI-template.
(Why? We prove this by induction on ε : for $\varepsilon=0$ by Claim 2.11 (1); for ε successor by Claim 2.11 (3); for ε limit by Claim 2.11 (5) and (6).)
$(*)_{\zeta}^{4}$ For $Z \subseteq \mathbf{J}$ we have that $\mathfrak{t}_{\zeta}\left\lceil\left(\bigcup_{\eta \in Z}\left\{\langle\zeta\rangle^{\wedge}\langle\eta\rangle^{\wedge} \varrho: \varrho \in \bigcup_{\xi<h_{\varsigma}(\eta)} \mathrm{t}_{\xi}\right\}\right)\right.$ is a smooth FSItemplate.
(Why? By induction on $|Z|$: for $|Z|=0$ and $|Z|=n+1$ by Claim 2.11 (3); for $|Z| \geqslant \aleph_{0}$ by Claim 2.11 (5).)
$(*)_{\zeta}^{5} \mathfrak{t}_{\zeta} \upharpoonright\left(L^{\mathfrak{t}_{\zeta}} \backslash\{\langle\zeta\rangle\}\right)$ is a smooth FSI-template.
(Why? By $(*)_{\zeta}^{4}$ for $Z=\mathbf{J}$.)
$(*)_{\zeta}^{6} \mathbf{t}_{\zeta}$ is a smooth FSI-template.
(Why? By Claim 2.11 (3).)
 family of subsets of K.
(Why? Check by induction on ζ.)
Now for $\zeta \leqslant \mu$ let
$\square_{2} \mathfrak{s}_{\zeta}:=\sum_{\varepsilon<\zeta} \mathfrak{t}_{\varepsilon}$, i.e.
(i) the set of elements of s_{ζ} is $\bigcup_{\varepsilon<\zeta} L^{\mathfrak{t}_{\varepsilon}}$;
(ii) for $x, y \in \mathfrak{s}_{\zeta}$ we have $x<_{\mathfrak{s}_{\zeta}} y$ if and only if $\xi(x)<\xi(y) \vee\left(\xi(x)=\xi(y) \& x<_{\mathbf{t}_{\xi(x)}} y\right)$;
(iii) $I_{y}^{\mathfrak{s}_{\zeta}}=\left\{Y \subseteq \mathfrak{s}_{\zeta}:(\forall z \in Y)\left(z<_{\mathfrak{s}_{\varsigma}} y\right)\right.$ and $\left\{z \in \mathfrak{s}_{\zeta}: \xi(z)=\xi(y)\right.$ and $\left.\left.z \in Y\right\} \in I_{y}^{\mathfrak{t}_{\epsilon(z)}}\right\}$.
$(*)_{\zeta}^{8} s_{\zeta}$ is a smooth FSI-template.
(Why? This is just easier than the proof above.)
$(*)_{\zeta}^{9}$ If $K \subseteq L^{\mathfrak{s} \varsigma}$ is countable and $t \in L^{s_{\zeta}}$, then the ideal $I_{t}^{\mathfrak{s} \zeta} \cap \mathcal{P}(K)$ of subsets of K is generated by a countable family of subsets of K.
(Why? By $(*)_{\zeta}^{7}$ and by the definition of \boldsymbol{s}_{ζ} and of the $\mathfrak{t}_{\varepsilon}$'s.)
Let $\theta=\left(2^{\aleph_{0}}\right)^{+} .\left({ }^{10}\right)$ We shall prove below by induction on ζ that \mathfrak{s}_{ζ} and \mathfrak{t}_{ζ} are (λ, θ) good (see the definition below and Subclaim 3.4). Then we can finish the proof as in Conclusion 2.17 using \mathfrak{s}_{μ} (and $(*)_{\zeta}^{7}$ and $\left.(*)_{\zeta}^{9}\right)$.

Definition 3.2. (1) Assume $\left({ }^{11}\right)$ that θ is regular uncountable and $(\forall \alpha<\theta)\left[|\alpha|^{\aleph_{0}}<\theta\right]$. We say that a smooth FSI-template \mathfrak{t} is (λ, θ, τ)-good if the following condition is

[^4]satisfied:
\oplus Assume that $t_{\alpha, n} \in L^{\mathfrak{t}}$ for $\alpha<\theta$ and $n<\omega$, that $\left\{t_{\alpha, n}: n<\omega\right\}$ is \bar{K}-closed and that \mathcal{W} is a family of subsets of ω such that $2^{|\mathcal{W}|}<\theta$. Then we can find a club C of θ and a pressing-down function h on C such that
\oplus^{\prime} if $S \subseteq C$ is stationary in $\theta,(\forall \delta \in S)\left[\operatorname{cf}(\delta)>\aleph_{0}\right]$ and $h \upharpoonright S$ is constant, then we have:
\boxtimes_{S}^{1} for every $\alpha<\beta$ in S, the truth value of the following statements does not depend on (α, β) (but may depend on n, m and $w \in \mathcal{W})$:
(i) $t_{\alpha, n}=t_{\beta, m}$;
(ii) $t_{\alpha, n}<_{L^{t}} t_{\beta, m}$;
(iii) $\left\{t_{\alpha, l}: l \in w\right\} \in I_{t_{\alpha, m}}^{\mathfrak{t}}$;
(iv) $\left\{t_{\beta, l}: l \in w\right\} \in I_{t_{\alpha, n}}^{\mathrm{t}}$;
(v) $\left\{t_{\alpha, l}: l \in w\right\} \in I_{t_{\beta, n}}^{\mathrm{t}}$;
\boxtimes_{S}^{2} let $\delta^{*} \leqslant \theta$ be such that $\operatorname{cf}\left(\delta^{*}\right)=\tau$ and $\sup \left(S \cap \delta^{*}\right)=\delta^{*} ;$ if $\theta \leqslant \beta^{*}<\lambda$ and $s_{\beta, n} \in L^{\mathrm{t}}$, for $\beta<\beta^{*}<\lambda$ and $n<\omega$, then we can find $t_{n} \in L^{\mathfrak{t}}$ for $n<\omega$ such that for every $\beta<\beta^{*}$, for every large enough $\alpha \in S \cap \delta^{*}$, for some t-partial isomorphism f we have $f\left(t_{n}\right)=t_{\alpha, n}$ and $f\left(s_{\beta, n}\right)=s_{\beta, n}$.
(2) We say that \mathfrak{t} is strongly (λ, θ, τ)-good if above we allow $\mathcal{W}=\mathcal{P}(\omega)$ (so if $\theta>\beth_{2}$, this is the same). In both cases we may omit τ in the notation if $\tau=\theta$.

Observation 3.3. Instead of " h regressive" it is enough to demand that for some sequence $\left\langle X_{\alpha}: \alpha<\theta\right\rangle$ of sets, increasing continuous, $\left|X_{\alpha}\right|<\theta$ and for every (or club of) $\delta<\theta$, if $\operatorname{cf}(\delta)>\aleph_{0}$ then $h(\delta) \in \mathcal{H}_{<\aleph_{1}}\left(X_{\delta}\right)$.

Subclaim 3.4. In the proof of Lemma 3.1,
(i) \mathfrak{t}_{ζ} is strongly (λ, θ)-good;
(ii) \mathfrak{s}_{ζ} is strongly $\left(\lambda, \theta, \aleph_{1}\right)$-good;
(iii) if $\operatorname{cf}(\zeta) \neq \theta$ then \mathfrak{s}_{ζ} is also strongly (λ, θ)-good.

Proof. Recall that $\theta=\left(2^{\aleph_{0}}\right)^{+}$, and let \mathcal{W} be given $\left(2^{|\mathcal{W}|}<\theta\right.$ for the first version; $\mathcal{W}=\mathcal{P}(\omega)$ for the second, using $(*)_{\zeta}^{7}$ and $(*)_{\zeta}^{9}$ from the proof of Lemma 3.1). We prove this by induction on ζ.

For \mathfrak{s}_{ζ}. If $\zeta=0$, it is empty. Otherwise, given $t_{\alpha, n} \in \mathfrak{s}_{\zeta}=\sum_{\varepsilon<\zeta} \mathfrak{t}_{\varepsilon}$ for $\alpha<\theta$ and $n<\omega$, let $h_{0}^{*}(\alpha)$ be the sequence consisting of
(i) $\xi_{\alpha, n}:=\min \left\{\xi: \xi \in\left\{\xi\left(t_{\beta, m}\right): \beta<\delta\right.\right.$ and $\left.m<\omega\right\} \cup\{\infty\}$ and $\left.\xi \geqslant \xi\left(t_{\alpha, n}\right)\right\}$ for $n<\omega$;
(ii) $u_{\alpha}=\left\{(n, m, l): \xi\left(t_{\alpha, n}\right)=\xi_{\alpha, m} \& l=1\right.$ or $\left.\xi\left(t_{\alpha, n}\right)=\xi\left(t_{\alpha, m}\right) \& l=2\right\}$;
(iii) $\mathbf{w}_{\alpha}=\left\{(n, w): n<\omega, w \subseteq \omega\right.$ and $\left.\left\{t_{\alpha, m}: m \in w\right\} \in I_{t_{\alpha, n}}^{\mathrm{t}}\right\}$;
i.e. $h_{0}^{*}(\delta)=\left\langle u_{\alpha},\left\langle\xi_{\alpha, n}: n<\omega\right\rangle, \mathbf{w}_{\alpha}\right\rangle$. If $S_{y}=\left\{\delta: \operatorname{cf}(\delta) \geqslant \aleph_{1}, h_{0}^{*}(\delta)=y\right\}$ is stationary, we define $h_{1}^{*} \mid S_{y}$ such that it codes $h_{0}^{*}(\delta)$, and if $n(*)<\omega, \alpha \in S_{y} \Rightarrow \xi\left(t_{\alpha, n(*)}\right)=\xi_{y, n(*)}$ and we let $u_{y, n(*)}=\left\{n: \xi_{\alpha, n}=\xi_{y, n(*)}\right\}$, then $h_{1}^{*}\left\lceil S_{y}\right.$ codes a function witnessing the (λ, θ)-goodness of
$\mathfrak{t}_{\xi_{y, n(*)}}$ for $\left\langle t_{\alpha, n}: n \in u_{y, n(*)}, \alpha \in S_{y}\right\rangle$.
Fix S as in \oplus^{\prime}. It is easy to check that this shows \boxtimes_{S}^{1} even if $\operatorname{cf}(\zeta)=\theta$. But assume $\operatorname{cf}(\zeta) \neq \theta \& \delta^{*}=\theta$ or $\delta^{*}<\theta, \operatorname{cf}\left(\delta^{*}\right)=\aleph_{1}$ (or just $\left.\aleph_{0}<\operatorname{cf}\left(\delta^{*}\right)<\theta\right), \delta^{*}=\sup \left(S \cap \delta^{*}\right)$; we shall also prove the statement from \boxtimes_{S}^{2}. Let $w_{1}=\left\{n\right.$: the sequence $\left\langle\xi\left(t_{\beta, n}\right): \beta \in S\right\rangle$ is strictly increasing $\}$ and $w_{0}=\left\{n:\left\langle\xi\left(t_{\beta, n}\right): \beta \in S\right\rangle\right.$ is constant $\}$. Let

$$
\xi(S, n)=\xi_{S, n}=\bigcup\left\{\xi\left(t_{\beta, n}\right): \beta \in S\right\}
$$

as $\operatorname{cf}(\zeta) \neq \theta$ it is less than ζ also when $n \in w_{1}$.
Given $\left\langle\bar{s}_{\beta}: \beta<\beta^{*}\right\rangle, \beta^{*}<\lambda$ and $\bar{s}_{\beta}=\bar{s}=\left\langle s_{\beta, n}: n<\omega\right\rangle$ we have to find $\left\langle t_{n}: n<\omega\right\rangle$ as required in \boxtimes_{S}^{2}. If $n \in w_{0}, w_{0, n}^{\prime}=\left\{m \in w_{0}: \xi\left(t_{\alpha, n}\right)=\xi\left(t_{\alpha, m}\right)\right.$ for $\left.\alpha \in S\right\}$, and to choose $\left\langle t_{m}: m \in w_{0, n}^{\prime}\right\rangle$ we use the induction hypothesis on $\mathfrak{t}_{\xi(S, n)}$. If $n \in w_{1}$ then we can find $t_{n}^{*} \in \mathfrak{t}_{\xi_{S, n}}$ such that $\left\{t: t \in \mathfrak{t}_{\xi_{S, n}}\right.$ and $\left.t \leqslant_{\mathfrak{t}_{\xi(S, n)}} t^{*}\right\}$ is disjoint to $\left\{t_{\beta, m}: \beta<\delta^{*}\right.$ and $\left.m<\omega\right\} \cup$ $\left\{s_{\beta, m}: \beta<\beta^{*}\right.$ and $\left.m<\omega\right\}$. This is possible because the lower cofinality of $L^{\mathrm{t}_{\xi(S, n)}}$ is the same as that of L_{0} and we have $\lambda>\theta+\left|\beta^{*}\right|$. Then we choose $\eta^{*} \in \mathbf{J}$ such that $(\forall x)\left(\langle\zeta\rangle^{\wedge}\left\langle\eta^{*}\right)^{\wedge} x \in \mathfrak{t}_{\xi(S, n)} \Rightarrow\langle\zeta\rangle^{\wedge}\left\langle\eta^{*}\right\rangle^{\wedge}\langle x\rangle<_{\mathfrak{t}_{\xi(S, n)}} t^{*}\right)$, and we choose also $\left\langle t_{n^{\prime}}: n^{\prime} \in w_{1}\right.$ and $\left.\xi_{S, n^{\prime}}=\xi_{S, n}\right\rangle$ such that $t_{n} \in\left\{\langle\zeta\rangle^{\wedge}\langle\eta\rangle^{\wedge}\langle x\rangle \in \mathbf{s}_{\zeta}: \eta<_{\mathbf{J}} \eta^{*}\right\}$, taking care of \mathcal{W} (inside $w_{1, n}^{\prime}:=$ $\left\{m \in w_{1}: \xi\left(t_{\alpha, m}\right)=\xi_{S, m}\right\}$ and automatically for others, i.e. considering $t_{n_{1}}$ and $t_{n_{2}}$ such that $\left.\xi_{S, n_{1}} \neq \xi_{S, n_{2}}\right)$. This is immediate.

For \mathfrak{t}_{ζ}. This case is similar (using \square_{1} and \square_{2}).
We have proved Subclaim 3.4 and Lemma 3.1.
We may like to have " $2^{\aleph_{0}}=\lambda$ is singular", $\mathfrak{a}=\lambda$ and $\mathfrak{b}=\mathfrak{d}=\mu$. Toward this we would like to have a linear order \mathbf{J} such that if $\bar{x}=\left\langle x_{\alpha}: \alpha<\theta\right\rangle$ is monotonic, say decreasing, then for any $\sigma<\lambda$, for some limit $\delta<\theta$ of uncountable cofinality the linear order $\{y \in \mathbf{J}$: $\left.\alpha<\delta \Rightarrow y<\mathbf{J} x_{\alpha}\right\}$ has cofinality $>\sigma$. Moreover, δ can be chosen to suit ω such sequences \bar{x} simultaneously. So every set of ω-tuples from \mathbf{J} of cardinality $\geqslant \theta$ but less than λ can be "inflated".

Lemma 3.5. Assume that
(a) $\left(2^{\aleph_{0}}\right)^{+}<\mu=\operatorname{cf}(\mu)<\lambda=\lambda^{\aleph_{0}}$, λ singular;
(b) $(\forall \alpha<\mu)\left[|\alpha|^{\aleph_{0}}<\mu\right]$;
(c) $\mu \geqslant \aleph_{\operatorname{cf}(\lambda)}$, or at least that
$\left(\mathrm{c}^{-}\right)$there is $f: \lambda \rightarrow \operatorname{cf}(\lambda)$ such that if $\left\langle\alpha_{\varepsilon}: \varepsilon<\mu\right\rangle$ is strictly increasing continuous, $\alpha_{\varepsilon}<\lambda$ and $\gamma<\operatorname{cf}(\lambda)$, then for some $\varepsilon<\tau$ we have $f\left(\alpha_{\varepsilon}\right) \geqslant \gamma$.

Then for some c.c.c. forcing notion of cardinality λ we have $\Vdash_{P}{ }^{"} 2^{\kappa_{0}}=\lambda, \mathfrak{b}=\mathfrak{d}=\varkappa$ and $\mathfrak{a}=\lambda "$.

Proof. Note that $(\mathrm{c}) \Rightarrow\left(\mathrm{c}^{-}\right)$. Just let $\alpha<\lambda \& \operatorname{cf}(\alpha)=\aleph_{\varepsilon} \& \varepsilon<\operatorname{cf}(\lambda) \Rightarrow f(\alpha)=\varepsilon$; clearly there is such a function, and it satisfies clause (c^{-}). So we can assume (c^{-}). Let $\sigma=\mathrm{cf}(\lambda)$
and $\left\langle\lambda_{\varepsilon}: \varepsilon<\sigma\right\rangle$ be a strictly increasing sequence of regular cardinals greater than $\mu+\sigma$ with limit λ. Let $L_{0}, L_{0}^{+}, L_{0}^{-}$be as in the proof of Lemma $3.1, L_{0, \varepsilon}$ be the unique interval of L_{0} of order type (the inverse of $\left.\lambda_{\varepsilon}\right)+\lambda_{\varepsilon}$ (so that $\left\langle L_{0, \varepsilon}: \varepsilon<\sigma\right\rangle$ is increasing with union L_{0}), and $L_{0, \varepsilon}$ is an interval of $L_{0, \xi}$ for $\varepsilon<\xi<\sigma$. We define $g: L_{0} \rightarrow \operatorname{cf}(\lambda)$ as follows: if $x \in L_{0}^{+}$then $g(x)=f\left(\operatorname{otp}\left(\left\{y \in L_{0}^{+}: y<_{L} x\right\},<\right)\right)$; if $x \in L_{0}^{-}$and the order type (otp) of $\left(\left\{y \in L_{0}^{+}: x<_{L} y\right\},<_{L}\right)$ is the inverse of γ, then $g(x)=f(\gamma)$; and let

$$
\mathbf{J}^{*}=\left\{\eta \in^{\omega>}\left(L_{0}\right): \eta(0) \in L_{0,0} \text { and } \eta(n+1) \in L_{0, g(\eta(n))} \text { for } n<\omega\right\}
$$

ordered as in the proof of Lemma 3.5.
We define \mathfrak{s}_{ζ} and \mathfrak{t}_{ζ} as there. We then prove that \mathfrak{s}_{ζ} and \mathfrak{t}_{ζ} are (τ, θ)-good and (λ, τ)-good as there, and this suffices repeating the proof of Lemma 3.1.

Discussion 3.6. We may like to separate \mathfrak{b} and \mathfrak{d}. So below we adapt the proof of Lemma 3.1 to do this (we can do it also for Lemma 3.5).

A way to do this is to look at the forcing in Lemma 3.1 as the limit of the FSiteration $\left\langle\mathbf{P}_{i}^{*},{\underset{\mathbf{Q}}{j}}_{*}^{i}: i \leqslant \mu\right.$ and $\left.j<\mu\right\rangle$, so that the memory of \mathbf{Q}_{j}^{*} is $\{i: i<j\}$, where \mathbf{Q}_{j}^{*} is $\operatorname{Lim}_{\mathfrak{t}}\left[\left\langle\mathbf{Q}_{t}: t \in L^{\mathfrak{t}_{j}}\right\rangle\right]$. Below we will use the limit of the FS-iteration $\left\langle\mathbf{P}_{i}^{*}, \mathbf{Q}_{j}^{*}: j<\mu \times \mu_{1}\right\rangle$, so that \mathbf{Q}_{ζ}^{*} has memory $w_{\zeta} \subseteq \zeta$, where, e.g., for $\zeta=\mu \alpha+i$, with $i<\mu, w_{\zeta}=\{\varkappa \beta+j: \beta \leqslant \alpha, j \leqslant i$ and $(\beta, j) \neq(\alpha, i)\}$. Let $\mathbf{P}^{*}=\mathbf{P}_{\mu \times \mu_{1}}^{*}=\bigcup\left\{\mathbf{P}_{i}: i<\mu \times \mu_{1}\right\}$.

Of course, \mathbf{Q}_{ζ} will be defined as $\operatorname{Lim}_{\mathfrak{t}_{\zeta}}(\overline{\mathbf{Q}}), \mathfrak{t}_{\zeta}$ defined as above, $\mathfrak{b}=\mu$ and $\mathfrak{d}=\mu_{1}$. This should be easy. If $\left\langle\underset{\sim}{A}{\underset{\varepsilon}{e}}: \varepsilon<\varepsilon^{\bar{x}}\right\rangle$ exemplifies \mathfrak{a} in $\mathbf{V}^{\mathbf{P}^{*}}$, and thus $\varepsilon^{*} \geqslant \mu$, then for some $\left(\alpha^{*}, \beta^{*}\right) \in \mu \times \mu_{1}$, for $\varkappa(=\theta)$ of the names they involve $\left\{\mathbf{Q}_{\mu \alpha+\beta}: \alpha \leqslant \alpha^{*}, \beta \leqslant \beta^{*}\right\}$ only.

Using indiscernibility on the pairs (α, β) to make them increase we can finish.
Lemma 3.7. (1) In Lemma 3.1, if $\mu=\operatorname{cf}(\mu) \leqslant \operatorname{cf}\left(\mu_{1}\right), \mu_{1}<\lambda$, then we can change the conclusion $\mathfrak{b}=\mathfrak{d}=\mu$ to $\mathfrak{b}=\mu$ and $\mathfrak{d}=\mu_{1}$.
(2) Similarly for Lemma 3.5.

Proof. First assume that μ_{1} is regular.
First proof. Let $\mu_{0}=\mu$. In the proof of Lemma 3.1, for $l \in\{0,1\}$, using $\mu=\mu_{l}$ gives $\mathfrak{s}_{\mu_{l}}^{l}$, and without loss of generality, $\mathfrak{s}_{\mu_{0}}^{0}$ and $\mathfrak{s}_{\mu_{1}}^{1}$ are disjoint. Let \mathfrak{s} be $\mathfrak{s}_{0}+{ }^{\prime} \mathfrak{s}_{1}$, by which we mean that $L^{\mathfrak{s}}=L^{\mathfrak{s}_{\mu_{0}}^{0}}+L^{\mathfrak{s}_{\mu_{1}}^{1}}$, and for $t \in L^{\mathfrak{s}_{\mu_{l}}^{l}}$ we let $I_{t}^{\mathfrak{s}}:=I_{t}^{\mathfrak{s}^{l}}$ (this is not $\mathfrak{s}_{0}+\mathfrak{s}_{1}$ of Claim 2.11). Now the appropriate goodness can be proved, so we can prove $\mathfrak{a}=\lambda$. Easily we get $\mathfrak{d} \geqslant \mu_{l}$ and $\mathfrak{b} \leqslant \mu_{0}$. This is enough to get inequality, but to get exact values we turn to the second proof.

Second proof. Instead of starting with $\left\langle\mathbf{Q}_{i}: i<\mu\right\rangle$ with full memory, we start with $\left\langle\mathbf{Q}_{\zeta}: \zeta<\mu \times \mu_{1}\right\rangle$, and ${\underset{\sim}{\mathbf{Q}}}_{\zeta}$ having the following "memory": if $\zeta=\mu \alpha+i$, with $i<\varkappa$, then

$$
w_{\zeta}=\{\mu \beta+j: \beta \leqslant \alpha, j \leqslant i \text { and }(\beta, j) \neq(\alpha, i)\}
$$

To deal with the case when μ_{1} is singular, we should use a μ-directed index set (instead of $\mu_{0} \times \mu_{1}$) as the product of ordered sets.

4. On related cardinal invariants

Explanation of $\S 4$. On Theorem 4.1 you may wonder: \mathfrak{u} has nothing to do with order or quite directed family, so how can we preserve small \mathfrak{u} ? It is true that using the "directed character" of \mathfrak{b} and \mathfrak{d} has been the idea, i.e. in the end we have that $\mathbf{P}=\left\langle\mathbf{P}_{i}: i<\mu\right\rangle$ is \lessdot-increasing, $\mathbf{P}=\bigcup\left\{\mathbf{P}_{i}: i<\mu\right\}$ and η_{i} is a \mathbf{P}_{i+1}-name of a real dominating $\mathbf{V}^{\mathbf{P}_{i}}$. But what we really need, for $(\mathbf{P}, \bar{\eta})$ as above, is that taking ultrapower by the \varkappa-complete ultrafilter D preserves the property of $\underset{\sim}{\bar{\eta}}$, in our present case $\bar{\eta}$ has to witness $\mathfrak{u}=\mu$. For being a dominating real this is very natural (Los' theorem). But here we shall use $\left\langle{\underset{\sim}{D}}_{i}: i<\mu\right\rangle$, with ${\underset{\sim}{D}}_{i}$ being a \mathbf{P}_{i}-name of an ultrafilter on ω, and demand η_{i} to be \bmod finite included in every member of $\underset{\sim}{D}$, and moreover η_{i} to be generic over $\mathbf{V}^{\mathbf{P}_{i}}$ for a forcing related to ${\underset{\sim}{D}}_{i}$. When we like to preserve something in an inductive construction on $\alpha<\lambda$ of $\left\langle\mathbf{P}_{i}^{\alpha}: i<\mu\right\rangle$, it is reasonable to have a stronger induction hypothesis than needed just for the final conclusion. We here need a condition on ($\mathbf{P}_{i+1}^{\alpha}, \eta_{i}^{\alpha}, \mathbf{P}_{i}^{\alpha},{\underset{\sim}{D}}_{\alpha}^{\alpha}$) preserved by the ultrapower (as the relevant forcing is c.c.c., nicely enough defined in this work).

Secondly, we need for limit α : if $\operatorname{cf}(\alpha)>\aleph_{0}$ it is straightforward, if not, being generic for the \mathbf{Q}_{i} has nice enough properties so that we can complete $\bigcup_{\beta<\alpha} D_{i}^{\beta}$ to a suitable ultrafilter.

This explains to some extent the scope of possible applications; of course, in each case the exact inductive assumption on $\left(\mathbf{P}_{i+1}^{\alpha}, \eta_{i}^{\alpha}, \mathbf{P}_{i}^{\alpha},{ }_{\sim}^{Y}{ }_{i}^{\alpha}\right)$ with $\underset{\sim}{Y}{ }_{i}^{\alpha}$ a relevant witness, varies.

Theorem 4.1. Assume that
(a) \varkappa is a measurable cardinal;
(b) $\varkappa<\mu=\operatorname{cf}(\mu)<\lambda=\operatorname{cf}(\lambda)=\lambda^{\varkappa}$.

Then for some c.c.c. forcing notion \mathbf{P} of cardinality λ, in $\mathbf{V}^{\mathbf{P}}$ we have $2^{\aleph_{0}}=\lambda$, $\mathfrak{u}=\mathfrak{d}=\mathfrak{b}=\mu$ and $\mathfrak{a}=\lambda$.

Remark. Recall that

$$
\mathfrak{u}=\min \left\{|\mathcal{P}|: \mathcal{P} \subseteq[\omega]^{\aleph_{0}} \text { generates a non-principal ultrafilter on } \omega\right\}
$$

The proof of Theorem 4.1 is broken into definitions and claims.

Definition 4.2. For a filter D on ω (to which all cofinite subsets of ω belong) let $\mathbf{Q}(D)$ be
$\left\{T: T \subseteq{ }^{\omega>} \omega\right.$ is closed under initial segments, and for some $\operatorname{tr}(T)$, the trunk of T, we have
(i) $l \leqslant \lg (\operatorname{tr}(T)) \Rightarrow T \cap^{l} \omega=\{\operatorname{tr}(T) \upharpoonright l\}$;
(ii) $\left.\operatorname{tr}(T) \unlhd \eta \in^{\omega\rangle} \omega \Rightarrow\left\{n: \eta^{\wedge}\langle n\rangle \in T\right\} \in \underset{\sim}{D}\right\}$,
ordered by inverse inclusion.

Definition 4.3. Let \mathfrak{K} be the family of \mathfrak{t} consisting of

$$
\begin{aligned}
& \overline{\mathbf{Q}}=\overline{\mathbf{Q}}^{\mathbf{t}}=\left\langle\mathbf{P}_{i}, \mathbf{Q}_{i}: i<\mu\right\rangle=\left\langle\mathbf{P}_{i}^{\mathbf{t}}, \mathbf{Q}_{i}^{\mathbf{t}}: i<\mu\right\rangle ; \\
& \bar{D}=\bar{D}^{\mathfrak{t}}=\left\langle D_{i}: i<\mu \text { and } \operatorname{cf}(i) \neq \varkappa\right\rangle=\left\langle D_{i}^{\mathbf{t}}: i<\mu \text { and } \operatorname{cf}(i) \neq \varkappa\right\rangle ; \\
& \bar{\tau}^{\mathbf{t}}=\left\langle\tau_{i}^{\mathbf{t}}: i<\mu\right\rangle
\end{aligned}
$$

such that
(a) $\overline{\mathbf{Q}}$ is an FS-iteration of c.c.c. forcing notions (and $\left.\mathbf{P}_{\mu}=\mathbf{P}_{\mu}^{\mathbf{t}}=\operatorname{Lim}\left(\overline{\mathbf{Q}}^{\mathbf{t}}\right)=\bigcup_{i<\mu} \mathbf{P}_{i}^{\mathbf{t}}\right)$;
(b) if $i<\mu$ and $\operatorname{cf}(i) \neq \varkappa$ then $\mathbf{Q}_{i}=\mathbf{Q}\left({\underset{\sim}{i}}_{i}\right)$, see Definition 4.2 above;
(c) ${\underset{\sim}{x}}_{i}$ is a P_{i}-name of a non-principal ultrafilter on ω when $i<\mu$ and $\operatorname{cf}(i) \neq \varkappa$;
(d) $\left|\mathbf{P}_{i}\right| \leqslant \lambda$;
(e) for $i<\mu$ and $\operatorname{cf}(i) \neq \varkappa$ let ${\underset{\sim}{i}}_{i}$ be the \mathbf{P}_{i+1}-name of the \mathbf{Q}_{i}-generic real,

$$
\underline{\eta}_{i}=\bigcup\left\{\operatorname{tr}(p(i)): p \in{\underset{\sim}{\mathbf{P}_{i+1}}}\right\}
$$

and we demand that for $i<j<\mu$ of cofinality $\neq \varkappa$ we have

$$
\Vdash_{\mathbf{P}_{j}} " \operatorname{Rang}\left({\underset{\sim}{\eta}}_{i}\right) \in{\underset{\sim}{j}}_{j} " ;
$$

(f) τ_{i} is a \mathbf{P}_{i}-name of a function from \mathbf{Q}_{i} to $\{h: h$ is a function from a finite set of ordinals to $\mathcal{H}(\omega)\}$ such that $\vdash_{\mathbf{P}_{i}}$ " $p, q \in{\underset{\sim}{\mathbf{Q}}}_{i}$ are compatible (in \mathbf{Q}_{i}) if and only if the functions ${\underset{\sim}{\tau}}_{i}(p)$ and $\underset{\sim}{\tau}(q)$ are compatible (i.e.

$$
\tau_{i}(p) \upharpoonright\left(\operatorname{Dom}\left(\tau_{\sim}(p)\right) \cap \operatorname{Dom}\left(\tau_{i}(q)\right)\right)=\tau_{i}(q) \upharpoonright\left(\operatorname{Dom}\left(\tau_{\sim}(p)\right) \cap \operatorname{Dom}\left(\tau_{i}(q)\right)\right)
$$

and then they have a common upper bound r such that ${\underset{\tau}{i}}(r)=\mathcal{\tau}_{i}(p) \cup \mathcal{\tau}_{i}(q)$ ";
(g) if $\operatorname{cf}(i) \neq \varkappa, i \in \operatorname{Dom}(p), p \in \mathbf{P}_{j}$ and $i<j \leqslant \mu$, then ${\underset{\sim}{i}}(p(i))$ is $\{\langle 0, \operatorname{tr}(p)\rangle\}$; i.e. this is forced to hold;
(h) we stipulate $\mathbf{P}_{i}=\{p: p$ is a function with domain a finite subset of i such that for each $j \in \operatorname{Dom}(p), \varnothing_{\mathbf{P}_{j}}$ forces that $p(j) \in \mathbf{Q}_{j}$ and it forces a value to $\left.\tau_{j}(p(j))\right\}$;
(i) $\vdash_{\mathbf{P}_{i}}$ " $\mathbf{Q}_{i} \subseteq \mathcal{H}_{<\aleph_{1}}(\gamma)$ for some ordinal γ ".

Let $\gamma(\mathfrak{t})$ be the minimal ordinal γ such that

$$
i<\mu \Longrightarrow{\stackrel{\vdash}{\mathbf{P}_{i}}} \text { "if } x \in \mathbf{Q}_{i} \text { then } \operatorname{dom}\left(\tau_{i}(x)\right) \subseteq \gamma "
$$

We let $\tau_{i}^{\mathfrak{t}}$ be the function with domain \mathbf{P}_{i} such that $\tau_{i}^{\mathfrak{t}}(p)$ is a function with domain $\left\{\gamma(\mathbf{t}) j+\beta: j \in \operatorname{Dom}(p)\right.$ and $\left.p \upharpoonright j \Vdash_{\mathbf{P}_{j}} " \beta \in \operatorname{Dom}\left(\tau_{j}(p(j))\right) "\right\}$, and we let $\tau_{i}^{\mathfrak{t}}(\gamma(\mathfrak{t}) j+\beta)$ be the value which $p \upharpoonright j$ forces on $\tau_{j}^{\mathfrak{t}}(\beta)$.

Obviously we have the following inequality.
Subclaim 4.4. $\mathfrak{K} \neq \varnothing$.
Recall the following result.
SUBCLAIM 4.5. If in a universe \mathbf{V}, D is a non-principal ultrafilter on ω, then
(a) $\vdash_{\mathbf{Q}(D)} "\left\{\operatorname{tr}(p)(l): l<\lg (\operatorname{tr}(p))\right.$ and $\left.p \in G_{\mathbf{Q}(D)}\right\}$ is an infinite subset of ω, almost included in every member of $D "$;
(b) $\mathbf{Q}(D)$ is a c.c.c. forcing notion, even σ-centered;
(c) $\eta_{i}=\bigcup\left\{\operatorname{tr}(p): p \in{\underset{\sim}{Q}(D)}^{\mathbf{Q}} \in^{\omega} \omega\right.$ is forced to dominate $\left({ }^{\omega} \omega\right)^{\mathbf{V}}$;
(d) $\{p \in \mathbf{Q}[D]: \operatorname{tr}(p)=\eta\}$ is a directed subset of $\mathbf{Q}[D]$.
(Note that this, in particular clause (c), does not depend on additional properties of D; but as we naturally add many Cohen reals (by the nature of the support), we may add more and can then demand, e.g., that $\underset{\sim}{D_{i}}(\operatorname{cf}(i) \neq \varkappa)$ is a Ramsey ultrafilter.)

Definition 4.6. (1) We define $\leqslant_{\mathfrak{K}}$ by saying that $\mathfrak{t}_{\mathfrak{K}} \mathfrak{s}$ if ($\mathfrak{t}, \mathfrak{s} \in \mathfrak{K}$ and)
(i) $i \leqslant \mu \Rightarrow \mathbf{P}_{i}^{\mathbf{t}} \lessdot \mathbf{P}_{i}^{\mathbf{s}}$;
(ii) $i<\mu \& \mathrm{cf}(i) \neq \varkappa \Rightarrow \vdash_{\mathbf{P}_{i}^{\mathbf{s}}}$ " ${\underset{\sim}{t}}_{\mathrm{t}}^{\subseteq} \subseteq{\underset{\sim}{\mathrm{s}}}^{\mathrm{s}}$ ";
(iii) $i<\mu \Rightarrow \vdash_{\mathbf{P}_{i}^{5}} " \tau_{i}^{\mathrm{t}} \subseteq \tau_{\sim}^{\mathfrak{5}} "$.
(2) We say that \mathfrak{t} is a canonical $\leqslant_{\mathfrak{K}}$-upper bound of $\left\langle\mathfrak{t}_{\alpha}: \alpha<\delta\right\rangle$ if
(i) $\mathfrak{t}, \mathfrak{t}_{\alpha} \in \mathfrak{K}$;
(ii) $\alpha \leqslant \beta<\delta \Rightarrow \mathfrak{t}_{\alpha} \leqslant{ }_{\mathfrak{K}} \mathbf{t}_{\beta} \leqslant_{\mathfrak{f}} \mathbf{t}$;
(iii) $i<\mu$ and $\operatorname{cf}(i)=\varkappa$ implies $\vdash_{\mathbf{P}_{i}^{\mathbf{t}}} "{\underset{\mathbf{Q}}{i}}_{\mathfrak{t}}=\bigcup_{\alpha<\delta} \mathbf{Q}_{i}^{\mathbf{t}_{\alpha}}$ ".

Note that if $\operatorname{cf}(\delta)>\aleph_{0}$ then $\vdash_{\mathbf{P}_{i}^{\mathbf{t}}}$ " $\mathbf{Q}_{i}^{\mathbf{t}}=\bigcup_{\alpha<\delta} \mathbf{Q}_{i}^{\mathfrak{t}_{\alpha}}$ " for every $i<\mu$, so \mathfrak{t} is totally determined.
(3) We say that $\left\langle\mathfrak{t}_{\alpha}: \alpha<\alpha^{*}\right\rangle$ is $\leqslant_{\mathfrak{K}}$-increasing continuous if $\alpha<\beta<\alpha^{*} \Rightarrow \mathfrak{t}_{\alpha} \leqslant \mathfrak{K} \mathfrak{t}_{\beta}$ and for limit $\delta<\alpha^{*}, \mathfrak{t}_{\delta}$ is a canonical $\leqslant_{\mathfrak{F}}$-upper bound of $\left\langle\mathfrak{t}_{\alpha}: \alpha<\delta\right\rangle$. Note that we have not
said "the canonical $\leqslant_{\mathfrak{\Omega}}$-upper bound", as for $\delta<\alpha^{*}$ and $\operatorname{cf}(\delta)=\aleph_{0}$ we have some freedom in completing $\bigcup\left\{{\underset{\sim}{i}}_{\dagger_{\alpha}}: \alpha<\delta\right\}$ to an ultrafilter (on ω in $\mathbf{V}^{\mathbf{P}_{i}^{t}}$, when $i<\mu, \operatorname{cf}(i) \neq \varkappa$).

Subclaim 4.7. If $\mathbf{P}_{1} \lessdot \mathbf{P}_{2}$ and ${\underset{\sim}{l}}_{l}$ is a \mathbf{P}_{l}-name of a non-principal ultrafilter on ω for $l=1,2$ and $\vdash_{\mathbf{P}_{2}}{ }^{\left[D_{\sim}\right.} \subseteq{\underset{\sim}{2}}_{2}$ ", then $\mathbf{P}_{1} * \mathbf{Q}(\underset{\sim}{D}) \lessdot \mathbf{P}_{2} * \mathbf{Q}\left({\underset{\sim}{D}}_{2}\right)$.

Proof. First, we can force with \mathbf{P}_{1}, so without loss of generality, \mathbf{P}_{1} is trivial and $D_{1} \in \mathbf{V}$ is a non-principal ultrafilter on ω. Now clearly $p \in \mathbf{Q}\left(D_{1}\right) \Rightarrow p \in \mathbf{Q}\left({\underset{\sim}{2}}_{2}\right)$ and $\mathbf{Q}\left(D_{1}\right) \vDash p \leqslant q \Rightarrow \mathbf{Q}\left(\underset{\sim}{D_{2}}\right) \vDash p \leqslant q$, and if $p, q \in \mathbf{Q}\left(D_{1}\right)$ are incompatible in $\mathbf{Q}\left(D_{1}\right)$, then they are incompatible in $\mathbf{Q}\left(\underset{\sim}{D_{2}}\right)$. Lastly, in \mathbf{V}, let $\mathcal{I}=\left\{p_{n}: n<\omega\right\} \subseteq \mathbf{Q}\left(D_{1}\right)$ be predense in $\mathbf{Q}\left(D_{1}\right)$. We shall prove that \mathcal{I} is predense in $\mathbf{Q}\left({\underset{\sim}{2}}_{2}\right)$. For this it suffices to note that
\boxtimes if D_{1} is a non-principal ultrafilter on $\omega, \mathcal{I} \subseteq \mathbf{Q}\left(D_{1}\right)$ and $\eta \in^{\omega>} \omega$, then the following conditions are equivalent:
(a_{η}) there is no $p \in \mathbf{Q}\left(D_{1}\right)$ incompatible with every $q \in \mathcal{I}$ which satisfies $\operatorname{tr}(p)=\eta$;
(b_{η}) there is a set T such that
(i) $\nu \in T \Rightarrow \eta \unlhd \nu \in p$;
(ii) $\eta \unlhd \nu \unlhd \varrho \in T \Rightarrow \nu \in T$;
(iii) if $\nu \in T$ then either $\left\{n: \nu^{\wedge}\langle n\rangle \in T\right\} \in D_{1}$ or $(\forall n)\left(\nu^{\wedge}\langle n\rangle \notin T\right) \&(\exists q \in \mathcal{I})(\nu=\operatorname{tr}(q))$;
(iv) there is a strictly decreasing function $h: T \rightarrow \omega_{1}$;
(v) $\eta \in p$.

The proof of \boxtimes is straightforward.
So, as in $\mathbf{V}, \mathcal{I} \subseteq \mathbf{Q}\left(D_{1}\right)$ is predense, for every $\eta \in^{\omega>} \omega$ we have (a_{η}) for D_{1}, and hence by \boxtimes we also have $\eta \epsilon^{\omega>} \omega \Rightarrow\left(\mathrm{b}_{\eta}\right)$. But clearly if T_{η} witnesses $(\mathrm{b})_{\eta}$ in \mathbf{V} for D_{1}, it witnesses $\left(\mathrm{b}_{\eta}\right)$ in $\mathbf{V}^{\mathbf{P}_{\mathbf{2}}}$ for D_{2}. Hence applying \boxtimes again we get $\eta \in^{\omega>} \omega \Rightarrow\left(\mathrm{a}_{\eta}\right)$ in $\mathbf{V}^{\mathbf{P}_{2}}$ for D_{2}, and so \mathcal{I} is predense in $\mathbf{Q}\left(D_{2}\right)$ in $\mathbf{V}^{\mathbf{P}_{2}}$. We have proved Subclaim 4.7.

SUBCLAIM 4.8. If $\overline{\mathfrak{t}}=\left\langle\mathfrak{t}_{\alpha}: \alpha<\delta\right\rangle$ is $\leqslant_{\mathfrak{q}}$-increasing continuous and $\delta<\lambda^{+}$is a limit ordinal, then it has a canonical $\leqslant_{\mathfrak{K}}$-upper bound.

Proof. By induction on $i<\mu$, we define $\mathbf{P}_{i}^{\mathbf{t}}$, and if $i<\mu$ we then have $\mathbf{Q}_{i}^{\mathbf{t}}, \tau_{i}$ and ${\underset{\sim}{i}}_{i}$ (if $\operatorname{cf}(i) \neq \varkappa$) such that the relevant demands (for $\mathfrak{t} \in \mathfrak{K}$ and for being a canonical $\leqslant_{\mathfrak{K}}$-upper bound of \mathfrak{t}) hold.

Defining $\mathbf{P}_{i}^{\mathbf{t}}$ is obvious: for $i=0$ trivially, if $i=j+1$ it is $\mathbf{P}_{j}^{\mathbf{t}} * \underset{j}{\mathbf{Q}}$, and if i is limit it is $\bigcup\left\{\mathbf{P}_{j}^{\mathrm{t}}: j<i\right\}$.

If $\mathbf{P}_{i}^{\mathbf{t}}$ has been defined and $\operatorname{cf}(i)=\varkappa$, we let ${\underset{\sim}{i}}_{i}^{\mathbf{t}}=\bigcup_{\alpha<\delta} \mathbf{Q}_{i}^{\mathbf{t}_{\alpha}}$ and $\tau_{i}^{\mathfrak{t}}=\bigcup_{\alpha<\delta} \tau_{i}^{\mathfrak{t}_{\alpha}}$. It is easy to check that they are as required. If \mathbf{P}_{i}^{t} has been defined and $\operatorname{cf}(i) \neq \varkappa$, then $\bigcup_{\alpha<\delta} D_{i}^{t}$ is a filter on ω containing the cobounded subsets, and we complete it to an ultrafilter.

Note that there is such a $\underset{\sim}{D_{i}^{t}}$ because
(a) for $\alpha<\delta$ we have $\mathbf{P}^{\mathbf{t}_{\alpha}} \lessdot \mathbf{P}_{i}^{\mathbf{t}}$, and hence $\vdash_{\mathbf{P}_{i}}$ " $D_{i}^{\mathfrak{t}_{\alpha}}$ is a filter on ω to which all cofinite subsets of ω belong, and it increases with α ".

Note that there will be no need for new values of the τ_{\sim} 's, nor any freedom in defining them. As we have proved the relevant demands on $\mathbf{P}_{j}^{\boldsymbol{t}}$ and \mathbf{Q}_{j}^{t} for $j<i$, clearly \mathbf{P}_{i}^{t} is c.c.c. by using $\left\langle\tau_{j}: j<i\right\rangle$, and clearly $\left\langle\mathbf{P}_{\zeta}^{\mathfrak{t}}, \mathbf{Q}_{\xi}^{\mathfrak{t}}: \zeta \leqslant i\right.$ and $\left.\xi<i\right\rangle$ is an FS-iteration. Now we shall prove that $\alpha<\delta \Rightarrow \mathbf{P}_{i}^{\mathbf{t}_{\alpha}} \lessdot \mathbf{P}_{i}^{\mathbf{t}}$.

So let \mathcal{I} be a predense subset of $\mathbf{P}_{i}^{\mathbf{t}_{\alpha}}$ and $p \in \mathbf{P}_{i}^{\mathbf{t}}$, and we should prove that p is compatible with some $q \in \mathcal{I}$ in $\mathbf{P}_{i}^{\mathfrak{t}}$; we divide the proof into three cases.

Case 1: i is a limit ordinal. If $j \notin \operatorname{Dom}(p)$, it is trivial. Otherwise $p \in \mathbf{P}_{j}^{\boldsymbol{t}}$ for some $j<i$. Let $\mathcal{I}^{\prime}=\{q \upharpoonright j: q \in \mathcal{I}\}$, so that clearly \mathcal{I}^{\prime} is a predense subset of $\mathbf{P}_{j}^{\mathfrak{t}_{\alpha}}$ (as $\left.\mathfrak{t}_{\alpha} \in \mathfrak{K}\right)$. By the induction hypothesis, in $P_{j}^{\boldsymbol{t}}$ the condition p is compatible with some $q^{\prime} \in \mathcal{I}^{\prime}$; so let $r^{\prime} \in \mathbf{P}_{j}^{\mathfrak{t}}$ be a common upper bound of q^{\prime} and p, and let $q^{\prime}=q \upharpoonright j$, where $q \in \mathcal{I}$. Then $r \cup(q \upharpoonright[j, i)) \in \mathbf{P}_{i}^{\mathbf{t}}$ is a common upper bound of q and p as required.

Case 2: $i=j+1$ and $\operatorname{cf}(j)=\varkappa$. Then without loss of generality, for some $\beta<\delta, p(j)$ is a $\mathbf{P}_{j}^{\mathfrak{t}_{\beta}}$-name of a member of $\underline{\mathbf{Q}}_{j}^{\mathfrak{t}_{\beta}}$; and also without loss of generality $\alpha \leqslant \beta<\delta$. By the induction hypothesis, $\mathbf{P}_{j}^{\mathfrak{t}_{\beta}} \lessdot \mathbf{P}_{j}^{\mathfrak{t}}$. Hence there is $p^{\prime} \in \mathbf{P}_{j}^{\mathfrak{t}_{\beta}}$ such that $\left[p^{\prime} \leqslant p^{\prime \prime} \in \mathbf{P}_{j}^{\mathfrak{t}_{\beta}} \Rightarrow p^{\prime \prime}, p\lceil j\right.$ are compatible in $\mathbf{P}_{j}^{\mathbf{t}}$].

Let

$$
\mathcal{J}=\left\{q^{\prime} \backslash j: q^{\prime} \in \mathbf{P}_{i}^{\mathbf{t}_{\beta}}, q^{\prime} \text { is above some member of } \mathcal{I} \text { and } q^{\prime} \upharpoonright j \Vdash_{\mathbf{P}_{j}^{\mathbf{t}_{\beta}}} " p(j) \leqslant{ }^{\mathbf{Q}_{j}} q^{\prime}(j) "\right\}
$$

Now \mathcal{J} is a dense subset of $\mathbf{P}_{j}^{\mathfrak{t}_{\beta}}$ (since if $q \in \mathbf{P}_{j}^{\mathfrak{t}_{\beta}}$ then $q \cup\{\langle j, p(j)\rangle\}$ belongs to $\mathbf{P}_{i}^{\mathfrak{t}_{\beta}}$ and is hence compatible with some member of \mathcal{I}).

Hence p^{\prime} is compatible with some $q^{\prime \prime} \in \mathcal{J}$ (in $\mathbf{P}_{j}^{\mathfrak{t}_{\beta}}$), so there is r such that $p^{\prime} \leqslant r \in \mathbf{P}_{j}^{\mathfrak{t}_{\beta}}$ and $q^{\prime \prime} \leqslant r$. As $q^{\prime \prime} \in \mathcal{J}$ there is $q^{\prime} \in \mathbf{P}_{i}^{\mathfrak{t}_{3}}$ such that $\left.q^{\prime}\right\rceil j=q^{\prime \prime}, q^{\prime}$ is above some $q^{*} \in \mathcal{I}$ and

$$
q^{\prime} \upharpoonright j \Vdash " p(j) \leqslant{\stackrel{\mathbf{Q}_{j}}{\mathrm{t}_{j}}}^{\prime} q^{\prime}(j) "
$$

As $\mathbf{P}_{j}^{\mathbf{t}_{\beta}} \vDash$ " $p^{\prime} \leqslant r \& q^{\prime} \upharpoonright j=q^{\prime \prime} \leqslant r$ " and by the choice of p^{\prime} there is $p^{*} \in \mathbf{P}_{j}^{\mathrm{t}}$ above r (hence above p^{\prime} and above $\left.q^{\prime \prime}=q^{\prime} \backslash j\right)$ and above $p \upharpoonright j$. Now let $r^{*}=p^{*} \cup\left(q^{\prime \prime} \upharpoonright\{j\}\right)$. Clearly $r^{*} \in \mathbf{P}_{i}^{\mathrm{t}}$ is above $p\left\lceil j\right.$, and $r^{*}\left\lceil j\right.$ forces that $r^{*}(j)$ is above $p \upharpoonright\{j\}$. Clearly $r^{*}\left\lceil j\right.$ is above r, and r^{*} is also above $q^{*} \in \mathcal{I}$, so we are done.

Case 3: $i=j+1$ and $\operatorname{cf}(j) \neq \varkappa$. Use Subclaim 4.7 above.
So we have dealt with $\alpha<\delta \Rightarrow \mathbf{P}_{i}^{\mathbf{t}_{\alpha}} \lessdot \mathbf{P}_{i}^{\mathbf{t}}$.
Clearly we are done with the proof of Subclaim 4.8.
 we can find \mathfrak{s} such that
(i) $\mathfrak{t} \leqslant_{\mathfrak{K}} \mathfrak{F} \in \mathfrak{K}$;
(ii) there is $\left\langle\mathbf{k}_{i}, \mathbf{j}_{i}: i<\mu\right.$ and $\left.\operatorname{cf}(i) \neq \varkappa\right\rangle$ such that
(α) \mathbf{k}_{i} is an isomorphism from $\left(\mathbf{P}_{i}^{\mathrm{t}}\right)^{\boldsymbol{x}} / E$ onto $\mathbf{P}_{i}^{\mathbf{s}}$;
$(\beta) \mathbf{j}_{i}$ is the canonical embedding of $\mathbf{P}_{i}^{\mathfrak{t}}$ into $\left(\mathbf{P}_{i}^{\mathbf{t}}\right)^{\boldsymbol{x}} / E$;
$(\gamma) \mathbf{k}_{i} \circ \mathbf{j}_{i}$ equals the identity on $\mathbf{P}_{i}^{\mathbf{t}}$;
(iii) ${\underset{\sim}{i}}_{\mathfrak{5}}$ is the image of $\left({\underset{\sim}{~}}_{i}\right)^{\varkappa} / E$ under \mathbf{k}_{i}, and similarly ${\underset{\sim}{i}}_{\mathfrak{s}}$ if $i<\mu$ and $\operatorname{cf}(i) \neq \varkappa$;
(iv) if $i<\mu$ and $\operatorname{cf}(i)=\varkappa$, then τ_{\sim}^{s} is defined such that for $j<\varkappa$ and $\operatorname{cf}(j) \neq \varkappa$ we have that \mathbf{k}_{j} is an isomorphism from $\left(\mathbf{P}_{i}^{\mathbf{t}}, \gamma^{\prime}, \tau_{i}^{\mathbf{t}}\right)^{x} / D$ onto $\left(\mathbf{P}_{i}^{\mathbf{s}}, \gamma^{\prime \prime}, \tau_{i}^{\mathfrak{s}, i}\right)$ for some ordinals γ^{\prime} and $\gamma^{\prime \prime}$ (except that we do not require that the map from γ^{\prime} to $\gamma^{\prime \prime}$ preserves order).

Proof. This is straightforward. Note that if $\operatorname{cf}(i)=\varkappa$ and $i<\mu$, then ${\underset{\sim}{\mathbf{Q}}}_{i}^{\mathbf{5}}$ is isomorphic to $\mathbf{P}_{i+1}^{\mathbf{s}} / \mathbf{P}_{i}^{\mathbf{s}}$, which is c.c.c., as by Los' theorem for the $\operatorname{logic} \mathbf{L}_{\varkappa, \varkappa}$ we have $\bigcup_{j<i}\left(\mathbf{P}_{j}^{\mathbf{t}}\right)^{\varkappa} / E \lessdot$ $\left(\mathbf{P}_{i+1}^{t}\right)^{x} / E$; similarly for τ_{i}, which guarantees that the quotient is c.c.c. too (actually ${\underset{\sim}{i}}$ is not needed for the c.c.c. here).

Subclaim 4.10. If $\mathfrak{t} \in \mathfrak{K}$ then $\vdash_{\mathbf{P}_{\mu}^{\mathrm{t}}} " \mathfrak{u}=\mathfrak{b}=\mathfrak{d}=\mu$ ".
Proof. In $\mathbf{V}^{\mathbf{P}_{\mu}^{\mathrm{t}}}$, the family $\mathcal{D}=\left\{\operatorname{Rang}\left(\eta_{i}\right): i<\mu\right.$ and $\left.\operatorname{cf}(i) \neq \varkappa\right\} \cup\{[n, \omega): n<\omega\}$ generates a filter on $\mathcal{P}(\omega)^{\mathbf{V}\left[\mathbf{P}_{\mu}^{i}\right]}$, as $\operatorname{Rang}\left(\eta_{i}\right) \tilde{\in}[\omega]^{\aleph_{0}}$ and $i<j<\mu \& \operatorname{cf}(i) \neq \varkappa \& \operatorname{cf}(j) \neq \varkappa \Rightarrow$ $\operatorname{Rang}\left(\eta_{j}\right) \subseteq{ }^{*} \operatorname{Rang}\left(\eta_{i}\right)$.

Also it is an ultrafilter, as $\mathcal{P}(\omega)^{\mathbf{V}\left[\mathbf{P}_{\mu}^{\mathrm{t}}\right]}=\bigcup_{i<\mu} \mathcal{P}(\omega)^{\mathbf{V}\left[\mathbf{P}_{i}^{\mathrm{t}}\right]}$, and if $i<\mu$ then $\operatorname{Rang}\left(\eta_{i+1}\right)$ induces an ultrafilter on $\mathcal{P}(\omega)^{\mathbf{V}\left[\mathbf{P}_{i+1}^{t}\right]}$. So we have $\boldsymbol{u} \leqslant \mu$. Also $\left({ }^{\omega} \omega\right)^{\mathbf{V}\left[\mathbf{P}_{\mu}^{\mathbf{t}}\right]}=\bigcup_{i<\mu}\left({ }^{\omega} \omega\right)^{\mathcal{V}\left[\mathbf{P}_{i}^{t}\right]}$, $\left({ }^{\omega} \omega\right)^{\mathbf{V}\left[\mathbf{P}_{i}^{\mathrm{t}}\right]}$ is increasing with i, and if $\mathrm{cf}(i) \neq \varkappa$ then $\eta_{i} \in{ }^{\omega} \omega$ dominates $\left({ }^{\omega} \omega\right)^{\mathbf{V}\left[\mathbf{P}_{i}^{t}\right]}$ by Subclaim 4.5, and so $\mathfrak{b}=\mathfrak{d}=\mu$ as in previous cases. Lastly, always $\mathfrak{u} \geqslant \mathfrak{b}$, and hence $\mathfrak{u}=\mu$.

Now we define $\mathfrak{t}_{\alpha} \in \mathfrak{K}$ for $\alpha \leqslant \lambda$, by induction on α, satisfying that $\left\langle\mathfrak{t}_{\alpha}: \alpha \leqslant \lambda\right\rangle$ is $\leqslant \mathfrak{K}^{-}$ increasing continuous and such that $\mathfrak{t}_{\alpha+1}$ is obtained from \mathfrak{t}_{α} as in Subclaim 4.9. Let $\mathbf{P}=\mathbf{P}_{\mu}^{\boldsymbol{t}_{\lambda}}$. Then $|\mathbf{P}| \leqslant \lambda$, hence $\left(2^{\aleph_{0}}\right)^{\mathbf{V}^{\mathbf{P}}} \leqslant\left(\lambda^{\aleph_{0}}\right){ }^{\mathbf{V}}$, and equality easily holds.

We finish by the following subclaim.
Subclaim 4.11. $\Vdash_{\mathbf{P}_{\lambda}} " a \geqslant \operatorname{cf}(\lambda)$ ".
Proof. Assume toward a contradiction that $\theta<\operatorname{cf}(\lambda), p \in \mathbf{P}$ and $p \Vdash_{\mathbf{P}}{ }^{*} \underset{\sim}{\mathcal{A}}=\{\underset{\sim}{A}: i<\theta\}$ is a MAD family", where \mathcal{A} is a MAD family if
(i) $A_{i} \in[\omega]^{\aleph_{0}}$;
(ii) $i \neq j \Rightarrow\left|{\underset{\sim}{A}}_{i} \cap \underset{\sim}{A_{j}}\right|<\aleph_{0}$;
(iii) under (i) and (ii), $\underset{\sim}{\mathcal{A}}$ is maximal.

Without loss of generality, $\vdash_{\mathbf{P}}$ " ${\underset{\sim}{i}} \in[\omega]^{N_{0}} "$. As $\mathfrak{a} \geqslant \mathfrak{b}=\mu$ by Subclaim 4.10, we have $\theta \geqslant \mu$. For each $i<\theta$ and $m<\omega$ there is a maximal antichain $\left\langle p_{i, m, n}: n<\omega\right\rangle$ of \mathbf{P} and there
is a sequence $\left\langle\mathbf{t}_{i, m, n}: n<\omega\right\rangle$ of truth values such that $p_{i, m, n} \Vdash$ " $(m \in \underset{\sim}{A}) \equiv \mathbf{t}_{i, m, n}$ ". We can find countable $w_{i} \subseteq \mu$ such that $\bigcup_{m, n<\omega} \operatorname{Dom}\left(p_{i, m, n}\right) \subseteq w_{i}$. Possibly increasing w_{i} and retaining countability, we can find $\left\langle R_{i, \gamma}: \gamma \in w_{i}\right\rangle$ such that
$(\alpha) w_{i}$ has a maximal element and $\gamma \in w_{i} \backslash\left\{\max \left(w_{i}\right)\right\} \Rightarrow \gamma+1 \in w_{i}$;
(β) $R_{i, \gamma}$ is a countable subset of $\mathbf{P}_{\gamma}^{\mathrm{t}_{\lambda}}$ and $q \in R_{i, \gamma} \Rightarrow \operatorname{Dom}(q) \subseteq w_{i} \cap \gamma$;
(γ) for $\gamma_{1}<\gamma_{2}$ in $w_{i}, q \in R_{i, \gamma_{2}} \Rightarrow q \mid \gamma_{1} \in R_{i, \gamma_{1}}$;
(δ) for $\gamma_{1} \in w_{i}, \gamma \in \gamma_{1} \cap w_{i}$ and $q \in R_{i, \gamma_{1}}$, the $\mathbf{P}_{\gamma}^{\mathrm{t}}$-name $q(\gamma)$ involves \aleph_{0} maximal antichains all included in $R_{i, \gamma}$;
(ε) $\left\{p_{i, m, n}: m, n\right\} \subseteq R_{i, \max \left(w_{i}\right)}$.
Since $\operatorname{cf}(\lambda)>\aleph_{0}$ (as $\mu<\lambda=\operatorname{cf}(\lambda)$ by the assumption of Theorem 4.1), we have $\mathbf{P}_{\mu}^{\mathrm{t}}=$ $\bigcup_{\alpha<\lambda} \mathbf{P}_{\mu}^{\mathrm{t}_{\alpha}}$. Clearly for some $\alpha<\lambda$ we have $\bigcup\left\{R_{i, \gamma}: i<\theta, \gamma \in w_{i}\right\} \subseteq \mathbf{P}_{\mu}^{\mathbf{t}_{\alpha}}$. But $\mathbf{P}_{\mu}^{\mathrm{t}_{\alpha}} \lessdot \mathbf{P}_{\mu}^{\mathrm{t}_{\lambda}}$, and so $\vdash_{\mathbf{P}_{\mu}^{t_{\alpha}}} " \mathcal{A}=\left\{{\underset{\sim}{A}}_{i}: i<\theta\right\}$ is MAD".

Now, letting \mathbf{j} be the canonical elementary embedding of \mathbf{V} into $\mathbf{V}^{\boldsymbol{x}} / D$, we know that
(*) in $\mathbf{V}^{\chi} / D, \mathbf{j}(\mathcal{A})$ is a $\mathbf{j}\left(\mathbf{P}_{\mu}^{\mathrm{t}_{\alpha}}\right)$-name of a MAD family.
As \mathbf{V}^{χ} / D is \varkappa-closed, for c.c.c. forcing notions things are absolute enough; but $\{\mathbf{j}(i): i<\mu\}$ is not $\left\{i: \mathbf{V}^{\varkappa} / D \vDash i<\mathbf{j}(\mu)\right\}$, so in \mathbf{V}, it is forced for $\Vdash_{\mathbf{j}\left(\mathbf{P}_{\mu}^{\mathbf{t}}\right)}$ that $\left\{\mathbf{j}\left({\underset{\sim}{A}}_{i}\right): i<\mu\right\}$ is not MAD!

Chasing arrows, clearly $\Vdash_{\mathbf{P}_{\mu}^{t_{\alpha+1}}}$ " $\left\{{\underset{\sim}{i}}^{A}: i<\theta\right\}$ is not MAD", as required.
The proof of Subclaim 4.11, and hence of Theorem 4.1, is complete.
Discussion 4.12. We can now look at other problems, e.g. what can be the order and equalities among $\mathfrak{d}, \mathfrak{b}, \mathfrak{a}$ and \mathfrak{u}; we have not considered it. We have considered having $\mathfrak{i}=\mu$, but there was a problem.

References

[D] van Doumen, E. K., The integers and topology, in Handbook of Set-Theoretic Topology, pp. 111-167. North-Holland, Amsterdam, 1984.
[L] Laver, R., On Fraïssés order type conjecture. Ann. of Math., 93 (1971), 89-111.
[S1] Shelah, S., Universal classes, in Classification Theory (Chicago, IL, 1985), pp. 264-418. Lecture Notes in Math., 1292. Springer-Verlag, Berlin, 1987.
[S2] - Existence of many $L_{\infty, \lambda}$-equivalent, nonisomorphic models of T of power λ. Ann. Pure Appl. Logic, 34 (1987), 291-310.
[S3] - Classification Theory and the Number of Non-Isomorphic Models, 2nd edition. Studies in Logic and the Foundations of Mathematics, 92. North-Holland, Amsterdam, 1990.
[S4] - Proper and Improper Forcing, 2nd edition. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, 1998.
[S5] - On what I do not understand (and have something to say). Fund. Math., 166 (2000), 1-82.
[S6] - Covering of the null ideal may have countable cofinality. Fund. Math., 166 (2000), 109-136.
[S7] - The null ideal restricted to some non-null set may be \aleph_{1}-saturated. Fund. Math., 79 (2003), 97-129.
[S8] - Properness without elementaricity. To appear in J. Appl. Anal.
[S9] - Non-Structure Theory. To be published by Oxford Univ. Press.
[S10] - On linear iterations. In preparation.
Saharon Shelah
Einstein Institute of Mathematics
The Hebrew University of Jerusalem
Edmond J. Safra Campus, Givat Ram
IL-91904 Jerusalem
Israel
and
Department of Mathematics
Hill Center-Busch Campus
Rutgers, The State University of New Jersey
110 Frelinghuysen Road
Piscataway, NJ 08854-8019
U.S.A.

Received December 14, 2000
Received in revised form July 6, 2003

[^0]: I would like to thank Alice Leonhardt for the beautiful typing of the original manuscript, and the Israel Science Foundation for partially supporting this research (Publication 700).

[^1]: ${ }^{1}$) We can use less, but it seems not needed at the moment. We can go deeper to names of depth $\leqslant \varepsilon$ inductively on $\varepsilon<\omega_{1}$, as in [S7, §3], or in a more particular way to make the point that is used here true, and/or make I_{t}^{t} only closed under unions (but not subsets), etc. Note that, e.g., $\operatorname{Lim}_{t}(\overline{\mathbf{Q}})$ is well defined when $L^{\mathfrak{t}}$ is well ordered.

[^2]: ${ }^{(7)}$ We may restrict ourselves to FSI-templates \mathfrak{t} of a globally countable, i.e. such that $A \in I_{t}^{t} \&$ $t \in L^{\ddagger} \Rightarrow|A| \leqslant \aleph_{0}$, or a locally countable, with no loss. We use this restriction as in Definition 2.13. If $A_{i} \subseteq A_{j} \in I_{t}^{\mathrm{t}}$ for $i<j<\varkappa$, then in $\mathfrak{t}^{*}=\mathfrak{t}^{\varkappa} / D, \bigcup\left\{j_{D, t}^{*}\left(A_{i}\right): i<\varkappa\right\} \in I_{j_{D, \mathfrak{t}}}^{t^{*}}$ (t) even if $\bigcup\left\{A_{i}: i<\varkappa\right\} \notin I_{t}^{\mathrm{t}}$.

[^3]: $\left({ }^{8}\right)$ So members of $L^{t^{0}}$ have the "veteranity privilege", i.e. "founding father's right"; i.e. members t of ${L^{t^{0}}}^{(}$have the maximal $I_{t}^{\mathrm{t}^{\zeta}}$.

[^4]: $\left({ }^{10}\right)$ But if you like to avoid using $(*)_{\zeta}^{7},(*)_{\zeta}^{9}$ and \mathcal{W} below, just use $\theta=\beth_{2}^{+}$. In fact, even without $(*)_{\zeta}^{7}$ and $(*)_{\zeta}^{9}$ above, countable \mathcal{W} suffice, but then we have to weaken the notion of isomorphism, and there is no point in that.
 $\left({ }^{11}\right)$ We here ignore \bar{K} and $\left\{\left(t, \bar{\varphi}_{t}, \eta_{\tau}\right): t \in L^{t}\right\}$.

