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Annotated Content

§1 A forcing axiom for λ > ℵ1 fails
[The forcing axiom is: if P is a forcing notion preserving stationary subsets
of any regular uncountable µ ≤ λ and �i is dense open subset of P for
i < λ then some directed G ⊆ P meets every �i .
We prove (in ZFC) that it fails for every regular λ > ℵ1. In our counter-
example the forcing notion P adds no new sequence of ordinals of length
< λ).

§2 There are {ℵ1}-semi-proper forcing notions

§1. A forcing axiom for λ > ℵ0 fail

David Aspero asks on the possibility of, see Definition below, the forcing axiom
FA(K, ℵ2) for the case K = the class of forcing notions preserving stationarily
of subsets of ℵ1 and of ℵ2. We answer negatively for any regular λ > ℵ1 (even
demanding adding no new sequence of ordinals of length < λ), see 1.16 below)

1.1. Definition.

1) Let FA(K, λ), the λ-forcing axiom for K mean that K is a family of forcing notions
and for any P ∈ K and dense open sets �i ⊆ P for i < λ there is a directed
G ⊆ P meeting every �i .

2) If K = {P} we may write P instead of K.

1.2. Definition. Let λ be regular uncountable. We define a forcing notion P = P2
λ

as follows:

(A) if p ∈ P iff p = (α, S̄, W̄ ) = (αp, S̄p, C̄p) satisfying
(a) α < λ

(b) S̄p = 〈Sβ : β ≤ α〉 = 〈Sp
β : β ≤ α〉
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(c) C̄p = 〈Cβ : β ≤ α〉 = 〈Cp
β : β ≤ α〉

such that
(d) Sβ is a stationary subset of λ consisting of limit ordinals
(e) Cβ is a closed subset of β

(f) if β ≤ α is a limit ordinal then Cβ is a closed unbounded subset of β

(g) if γ ∈ Cβ then Cγ = γ ∩ Cβ

(h) Cβ ∩ Sβ = ∅
(i) for every β ≤ α and γ ∈ Cβ we have Sγ = Sβ

(B) order: natural p ≤ q iff αp ≤ αq, S̄p = S̄q � (αp + 1) and C̄p = C̄q �
(αp + 1).

1.3. Observation

1) P2
λ is a (non empty) forcing notion of cardinality 2λ.

2) �i = {p ∈ P2
λ : αp ≥ i} is dense open for any i < λ.

Proof. 1) Obvious.
2) Given p ∈ P2

λ if αp ≥ i we are done. So assume αp < i and for γ ∈ (αp, i]
let S

q
γ be S∗ for any stationary subset S∗ of {δ < λ : δ > i a limit ordinal}

which does not belong to {Sp
β : β ≤ αp} and let C

q
γ = {j : αp < j < γ } and

q = (i, S̄pˆ〈Sq
γ : γ ∈ (αp, i]〉, C̄pˆ〈Cq

γ : γ ∈ (αp, i]〉). It is easy to check that
p ≤ q ∈ P2

λ and q ∈ �i . ��
1.4. Claim. Let λ = cf(λ) be regular uncountable and P = P2

λ. For any stationary
S ⊆ λ and P2

λ-name f
˜

of a function from γ ∗ ≤ λ to the ordinals or just to V and
p ∈ P there are q, δ such that:

�(i) p ≤ q ∈ P
(ii) αq = δ + 1

(iii) δ ∈ S if γ ∗ = λ

(iv) q forces a value to f
˜

� (δ ∩ γ ∗)

(v) if β < δ ∩ γ ∗ and �P “Rang(f
˜
) ⊆ λ” then q �P “ f

˜
(β) < δ”.

Proof. Without loss of generality S is a set of limit ordinals. We prove this by induc-
tion on γ ∗, so without loss of generality γ ∗ = |γ ∗| and without loss of generality
γ ∗ < λ ⇒ γ ∗ = cf(γ ∗), but if γ ∗ < λ the set S is immaterial so without loss of
generality

� γ ∗ < λ & δ ∈ S ⇒ cf(δ) ≥ γ ∗.

Let χ be large enough (e.g. χ = (�3(λ))+), <∗
χ is a well ordering of �(χ) and

choose N̄ = 〈Ni : i < λ〉 such that

�(a) Ni ≺ (�(χ), ∈, <∗
χ ) is increasing continuous

(b) λ, p, f
˜
, S belongs to Ni hence P ∈ Ni

(c) ‖Ni‖ < λ

(d) Ni ∩ λ ∈ λ

(e) 〈Nj : j ≤ i〉 belong to Ni+1; hence i ⊆ Ni so λ ⊆ ∪{Ni : i < λ}.
Let δi = Ni ∩ λ, and let i(∗) = Min{i : i < λ is a limit ordinal and δi ∈ S}, it is
well defined as 〈δi : i < λ〉 is strictly increasing continuous hence {δi : i < λ} is a
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club of λ; so by � we know that γ ∗ < λ ⇒ cf(i(∗)) = cf(δi(∗)) ≥ γ ∗. Let α∗
i be

δi for i ≤ i(∗) a limit ordinal and be δi + 1 for i < i(∗) a non limit ordinal. Now
by induction on i ≤ i(∗) choose p−

i and if i < i(∗) also pi and prove on them the
following:

(∗)(i) pi, p
−
i ∈ P ∩ Ni+1

(ii) pi is increasing
(iii) αpi > α∗

i (and δi+1 > αpi follows from p ∈ P ∩ Ni+1)
(iv) S

pi

α∗
i

= S and C
pi

α∗
i

= {α∗
j : j < i}

(v) p−
i is the <∗

χ -first q satisfying:
q ∈ P
j < i ⇒ pj ≤ q

αq > δi

S
q

α∗
i

= S and

C
q

α∗
i

= {α∗
j : j < i}

(vii) pi is the <∗
χ -first q such that:

q ∈ P
p−

i ≤ q

q forces a value to f
˜
(i) if γ ∗ < λ

q forces a value to f
˜

� δi if γ ∗ = λ.

There is no problem to carry the definition, recalling the inductive hypothesis on
γ ∗ and noting that 〈(p−

j , pj ) : j < i〉 ∈ Ni+1 by the “ <∗
χ -first” being used to

make our choices as 〈Nj : j ≤ i〉 ∈ Ni+1 hence 〈δj : j ≤ i〉 ∈ Ni+1 and also
〈α∗

j : j ≤ i〉 ∈ Ni+1 (and p, f
˜

∈ N0 ≺ Ni+1).

Now p−
i(∗) is as required. ��

1.5. Conclusion. Let λ = cf(λ) > ℵ0. Forcing with P2
λ add no bounded subset of

λ and preserve stationarity of subsets of λ (and add no new sequences of ordinals
of length < λ).

Proof. Obvious from 1.4. ��
1.6. Claim. Let λ = cf(λ) > ℵ0. If FA(P2

λ), (the forcing axiom for the forcing
notion P2

λ, λ dense sets) holds, then there is a witness (S̄, C̄) to λ where

1.7. Definition.

1) For λ regular uncountable, we say that (S̄, C̄) is a witness to λ or (S̄, C̄) is a
λ-witness if:
(a) S̄ = 〈Sβ : β < λ〉
(b) C̄ = 〈Cβ : β < λ〉
(c) for every α < λ, (α, S̄ � (α + 1), C̄ � (α + 1)) ∈ P2

λ.
2) For (S̄, C̄) a witness for λ, let F = F(S̄,C̄) be the function F : λ → λ defined by

F(α) = Min{β : Sα = Sβ}.
3) For β < λ let W

β

(S̄,C̄)
= {α < λ : F(S̄,C̄)(α) = β}.
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Proof of 1.6. Let �i = {p ∈ P2
λ : αp ≥ i}, by 1.3(2) this is a dense open subset

of P2
λ, hence by the assumption there is a directed G ⊆ P2

λ such that i < λ ⇒
�i ∩ G �= ∅. Define Sα = S

p
α , Cα = C

p
α for every p ∈ G such that αp ≥ α.

Now check. ��
1.8. Observation. Let (S̄, C̄) be a witness for λ and F = F(S̄,C̄).

1) If α < λ then F(α) ≤ α.
2) If α < λ is limit then F(α) < α.
3) If α < λ then α ∈ W

F(α)

(S̄,C̄)
.

4) If α < λ and i = F(α) and β ∈ Cα then βSα = Si .

Proof. Easy (remember that each Sα is a set of limit ordinals < λ and that for limit
α ≤ αp, p ∈ P2

λ we have α = sup(Cα)). ��
1.9. Claim. Assume (S̄, C̄) is a λ-witness and S∗ ⊆ λ satisfies δ ∈ S∗ ⇒ cf(δ) ≥
θ > ℵ0 and F(S̄,C̄) � S∗ is constant and S∗ is stationary. Then there is a club E∗

of λ such that: (S̄, C̄, S∗, E∗) is a strong (λ, θ)-witness, where

1.10. Definition

1) We say that p = (S̄, C̄, S∗, E∗) is a strong λ-witness if

(a) (S̄, C̄) is a λ-witness
(b) S∗ ⊆ λ is a set of limit ordinals and is a stationary subset of λ

(c) E∗ is a club of λ

(d) for every club E of λ, for stationarily many δ ∈ S∗ we have

δ = sup{α ∈ Cδ : α < Suc1
Cδ

(α, E∗) ∈ E}
where
(∗)(i) Suc0

Cδ
(α) = Min(Cδ\(α + 1)),

(ii) Suc1
Cδ

(α, E∗) = sup(E∗ ∩ Suc0
Cδ

(α)).

2) We say (S̄, C̄, S∗, E∗) is a strong (λ, θ)-witness if in addition
(e) δ ∈ S∗ ⇒ cf(δ) ≥ θ .

3) For (S̄, C̄, S∗, E∗)a strongλ-witness we let C̄′ = 〈C′
δ : δ ∈ S∗∩ acc(E∗)〉, C′

δ =
Cδ ∪ {Suc1

Cδ
(α, E∗) : α ∈ Cδ}; if p = (S̄, C̄, S∗, E∗) we write C̄′ = C̄′

p and

S̄p = S̄, C̄p = C̄, S∗
p = S∗, E∗

p = E∗. We call (S̄, C̄, S∗, E∗, C̄′) an expanded
strong λ-witness (or (λ, θ)-witness).

1.11. Observation. In Definition 1.10(3) for δ ∈ S∗ ∩ acc(E∗) we have:

� C′
δ is a club of δ, Min(C′

δ) ≥ sup(E∗ ∩ Min(Cδ)) and if γ1 < γ2 are successive
members of Cδ then C′

δ ∩ (γ1, γ2) has at most one member (which necessarily
is sup(E∗ ∩ γ2)) hence acc(C′

δ) = acc(Cδ) and α ∈ Cδ ∧ α < Suc1
Cδ

(α) ⇒
α /∈ C′

δ\Cδ and acc(Cδ) = acc(C′
δ).

Proof of 1.9. As in [Sh:g, III], but let us elaborate, so assume toward contradiction
that for no club E∗ of λ is (S̄, C̄, S∗, E∗) a strong (λ, θ)-witness. We choose by
induction on n sets E∗

n, En, An such that:
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(a) E∗
n, En are clubs of λ

(b) E∗
0 = λ

(c) En is a club of λ such that the following set is not stationary (in λ)

An = {δ ∈ S∗ : δ ∈ acc(E∗
n) and

δ = sup{α ∈ Cδ : α < Suc1
Cδ

(α, E∗
n) ∈ En}}

(d) E∗
n+1 is a club of λ included in acc(E∗

n ∩ En) and disjoint to An.

For n = 0, E∗
n is defined by clause (b).

If E∗
n is defined, choose En as in clause (c), possible by our assumption toward

contradiction, also An ⊆ S∗ is defined and not stationary. So obviously E∗
n+1 as

required in clause (d) exists.
So E∗ =: ∩{E∗

n : n < ω} is a club of λ and let α(∗) be the constant value of
F(S̄,C̄) � S∗, exists by an assumption of the claim. Recall that Sα(∗) is a stationary
subset of λ, so clearly E∗∗ =: {δ ∈ E∗ : δ = sup(δ ∩ E∗ ∩ Sα(∗))} is a club
of λ. As S∗ is a stationary subset of λ, we can choose δ∗ ∈ S∗ ∩ E∗∗. For each
n < ω we have δ∗ ∈ S∗ ∩ E∗∗ ⊆ E∗∗ ⊆ E∗ ⊆ E∗

n+1 hence δ∗ /∈ An hence
β∗

n = sup{β ∈ Cδ∗ : β < Suc1
Cδ∗ (β, E∗

n) ∈ En} is < δ∗ but ∈ Cδ∗ . But δ∗ ∈ S∗ so
cf(δ∗) ≥ θ > ℵ0, hence β∗ = sup{β∗

n, Min(Cδ∗) : n < ω} is < δ∗ but ≥ Min(Cδ∗)
and it belongs to Cδ∗ . As δ∗ ∈ E∗∗, we know that δ∗ = sup(δ∗ ∩E∗ ∩Sα(∗)) hence
there is γ ∗ ∈ E∗ ∩ Sα(∗) ∩ ( Suc0

Cδ∗ (β
∗), δ∗). But δ∗ ∈ S∗ ⊆ Sα(∗) recalling by

the choice of α(∗) above F(S̄,C̄)(δ
∗) = α(∗) hence by Claim 1.8(4), i.e., Defini-

tion 1.2(1), clause (A)(h) and Definition 1.7(1) we have Cδ∗ ∩ Sα(∗) = ∅ hence
γ ∗ /∈ Cδ∗ . But δ∗ > γ ∗ > β∗ ≥ Min(Cδ∗) and Cδ∗ is a closed subset of δ∗ hence
ζ ∗ = max(Cδ∗ ∩ γ ∗) is well defined and so, recalling β∗ ∈ Cδ∗ we have

(∀n < ω)(β∗
n ≤ β∗ < Suc0

Cδ∗ (β
∗) ≤ ζ ∗ ∈ Cδ∗).

Let ξ∗ = Suc0
Cδ∗ (ζ

∗) so clearly γ ∗ ∈ (ζ ∗, ξ∗). Now for every n we have sup(ξ∗ ∩
E∗

n) ∈ [γ ∗, ξ∗] as γ ∗ ∈ E∗ ∩ Sα(∗) ⊆ E∗ ⊆ E∗
n .

So recalling ζ ∗ < γ ∗ clearly ζ ∗ < sup(ξ∗∩E∗
n); if also sup(ξ∗∩E∗

n) ∈ En then
recalling ξ∗ = Suc0

Cδ∗ (ζ
∗), Suc1

Cδ∗ (ζ
∗, E∗

n) ≡ sup(ξ∗∩E∗
n) we have ζ ∗ ≤ β∗

n (see

its choice and see the choice of β∗
n above), but this contradicts ζ ∗ ≥ Suc0

Cδ∗ (β
∗) >

β∗ ≥ β∗
n and the definition of An (see clause (c) of (∗)), contradiction. So neces-

sarily sup(ξ∗ ∩ E∗
n) does not belong to En hence does not belong to E∗

n+1, hence
sup(ξ∗ ∩ E∗

n) > sup(ξ∗ ∩ E∗
n+1).

So 〈sup(ξ∗ ∩ E∗
n) : n < ω〉 is a strictly decreasing sequence of ordinals, con-

tradiction. ��

1.12. Definition. Assume

(∗)1 (S̄, C̄, S∗, E∗, C̄′) is an expanded strong λ-witness so C̄′ = 〈C′
δ : δ ∈

S∗〉, C′
δ = Cδ ∪ {Suc1

Cδ
(α, E∗) : α ∈ Cδ} or just

(∗)2 S∗ ⊆ λ is a stationary set of limit ordinals, C̄′ = 〈C′
δ : δ ∈ S∗〉, C′

δ is a club
of δ, E∗ a club of λ .

Sh:784



290 S. Shelah

We define a forcing notion P = PC̄′

(A) c ∈ P iff
(a) c is a closed bounded subset of λ

(b) if δ ∈ S∗ ∩ c then {α ∈ C′
δ : Suc0

C′
δ

(α) ∈ c} is bounded in δ

Let αc = sup(c).

(B) order: c1 ≤ c2 iff c1 is an initial segment of c2.

1.13. Claim. Let P = PC̄′ be as in Definition 1.12.

1) P is a (non empty) forcing notion.
2) For i < λ the set �i = {c ∈ P : i < sup(c)} is dense open.

Proof. 1) Trivial.
2) If c ∈ P, i < λ and c /∈ �i then let c2 = c ∪ {i + 1}, clearly (c2\c) ∩ S∗ = ∅ as

S∗ is a set of limit ordinals hence c2 ∈ P and obviously c ≤ c2 ∈ �i . ��

1.14. Claim. Assume p = (S̄, C̄, S∗, E∗, C̄′) is an expanded strong λ-witness.
Forcing with P = PC̄′ add no new bounded subsets of λ, no new sequence of

ordinals of length < λ and preserve stationarity of subsets of λ.

Proof. Assume p ∈ P, γ ∗ ≤ λ and f
˜

is a P-name of a function from γ ∗ to the

ordinals or just to V and S ⊆ λ is stationary and we shall prove that there are q, δ

satisfying (the parallel of) � of 1.4, i.e.,

�(i) p ≤ q ∈ P
(ii) αq = δ + 1

(iii) δ ∈ S if γ ∗ = λ

(iv) q forces a value to f
˜

� (δ ∩ γ ∗)

(v) if β < δ ∩ γ ∗ and � “ f
˜

: γ ∗ → λ” then q �P “ f
˜
(β) < δ”.

This is clearly enough for all the desired consequences. We prove this by induction
onγ ∗, so without loss of generality γ ∗ = |γ ∗| and without loss of generality γ ∗ <

λ ⇒ γ ∗ = cf(γ ∗), but if γ ∗ < λ then S is immaterial so without loss of generality
γ ∗ < λ & δ ∈ S ⇒ cf(δ) ≥ γ ∗. Also we can shrink S as long as it is a stationary
subset of λ and recall that F(S̄,C̄) is regressive on limit ordinals (see Observation
1.8(2)) so without loss of generality F(S̄,C̄) � S is constantly say α(∗).

Let χ be large enough and choose N̄ = 〈Ni : i < λ〉 such that

�(a) Ni ≺ (�(χ), ∈, <∗
χ ) is increasing continuous

(b) λ, p, f
˜
, S belongs to Ni hence P ∈ Ni

(c) ‖Ni‖ < λ

(d) Ni ∩ λ ∈ λ

(e) 〈Nj : j ≤ i〉 belong to Ni+1 (hence i ⊆ Ni , so λ ⊆ ∪{Ni : i < λ})
(f) Ni+1 ∩ λ ∈ Sα(∗) and N0 ∩ λ ∈ Sα(∗).
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Let δi = Ni ∩ λ and i(∗) = Min{i : i < λ is a limit ordinal and δi ∈ S}, it is well
defined as 〈δi : i < λ〉 is (strictly increasing continuous) hence {δi : i < λ} is a
club of λ, hence γ ∗ < λ → cf(i(∗)) = cf(δi(∗)) ≥ γ ∗.

Let1 W =: {i ≤ i(∗): i > 0 and if i < i(∗) and j < i then C′
δi(∗)

∩δi+1 � δj+1}.
Clearly W ∩ i(∗) is a closed subset of i(∗) and as δi(∗) = sup(Cδi(∗)

), also W ∩ i(∗)

is unbounded in i(∗). Also as by 1.11 we have (α ∈ acc C′
δi(∗)

) ⇒ α ∈ Cδi(∗)
⇒

C′
α = C′

δi(∗)
∩ α clearly

(∗) if i ∈ W then 〈Nj : j ∈ W ∩ (i + 1)〉 ∈ Ni+1.

Also note that

(∗∗) if i < i(∗) is nonlimit, then δi > sup(Cδi(∗)
∩ δi) hence δi > sup(C′

δi(∗)
∩ δi).

[Why? By 1.8(4) as δi(∗) ∈ S ⊆ Sα(∗) recalling the choice of α(∗) clearly
Cδi(∗)

∩ Sα(∗) = ∅ but by clause �(f ) we have δi ∈ Sα(∗) so δi /∈ Cδ∗ .
But Cδi(∗)

is a closed subset of δi(∗) hence δi > sup(Cδi(∗)
∩ δi), and C′

δi(∗)
∩

δi\ sup(Cδi(∗)
∩ δi) has at most two members (see 1.11) so C′

δi(∗)
∩ δi is a

bounded subset of δi so we are done.]

Now by induction on i ∈ W we choose pi, p
−
i and prove on them the following:

(∗)(i) pi, p
−
i ∈ P ∩ Ni+1

(ii) pi is increasing (in P)
(iii) max(pi) > δi (of course δi+1 > max(pi) as pi ∈ P ∩ Ni+1)
(iv) p−

i = p ∪ {sup(δi ∪ (C′
δi(∗)

∩ δi+1)) + 1} if i = Min(W)

(v) if 0 < i = sup(W ∩ i) and γi = max(C′
δi(∗)

∩ δi+1) so δi ≤ γi < δi+1 then

p−
i = ∪{pj : j ∈ W ∩ i} ∪ {δi, γi + 1}

(vi) if j < i are in W then pj ≤ p−
i ≤ pi

(vii) i ∈ W, i < i(∗) and j = Max(W ∩ i) so j < i and γi = max({δi}∪(C′
δ∗ ∩

δi+1)) so δi ≤ γi < δi+1 then p−
i = pj ∪ {γi + 1}

(viii) pi is the <∗
χ -first q ∈ P satisfying

(α) p−
i ≤ q ∈ P

(β) if γ ∗ < λ then q forces a value to f
˜
(otp({j < i : j ∈ W and otp(j∩W)

is a successor ordinal})
(γ ) if γ ∗ = λ then q forces a value to f

˜
� δi

(ix) p−
i \

⋃
j<i

pj and pi\p−
. are disjoint to C′

δi(∗)
\ acc(C′

δi(∗)
), which include the

set {Suc1
Cδi(∗)

(α, E∗) : α ∈ Cδi(∗)
and α < Suc1

Cδi(∗)
(α)}.

Note that clause (ix) follows from the rest; we now carry the induction.

Case 1. i = Min(W).
Choose p−

i just to fulfill clauses (iv), note that δi ≤ γi < δi+1 as i ∈ W ∩ i(∗)

and then choose pi to fulfill clause (viii).

1 if cf(δi(∗)) > ℵ0 then W = {i < i(∗) : δi ∈ Cδi(∗)
} ∪ {δi(∗)} is O.K.
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Case 2. i = Min(W\(j + 1)) and j ∈ W .
Choose p−

i by clauses (vii) and then pi by clause (viii).

Case 3. 0 < i = sup(W ∩ i).
A major point is 〈pj : j < i〉 ∈ Ni+1, this holds as 〈p−

j , pj , j ∈ i ∩ W 〉
is definable from N̄ � δi, f

˜
, p, C′

δi(∗)
∩ Ni+1 all of which belong to Ni+1 and

Ni+1 ≺ (�(χ), ∈, <∗
χ ).

Let p−
i be defined by clause (v), note that δi ≤ γi < δi+1 as i ∈ W and p−

i ∈ P
as:

(α) (∀j < i)[pj ∈ P] and
(β) δi = sup(∪{δj : j < i and j ∈ W }). [Why? As δi < max(pj ) < δi+1 by

clause (iii)] and
(γ ) α ∈ p−

i ∩ S∗ ⇒ sup(p−
i ∩ C′

α\ acc(C′
δ)) < α. [Why? If α < δi then for

some j ∈ i ∩ W we have α < δj so pj is an initial segment of p−
i hence

sup(p−
i ∩ C′

α) = sup(pj ∩ C′
α) < α. If α = δi we can assume α ∈ S∗ but

clearly α = δi ∈ C′
δi(∗)

by the definition of W and the assumption of case 3;

so by (S̄, C̄) being a λ-witness, C′
δi

= C′
δi(∗)

∩ δi so by clause (ix) the demand
(in (γ )) hold.]

So easily p−
i is as required. If i < i(∗) we can choose pi by clause (viii) using the

induction hypothesis if γ ∗ = λ. So we have carried the definition and p−
i(∗) is as

required. ��
1.15. Conclusion.

1) If p = (S̄, C̄, S∗, E∗) is a strong λ-witness and C̄′ = C̄′
p and P = PC̄′ , then

FA(P, λ) fails.
2) In part (1), PC̄′ is a forcing of cardinality ≤ 2<λ, add no new sequence of ordinals

of length < λ and preserve stationarity of subsets of any θ = cf(θ) ∈ [ℵ1, λ].

Proof. 1) Recall that by Claim 1.13(2), �i is a dense open subset of P. Now if
G ⊆ PC̄′ is directed not disjoint to �i for i < λ, let E = ∪{p : p ∈ G}. By the
definition of PC̄′ and �i clearly E is an unbounded subset of λ and by the defini-
tion of PC̄′ and G being directed, p ∈ G ⇒ E ∩ (max(p) + 1) = p and (p is
closed) hence E is a closed unbounded subset of λ. So E contradicts the definition
of “(S̄, C̄, S̄∗, Ē∗, C̄′) being a strong λ-witness”.

2) Follows from 1.14 and direct checking. ��

1.16. Conclusion. Let λ be regular > ℵ1. Then there is a forcing notion P such that:

(α) P of cardinality ≤ 2λ

(β) forcing with P add no new sequences of ordinals of length < λ

(γ ) forcing with P preserve stationarity of subsets of λ (and by clause (β) also of
any θ = cf(θ) ∈ [ℵ1, λ))

(δ) FA(P, λ) fail.
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Proof. We try P2
λ, it satisfies clause (α), (β), (γ ) (see 1.3(1), 1.5, 1.6). If it satisfies

also clause (δ) we are done otherwise by Claim 1.6 there is a λ-witness (S̄, C̄). Let
S∗ ⊆ {δ < λ : cf(δ) > ℵ0} be stationary, so by 1.9 for some club E∗ of λ, the
quadruple p = (C̄, S̄, S∗, E∗) is a strong λ-witness (see Definition 1.10), and let
C̄′ = C̄′

p.
Now the forcing notion P = PC̄′ (see Definition 1.12) satisfies clauses (α), (β),

(γ ) by claims 1.15(2) and also clause (δ) by claim 1.15(1). So we are done. ��

§2. There are {ℵ1}-semi-proper not proper forcing notion2

By [Sh:f, XII,§2], it was shown when no “remnant of large cardinal properties
holds” (e.g. ¬0′

#) then every quite semi-proper forcing is proper, more fully UReg-
semi-properness implies properness. This leaves the problem

(∗) is the statement
(
for every forcing notion P, “P is proper” follows from P is

“semi-proper, i.e., {ℵ1}-semi proper”
)

consistent or is the negation provable in
ZFC.

David Asparo raises the question and we answer affirmatively: there are such forc-
ing notions. So the iteration theorem for semi proper forcing notions in [Sh:f, X]
is not covered by the one on proper forcing notions even if 0# does not exist.

2.1. Claim. There is a forcing notion P of cardinality 2ℵ2 which is not proper but
is {ℵ1}-semi proper. This follows from 2.2 using κ = ℵ2.

2.2. Claim. Assume κ = cf(κ) > ℵ1, λ = 2κ . Then there is P such that

(a) P is a forcing notion of cardinality 2κ

(b) if χ > λ, p ∈ P ∈ N ≺ (�(χ), ∈), N countable, then there is q ∈ P above p

such that q � “N ∩ κ � N [G
˜ P] ∩ κ” (� means initial segment); this gives P is

{ℵ1}-semi proper and more
(c) there is a stationary � ⊆ [λ]ℵ0 such that �P “� is not stationary”
(d) P is not proper.

Proof. We give many details.

Stage A. Preliminaries.
Let M∗ = (λ, Fn,m)n,m<ω, with Fn,m an (n + 1)-place function, be such that

for every n < ω and n-place function f from κ to κ there is m < ω such that
(∀i1, . . . , in < κ)(∃α < κ)[f (i1, . . . , in) = Fn,m(α, i1, . . . , in)].

Let S1, S2 be disjoint stationary subsets of κ of cofinality ℵ0 (i.e. δ ∈ S1 ∪S2 ⇒
cf(δ) = ℵ0). Let

� =
{
a ∈ [λ]ℵ0 : for some b ∈ [λ]ℵ0 we have

(α) a ⊆ b are closed under Fn,m for n, m < ω,

(β) sup(a ∩ κ) ∈ S1, sup(b ∩ κ) ∈ S2

(γ ) (a ∩ κ) � (b ∩ κ) (� is being an initial segment)

}

2 done 2001/8/8
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P = P� = {
ā : ā = 〈ai : i ≤ α〉 is an increasing continuous sequence

of members of [λ]ℵ0\� of length α < ω1
}

Clearly clause (a) of 2.2 holds.

Stage B. � is a stationary subset of [λ]ℵ0 . Why? Let N∗ be a model with universe
λ and countable vocabulary, it is enough to find a ∈ � such that N∗ � a ≺ N .
Without loss of generality N∗ has Skolem functions and N∗ expands M∗. Choose
for α < κ, Nα ≺ N∗, ‖Nα‖ < κ, β < α ⇒ Nβ ⊆ Nα, α ⊆ Nα, Nα increasing
continuous. So C =: {δ < κ : δ a limit ordinal and Nδ ∩ κ = δ} is a club of κ .
Choose δ1 < δ2 from C such that δ1 ∈ S1, δ2 ∈ S2. Choose a countable c1 ⊆ δ1
unbounded in δ1, and a countable c2 ⊆ δ2 unbounded in δ2.

Choose a countable M ≺ Nδ2 such that M ∩ Nδ1 ≺ Nδ1 and c1 ∪ c2 ⊆ δ. Let
a = M ∩ Nδ1 , b = M ∩ Nδ2 . As N∗ expands M∗, clearly a, b are closed under the
functions of M∗. Also c1 ⊆ M∩δ1 = M∩(Nδ1 ∩κ) = a∩κ ⊆ Nδ1 ∩κ = δ1 hence
δ1 = sup(c1) ≤ sup(a ∩ κ) ≤ δ1 so sup(a ∩ κ) = δ1. Similarly sup(b ∩ κ) = δ2.
Lastly, obviously a ∩ κ � b ∩ κ so b witnesses a ∈ �, as required.

Stage C. �P “� is not stationary”. Why? Define a
˜
∗
α = {aα : ā ∈ G

˜ P, �g(ā) > α}.
Clearly

(∗)0 P �= ∅. [Why? Trivial.]
(∗)1 for α < ω1, �1

α = {ā ∈ P : �g(ā) > α} is a dense open subset of P. [Why?
If 〈ai : i ≤ j〉 ∈ P, j < γ < ω1 we let ai =: aj for i ∈ (j, γ ] and then
〈ai : i ≤ j〉 ≤P 〈ai : i ≤ γ 〉.]
Also

(∗)2 for β < λ, �2
β = {ā ∈ P : β ∈ aα for some α < �g(ā)} is a dense open

subset of P. [Why? Given ā = 〈ai : i ≤ j〉. Choose δ ∈ S2 such that
δ > sup(κ ∩ (aj ∪ {β}) let c ⊆ δ be countable unbounded in δ and let
aj+1 = aj ∪ {β} ∪ c; so trivially sup(aj+1 ∩ κ) = δ ∈ S2 hence aj+1 /∈ �.
Now let ā+ = 〈ai : i ≤ j + 1〉. Now check.]

So

(∗)3 �P
˜

“〈a
˜ i : i < ω1〉 is an increasing continuous sequence of members of

([λ]ℵ0)V\� whose union is λ” hence
(∗)4 �P “〈a

˜ i

: i < ω1〉 witness � is not stationary (subset) of [λ]ℵ0 ”.

So we have finished Stage C.

Stage D. Clauses (c),(d) of 2.2 holds. Why? By Stage B and Stage C.

Stage E. Clause (b) of 2.2 holds.
So let χ > λ, N a countable elementary submodel of (�(χ), ∈, <∗

χ ) to which
P and p ∈ P belong hence M∗, κ, λ, S ∈ N (they are definable from P or demand
it). In the next stage we prove

� there is a countable M ≺ (�(χ), ∈<∗
χ ) such that N ≺ M, (N ∩κ) � (M ∩κ)

and M ∩ λ /∈ �.
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Let 〈�n : n < ω〉 list the dense open subsets of P which belong to M . Choose by
induction on n, pn ∈ N∩P : p0 = p, pn ≤P pn+1 ∈ �n. So let pn = 〈ai : i ≤ γn〉,
by (∗)1 of Stage C the sequence 〈γn : n < ω〉 is not eventually constant. Define
q by: q = 〈ai : i ≤ γ 〉 where γ = ∪{γn : n < ω} and aγ = M ∩ λ. Trivially
ai ⊆ M ∩ λ and by (∗)2 of Stage C clearly aγ = ∪{ai : i < γ } hence 〈ai : i ≤ γ 〉
is increasing continuous and i ≤ γ ⇒ ai ∈ [λ]≤ℵ0 and i < γ ⇒ ai ∈ [λ]ℵ0\�.
So the only non trivial point is aγ /∈ S which holds by �.

Clearly p ≤ q and q is (M, P)-generic hence q � “N [G] ⊆ M[G] and
N ∩ κ ⊆ (N [G] ∩ κ) ⊆ M[G] ∩ κ = M ∩ κ” so as (N ∩ κ) � (M ∩ κ) necessarily
(N [G] ∩ κ) � (N [G] ∩ κ)” as required.

Stage F. Proving �.
If N ∩ λ /∈ S let M = N and we are done so assume M ∩ λ ∈ �. Let

a = N ∩ λ ∈ [λ]ℵ0 and let b ∈ [λ]ℵ0 witness a = N ∩ λ ∈ � [the rest should
by now be clear but we elaborate]. Let M be the Skolem Hull in (�(χ), ∈, <∗

χ )

of N ∪ (b ∩ κ) (exists as <∗
χ is a well ordering of �(χ) so (�(χ), ∈, <∗

χ ) has
(definable) Skolem functions).

If γ ∈ M ∩κ then we can find a definable function f of (�(χ), ∈, <∗) and x ∈
N (recall in � we can use m-tuple for every m) and α1 . . . αn ∈ b∩κ such that γ =
f (x, α1, . . . , αn). Fixing x, f the mapping (α1, . . . , αn) �→ f (x, α1, . . . , αn) is an
n-place function from κ to κ definable in N hence belong to N and M∗ ∈ N hence
for some β ∈ N ∩ λ and m < ω we have (∀α1, . . . , αn < κ)[f (x, α1, . . . , an) =
Fn,m(β, α1, . . . , αn)].

But α1, . . . , αn ∈ b ∩ κ ⊆ b and β ∈ N ∩λ ⊆ b ∩λ = b and as b being in � is
closed under Fn,m clearly γ = f (x, α1, . . . , αn) = Fn,m(β, α1, . . . , αn) ∈ b but
γ ∈ κ so γ ∈ b ∩ γ . So M ∩ κ ⊆ b but of course b ∩ k ⊆ M ∩ κ so b ∩ k = M ∩ κ .
So a ∩ κ = (N ∩ λ) ∩ κ = N ∩ κ; but a ∩ k � b ∩ k by the choice of b so
N ∩ κ = a ∩ κ � b ∩ κ = M ∩ κ .

Lastly, sup(M ∩ κ) = sup(b ∩ κ) ∈ S2 hence M ∩ κ /∈ S. So M is as required
in � and we are done.
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