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PRIMITIVE RECURSIVE BOUNDS 
FOR VAN DER WAERDEN NUMBERS 

SAHARON SHELAH 

0, INTRODUCTION 

We shall give primitive recursive upper bounds for the van der Waerden 
numbers, the Hales-Jewett numbers, Graham-Rothschild and the affine Ramsey 
numbers, 

In 1927 van der Waerden published a proof of the following result. 

Van der Waerden's Theorem [15]. For all positive integers nand c there exists 
an integer N such that if the set of integers {I, 2, ... ,N} is c-colored, then 
there exists a monochromatic n-term arithmetic progression. 

Let W(n, c) be the least such integer. The known proofs of van der Waer-
den's theorem proceed by a double induction on nand c and yield extremely 
large upper bounds for W (n , c). For example, the following upper bound 
U(n, c) is obtianed in [8]. Suppose that for some n U(n, r) has been defined 
for all r. For each c E N define a sequence by 

Then U(n + 1 ,c) = ac ' In order to get some idea of the rate of growth of 
U (n, c) (and of the functions which will be introduced later in this paper), we 
shall define the classes of the Grzegorczyk hierarchy. For each n EN, define a 
function En by 

Then, for example, 

Eo(x,y) =x+y, 
2 

E1(x) =X +2, 

En+2(0) = 2, 
E n+2(x + 1) = En+l (En+2(x)), 
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684 SAHARON SHELAH 

and 

222 • :S E3(X) :S 333 • 

where both towers have height 2x + 1. Define the class of functions [iffn, 
n EN, as follows. [iff0 is the class whose initial functions are the zero function, 
the successor function, and the projection functions and is closed under compo-
sition and limited recursion. [iffn+! is defined similarly except that the function 
En is added to the list of initial functions. [iffn is called the nth Grzegorczyk 
class. (To say that a class '?5' is closed under limited recusion means that if 
g, h , j E '?5' and if f is defined by primitive recursion using g, h and satisfies 

f(x l , ... , x k ) :S j(xi ' ... , x k ) 

then f E '?5' .) The most important properties of the Grzegorczyk classes are 
summarized below. (A clear treatment of this material may be found in [11].) 

Fact 1. If n ~ 2 and f E [iffn , then there is an integer m such that 

f(x l , ••• , x k ) :S E:_ 1 (max{x l , ... , x k }), 

where E:- 1 is the mth iterate of En-I. 

Fact 2. If n ~ 2 and f E [iffn is a unary function, then f is eventually 
majorized by En (i.e., there exists an integer t such that f(x) < En(x) for all 
x> t). 
Fact 3. If g, h E [iffn and f is defined by primitive recursion using g and h, 
then f E [iffn+! . 

Fact 4. UnEN Wn is the class of primitive recursive functions. 
It is easily checked that the function V(x) = U(x, 2) eventually majorizes 

En for every n EN. Hence V is not primitive recursive. In fact, whenever a 
function F is defined by double recursion, then F is essentially a variant of the 
Ackermann function Ew(x) = EX+I (x). (Actually Ew is a slight modification 
of the function which Ackermann [1] constructed.) Hence to obtain a substan-
tially improved upper bound for W(n, c) it is necessary to find a proof of van 
der Waerden's theorem in which the use of a double induction is avoided. 

The known lower bounds for W (n , c) are of a completely different order of 
magnitude. For example, in [8] the Lovasz local lemma is used to show that 

W(n,2) ~ (2~:) (1 +0(1)). 

This improves an earlier result of Erdos and Rado [3]. In [2], Berlekamp gave 
a constructive proof that if p is a prime, then 

W(p + 1, 2) ~ p2P . 

Given the enormous discrepancy between the known upper and lower bounds 
for W(n, c), the problem of finding the true order of magnitude became a 
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PRIMITIVE RECURSIVE BOUNDS 685 

central question of Ramsey theory. This problem is discussed in numerous 
papers; for example, see [6] and [8]. 

In 1936, Erdos and Tunin had a seminal idea of how to obtain a more reason-
able upper bound; namely, prove a much stronger theorem. So they proposed 
the following conjecture: 

If A is a set of positive integers with positive upper density, that is, satisfying 

1· IAn[l,N]1 0 
Im;up N > 

then A contains arbitrarily long arithmetic progressions. 
This conjecture was a very fruitful one. Roth [12] used analytic number the-

ory to prove that (*) implies that A contains a 3-term arithmetic progression. 
In 1974, Szemeredi [14] settled the general conjecture affirmatively with a highly 
complicated combinatorial argument. Unfortunately Szemeredi's proof made 
use of van der Waerden's theorem and so did not give a better upper bound for 
W (n, c) . A few years later, Furstenberg and Weiss gave a proof of Szemeredi's 
theorem using topological dynamics; and Furstenberg and Katznelson proved 
some generalizations. (For an account of this work see [4].) Unfortunately it 
seemed that the analytic methods of Furstenberg were such that no upper bound 
for W (n , c) could be derived from them. 

Then, in the seventies, Solovay had an intriguing idea: use logic to show that 
W(n, c) really did grow at essentially the same rate as the Ackermann function. 
The idea was to translate the problem into logic as follows. Work in a weak 
(but natural) version of first order Peano arithmetic, in which the principle of 
double induction is not provable, and show that van der Waerden's theorem 
cannot be proved in this system. It would follow that W(n, c) is not primitive 
recursive and that the known upper bounds were essentially correct. (Solovay 
had already had a striking success with the opposite approach. In [10], he and 
Ketonen showed that the function associated with the Paris-Harrington variant 
of Ramsey's theorem grew faster than every provably recursive function. This 
gave a new proof that the Paris-Harrington theorem was independent of first 
order Peano arithmetic.) This proposal generated a lot of excitement, and also 
some controversy. While many logicians hoped that Solovay was right, some 
(most notably Kriesel and MacIntyre) felt that present methods for proving 
independence results from weak systems of arithmetic were simply not powerful 
enough for his proposal to stand any chance of success. On the other hand, 
Graham did not even believe that W (n , c) was not primitive recursive, and he 
conjectured that 

W(n,2) ::; G(n) = 2 
22' 

a tower of height n. 

Some evidence in favor of Solovay's position came from recent work of Gi-
rard, who made a proof-theoretic analysis of the Furstenberg-Weiss proof of 
Szemeredi's theorem and showed that it yielded an upper bound for W(n, c) 
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686 SAHARON SHELAH 

which was essentially the Ackermann function. Considering how different the 
various proofs were, the fact that they give the same upper bound is very strik-
ing. Certainly the present author has to admit that he thought that Solovay's 
conjecture that W(n, c) was not primitive recursive was more convincing than 
the opposing conjecture of Graham. However, in this paper, we shall see that 
Graham was correct: W(n, c) is a primitive recursive function. In fact, we 
shall show that W(n, c) E (5'5. The question of whether W(n, 2) ::; G(n), or 
even whether W (n , 2) E (5'4 , remains open. 

Since the sixties, many extensions of van der Waerden's theorem have been 
proved. The first of these was the Hales-Jewett theorem [9], which now forms 
the cornerstone of Ramsey theory. In order to state this result, we need to 
introduce some notation. The k-cube over n elements k n is defined by 

k n = {11 = (11(0), ... , l1(k - I))ll1U) E {a, 1, ... ,n - I}}. 

Let 1 ::; I ::; k. We shall define what we mean by an I-parameter subset of k n . 
Let 

{O, 1 , ... , k - I} = Ao U Al U ... U A I 

be a partition with Ai # 0 for 0::; i ::; 1- 1. Let f: Al -7 {a, 1, ... ,n - I} 
A I k be any function. We define a map f: n -7 n by 

j(yo'''' 'YI-l) = (xo'''' 'Xk _ 1) 

where 

Xi = f(i) if i E AI' 
Xi = Y j if i E A j' 0::; j ::; I - I . 

An I-parameter subset of k n is a set that is the range of j for some choice of 
Ao ' AI' ... ,A I ' f. A I-parameter subset is called a line. 

Hales-Jewett Theorem [9]. For all n, c there exists an integer HJ (n , c) such 
that whenever k :::=: HJ (n , c) and k n is c-colored, then there exists a monochro-
matic line. 

As all known proofs of this result proceeded by a double induction on nand 
C , it was not known whether the function HJ (n, c) was primitive recursive. In 
§ I, we shall present a new proof which shows that HJ (n , c) is indeed primitive 
recursive; in fact, HJ (n , c) E (5'5 . This easily implies that W (n , c) E (5'5 . 

In 1971, Graham and Rothschild proved a far-reaching generalization of the 
Hales-Jewett theorem. 

Graham-Rothschild Theorem [7]. For all n, t, I, c there exists an integer 
GR(n, t, I, c) such that whenever k :::=: GR(n, t, I, c) and d is a c-coloring 
of the I-parameter subsets of k n, then there exists at-parameter subset of k n , 
all of whose I-parameter subsets have the same color. 

A year later, Graham, Leeb, and Rothschild went on to prove the following 
theorem, which had been conjectured by Rota. 
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PRIMITIVE RECURSIVE BOUNDS 687 

Affine Ramsey Theorem [5]. For all q, t, I, c there exists an integer n = 
N (q , t , I, c) such that if the I-subspaces of A G (n , q) are c-colored, then there 
exists a t-subspace, all of whose I-subspaces have the same color. 

Spencer [13] later found a beautiful and transparent proof of this result. The 
Hales-Jewett theorem is used in the proofs of both of the above theorems as the 
basis step of a double induction. In §§2 and 3, we will present new proofs which 
avoid the use of double induction, and hence show that the above functions are 
also primitive recursive. More precisely, both functions lie in ;g6 . 

A number of interesting questions remain open, the most notable being 
whether there is a density version of the Hales-Jewett theorem. 

Question 1. Does there exist for each e > 0 and n EN an integer k = k(n, e) 
such that if A <;;:; k n with IA 1 ~ en k , then A contains a line? 

I do not even know the answer to the following question. 

Question 2. Does there exist for each e > 0 and n, c E N an integer k = 
k(n, c, e) with the following property? If d is a c-coloring of k n, then there 
exist pairwise disjoint lines 

L] = {~: 10 ~ i ~ n - I}, 

N k such that d(~) = d(~~) for all 1 ~ r ~ Nand 1 Ur =] Lrl/n ~ 1 - e. 

1. HALES-JEwETT AND VAN DER WAERDEN NUMBERS 

In this section, we will give primitive recursive bounds for the Hales-Jewett 
number HJ(n, c) and hence also for the van der Waerden number W(n, c) . 
We begin by explaining the main idea of the proof. 

We shall argue by induction on n that the number HJ(n, c) exists. How-
ever, when trying in the induction step to show that H (n + 1 , c) exists, we are 
only allowed to use the existence of HJ (n , c). If we also used the existence of 
HJ(n, c') for very large values of c' , then our argument would become a double 
induction and this would lead to Ackermann-like bounds. Let k be some (as yet 
unspecified) integer. We shall attempt to prove that k ~ HJ(n + 1, c). So let d 
be a c-coloring of k (n + 1). We shall try to reduce the problem to one concern-
ing c-colorings of k n. Let I = HJ (n , c). A natural approach is to try to find an 
I-parameter subset of k (n + 1) , say X, in which two letters cannot be distin-
guished by d. In more detail, we first partition the set {O, 1 , ... , k - I} into 
I pairwise disjoint nonempty subsets Ao' .,. ,AI~]' Each Ai will eventually 
contribute one degree of freedom to X , but one in which the letters n - 1 and n 
cannot be distinguished by d . For each i < I , we will choose a non empty sub-
set Bi of Ai and a function Y/ i E A,\B, (n + 1) . Then X will be the I-parameter 
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subset consisting of those 17 E k (n + 1) such that 

1.1.1. for SEAj\Bjl17(S) = 17j(S); 

1.1.2. if Sl IS2 E Bj' then 17(SI) = 17(S2)' 
To say that n - 1 and n cannot be distinguished by d means the following. 

1.1.3. Suppose that 17 ,rE X and that there exists i < I such that 
(a) 17(S) = r(s) for S E k\Bi ; 
(b) 17(S) = n - 1 and r(s) = n for S E Bj . 

Then d ( 17) = d ( r) . 
But now it is easy to see that k ;:=: HJ (n + 1 ,e). First, by repeated applications 

of 1.1.3, we find that the following holds. 

1.1.4. Suppose that 17 ,rE X and that for each S < k 

(a) 17(S) < n - 1 if and only if r(s) < n - 1; 
(b) if 17(S) < n - 1, then 17(S) = r(s) . 

Then d(17) = d(r). 
Now consider the canonical embedding n:l(n + 1) -+ X ~ k(n + 1). Let 

d 1 = don be the induced c-coloring of I(n + 1). If d2 = d1 ~ In, then 
there is certainly a d2-monochromatic line of In, say Lo = {ro I ••• I r n-l} . 
But then 1.1.4 implies that n[Lo] = {n(roL ... I n(rn_ 1)} can be extended to a 
d -monochromatic line L of k (n + 1) . 

The sets AilBi and the functions 17 j E A,\B'(n + 1) will be chosen in a 
simple way. Namely, k will have the form ml for some integer m, and 
we will let Ai = [mi, m(i + 1)). Then for some ai < bi < m, we will let 
Bj = [mi + aj I mi + bJ and 

17 j (mi+r)=n ifr<ajl 

= n - 1 if b i :::; r < m. 

Consider our requirement 1.1.3. We want to replace the ith block of 17 

In I n-l In-II 
mi+a, mi+b, 

by the ith block of r 
In i n I n - 11 

mi+a, mi+b; 

without changing the color. This can be regarded as saying that aj and bi 
should be very similar with respect to some information which is stored by 
{a j I b)j :f:. i}. (Imagine that we obtain r from 17 be replacing mi + ai by 
mi + bj .) When we try to express this more precisely, we find that we have 
translated the Hales-Jewett theorem into the problem which is dealt with in 
Lemma 1.3. 
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PRIMITIVE RECURSIVE BOUNDS 689 

Definition 1.2. For I, c EN, f(l, c) is the least integer k satisfying the fol-
lowing property. 

(*) If {d)j < I} are c-colorings of 2/-l k , then there exist aj < bj < k for 
j < I such that 

dj(ao,bo' ... ,aj_l,bj_l,aj,aj+l,bj+I' ... ,al_l,bl _ l ) 

= dj(ao' bo ' ... ,aj _ l , bj _ l , bj , a j + 1 ,bj + l , ... ,ai_I' bl _ l ) 

for all j < I. 

Lemma 1.3. (a) f(1 ,c) = c + 1. 
(b) For 12: 1, f(l + 1, c) ::; Cf (l.c)2! + 1. 

Proof. (a) Trivial. 
m 2! 

(b) Let m=f(l.c), k=c +1,andlet {dj U<I+l} be c-coloringsof 
2/+1 k. Define a function 

I 21 d : k ~ {gig: m ~ c} 

as follows. For each a < k , 
I 

d (a)(ao.bo ' ... . al_l.bl _ l ) = dl(ao.bo . ... . al_l.bl_l.a). 

Then there exist al < bl < k such that d l (al ) = d l (bl ) . Now define c-colorings 
{dJU < l} of 2/-1 m by 

2 
d j ( ao . b o' ... • a j _ I • b j _ I • a) . a j + I ' b j + I • .., • a 1- I • b 1- I ) 

= dj(ao.bo . ... . aj_l.bj_l.aj.aj+l.bj+I' ... . al_ 1 ,bl_l·al·bl )· 

By the definition of m, there exist a j < b j < m for j < I such that (*) holds 
with respect to {d~ U < l}. But now the integers a j < b j for j < 1+ 1 satisfy 
(*) with respect to {d)j < I + I}. 0 

Lemma 1.4. (a) HJ(I. c) = 1. 
(b) For n 2: 1 , 

HJ(n + 1. c) ::; HJ(n. c) x f(HJ(n. c). c(n+I)l/Jlncl). 

Proof. (a) Trivial. 
(b) Let 1= HJ(n. c), m = f(l. c(n+I)!), and k = 1m. Let d be a c-coloring 

of k(n + 1). Define colorings {dJU < I} of 2/-l m as follows. If j < I, then 

I 
d j (ao . b o' ... . a j _ I • b j _ I • a j • a j + I • b j + I • ... • a 1- I • b 1- I ) 

is a function with domain I (n + 1) and range included in the range of d such 
that each fJ E I(n + 1) is sent to d(//I/)' where 1/1/ E k(n + 1) is defined as 
follows. 
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(i) Suppose that i < I, i # i, r < m, and aj < bj • Then 

v,,(mi+r)=n ifr<aj, 
= n - 1 if b j ~ r < m, 

= 1]( i) if a j ~ r < bj • 

(ii) If i < I, i # i, r < m, and aj ~ bj , then v'I(mi + r) = O. (This case 
will be of no importance in what follows.) 

(iii) Suppose that i = i and r < m. Then 

v" (m i + r) = n if r < a j , 

= n - 1 if r ~ a j . 

1 (n+l)' Clearly Irangdjl ~ c . So there exist aj < bj < m for i < I satisfying 
l.2(*) with respect to {dJli < l}. 

For each i<I,let Ai =[mi,m(i+1)), Bj=[mi+aj,mi+bi) and define 
1]i E A,\B'(n + 1) by 

1]j(mi+r)=n ifr<aj, 
= n - 1 if b j ~ r < m. 

Let X be the I-parameter subset of k (n + I) consisting of those 1] which satisfy 
conditions 1.1.1 and 1.1.2. Suppose that 1], rEX and that there exists i < I 
such that 

(a) 1](s) = r(s) for s E k\Bj' 
(b) 1](s) = n - 1 and r(s) = n for s E Bi . 

Using the fact that 
1 dj(ao,bo' ... ,aj_l,bj_l,ai,ai+l,bj+l' ... ,al_l,bl_ l ) 

I 
=di(ao,bo'''' ,aj_l,bi_l,bi,ai+l,bi+I'''' ,al_l,bl_ I ), 

we find that d(1]) = d(r). Hence condition 1.1.3 is also satisfied, and this 
implies that k ~ HJ(n + 1, c). 0 

Theorem 1.5. The function HJ(n, c) is primitive recursive. In fact, HJ(n, c) E 
g>5 . 

Proof. This is an immediate consequence of Lemmas 1.3 and 1.4. 0 

Theorem 1.6. The funciton W(n, c) is primitive recursive. In fact, W(n, c) E 
g>5 . 

Proof. Let k = HJ(n,c). Define a function 'P:kn ~ (n - l)k by '1'(1]) = 
L.i<k 1](i). Then 'I' maps each line of k n onto an n-term arithmetic progres-
sion. Hence W(n,c) ~ (n-1)HJ(n,c). 0 

We end this section with some remarks on extensions of the Hales-Jewett 
theorem. 
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PRIMITIVE RECURSIVE BOUNDS 691 

Definition 1.7. HJ(n, I, c) is the least natural number k such that if k n is 
c-colored, then there exists a monochromatic I-parameter subset of k n . 

It is well known that the existence of HJ (n , I, c) follows easily from that of 
HJ(n, c) (for example, see [8]). Alternatively, essentially the same argument 
as that in Lemma 1.4 yields. 

Lemma 1.8. (a) HJ ( 1, I , c) = I . 
(b) HJ(n + 1, I, c) ::=; HJ(n, I, c) x f(HJ(n, I, c). c(n+l)HJ(nIC)) . D 

The proof shows that the monochromatic I-parameter subset can always be 
chosen so that its degrees of freedom Ao' ... ,AI- 1 C k are pairwise disjoint 
convex hulls, i.e., whenever i < j < I and r E Ai' sEA j , then r < s. 

The *-version of the Hales-Jewett theorem, due to Voigt [16], can also be 
proved using the method of Lemma 1.4. 

In the appendix to this paper, we shall show that HJ (2, I, c) is just a double 
exponential function. 

2. GRAHAM-RoTHSCHILD NUMBERS 

In this section, we shall present a new proof of the Graham-Rothschild the-
orem, which shows that the function GR(n, t, I, c) is primitive recursive. 

Definition 2.1. Let RAM(t, I, c) denote the least natural number m such that 
m -+ (t)~ (i.e., whenever the set of I-subsets of m is c-colored, then there 
exists a t-subset of m, all of whose I-subsets have the same color). 

Theorem 2.2. Let n,t,l,cEN andlet m=RAM(t,l,c). Define kifor i::=;m 
by 

(n+l)k,+m-,-I 
ko=O, ki+l=ki+HJ(n+ki'c ). 

Then GR(n, t, I, c) ::=; km . 

Picture of proof. 

Ai contributes one degree of freedom 

'lJi 1 (Y) contains positions which 
hold a fixed letter 

'lJi 1 ([0, kill contains positions which 
k i imitate lower positions 
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Proof. Let k = km . For notational simplicity, Y will be an alphabet on n 
letters which is disjoint from k = {O, 1, ... , k - I}. Let {A)v < I} be a set 
of letters which is disjoint from Y U {O, 1, ... ,k - I}. We shall regard an 
I-parameter subset cP of ky as a function from k into Y U {Aviv < I} such 
that 

(i) each Av is included in the range of CP; 
(ii) min<l>-I(Ai) < min <1>-1 (A) for i < j < I. 

Let d be a c-coloring of the I-parameter subsets of ky . 
We shall define by downwards induction on i < m a non empty subset Al 

of [ki,ki+l ) and a function Yfi from Bi=[ki,ki+I)\Ai into YU[O,ki ), Ri 
will denote the set of I-parameter subsets <I> of k Y which satisfy the following 
conditions. 

2.2.1. If i ::; j < m, S E Bj' and Yfj(s) E Y, then CP(s) = Yfj(s). 

2.2.2. If i::;j<m, sEBj,and Yfj(s)E[O,k),then <I>(s)=CP(Yfj(s)). 

2.2.3. If i ::; j < m, then cP I A j is a constant function. 
Ai and Yfi will be chosen so that the following condition holds. 

( * ) i· Suppose that cP, \f E R i satisfy 

2.2.4. <I> I A j = cP I A J for i < j < m ; 

2.2.5. <I> I [0, k i ) = \f I [0, k i ) ; 

2.2.6. if <I> I Ai is constantly Av for some v < I, then mincp-I(AJ < ki ; 
and similarly for \f I Ai. 

Then d(<I» = d(\f). 
Suppose, for the moment, that the above induction has been accomplished. 

We shall show how to complete the proof of the theorem. Let S be the 
m-parameter subset of k Y consisting of those Yf E k Y which satisfy 

(a) for all i < m, if S E Bi and Yfi(S) E Y, then Yf(s) = YfJs); 
(b) for all i<m,if SEBi and Yfi(s)E[O,ki),then Yf(S) = Yf(Yfi(s)); 
(c) for all i < m, Yf I Ai is a constant function. 

Let CP, \f be I-parameter subsets of S , considered as functions from k to 
Y U {Aviv < I}. Suppose that 

( + ) min <1>-1 (AJ = min \f-I (Av) for all v < I. 
We claim that d(<I» = d(\f). To see this, let S = min{rl<l>(r) =1= \f(r)} and let 
S E [ki' ki+ I). By (a) and (b), we must have that S E Ai. Define <1>' by 

cp'(r) = \f(r) if r E Ai' 

= <1>' (Yfj(r)) if i ::; j < m, r E Bj and Yfj(r) E [0, k), 

= CP(r) otherwise. 
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PRIMITIVE RECURSIVE BOUNDS 693 

By (+) and (*) i' d(<l» = d(<l>'). Continuing in this fashion, we can transform 
<I> stepwise into '1' without changing the color. Thus the claim is established. 

Hence the color of an I-parameter subset <l> of S is determined by the 
sequence (io' ... , ii-I) where min<I>-I(AJ E Aiv for v < I. Let d* be the 
coloring of the I-subsets of {O, 1 , ... , m - I} defined by d* ({ io' ... , ii_I}) = 

d(<I». Since m ~ (t)~, there exists at-subset U ~ {a, 1, ... ,m - I} such 
that d*({io' ... ,ii-I}) is constant for all io < ... < ii-I E U. Finally choose 
an element Yo E Y and let 

T = {t/ E SI'1(s) = Yo for S E Ai' if/: U}. 

Then T is a t-parameter subset of k Y , all of whose I-parameter subsets have 
the same color. 

Hence to complete the proof of the theorem, we need only check that the 
inductive construction of Ai and t/i can be carried out. Suppose that A j 
and '1 j have been defined for all i < j < m. Define a coloring d l of 
[k, .k,+I) (Y u [0, k i )) as follows. 

( 1) For each t/ E [k, .k,+il (Y U [0, kJ), d I ('1) is a function with domain 

9 i = {'¥ t [O,ki ) u [k i+1 ,km)I'¥ E R j for i < j < m}. 

Thus 19 i 1 ~ (n + l)k,+m-i-I . 
(2) For each '1' E 9 i and '1 E [ki.kl+il(yU [0, kJ), define 

'1('1') E [O,k)(y U {xr: r < I}) 

by 

'1('¥)(s) = '1(s) if S E [ki' ki+l ) and '1(s) E y, 
= t/('¥)(r) if either (a) S E B j for some i < j < m and '1j(s) = r E 

[O,k), or (b) S E [ki,ki+l)and '1(s) = r E [O,kJ, 
= '¥(s) otherwise. 

Then d l ('1) = (d(t/('¥))I'¥ E 9 i). Of course, d('1('¥)) is not always de-
fined, since there may exist v < I such that Av f/: rang '1('1'). In this case, 
let d(t/('¥)) = Co for some fixed Co E rangd . 

Clearly 
(n+/)k,+m-,-I 

Irangdll ~ C . 

So by the definition of ki+1 ,[k, .k,+il(y U [0, ki )) contains a dl-monochromatic 
line L, say determined by 

0::j:.Ai~[ki,kk+l) and '1iE[ki.ki+il\A'(YU[O,ki))· 

It is now clear that with this choice of Ai and '1i , condition (*) i holds. This 
completes the proof of the theorem. 0 
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3. The affine Ramsey theorem 

In this section, we wil give a proof of the affine Ramsey theorem, which yields 
primitive recursive upper bounds. The proof is heavily influenced by that of 
Spencer [13]. Throughout F will be an arbitrary but fixed finite field. If V is 
an affine space over F ,then [j] will denote the set of I-dimensional subspaces 
of V . The affine space {(xo' ... 'Xk_ l ) IXi E F} will be denoted by Fk . 

Definition 3.1. Let V be an affine space over F and let X be a coloring of [j] . 
Let B E [U~I] and let p: B -t F U be a surjective projection. We say that B is 
special with respect to X, p if whenever SI' S2 E [1] satisfy P(SI) = P(S2) , 
then X(SI) = X(S2) . 

Notice that the condition on SI' S2 is nontrivial only when dim P(SI) = I. 
For if dimp(SI) = 1- l, then SI = p-l(p(SI)) = p-l(p(S2)) = S2. The next 
result is a slight generalization of Lemma 1 [13]. 

Lemma 3.2. Let m, lEN and let c = (ci I i ~ I) be a finite sequence of natural 
numbers. Let 

k = m +HJ (1FIm+l, IT ct ) , 
1=0 

where vi = I [F;"] I for i ~ I. Let p: Fk -t F m be the natural projection obtained 
by taking the first m coordinates. Then zf Xi is a ci-coloring of [~k] for i ~ I, 
there exists BE [::1] which is simultaneously special with respect to Xi' P for 
each i ~ I. 0 

Definition 3.3. If X is a set, then (~) denotes the set of i-subsets of X. Let 
t, lEN and let c = (cili ~ I) be a finite sequence of natural numbers. We 
write m -t (t)i if whenever di : ('n -t ci for i ~ I, then there exists T E (7) 
such that di f (~) is constant for all i ~ I . 

Definition 3.4. Let t, lEN and let c = (ci I i ~ I) be a finite sequence of natural 
numbers. AF(t, I, c) is the least k such that whenever di : [~k] -t ci for i ~ I, 
then there exists S E [~k 1 such that di f [~] is constant for all i ~ I. 

Definition 3.5. Let 

<I>(m, I, c) = m + HJ (1FIm+l, n ct ) 

be the function given by Lemma 3.2. 

Theorem 3.6. Let t, lEN and let c = (cili ~ I) be a finite sequence of natural 
I . 

numbers. Suppose that m -t (th·. For each i ~ I, define cf by downward 
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induction on j ~ m by 
m 

ci = ci ' 
j j+' j+';r 1 ci = ci X Ci+' i.J i < , 
= Ci if i = I. 

Now define k j for j ~ m by 

ko = 0, 

Then AF(t, l,c) ~ km . 

695 

Proof. For each j ~ m, let Vj = Fkj and let P j: Vj+, ---. Vj be the natural 
projection. Let d; be a c;-coloring of [~m] for i ~ I. Define by downwards 
induction subspaces Vj+ ~ Vj+, for j < m and colorings (dfli ~ I) for j ~ m 
such that the following conditions hold. 

(a) Dim Vj+ = k j + I . 
(b) For each i ~ I, df is a cf-coloring of [?] . 
(c) For each i ~ /, d~ = d; . 
(d) If j < m, i ~ /, L, ,L2 E [V{] and piLi) = Pj(L2) , then df+'(L,) = 

dr' (L2)· (Since k j+, = cI>(kj' /, (cf+'li ~ /)), a suitable subspace Vj+ 
can always be found.) 

(e) If j < m and L E [?], then d!(L) = dj+'(L') , where L' E [~n 
satisfies Pj(L') = L. (This is well defined by (d).) 

(f) If j < m, i < /, and L E [?], then df(L) = (d(+'(L,Ld(:,'(L2)) ' 
where L, E [V{] and L2 E [~~] satisfy Pj(L,) = L = Pj(L2). (Again, 
this is well defined by (d).) 

Now choose j-dimensional subspaces Sj ~ Vj for j ~ m such that 

So = Va, 
Sj+, = some S E [j~+ll such that piS) = Sj" 

Let 0 ~ i ~ / and let L E [Si]. Consider the sequence of spaces L j ~ Vj, 
o ~ j ~ m , defined by 

Let j, < ... < j; be the numbers j such that dimLj < dim L j +, . Then (e) 
and (f) imply that d;(L) depends only on {j" ... ,jJ. Let Xi: (7) ---. c; be 
the induced coloring. Since m ---. (t)~ there exists U E (7) such that X i ~ (~) 
is constant for 0 ~ i ~ /. Finally choose a sequence of subspaces Tj ~ Vj for 
j ~ m such that To = Va, and 

(i) if j E U, then Tj+' E [di~j;j\+'] satisfies Pj(Tj+,) = Tj' 
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(ii) if j ~ U, then Tj+1 E [di~(~) satisfies Pj (Tj+1) = Tj . 

Then Tm E [~m] and di ~ [~n] is constant for each 0 ~ i ~ I. 0 

Exactly the same proof works for the parameter systems, introduced by 
Spencer in [13]. This means that all of the variants of the Graham-Rothschild 
theorem proved in [7] now have primitive recursive upper bounds. 

4. ApPENDIX 
221 1 

Proposition 4.1. HJ(2,I,c) ~ c . 

Proof. Fix a natural number c. Define integers " by 
I 

'l=c+l, "+I=Crr('j)+l. 
j=1 2 

It is enough to show that HJ(2, I, c) ~ L.~=1 'j' To accomplish this, we shall 
show that if k = L.~=I'j and d: k2 -+ c, then there exist ai < bi for 1 ~ i ~ I 
such that the following conditions hold. 

(1) L.~::'j ~ ai < bi < L.~=1 'j' 
(2) d is constant on the I-parameter set consisting of those 11 E k2 such 

that for each 1 ~ i ~ I , 
i-I 

l1(S) = 0 if I:>j ~ s < ai' 
j=1 

i 

= 1 if bi ~ S < L'j' 
j=1 

=n(a) ifa.<s<b .. 
", , - I 

Suppose that this holds for some I ~ 1, and let m 
k ~ t < m, define an embedding 7r1:k2 -+ m2 by 

7r1(l1)(S) = l1(S) if s < k, 
= 0 if k ~ s < t, 
= 1 if t ~ s < m. 

~'+1 h Uj=1 'j' For eac 

Let dl = do 7r I' By the induction hypothesis, there exists PI = (a: ' b: 11 ~ i ~ I) 
satisfying (1) and (2) with respect to d l . Let d l be the constant color cl 

on the I-parameter set defined by PI' Then there exist to < t I such that 
(Plo ,clo ) = (PII ' cll ). Hence we can take 

(aj'b) = (a~O ,b~O) if 1 ~ j ~ I, 
= (to,t l ) ifj=I+l. 0 

I Probably noticed by anybody who looks at the problem. 
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Remark 4.2. Hence HJ(3, l,c) can be bounded similarly, as (see §l) 
HJ(3,l,c)::;HJ(2,c+l,c). 
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