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THE JOURNAL OF SyMBoOLIC LoGIC
Volume 65, Number 3, Sept. 2000

ON QUANTIFICATION WITH A FINITE UNIVERSE

SAHARON SHELAH

Abstract. We consider a finite universe % (more exactly—a family 4( of them), second order quantifiers
Qk ., where for each % this means quantifying over a family of n(K )-place relations closed under permuting
% . We define some natural orders and shed some light on the classification problem of those quantifiers.

Annotated content.

§0. Introduction. [We explain our problem: classifying second order quantifiers for
finite model theory. We review relevant works, mainly, the work done on infinite
ones. We then define the basic order relations on such quantifiers interpretability
and expressability. We also explain why they are reasonable: as for definable
quantifiers, those give the desired recursiveness result.]

§1. On some specific quantifiers. [We define the quantifier we shall use: monadic,
partial one-to-one functions, equivalence relations and linear order. All have ver-
sions with a cardinality restriction (say cardinality of the domain of a one-to-one
function), which depends on %, the universe, only. For example Q29" is the quan-
tifier over sets of cardinality < A, QL] is the quantifier over unary one-to-one
functions with domain of cardinality < A, and Q% the quantifier over equivalence
relations. We shall investigate the natural partial orders on them (by the so-called
interpretability and expressibility).]

§2. Monadic analyses of 3z. [Concentrating first on 3¢, quantifying on the isomor-
phic copies of one n(R)-place relation R, we try to analyze its “monadic content”.
We essentially characterize the maximal cardinality of a set interpreted by cases of
R by a first order formula (actually of low quantifier depth) as Ao(R) and show that
using such a set we can reduce R to R; which has domain of cardinality 4o(R). So
up to bi-interpretability, Oz and {Qr,, Q<;,(r)} are equivalent. Now when 1o(R)
is too near to the cardinality of the universe %, we have to be more careful but we
interpret the (full) monadic quantifier (with no cardinality restriction). Lastly, we
do the same for Qk.]

§3. The one-to-one function analysis. [We define a cardinal A, (R) which essentially
characterizes the maximal cardinality of the domain of a one-to-one function inter-
pretable by cases of R. It is called 4, (R) and we can find a set 4 C % such that the
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1056 SAHARON SHELAH

order of magnitude of its cardinality is A; (R) (here—a constant multiple), and show
that Qr is equivalent by bi-interpretability to {Qr,. O} } where E is an equivalence
relation with not too many equivalence classes and R; has domain of cardinality
~ A1(R). Of course, Qk is analyzed similar ly Now, unlike the infinite case up to
bi-expressability Q! is maximal in the sense that if Ry has domain < A/nR) then
it is expressible by Q-!. Hence, under bi-expressibility and up to polynomial order
of magnitude we have a complete classification. Of course, on top of QH r) e have
the equivalence relation, which is understood.]

§0. Introduction. We investigate and classify to a large extent quantifiers in the
following framework

(%) for a natural number n, for a (large) finite set %, consider a quantifier
Qk on n-place relations on %, so K is a family of n-place relations
on % close under isomorphism (i.e., permutation of % ).

It is natural to restrict ourselves to such families defined by the logic we have in
mind (usually first order), but it seems natural to investigate two partial orders,
interpretability and expressibility defined below, which for such definable classes
give the right answer so the use of definability occurs only in the conclusion.

Earlier this was investigated for infinite %, see (below and) in [5], [1], [6], but
though related, there are some differences. A related work is [2] which deals maiunly
with monadic logic on the class of models of a first order theory 7', so its compli-
catedness measures the complexity of 7. We have said on some occasions during
this decade that those are adaptable to finite model theory. Here we deal with this
and shall continue in [4].

In [5] we gave a complete classification of the class of second order quantifiers:
those which are first-order definable (see below an exact definition). We find that for
infinite models up to a very strong notion of equivalence, bi-interpretability, there
are only four such quantifiers: first order, monadic, one-to-one partial functions,
and second-order. See Baldwin [1].

Now §1-83 of the present work are parallel to §1, §2, §3 of [6], so below we
describe the latter and then explain what we shall do here. In [6] our aim was to see
what occurs if we remove the restriction that the quantifier is first-order definable.
As we do not want to replace this by a specific #Z-definable (Z-some logic) we
restricted ourselves in [6] to a fixed infinite universe % . If we then want to restrict
ourselves to Z-definable quantifiers, we are able to remove the restriction to a fixed
universe % .

The strategy in [6] is to squeeze the quantifier Qr (Qr is Qk, where Ky is
the closure of {R} under permutations of %; similarly for Qg) between some
well understood quantifiers to get, eventually, equality. Unfortunately, for inter-
pretability we get a lower bound and an upper bound which are close but not
necessarily equal; i.e., both of the form Qg, where E is a set of equivalence re-
lations and they are quite close (see below). More specifically we use cases of
Qf.jl (i.e., of equivalence relations with A classes each of cardinality < u). Car-
rying out the strategy we first “find” the monadic content of, say, Qg. by in-

terpreting in it Q;‘(‘)‘g};) which is quantifying on sets of cardinality < Ao(R) and

This content downloaded from 195.78.108.199 on Sat, 14 Jun 2014 15:59:42 PM
All use subject to JISTOR Terms and Conditions


http://www.jstor.org/page/info/about/policies/terms.jsp

Sh:639

ON QUANTIFICATION WITH A FINITE UNIVERSE 1057

J0(R) is maximal and reduce the problem to “the remainder”, that is a rela-
tion R; with Dom(R,) of cardinality < Ao(R) and Qg, <inx Qr. Next inter-
pret Q}lz ) Which is quantifying on partial one-to-one functions of cardinality
< 41(R). Now we succeed to squeeze Qg, for “the remainder” between Q3% and
Q. 4 < u < Min{2*, |%|} but in general cannot show this with 1 = u. Clearly if
|% | is No, this does not occur and we can get a complete picture (see below 0.2). Also
by “expressibility” (a stronger equivalence relation but okay for the application to
logic) if ¥V = L, then the gap does not occur, but in some generic extensions it
does.

So by [6] we can, e.g., conclude

THEOREM 0.1. Assume K is a family of n-place relations over % where |% | = V.
Then Qg is bi-interpretable (see below) with Qg for some family E of equivalence
relations.

We can make this more specific (as the situation for such E’s is understood; see
there).

The present situation is more complicated. For example, the finite cardinalities
allow a family of monadic quantifiers: for the case |%| = » we have Qi ., Ouninn,
etc. However, modulo these cardinality restrictions we are able to get a picture
analogous to the original case. Also in the fine analysis we do not get an equivalence
relation E on % such that Qr, Qr are bi-interpretable or even just bi-expressible,
but just “squeeze” Qr between two such quantifiers, which are quite closed (i.e.,
size of one bounded by polynomial in the size of another). That is (concentrating
on the case % is fixed (and finite)): assume R is an n-place relation on % then we
can uniformly attach it to a cardinal 4,(R), and an equivalence relation E such
that:

() O3, ;I% x) are interpretable in Qr (those are quantifiers over equivalence
relations isomorphic to E and partial 1 — 1-functions of cardinality < 4;(R))

(B) if =21 (R)"™® < |%| then Qg is expressible by (03, O1)

() if A1 (R)"®) > ||, then any binary relation on a set 4 C % with cardinality

< |4|"/>R) is interpretable in Qg.

The uniformly means that the formulas involved in interpretability or expressibility
does not depend on R and % but on #x, in fact we can give explicit bounds on their
size from 7.

Note that we abuse notation using R as a relation and predicate; of course, the
formulas have an n-place predicate to stand for copies of R (see below).

Note we actually deal also with quantifying on appropriate families of R’s of fix
arity (e.g., those satisfying some sentence). Note that we cannot get much better
results by counting.

We thank C. Steinhorn, J. Tyszkiewicz and J. Baldwin for helpful discussions
on preliminary versions in MSRI 10/89, Dimacs 95/96 and Rutgers Fall 1997,
respectively. Much more is due to Baldwin, Fall 1998, for helping to greatly improve
the presentation.

Let us now make some conventions and definitions.
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1058 SAHARON SHELAH

CONVENTION 0.2.

(1) Informally % will be a fixed finite universe (usually large compared to » and,
for simplicity, with > 1 elements) but, if not.said otherwise, we are proving things
uniformly. So more exactly, # varies on 4, a family of such sets. You may choose
#=1{(0,n) : n a natural number > 1}.

(2) Informally, K will denote a family of n-place relations over %, (for a natural
number 7 = n(K)), closed under isomorphism, i.e., if R, R, are n-place relations
on% and (#,R,) = (¥, R;) then R| € K if and only if R, € K. So formally K
is a function with domain Y and K[#] is as above; but #n(K) = n(K[#]) for each
% € . Also below without saying in, e.g., Definition 0.5 the formula ¢ is the same
forall % € 4.

(3) Let K denote a finite sequence of such K’s, that is

K =(K,:£<1g(K)), so IZI-.’ = (Kl:(e < lg(IZ,:j)>.

(4) Let R denote a relation, its domain is Dom(R) = (J{a := R(a) }, n = n(R)
if R is an n-place relation (or predicate; we shall not always strictly distinguish).
Usually R is on % which is clear from the context. Formally, R is a function with
domain 4 and R[#]is an n(R)-place relation on % .

DErFINITION 0.3. For any K, 3x (or Qk) denotes a second order quantifier,
intended to vary on members of K. More exactly, L(3k,, ..., Ik, ) is defined like
first order logic but we have for each £ = 1, m (infinitely many) variables R which
serve as n(K,)-place predicates, and we can form (g, R) ¢ for a formula ¢ (when
R is n(K;)-place). Defining satisfaction, we look only at models with universe %,
and = (3x,R) ¢(R, ...) if and only if for some R € K,[#] we have ¢(R°,...).

We may display the predicates (or relations) appearing in ¢, i.e., ¢(x, y, R). Of
course, we may write K not K[#], etc., abusing notation.

ReMARK. Note that quantifiers depending on parameters are not allowed, e.g.,
automorphisms; on such quantifiers see [3].

DEFINITION 0.4. We say that K (or Qk) is #-definable (where . is a logic) if
there is a formula ¢(R) € Z, in the vocabulary {R} and is appropriate, i.e., an
n(K)-place predicate, such that for any n-place relation R on %

(#,R) = ¢(R) ifandonlyif R € K.

DErINITION 0.5.

(1) We say that 3¢, <ine Jg, (in other words Ik, is interpretable in Jg,) if
for some first-order! formula ¢y (%,S) = @i(x0, ..., X,uk,)—1 S0, - - Sm—1) for
k < k*, (each S, is an n(K,)-place predicate) the following holds:

(%) for every # € U4 and R, € K [#] there are k < k*, Sp, ...,
Sm—1 € K] such that (?/,So,...,Sm_l) |= (VJE) [R]()E) =
(%, 80, ., Sm_1)]-
(soin (x), ¢ does not depend on %).
(2) We say k-interpretable if we demand m < k, and then write <;_i.

I'We may demand k* = 1 (one formuld) if we allow also elements of % as parameters (the difference
is minor but particularly with a family % we need this (or have to use several possible ¢’s)). As |%| > 2.
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(3) We can define EIKl <Z Fg, or g, <ine Ix, mod Z similarly, by letting

¢ € Z. Similarly for <Z, .. Instead we may say modulo %.

We define a liberal relative of interpretability; we say Jg, is expressible by I, if
in the notion of interpretable we take the formula ¢ to be in the logic L(3g,). This
is then a special but very important case of Definition 0.5 (3).

DEFINITION 0.6.
(1) We say that 3, <exp Ik, (1n other words J, is expressible by J,) if there
are k* < w, formulas ¢, (%, S, . .., Sy,_1) for k < k* in the logic L(3k,) such that:

(%) for every € Y and R, € K [#], there are k < k*, Sp, ...,
Sm_1 € Ky[#] such that (#,So,...,Sm_1) E (¥VX) [Ri(X) =
<p(x So,... S,,, 1)]

(2) We say that Jg, <inex Jx, (in other words I, is invariantly expressible by
Jk,) if there are k* < w, formulas ¢, (%, So, ..., Sn_1) in the logic L(3k,) such
that:

(*) for every Z € U and R; € K [#], there are k < k*, Sy, ...,
Sm—1 € Ky[#%] such that for every K3 which extends Kj, letting ¢’
be ¢, when we replace 3k, by Ik, we have:

(?/,So,. .o aSm—l) ’: (Vf) [Rl(i) = ‘P/(X’SO’ v sSm—l)]~

(3) We define k-expressible, <j_exp, invariantly k-expressible and <j.inex and may
add . as a superscript parallelly to 0.5 (2).

DErINITION 0.7.

(1) We say that 3, =jn¢ Jk, (in other words Jg,, I, are bi-interpretable) if
Elkl <int EIKv and 31(7 Sint E|K|

(2) We say Jx, =exp Ik, (in other words Jg,, Ik, are bi-expressible) if Ix, <exp
Ik, and g, <exp Jk,. Similarly for =jnex: Ig, Zinex EIK2 (in other words 3g,, g,
are invariantly bi-expressible) if Ix, <inex Ik, and 3 Kz <inex Jk; -

(3) We can define 3, <int {3k, -, 3k,_,} as in Definition 0.5 but Sy, ... €
Uf‘ | Ki[%], we let 3¢ stand for {HKO,.. ,3k,_, } where K = (Ko, ..., Kk_1); W
define g1 <int I2 if Ig1 <in Ig» for each £; we also define expressible, 1nvar1antly
expressible, bi- mterpretable and (invariantly) bi-expressible similarly.

(4) Let 3k, =1.int Ik, (in other words Ik, Ik, are 1-bi-interpretable) if g, <i.ine
Jk, and Jx, <pine i, recall <;_jy is defined in 0.5(2) for k& = 1. Similarly
3k, =l-exp Jk, and I, =tuinex Ik,-

(5) In all those notions we add “modulo K” if parameters from J{ K, : £ <
lg(K) } are allowed. We can combine this with 0.5 (3) so have modulo (K, Z).

NortatioN 0.8.
(1) If R, is an ny-place relation for £ < n then we let

Y Re={a -+ "a,1:d € R };

more formally (3720 Re)(%) = Y50 Rel#].
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1060 SAHARON SHELAH

(2) Let

n—1 n—1
> K= {ZRZ:Rgngfor£<n}.
£=0

=0
(3) 3 stands for Ix where K = {R; : (#,R;) = (#,R) } and so formally if
R =(R[%):% € i) then K is defined by Kr[#]={ R\ : (% ,R)) = (¥,R) }.

LemMa 0.9.

(1) <ints <inex and Zexp as well as <y.int, Zicinex and <iexp are partial quasi orders.
Hence =int, Zinex, =exp are equivalence relations as well as =\.int, =1-inex and
=l-exp-

(2) 3k, <int 3, implies 3z, <inex I, which implies g, <exp I, Similarly for the
“1-" versions. Also each “1-" version implies the one without.

(3) 3¢ and 3k are bi-interpretable if K = >, K; or K = |, K; (where n(K;)
constant in the second case) provided that for each i, there is a nonempty R € K;
(for each % of course).

(4) In all those cases we can do everything modulo Ky or modulo & (if & is a
reasonable logic closed by first order operations) or modulo (Ko, Z).

Proor. Straight. -
Lemma 0.10.

(1) IfK,, K> are &-definable (i.e., each K, is, see Definition 0.4) and 3g, <exp g,

then we can recursively attach to every formula in £ (3 £ ) an equivalent formula

in 3(3152 ) .

(2) If K\, K> are Z-definable, 3k, <exp 3g, then the set of valid £ (3, )-sentences
that is &3,y - - - 3K,z )-Sentences, is recursive in the set of valid & (3, )-
sentences.

ProoOF. Easy. B
REMARK.

(1) The need of “Z-definable” is clearly necessary. Though at first glance the
conclusions of 0.10 may seem the natural definition of interpretable, I think reflec-
tion will lead us to see it isn’t.

(2) Note that naturally we use 0.10 with 0.9.

(3) Note that, of course, in 0.10, it is understood that the formulas from & are
the same for all € 4.

§1. On some specific quantifiers.

DerFINITION 1.1.

(0) K" ={A4 C% :|A| = 1}, and we can write 3 for Ixu; here tr stands for
trivial.

(1) Let K" = {4 C % : |A] = A} for a number A < |%|/2; here mon stands
for monadic.

(2) But we write Q" for Jxmon, and similarly for the other quantifiers defined
below. \

(3) K)'' = {f : f isa partiakone-to-one function, | Dom(f)| = A} when 4 <
|%1/2.
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(4) K;jl = { E : E is an equivalence relation on some 4 C %, with 1 equivalence
classes, each of power u }.

(5) In(4)wecanreplace “u” by “< u” if each equivalence class has < u elements.
Similarly replacing 4 by “< /1” Similarly < 4, < p.

(6) K= U, K and K1} = J,_, K. Similarly with < 4; here the “less
than half” is not so 1mportant

(7) Kmo" = Kmo" = {4 : 4 C#}and K" = K!'' = {f : f is a partial
one-to-one function }.

(8) Kj% = { E : E is an equivalence relation on some 4 C % with A-equivalence
classes } and KL, = {E : E is an equivalence relation on some 4 C % each
equivalence class < u } and K® = K% = { E : E is an equivalence relation on
some 4 C % } and lastly K& = {E : E an equivalence relation on 4 C %,
4] < 2},

H<i

REMARK 1.2. More formally 4, u, etc., are functions from 4 to N which satisfy
conditions such as /(%) < |%|/2. We write |% |/2 as shorthand for [% /2].

Claims 1.3 through 1.8 are established by similar arguments. To illustrate the
technique we prove 1.3 (4). If o (x, Sy, S;) denotes “x € Sy V x € S;” then as S|,
So range over subsets of Z with |%|/4 < A < |%|/2 clearly all sets of cardinality «,
|%|/4 < k < |%|/2 are represented; all sets of cardinality < |% |/4 are represented
by x € So & x € S;. (Note this depends on |S;| < |#]/2.) Finally sets with
cardinality between |%|/2 and |% | are represented by taking complements (or use
the first).

The choice |%|/2 and |#|/4 is arbitrary. But if |%|/k for larger k were chosen,
the union of two sets would have to be replaced by a union of more sets. A lower
bound of the form |% |/k permits the uniform choice of the formula .

Cram 1.3. Let A < x < |%|/2. Then, uniformly (the choice of the interpreting
Sformula ¢ does not depend on % ) we have:
) Q7" is 3g for some R.

Ql'l'lOn Qn'lO 1 and Ql'l'lOl’l <int Ql'l'lOl'l .

lTl on

(©

(1)

(2) =int Q1A<#

3) '“°“ =i O3 If M%) < |%|/4.

(4) If |% /2> A 2 |%|/4, then QT°" =in, Q™"

(5) More generally, for any constants a andb if|%|/a>A>|%|/b, then Q7" =i,
ﬂ'lOl]

(6) 1?’ R is not definable by a quantifier free type with equality only (for each % ),
then Q < 3x (we call such R nontrivial) even if we do not allow parameters in
Definition 0.5 (1).

Proor. Straightforward. For (0) recall Notation 0.8 (3). For (2) recall Definition
1.1(4). -
CLAIM 1 4. Let A < y beasinl.3.

0) Uis 3 for some R.
1) 4 < I?/I/2=>Q,1 =i QL) and y < |%|/2= QL) < QL

) < <
2) mon _mt Q<)L
)

(
(
(
(3 If’I > I%l/“' then Q,{ =int Q* .
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@) 0 =i Q) A |2|/4
(5) If R is a graph of a partial one-to-one function on %, A = Min{|Dom(R)|,
|%1/2} then Qg =i Q1.
Proor. Straightforward. 4
Cram 1.5. Let A < y and p < k. Then uniformly
0) Qz is 3 for some R.
1) IfX < |7Z|/2 K < |7Z|/2 then Qiﬂ >int Q)(K =int Q<,(</e
(1A) 0% _, <in 0% s
2) If [#1/4 < A < |%]/2 then QF, =it QX
3) For equivalence relations E\, E; on %, natural sufficient condition for inter-

pretablllty works. Similarly for families of equivalence relations.
(4) 3k <int @Z, if (VR € K) [| Dom(R)["®) < (2 —1)*] and 2 < |#|/2.

ProOOF. Left to the reader. .

DEFINITION 1.6.

(1) Q¢ = {R: R alinear order of a subset 4 of Z of cardinality?4 }.
(2) ord — U#<) Qord_

Cram 1.7. Uniformly

(0) Q%™ has the form Or.

(1) 029" <ine Q9.

(2) If u x & < A then Q7% <int Qord and Q2 <ine O3

(3) ,u XKk <= Q# e <l-int Q 4 mod Qm"n and Qe<q/1 <{-int Qj{ mod Qm°“.
(4) <lmt Q; WlOdg(Q )lf/1<:u<|?/|

(5) 09 <ine QL if 2% < |”//| lnfact one Eg € Q5% one E| € Q , and one

P G Qm"n suﬁ?ce
Proor. Straight. =
Cram 1.8. Uniformly
(1) Ok, <int Qk, mod Q' is equivalent to Qk, <i.inx Qk, mod Q..
(2) Similarly for <inex, <exp.
DEFINITION 1.9. For any equivalence relation E on a set Dom(E) C % we define

(1) nus,(E) is the number of equivalence classes of E with > k members.

(2) uq,(E) = Max{ |B|: B C % and there are Ey, ..., E;_; € Qg[#] such that:
b 756‘ € B$(3£<k) [(bEg = “lCEgC)\/(bEgb&CEgC&ﬁbE[C)]}.

(3) For x € # ~ Dom(E) let x/E be % ~ Dom(E).

Cram 1.10. Uniformly
(1) Q,i,:llzz(E) <int QF-
(2) ll,;llk(E) <int OE.

2For the infinite case we demand otp(4, R) = 1.
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ProoOF. LetZ € L.
(1) We can find a sequence (a; : i < 2nus,(E)) with no repetitions, a; € %
such that for i < j we have

a;Ea; <= j=i+1&"iiseven”.

Let Pp = {ay :i}, Py={az,1 :i}. SoPy(x)& Pi(y) & x E y defines a partial
one to one function with domain of cardinality 2 nu>>(E). We finish as we can
interpret Q7 (orsee 2.2(2)).

(2) Easy, too. =

n-ary

DerFINITION 1.11. @, is quantifying on n-place relation with domain of cardi-
nality < u(%).

Cram 1.12.
For n, letting X = (X, ..., X,_1) there is a formula p(X, Fy, ..., F,_1) in monadic
logic (F; unary function symbol), such that:

(x)  for” €U, A C %, and an n-place relation R on A we can find a
model M = (%, FM, ..., FM) and partial one-to-one functions F§* ,
coos M. from ¥ to % such that p(3; FM, ..., FM)) define R in M,
where the monadic quantifier is being interpreted as Q75", 1 > |R|
provided that

® |A[* + |A] < |#] or just |R| < |%|.

ProoF. Let {(ak" : € < n):j<|R|} list the n-tuples in R. Without loss of
generality |% ~ A| > |R| (otherwise (so |A|" + |4| > |%]) divide Z to k (large
enough) parts so that the restriction of R to the union of n of them has fewer
members than the union of the rest, etc.). Choose b; € Z \ A4 for j < |R| with
no repetition. Foreacha € A and £ < nlet Y! = {j : a{ = a }, so clearly
a' #a"=Y,"NY! =0andlet (j,ox : k < |YE|) list Y} with no repetition.
Define FM by: FM(a) = b;,,,, FM(b;,,.) = b except if Y/ = 0 then
FM(a) = a.

Let

Jatk+1

o(%, Fy,...,F,_1) = (32) /\[Fg(Xg) well defined
¢

& ~(3y)(y # x¢ & Fo(y) = x¢) & O(x¢, 2, Fy)]

where

B(Xg,z, Fz) = VX (Xg S X&(Vyl, yz)
reX&yn=Fy)&n#z—necX)—zecX).

Those are monadic formulas. Clearly,

(x)1 ¢ does not depend on %

(*), M = 6(a,b, F,) if and only if b € {F\'(a) : i > 0} where F/%a) = a,
Fl*a) = F,(Ff(a)) (if well defined)

(¥)3 M | “Fy(a) well defined &~(3y) (y # F(y) = a) if and only if a € 4
[check].
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1064 SAHARON SHELAH

Henceif a = (a; : £ < n) € 4, by ()| + (x), and definition of the FM’s, ¢ and
0:
M pla R,
if and only if for some z, /\(a[ €EA&z € {Fe[i](a) 1i>0})

l<n

if and only if for some j, (ag:£<n>:(a~ef:£<n). =

CoNcrusioN 1.13. If u, u, are functions with domain {4, n < w and (V¥ €
W) [ (%) < up(%) < |#]] then

n-ary . 1-1 mon
i Sint @,  mod QT

hence

n-ary 1-1
i Sexp Q,UZ .

§2. Monadic analysis of 3z. Our aim is to interpret Q" in 3 for a maximal 4
and show that except on A elements R is trivial. So continuing later the analysis of 3,
we can instead analyze {Q1"°", 3g, } or analyze 3z, mod Q1"°" where | Dom(R;)| < 4
and Jg, <int Or and even Jg, <yt Or mod QF'°". This is made exact below.

DEFINITION 2.1.
(1) For any relation R (on % ) let

70 = Jo(R) — Min{@,%m)}

where
A5(R) = Min{ |4| : A C % and for every sequence b, ¢ € %
(of length n(R)) we have b ~, ¢ implies R[b] = R[¢] }
where on ~ 4 see below
(2) b~y cmeansbh = (b;:i<n), ¢= (¢ :i<n)and
(a) b; € Aifand onlyifc; € 4
(b) bie A 1mplles b; = ¢;
(c) bj = b;ifand onlyif ¢; = c;.
(3) For a set A of formulas ¢(x) (where ¢ is a formula, X a finite sequence of
variables including all variables occurring freely in ) let

tpp(b, 4, M) = {p(%,d): p(%,7) €A, @ C Aand M }= p[b,a]}.

We omit M when its identity is clear, and when M = (%, R) we may write R
instead of M. We may write # |= ¢[b,a; R]. Replacing A by bs means A =
{@(X) : o atomic or negation of atomic formula }, here bs stands for basic. We
may write ¢ instead {¢} and A will be always finite.

(4) Sy(A, M) = {tps(b, A, M) : b C M andlg(h) = m }.

REMARK.

(1) Note that 4o(R) < 4j(R) < |Dom(R)|.

(2) Note that if an equivalence relation E on a subset of % contains an equiv-
alence class of cardinality & > |#|/2 or exactly k > |%|/2 singleton classes or
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ON QUANTIFICATION WITH A FINITE UNIVERSE 1065

k = |Dom(E)| > |#|/2, then 1{(R) = A(R) = |%#| — k < |#|/2. Otherwise,
Ao(R) > |% /2 and Ao(R) = |%]/2.
The main result of this section is:
THEOREM 2.2.
(1) Q;E??z) <int Ir; we mean, of course, uniformly.
(2) There is a relation Ry on % with n(Ry) = n(R) and, |Dom(R,)| < A{(R) +n
such that 3g =ipy {3r,. Q), } In fact, 3p =1_jny IR mod Qmon
The proof is broken into some claims.
CrAamM 2.3. Let R be an n-place relation on % such that n > 1. We can find a set
A, sequences a; and elements b;, c; for i < i*, where
Ao(R)
i* > 0
~ n(R)(n(R) - 1)

or
s 1=n(R)
n(R)(n(R) — 1)
such that:
(a) a; is with no repetition and is C A

(b) bi,ci ¢ A,

(¢) ((bi,c;) i <i*)iswithnorepetition,i.e.,i # j=>b; # b;&c; # ¢;&b; # ¢;

(d) tpys(@i~(bi), 0, R) # tpys(a;: ™ {c;). 0, R), that is for some atomic formula o we

have (7/, R) ’2 (,D(di,bi) = —up(c'z,, C,').
PrROOE. We try to choose by induction on 7, (Aé : £ < n(R)), (a; b c;)and
£(i) < n(R) such that:

(i) £<k<n(R ):A’nAzzq)

(i) 4, C 4}, and 4) =0

(iti) @~ (b:)"{c;) is with no repetition and has length < n(R) + 1

(iv) tpys(@ ~(b:),0.R) # tpp(ai™(c -) 0, R), that is for some atomic formula

©(%, y) (so gotten from R(xo, ..., x,(r)_;) by substitution) we have
w(df,bf) = (@, c;)

e g U{4) 1 £<n(R)}

(i)=Min{£:a,NA4,=0}

A_(‘;I = i U{b,-,c,-}

(viii) A5t is A’ U {Rang(a;) ~ U,,
(ix) A’[‘l A’ in the other cases.
So for some i = i(*) we cannot continue; we claim that 4 =: | J, 4} has cardinality
> (R) or > /] - n(R). ]

Why? Otherwise by the definition of 1)(R) there are sequences b, ¢ from % of
length n(R) such that b ~, ¢ butb € R = ¢ ¢ R. Hence we can find sequences b,
&' from % of the same length < n(R), each with no repetitions such that b~y &
but for some ¢ = R(X) = R(xiy, iy, ..., x5, 1), 1g(%) = 1g(b’) = 1g(¢") we have
(b)) & —p(¢'). Now we can find k and dy, . . ., dy such that: dy = b’, d = &, and

(v) b
(vi

(vii

Z Lo

AL Vif (€ =08& (1) > 0) vV (£ =1&¢£(i) = 0)
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1066 SAHARON SHELAH

dy is with no repetitions, £ < k= d;, ~, d_e+1 and £ < k= (F'i)dy; # dps1s;
here we use the assumption toward contradiction |4| < |#]| — n.

So for some £ < k we have ¢ (dy) & ~¢(dys1). Now let r be such that dy, # dpy1 .,
so without loss of generality r = Ig(%) — 1, let g;(,) = = dy, [(g(by) — 1), biy) =
dyy, ci(x) = dpy1,. Clearly they are as required in clause (iii)+(iv), now £(i (x)) is well
defined by clause (vi) as | Rang(a;)| < n(R) — 1, so | Rang(a;) N (U, 45)] < n(R).
Now we can define A’(* "1 for ¢ < n(R) by clauses (vii), (viii) and (ix). Trivially,
clauses (i) and (ii) hold and we get a contradiction to the choice of i (*). So really
4] = 2 (R) or |4] > [%| - n(R).

Now note that |UEAQ(*)| < (n(R) + 1) x i(x), by clauses (vii), (viii), (ix) so
i(x) > U, Ai,(*)|/(n(R) + 1) and for some £ we have

{i<i(x):L(i)=2} 2>

Soif 4H(R) < |%| — n(R) we get

i<i(x):e() =2} =~

If 2)(R) > |%| — n(R) we get

%] — n(R)
n(R)(n(R) +1)°

So renaming we are done. -

{i<i(x): (i) =2} >

CrAM 2.4. Thereis a formula p* = p*(x, y; R), infirst order logic, of course, such
that:

(*) i (R is an n(R)-place relation on % and) 2y(R) < 3|%|, then ¢*
exemplifies Qyr) <int Qr even Qyr) <iint Qr; specifically, for
some d we have {a : (% ,R) |= ¢*(a,d, R) } has Ao(R) members.

Proor. Without loss of generality |%|/3 > n(R)* + n(R).

Let A C % be a set of power j(R) such that b ~4 ¢ implies R[b] = R[¢]. As
|% | — 2)(R) is largg enough, we can find pairwise distinct d; € % \ 4 for i < n(R)?.
Defined = (d; : i < n(R)?) and ¢*(x,d,R) = \/{3o,..., Vk—1) [the elements
Y0s - +» Yk—1, X are pairwise distinct and for any m if the elements yo, ..., yi—_1,
d,,, x are pairwise distinct and o (x, yo,..., yk—1) = =@ (dm, Yo, -+ s Vi_1)] : @ =
©(z0, ..., 2k, R) is an atomic formula in L(R) (so k + 1 < n(R)) and m < n(R)?,
so m, k are natural numbers }. By the choice of 4 we have x ¢ 4 = —p*(x, d, R),
hence B =: {x € % : % = ¢*[x,d,R]} is a subset of 4. Clearly Of" <int 3R

(uniformly); hence it suffices to prove | B| = A{(R) which follows if we show
(x)  if b 2 ¢ then R[b] = R[¢].
For this it suffices to prove

(%) if (%, R) € L(R) is atomic, b, ¢ are sequences of length Ig(%) <
n(R) without repetition then b 5 ¢ implies ¢ (b, R) = ¢ (¢, R).
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ON QUANTIFICATION WITH A FINITE UNIVERSE 1067

To prove (x*), by reordering the sequences we let 5y, b~ ¢ be sequences from %,
without repetition, b C B, &, disjoint to B; by the transitivity of =, without
loss of generality ¢, is disjoint to d. Now forsome i, (d;,d;;1,...,di x—1) (Where
k = £(&p)) is disjoint to & (and obviously to ¢;).

Now we shall prove that for every atomic (%, j, R), £g(x) =k, 1g(7) = 1g(b)
we have = (¢, b, R) = p((d;, ..., d;ix_1), b, R) thus finishing. For this we define
¢o.m(m < k) such that each &, is with no repetitions, disjoint to B Uband ¢, = &,
Cop = {di, ..., d;i k1), Coms1,> Com are distinct in one place only. By the definition
of B (and ¢) for every atomic ¢ (%, 7, R) we have = ¢(¢pm, b, R) = ©(Gomi1, b, R)
so we finish easily. (Being more careful, e.g., |%|/9 > n(R) suffices.) -

ReMARK. Note that definition of Ay applies to any relation, in particular, the
relation being defined by a formula so we may freely speak at Ao(y) or Ao(w(X)).

Cram 2.5. Q29" p) <int Or-

PrOOF. We can 1gn0re the cases Ao(R) = 0 (using some ¢y, built from equality
only), hence we can assume QY <;,;, Qr, so we can use Q individual constants
(see 1.3 (6)). If we can replace in R some variables by constants or other variables
having at least one equality getting a relation R’ such that

JalR) 2 Min{ja(R). s}

we do it: or in other words we are inducting on n(R) > 1.

Casel. n(R) = 1.

So R is unary; now note that each of the sets 4 = R, 4" = % ~ R can serve in
the definition of A{(R), hence

J(R) < Min{|4], |4’} = Min{R, |% ~ R|} < @

so we are clearly done.

Case2. n(R) > 1.

If 2(R) < 2 %|1%| we can interpret Q25 (r) by 2.4, asit suffices to show that at least

one of several ¢’s interpret. So assume /10( ) > 3|%|. Hence 4o(R) = |#|/2 and
we shall prove that we can interpret Qm‘)n , for this it is enough if we can show that
we can interpret Zagzuzr’ oy For this is enough to find first order 6y(x,, y1, R),
., 6;(%x, 7%, R) with the k and 6, depending only on n(R) and not on |%| such
that Ig(%;) < n(R) and for some £ € {1,...,k} and b € '€0)% we have
%]
22
For any £ < k < n(R) we can consider the formula

< 26(6,(=. b, R)).

Rg,k(xO, e ,x,,(R)_l) = R(XO, e vxn(R)—l) &Xg = Xk
and

R*=R(xp,...,xp_1) & /\xe # Xi.
o<k
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Easily
W(R) < 2R+ >~ Jo(Rex).
£<k<n(R)
Now if for some ¢ < k,
%]

Ao(Rex) > 3n(R)(n(R — 1))

we are done by the induction hypothesis. So we can assume
%|
j,l R* > |
o(R) 2 3n(R)(n(R) — 1)

hence by the above (i.e., using 2.4) without loss of generality 1j(R*) > %|7/ |, so we
can assume

(*¥)o R =R".
So atomic formulas not equivalent to a fix truth value except equality are just
R(....x,(p)...) for o € Per(n(R)).

Let 4, a;, b;, ¢; fori < j* = (|%| — n(R))/(n(R)(n(R) — 1)) be as guaranteed
by 2.3. For some atomic ¢ = (%, y) = (%, y, R) we have

12 (@ b) Apl@e) ) 2 s,
by (*)o. Without loss of generality this occurs for i < j*/n(R). Fori < j* let F; be
the permutation of %, interchanging b, c; for j < i and being the identity otherwise.
LetRi = Fi/I(R)s Wi = V/I(i>y) = l//(i:y: R>Ri) = [(p(i:y» R)&—“P()E,ya Rl)] SO
(%) wila bi) &-wy;(a,c) ifi<j.

So by the definition of A{(—) we have A)(y;) > j for j < j*/n(R), where we
consider y; as a (1g(x) + 1)-place relation.

[Why? If 4 C |#|, |A| < j exemplifies the failure of this assertion (by the
definition of A{(R)) then w =: {i < j : AN {b;,¢;} # 0} has < |4| members, so
choosei € j\w,now¥ = w,(a; bi,c;) &~y ;(a;, c;, b;), (holds by (x)) contradict
the choice of 4.]

So if

A4 2
V|5 <) < S
J

we are done; hence assume not.
If for every j we have A4(y;) < 1|%|, then we get

%~ n(R) 1. "
= < - < =1
[n(R)z(n(R) -1) n(R)| = oW+ pm(r) < 3
so we easily finish by 2.4.

Also Ay(wo) = 40) = 0as Ry R so % |= ¢(x,y,R) = ¢(%,y,Ro)
hence = -wo(X,y, R, Ry). Without loss of generality ¢ is R. So the bad
case is that for some j we have Ag(y;) < 11%| and Aj(w;1) > 3|%|. Let
B* C % exemplify j(y;).< }|%|. Let for £ < n(R), 6y(xo,....X,r)-2. . R) =
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R(x0,.... X1, 9. %, ..., Xp(r)—2) @and on 6y (( x,, : m < n(R) — 1), ¢;; R;) we ap-
ply our induction hypothesis as its arity is Ig(¥) which is at most n(R) — 1 (see the
beginning of the proof) hence .
1
20(0e({ xy :m <n(R)—1),¢;,R)) < IR |% |

and let B, C % exemplify it. Similarly let B, C % exemplify

1

}.6(05(()(,;1 m< n(R) — 1>,b/,R)) S m
Let
B=B"U (J B.U | Biu{bj.c;}.
2<n(R) ¢<n(R)

Now B is a subset of % with < (2 + 1)|%| + 2 < 3|#| elements. By the definition

of w;, ;41 and (x)o such B exemplifies Ay (1) < 3|#|, contradiction. =
We have implicitly used:
Cramm 2.6. If R is a Boolean combination of Ry, ..., R, then
W(R) < 3 7(R)
4<n
hence
o(R) < 20(Ry).
i<n

Proor. If 4, witnesses the value Ay(R;) then 4 = |J,, A¢ witnesses

H(R) < 4] < 3|4l
i<k

Now we turn to 2.2
ProoF OF 2.2(1). Immediate by 2.4, 2.5. -
PrOOF OF 2.2(2). Let d; (for i < n(R)) be distinct elements of % . 4 where 4
exemplifies A((R) as if 4j(R) + n > |%| then we can choose R; = R. Of course,
we can concentrate on the case n(R) > 1. Let R = R[(4 U {d; : i <n(R)}. So
(ai,...,a,) € Rif and only if for some (aj,...,a,) € R; we have (ay,...,a,) =4
(aj,...,a,) and \,fa; ¢ A4 — \/,,[a; = dn]], so we can define R, from R and
R from R; by a quantifier free formula using the unary relation 4 and individual

constants do, di, ..., dy(g)—1. Hence I <i.ine Ip, mod QT but A5(R) < 249(R)
0}
$0 3r <t Ir, mod QP03 .
Also easily {3g,, Q0% } <1—int 3r. n

We can get the parallel result for Qg .

DEerFINITION 2.7. Let 49(K) = Min{ 1 : R € K =>Ao(R) < 4}, note that the
minimum is taken for each % € 4l separately.

THEOREM 2.8.
(1) 22:(1() Sint EIK-

(2) Thereis K, n(K;) = n(K) such that
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() 3x =i {3x Q") }
(b) R € K=|Dom(K)| < 19(K)
(C) Ik =teint EIKl mod Qil;u)(:](Ky

ProoOF. Immediate by the uniformity of our results. -

Discussion 2.9. The interpretation here uses first order formulas of low com-
plexity but use several copies of R. We may wonder if we can just use one copy of
R by complicating the formula. Now if R is a connected graph every node having a
valency < m < |# |, we see that not. But we can prove that the general situation in
the problematic case is not far from this (similar to a model of a strongly minimal
theory, a local version). Also in general 2 copies of R suffice.

§3. The one-to-one function analysis. The aim of this section is similar to the
previous one, going one step further, i.e., we want to analyze Jg, interpreting in it
Q!"! for a maximal 4, hoping that “the remainder” has domain < 1.

DerINITION 3.1. Let 4;(R) be
Max{|{tpy,(a. 4, R) :a €% N A} ACU}.
(On tpy, see 2.1(3)).

FAcT32. 41(R) < Z(R) + 1 and if equality holds then 2, (R) < 22"

PROOF. Straight, assume A, exemplifies A)(R) and let 4 C %. Then a, b €
(% ~ A) \ Ao = tpys(a, 4, R) = tpy,(b, 4, R) by the choice of 4, hence

{tpps(@, A, R):a €U~ A} <|do~A|+ 1< |4o] +1=4(R) + 1.

Next assume that equality holds, so necessarily |4 \ 4| = |4o| hence 4 N Ay = §;
now choose 4’ C 4 with Min{n(R) — 1, |4|} elements. By the choice of 4, if b,
c €% \ Athen

tpps (b, 4, R) = tpp,(c, 4, R) <= tpy (b, A', R) = tpy,(c, 4, R).

[Why? = holds as 4" C A; next we shall prove = . This suffices so assume
tpps(b, A', R) = tpy,(c, 4, R). So let ¢(x, 7, R) be an atomic formula (i.e., a
substitution in R(xo, ..., X,(g)—,). s01g(7) + 1 < n(R)) and let @, be a sequence of
length 1g(7) from 4, we shall show that (b, a1, R) = ¢(c, a1, R), this suffices. If
|4| < n(R), then A’ = A4 and we are done, so assume |A4| > n(R).

We can find a sequence a, from A’ which realizes the same equality type as
a, (because lg(a;) = lg(7) < n(R) — 1 = |A'|). Now by our assumption
@(b,ay, R) = p(c,dr, R) (that is as tpy,(b, A’, R) = tpy,(c, 4", R)), so to get our
desired ¢ (b, a;, R) = ¢(c,ay, R) it suffices to prove ¢ (b, @, R) = ¢(b, a,, R) and
@(c,ar, R) = ¢(c, a, R). But on both b and ¢ we just assume they are in % \ 4,
so by symmetry it is enough to show ¢ (b, a;, R) = ¢(b,a, R). Now as d,, a, are
included in 4 and have the same equality type (over the @), by the choice of 4y and
as Ag N A = () necessarily a;, a, realizes the same equality type over Z \ 4, so as
b €% ~ Awehave p(b,a;, R) = ¢(b,a, R).]

Hence A1 (R) < |{tpy(b, 4", R) : b € % }| < 2I® where @ is the set of atomic
formulas ¢(x,a) such that @ C A’, clearly |®| < n(R) x (n(R) — 1)"R-1 <
2n(RY, .
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Cram 3.3. Q}L;%R) <int dr; of course uniformly.

PRrROOFE. Suppose /4 is a one-to-one, one place partial function from # to % with
A = |Dom(h)| < A41(R) and 4 < |#]|/(n(R) + 1) (we use freely 1.4). Let 4 C %
be such that {tp,,(a, 4, R) : a € % ~ A} has cardinality 4,(R). So we can find
a; € % ~ A (for i < A) such that tpy(a;, 4, R) are pairwise distinct. Retaining
the last sentence (by not necessarily the original demand on 4) without loss of
generality |4| < |%|— A — A.

[Why? Just for eachi =1,..., 4 —1choosed; C A4 of length < n(R) such
that (tpy,(a;, U,_, dy) : j < i) is with no repetitions so without loss of generality
|4] < (n(R) — 1) x 4 and compute.] Let & = {(b;, ¢;) : i < A}, without loss of
generality b;, ¢; ¢ A (just permute R, i.e., using an isomorphic R’) and we can
find F|, F, permutation of % which are the identity on 4 such that Fi(a;) = b;,
Fy(a;) = ¢i. Let R = Fi(R) and R, = F»(R) and define the monadic relations
Py=A, Py={b;:i< A}, Pp={c;:i< 2} (all of cardinality < Ao(R)). Let
o (x, y, Py, P1, Py, Ry, Ry) “say” that for every atomic y(x, Z, R) € L(R) and 7 € Py
we have: ¢(x,7, R|) = ¢(y,f, Ry) and Pi(x), P,(y). Clearly ¢ defines A. =

LemMaA 3.4. Assume A1 (R) x n(R)?> + n(R) < |%|. For any set A C %, let E4
be the following equivalence relation on % tpy,(a, A, R) = tp, (b, 4, R). For any
ACY and C = (Cy: €< k) suchthat Co C % let E,  be the following equivalent
relationon?%: a E, s bifandonlyifa E;b& \,a € C, =b € C,. There are a set
A C U and sequence C = (Cp: € < n(R)—2) with C, C % pairwise such that
(A) 4] < n(R) x 21(R) o
(B) if b=y ¢andb; E, & c; for all i < 1g(b) then R(b) = R(C)

(C) E4 has at most |A| + A1 (R) classes
(D) each C; has at most A,(R) elements and | J, C, C {b : |b/E4| < n(R)}.
Proor. We try by induction on i to choose ( 4} : £ < n(R)) such that
(i) 4, c%
(i) <k <n(R)=A,NA, =10
(iii) |44 <i
(V) Cianiry { tPos(B: Up e 4p) : b € A }| is at least i
(v) j<i=4)C 4
Now fori = 0let 4, = 0.

We necessarily are stuck for some i = i(x) < 4;(R) x n(R); i.e., 4] are defined
for j < i(x) but we cannot choose <A2(*)Jrl : £ < n(R)), otherwise by clause (iv) for
some k the set { tp, (b, Uy 4}) : b € 4}, } hasatleast i/n(R) elements which is (by
the assumption toward contradiction) > 4;(R), but now 4 = | J, " A} contradicts
the definition of 4;(R) as 4}, N 4 = 0 by clause (ii). Let 4 = Uy, p) A,
For ¢ < n(R) — 2, choose C, as a set of representatives for {a/E4 : a/E4 has
< n(R) but at least 2 + £ elements }, such that C, is disjoint to |J,,., C» and
we shall show that 4, C is as required. Now clause (A) holds by clause (iii)
and the choice of 4 (and the bound above on i(x)). Toward proving clause (B)
assume b 2y ¢ and by E,ccoforl < lg(h). Without loss of generality 5 has
no repetitions. Note if b, # ¢, then by, ¢, ¢ A4 (as b ~, c)and by E4 c; (see
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1072 SAHARON SHELAH

definition of E, ), but by the choice of the C;’s, by/E4 = c;/E, has > n(R)
elements, so there is d € by/E4 ~ { b : k < lg(b) }. Hence by transitivity of all
the relevant conditions without loss of generality for some k() < lg(b) we have
o F G & /\m# (s bm = ¢ hence by(,), () ¢ A. For some ¢ < n(R) we
have {by :m < lg( ).m # k(x)} is disjoint to A’(*). We can find a function
o from {0,...,1g(h) — 1} to {0,...,n(R) — 1} such that o(k) = t = k = k(x),
b € A;(*>=>a( ) = £ and £, 7é L& by ¢ A&by ¢ A=>0(l)) # olby).
For s € {1,2} and r < n(R ) let B = Ay {by :a(€) =t} if r # k(x) and
B! = 4% U{bk )}, B = U {ck(s) } if r = k(). For each s € {1,2} we ask,
choosmg( I+ < n(R)) s(B; : r < n(R) ) which of the demands hold. Now
B! extends A,.( *) (so clause (v) holds), is a subset of % with < |Ai *)l +1<i(x)+1
element (by the choice of o), so clauses (i) + (iii) holdsand r| # r, = B} NB;, =0
(again look at the choice of &) so clause (ii) holds. So necessarily clause (iv) fails.
Forr < n(R) let E, be the following equivalence relation on Af.(*): a' E, a" if and
only if @', a” € A and tp,,(a’ Unoir A R) = tpbs(a”,U,,,#,.Af,(,*),R). For
s € {1,2}, k < n(R) let E} be the following equivalence relation on B: a’ E, a”
if and only if a’, a” € B} and tpy(a’,U, ., B> R) = tpps(@”, U, .. Biys R).
Now by the definition of E, clearly

{tpbs UAm ’ aEAI( }‘ lAI /E|

m#r

hence as (Af.(*) :r < n(R)) satisfies (i)-(iv) we know that

()1 i) < > 4/E.
r<n(R)
Also
H tpps(a, U B).R):ac¢€ B,'."H = |B}/E}|
m=#r
hence as ( B! : k < n(R) ) fail condition (iv) (see above) we have
(%)2 i(x)+1> > |B/El.
r<n(R)
Now for each r < n(R), clearly E} [Af.(*) is an equivalence relation refining E,,
hence
(*)3 | 4] /E,| < |4, /E}| < |B}/E}|.
The three together gives
(*)a |4/ /E,| = |4l /E}| = |B} | E}|
hence
()s E, = E} 14}
()6 ifd € B ~ A'™) thei for some d’ € 4! we have d Ej d'.
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Apply (x)s to r = t choosing d; = by, 1fs = 1 and choosing d; = ¢;(,) if s = 2 s0
ds; € B A ) hence there is d] e A *) such that dy Ef d! so

tpbs( 5 U B, )ztpbs( U > )

m#t mr#t
hence
tpbs( 52 U Al,n*)’ R) = tpbs <dl U Am ’ )
m#t m#t
But
P (dl’ U A;,(,*), R) = Py <bk U A;n*)> R)
m#t m#t
= tpbs( U A;n )’ R)
m##t
= tPps <d2, U Ai(*), R)
m#t

(second equality as by(,) E 1 cy(.) by the choice of b, ).
So together with the previous sentences

tpbs <d15 U Am ’ ) tpbs <d25 U A:n )’R>
m#t m#t
that is d] E, d} (recall d], dj € Ai*). So by (x)s we have d| E} djfors =1, 2.
Clearly m < n(R) & m # t => B}, = B2 hence Um ” B.=U, ” B2 and let E; be
the following equivalence relation on%: a' Ef a” if and only if

tpbs( U Bm’ ) :tpbs< . U Bm’ )

m#t mt
Clearly E; = E|B;, hence d| E; d| (by the choice of d{), d| E; dj (see the two
previous sentences) and dj E; d, (by the choice of d;). Together as di = by(,),
dy = cy(+) We have by(,) E[ ¢ (,; but

{coi#£k(x)}={b:L£k(x)}C B,
m#t
(by the choice of &) so
tPps (bre(s)s { o 1 € # k(%) }, R) = tpyg(cruy, { ce 1 £ # k(x) }, R)
a contradiction to the choice of b, é.

So 4 = U,<ur) Ai™ satisfies clause (B) of 3.4. Note that E; has < |4 + 4;(R)
equivalence classes by the definition of 4;(R), so 4 satisfies clause (C), and C
satisfies clause (D) so is really as required. -

CoNcLusioN 3.5. Letting 4, = 4,(R) we have 3y is bi-interpretable with {QF",

0}, 3g,. 3¢}, where | Dom(R;)| < n(R)4;(R) and E is an equivalence relation on
% . This is done uniformly (i.e., the formulas depend on n(R) only).
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1074 SAHARON SHELAH
REMARK. Note that Q7'°" can be omitted being swallowed by 3.

Proor. We’ve shown Q/ (R) <int Jr (see 3.3). Let 4, C be as in Lemma 3.4,

choose A1 such that 4' N4 = 0, |4'| < n(R)A;(R) and 4 U 4! includes >
Min{n(R), |a/E 4|} elements of each E 4 equivalence class a/E 4. Lastly let R,
RI(AU AY),

Now by the choice of 4 and C clearly R(x, ..., S,()) if and only if

(Fyi)... (3yn(R))< N xEen& N xi=x=p=y &RI(J-’)>~
1<i<n(R) ij=l...n(R)
S0 3r <int {@};". 3R> 3k, .} Now 3, <ine {3z, Q°"} by the definition of R,
.. < {In, QM) directly and QI < Jx by 3.3 and QI < Q1. So
{Q,ll[l’ Or°", 3r,, 3k, } <int {3z, Q™" Ao} and we finish. 5

REMARK 3.6. Note that Qllbl om(y)| 18 uniformly interpretable (for fixed #(R)) in
j;l including the case A, is finite, so 3.5 holds for it too.

CramM 3.7. If |%| > A1 > 2%, R a k-place relation on A C % and |A| < A (and %
finite) then Qr <exp Q).
Proor. By 1.12. .

CoNcLusioN 3.8. If R is an n(R)-place relation on % and 4, (R)"®R) < |%/, then
for some equivalence relation £ we have

{Qe M(R } <mt QR <exp {Q )1(R )iR) }

PrOOF. We have by 3.3 that Q1! R S Jg. By 3.7 for every binary relation S on
% with domain of cardinality < \/_ we have 35 < Q" x)- So every relation on %

1/2n(R)

with domain of cardinality < |# | is interpreted in Jg. =

REMARK 3.9. So up to expressability and up to a power by #(R) (and possibly
increasing % ), we have that { O}, H x)} exhaust all the information on Qg (up to
interpretability).

We can get the parallel result for Q.

DEFINITION 3.10. A4;(K) = { 4 : for every R € K we have 4;(R) < A}. Note that
the maximum is taken for each  separately.

CoNcLUSION 3.11.

(1) l</1|(K) >int E’1(-
(2) There are K| and E, a family of equivalence relations (for each Z € 4, closed
under permutations of %) such that:
(a) Jx =int {E’KI,QL-;EI(Ky Ok}
(b) for any R € K| we have | Dom(R)| < n(R)? x u(K) where u(K) =
Min{u : R € K= |Dom(R)| < u} the minimum taken for each
% € i separately.

PRrROOF. Straight by uniformity. -
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