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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 65, Number 3, Sept. 2000 

ON QUANTIFICATION WITH A FINITE UNIVERSE 

SAHARON SHELAH 

Abstract. We consider a finite universe Z/ (more exactly-a family it of them), second order quantifiers 

QK, where for each Z1 this means quantifying over a family of n (K)-place relations closed under permuting 

W. We define some natural orders and shed some light on the classification problem of those quantifiers. 

Annotated content. 

?0. Introduction. [We explain our problem: classifying second order quantifiers for 
finite model theory. We review relevant works, mainly, the work done on infinite 
ones. We then define the basic order relations on such quantifiers interpretability 
and expressability. We also explain why they are reasonable: as for definable 
quantifiers, those give the desired recursiveness result.] 

?1. On some specific quantifiers. [We define the quantifier we shall use: monadic, 
partial one-to-one functions, equivalence relations and linear order. All have ver- 
sions with a cardinality restriction (say cardinality of the domain of a one-to-one 
function), which depends on X, the universe, only. For example Qmn is the quan- 
tifier over sets of cardinality < i, QA is the quantifier over unary one-to-one 
functions with domain of cardinality < A, and Qeq the quantifier over equivalence 
relations. We shall investigate the natural partial orders on them (by the so-called 
interpretability and expressibility).] 

?2. Monadic analyses of 3R. [Concentrating first on 3R, quantifying on the isomor- 
phic copies of one n (R)-place relation R, we try to analyze its "monadic content". 
We essentially characterize the maximal cardinality of a set interpreted by cases of 
R by a first order formula (actually of low quantifier depth) as AO (R) and show that 
using such a set we can reduce R to RI which has domain of cardinality Ao (R). So 
up to bi-interpretability, QR and {QRI, Q<O(,R)} are equivalent. Now when Ao(R) 
is too near to the cardinality of the universe X, we have to be more careful but we 
interpret the (full) monadic quantifier (with no cardinality restriction). Lastly, we 
do the same for QK.] 

?3. The one-to-one function analysis. [We define a cardinal Al (R) which essentially 
characterizes the maximal cardinality of the domain of a one-to-one function inter- 
pretable by cases of R. It is called Al (R) and we can find a set A C ? such that the 
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1056 SAHARON SHELAH 

order of magnitude of its cardinality is Ai (R) (here a constant multiple), and show 
that QR is equivalent by bi-interpretability to { QR QEq } where E is an equivalence 
relation with not too many equivalence classes and RI has domain of cardinality 

V AI (R). Of course, QK is analyzed similarly. Now, unlike the infinite case, up to 
bi-expressability Q`V is maximal in the sense that if R, has domain < AI/n (R) then 
it is expressible by Q21. Hence, under bi-expressibility and up to polynomial order 
of magnitude we have a complete classification. Of course, on top of Q'R) we have 
the equivalence relation, which is understood.] 

?0. Introduction. We investigate and classify to a large extent quantifiers in the 
following framework 

(*) for a natural number n, for a (large) finite set X1, consider a quantifier 
QK on n-place relations on X1, so K is a family of n-place relations 
on 1 close under isomorphism (i.e., permutation of &f). 

It is natural to restrict ourselves to such families defined by the logic we have in 
mind (usually first order), but it seems natural to investigate two partial orders, 
interpretability and expressibility defined below, which for such definable classes 
give the right answer so the use of definability occurs only in the conclusion. 

Earlier this was investigated for infinite A/, see (below and) in [5], [1], [6], but 
though related, there are some differences. A related work is [2] which deals mainly 
with monadic logic on the class of models of a first order theory T, so its compli- 
catedness measures the complexity of T. We have said on some occasions during 
this decade that those are adaptable to finite model theory. Here we deal with this 
and shall continue in [4]. 

In [5] we gave a complete classification of the class of second order quantifiers: 
those which are first-order definable (see below an exact definition). We find that for 
infinite models up to a very strong notion of equivalence, bi-interpretability, there 
are only four such quantifiers: first order, monadic, one-to-one partial functions 
and second-order. See Baldwin [1]. 

Now ?1-?3 of the present work are parallel to ?1, ?2, ?3 of [6], so below we 
describe the latter and then explain what we shall do here. In [6] our aim was to see 
what occurs if we remove the restriction that the quantifier is first-order definable. 
As we do not want to replace this by a specific S-definable (Y?-some logic) we 
restricted ourselves in [6] to a fixed infinite universe W. If we then want to restrict 
ourselves to 2-definable quantifiers, we are able to remove the restriction to a fixed 
universe W. 

The strategy in [6] is to squeeze the quantifier QR (QR is QKR where KR is 
the closure of {R} under permutations of A; similarly for QK) between some 
well understood quantifiers to get, eventually, equality Unfortunately, for inter- 
pretability we get a lower bound and an upper bound which are close but not 
necessarily equal; i.e., both of the form QE, where E is a set of equivalence re- 
lations and they are quite close (see below). More specifically we use cases of 
Qeq (i.e., of equivalence relations with A classes each of cardinality < lu). Car- 
rying out the strategy we first "find" the monadic content of, say, QR. by in- 
terpreting in it Q""' which is quantifying on sets of cardinality < 20(R) and 
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ON QUANTIFICATION WITH A FINITE UNIVERSE 1057 

Ao(R) is maximal and reduce the problem to "the remainder", that is a rela- 
tion RI with Dom(R1) of cardinality < Ao(R) and QR, ?<int QR. Next inter- 
pret QUR) which is quantifying on partial one-to-one functions of cardinality 
< A, (R). Now we succeed to squeeze QR, for "the remainder" between Q e' and 

Q/1,4, A < /u < Min{22, I/ I } but in general cannot show this with A - u. Clearly if 
I? I is No, this does not occur and we can get a complete picture (see below 0.2). Also 
by "expressibility" (a stronger equivalence relation but okay for the application to 
logic) if V = L, then the gap does not occur, but in some generic extensions it 
does. 

So by [6] we can, e.g., conclude 

THEOREM 0.1. Assume K is a family of n-place relations over ? where 1 I = No. 
Then QK is bi-interpretable (see below) with QE for some family E of equivalence 
relations. 

We can make this more specific (as the situation for such E's is understood; see 
there). 

The present situation is more complicated. For example, the finite cardinalities 
allow a family of monadic quantifiers: for the case I& I = n we have Qi2n nl Qln in n, 

etc. However, modulo these cardinality restrictions we are able to get a picture 
analogous to the original case. Also in the fine analysis we do not get an equivalence 
relation E on ? such that QR, QE are bi-interpretable or even just bi-expressible, 
but just "squeeze" QR between two such quantifiers, which are quite closed (i.e., 
size of one bounded by polynomial in the size of another). That is (concentrating 
on the case ? is fixed (and finite)): assume R is an n-place relation on ? then we 
can uniformly attach it to a cardinal Al (R), and an equivalence relation E such 
that: 

(c) Qn Q2l (R) are interpretable in QR (those are quantifiers over equivalence 
relations isomorphic to E and partial 1 - 1-functions of cardinality < Al (R)) 

(i) if = Al (R)1n(R) < I/ then QR is expressible by (QeqV QIV,) 
(y) if AI (R)n(R) > I 1, then any binary relation on a set A C ? with cardinality 

< JAI 1/2'(R) is interpretable in QR. 

The uniformly means that the formulas involved in interpretability or expressibility 
does not depend on R and ? but on n, in fact we can give explicit bounds on their 
size from n. 

Note that we abuse notation using R as a relation and predicate; of course, the 
formulas have an n-place predicate to stand for copies of R (see below). 

Note we actually deal also with quantifying on appropriate families of R's of fix 
arity (e.g., those satisfying some sentence). Note that we cannot get much better 
results by counting. 

We thank C. Steinhorn, J. Tyszkiewicz and J. Baldwin for helpful discussions 
on preliminary versions in MSRI 10/89, Dimacs 95/96 and Rutgers Fall 1997, 
respectively Much more is due to Baldwin, Fall 1998, for helping to greatly improve 
the presentation. 

Let us now make some conventions and definitions. 
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1058 SAHARON SHELAH 

CONVENTION 0.2. 

(1) Informally ? will be a fixed finite universe (usually large compared to n and, 
for simplicity, with > 1 elements) but, if not..said otherwise, we are proving things 
uniformly. So more exactly, ? varies on it, a family of such sets. You may choose 
it { (0, n): n a natural number > 1 }. 

(2) Informally, K will denote a family of n-place relations over X, (for a natural 
number n = n(K)), closed under isomorphism, i.e., if RI, R2 are n-place relations 
on ? and (W, R1) (W, R2) then R1 E K if and only if R2 E K. So formally K 
is a function with domain it and K[?1] is as above; but n(K) = n(K[?1]) for each 
? E it. Also below without saying in, e.g., Definition 0.5 the formula (0 is the same 
for all W e it. 

(3) Let K denote a finite sequence of such K's, that is 

K = K: t < lg(k) ), so kil = ( K-' t < lg(k-') ). 

(4) Let R denote a relation, its domain is Dom(R) =Ua :5 R(a) }, n = n(R) 
if R is an n-place relation (or predicate; we shall not always strictly distinguish). 
Usually R is on ? which is clear from the context. Formally, R is a function with 
domain it and R[W] is an n(R)-place relation on W. 

DEFINITION 0.3. For any K, 3K (or QK) denotes a second order quantifier, 
intended to vary on members of K. More exactly, L(3K, I ..., 3K7 .) is defined like 
first order logic but we have for each t = 1, m (infinitely many) variables R which 
serve as n (Ke)-place predicates, and we can form (3K, R) (o for a formula (o (when 
R is n(Ki)-place). Defining satisfaction, we look only at models with universe W, 
and l= (3KeR) p(R,...) ifandonlyifforsomeR0 e K4[W]wehave p(R0,...). 

We may display the predicates (or relations) appearing in (p, i.e., ( (x, y, 1?). Of 
course, we may write K not K[W], etc., abusing notation. 

REMARK. Note that quantifiers depending on parameters are not allowed, e.g., 
automorphisms; on such quantifiers see [3]. 

DEFINITION 0.4. We say that K (or QK) is Y-definable (where Y is a logic) if 
there is a formula (p(R) e 2, in the vocabulary {R} and is appropriate, i.e., an 
n (K)-place predicate, such that for any n-place relation R on ? 

(W, R) r= o(R) if and only if R e K. 

DEFINITION 0.5. 

(1) We say that 3KI <int 3K2 (in other words 3K, is interpretable in 3K2) if 
for some first-order1 formula (Pk(X, ) - Sok(XO.X..- -n x)(K>)- 1, SO - - - S. ,1) for 
k < k*, (each Se is an n(K2)-place predicate) the following holds: 

(*) for every ( e it and R1 e K1[1] there are k < k*, SO, ... 
Sn?11 e K2[?] such that (W,So., S1?-) - (VX) [RI(i) 
p(SO,o . . , Si-A)] 

(so in (*), p does not depend on W). 
(2) We say k-interpretable if we demand m < k, and then write <k-int. 

'We may demand k* = 1 (one formula) if we allow also elements of ?1 as parameters (the difference 
is minor but particularly with a family ?1 we need this (or have to use several possible so's)). As 1W 1 > 2. 
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ON QUANTIFICATION WITH A FINITE UNIVERSE 1059 

(3) We can define SKI < 
Ki 

or KI <int 3K) mod Y similarly, by letting 
Y E 2. Similarly for <?kint' Instead we may say modulo 2. 

We define a liberal relative of interpretability; we say 3KI is expressible by 3K) if 
in the notion of interpretable we take the formula (o to be in the logic L(3K2). This 
is then a special but very important case of Definition 0.5 (3). 

DEFINITION 0.6. 
(1) We say that 3KI <exp 3K2 (in other words 1KI is expressible by 3K0) if there 

are k* < co, formulas pk(X, SO. Sin- ) for k < k* in the logic L(3K0) such that: 

(*) for every ( E it and R1 E K1[1], there are k < k*, SO, ... 
Sin~ E K2[&] such that (WSo,..., Sn?_) 1= (V8) [RI(i) 
SO (pX, So, * * *, Sin-)] . 

(2) We say that 3KI indexx 3K2 (in other words 3K. is invariantly expressible by 
3K0) if there are k* < co, formulas pOk (X, So., Sin - ) in the logic L((3K) such 
that: 

(*) for every ( E it and R1 E KI[W], there are k < k*, So. 
Sm-I E K2[?] such that for every K3 which extends K2, letting ao' 
be SOk when we replace 3K, by 3K3 we have: 

(by SO, * * * , Sin - I) F- (8X5) [R I (X~) -_ f (xc So, S* * I el1] 

(3) We define k-expressible, <k-exp, invariantly k-expressible and <k-inex and may 
add Y as a superscript parallelly to 0.5 (2). 

DEFINITION 0.7. 
(1) We say that 3KI =int 3K2 (in other words 3KI, 3K2 are bi-interpretable) if 

KI <?int 3K2 and 3K) <int 3K. 

(2) We say 3K2- exp 3K2 (in other words 3KI 3K, are bi-expressible) if 3KI ?exp 

1K, and 3K, <exp 1KI Similarly for -illex: SK -nex 3K2 (in other words 3K2, 
are invariantly bi-expressible) if 3KI <?iex 3K2 and 3K2 <inex 3KI - 

(3) We can define 3KI <int {3Ko.. ., 3Kk- } as in Definition 0.5 but So, ... E 

Uk I Ki[?1], we let 3K stand for {3Ko. . .K .3 } where K = (Ko, Kk-l); we 
define k'I <?int 3k2 if KI <?int 3k2 for each t; we also define expressible, invariantly 
expressible, bi-interpretable and (invariantly) bi-expressible similarly. 

(4) Let 3K, =I-int 3K) (in other words 3KI, 3K2 are 1 -bi-interpretable) if 3KI < ?-inlt 

3K2 and 3K2 <?-int 3KI; recall <l-int is defined in 0.5 (2) for k = 1. Similarly 
KI -l-exp 3K2 and 3KI =I-inex 3K2. 

(5) In all those notions we add "modulo K" if parameters from U{ Ke: t < 
lg(K) } are allowed. We can combine this with 0.5 (3) so have modulo (K, Y). 

NOTATION 0.8. 
(1) If Re is an ne-place relation for t < n then we let 

n-I 

,Re {tgo - an7-I: 5e c Re}; 
e=o 

more formally (Ihen 
- 

Re ) (W ) = eo Re [W] 
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1060 SAHARON SHELAH 

(2) Let 
n-I )7-] 

EKe = Re E Ke fort < n 
e=o e=o 

(3) :R stands for 3K where K = { R1 : (W, R) )- (W. R) } and so formally if 
R = ( R[W]: W E )A) then KR is defined by KRWg] = RI R: (W. RI ) '_ (W. R) } 

LEMMA 0.9. 

(1) <?int, <inex and <exp as well as < I-ilt, <I-inex and <I-exp are partial quasi orders. 
Hence _-ilnt, inex, -exp are equivalence relations as well as -I-iit, =I-iinex and 
-I-exp - 

(2) 3K- <ilt 3k, implies 3K- <inex 3k, which implies 3K ?exp < SI. Similarlyfor the 
"1-" versions. Also each "1-" version implies the one without. 

(3) :- and :K are bi-interpretable if K >j9i Ki or K = Ui Ki (where n(Ki) 
constant in the second case) provided thatfor each i, there is a nonempty R E Ki 
(for each ( of course). 

(4) In all those cases we can do everything module Ko or modulo Y (if Y is a 
reasonable logic closed byfirst order operations) or module (Ko, A). 

PROOF. Straight. - 

LEMMA 0. 10. 

(1) If K1, K2 are 5-definable (i.e., each Kei is, see Definition 0.4) and 3KI <exp 3k, 
then we can recursively attach to everyformula in Y(3k,) an equivalentformula 
in Y(3RK2)- 

(2) If K1, K2 are 59-definable, 3I <?exp 3 - then the set of valid (3K )-sentences 
that is ?(3K1 O. 

3KLjg(k)- 
)-sentences, is recursive in the set of valid f(3 K9) 

sentences. 
PROOF. Easy. - 

REMARK. 

(1) The need of "5-definable" is clearly necessary. Though at first glance the 
conclusions of 0.10 may seem the natural definition of interpretable, I think reflec- 
tion will lead us to see it isn't. 

(2) Note that naturally we use 0.10 with 0.9. 
(3) Note that, of course, in 0.10, it is understood that the formulas from Y are 

the same for all ? c iA. 

?1. On some specific quantifiers. 

DEFINITION 1. 1. 

(0) Ktr = {A C W: JAI 1}, and we can write 3 for 3Ktr; here tr stands for 
trivial. 

(1) Let Killon { A C?/ A i } for a number A < I1 1/2; here mon stands 
for monadic. 

(2) But we write Q1'01' for 3KmOn, and similarly for the other quantifiers defined 
below. 

(3) K<- = { f : f is a partial one-to-one function, I Dom(f ) I = A } when A < 
I1/2. 
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ON QUANTIFICATION WITH A FINITE UNIVERSE 1061 

(4) K - { E: E is an equivalence relation on some A C X, with A equivalence 
classes, each of power pu }. 

(5) In (4) we can replace ",u" by "< lu" if each equivalence class has < ,u elements. 
Similarly replacing A by "< A". Similarly < i, < 1u. 

(6) K~7' UMo<il K,20"on and K'- = K,"1. Similarly with < A; here the "less 
than half" is not so important. 

(7) K0 K1 {A: A C W } and K1-1 = K1-I = {f: f is a partial 
one-to-one function }. 

(8) Kqq= { : E is an equivalence relation on some A C ? with A-equivalence 

classes } and K q<,= {E : E is an equivalence relation on some A C ? each 
equivalence class < pu } and Keq - K* { E: E is an equivalence relation on 
some A C ? } and lastly K q E : E an equivalence relation on A C X, 

AI <A.}. 

REMARK 1.2. More formally ), 1u, etc., are functions from iA to N which satisfy 
conditions such as A(g) < I& 1/2. We write I& 1/2 as shorthand for [?/2]. 

Claims 1.3 through 1.8 are established by similar arguments. To illustrate the 
technique we prove 1.3 (4). If (p (x, SO, SI) denotes "x E So V x E SI " then as SI, 
So range over subsets of 1 with I/ 1/4 < A < I& 1/2 clearly all sets of cardinality i', 
I/ 1/4 < ', < I? 1/2 are represented; all sets of cardinality < I/ 1/4 are represented 
by x E So & x e SI. (Note this depends on ISiI < I&1/2.) Finally sets with 
cardinality between I& 1/2 and Ie{ are represented by taking complements (or use 
the first). 

The choice I 1/2 and I 1/4 is arbitrary. But if I/ 7k for larger k were chosen, 
the union of two sets would have to be replaced by a union of more sets. A lower 
bound of the form I& I/k permits the uniform choice of the formula (p. 

CLAIM 1.3. Let ) < % < ?1&/2. Then, uniformly (the choice of the interpreting 
formula (p does not depend on W) we have: 

(0) QY"I" is 3R for some R. 

(1) Q inon int Qmol and Q ln <?int Qmo0* 
( )Qmon -. eq (2) Q<11> _int Ql.<P 

ni Qon-il = mon if A(&) < I& 1/4. 
(4) If I( /2 > A > I 1/4, then Qmol nint Qimn 
(5) More generally, for any constants a andb, if 1( /a > A > 1( /b, then Q I0T 0 it 

Qmon 

(6) If R is not definable by a quantifierfree type with equality only (for each W), 
then Qt' < 3R (we call such R nontrivial) even if we do not allow parameters in 
Definition 0.5 (1). 

PROOF. Straightforward. For (0) recall Notation 0.8 (3). For (2) recall Definition 
1.1 (4). - 

CLAIM 1.4. Let A < % be as in 1.3. 

(0) Qjj is 3R for some R. 
(1) f < I 1/2 the> Q )=jiit Q ; and Z < I |/2 Q. <int Q -z 
(2) Qmon <,ilt Q l , 
(3) If A > I& 1/4, then Q1-1--ltQ- 
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1062 SAHARON SHELAH 

(4) Q+1 in -1 if A < I& 1/4. 
(5) If R is a graph of a partial one-to-one function on ?, ) Min{ I Dom(R) 1, 

?I 1/2} then QR -int Ql2 

PROOF. Straightforward. 

CLAIM 1.5. Let ) < % andu < n. Then uniformly 

(0) Qgq1u is 3Rfor some R. 
(1) If Z < 1&1/2, 'K ? 1(1/2, then 

QA,, ?int QZK -int <Z,<_; 

(1A) Q<A .<, <_int Q<ZX< 

(2) If 1&1/4 < A < 1&1/2 then Q< _int Q*q*. 

(3) For equivalence relations E1, E2 on ?, natural sufficient condition for inter- 
pretability works. Similarly for families of equivalence relations. 

(4) 3K <int Qeq if (VR E K) [I Dom(R) n(R) < (- 1)2] and A < I 1/2. 

PROOF. Left to the reader. 

DEFINITION 1.6. 

(1 ) Qord = { R: R a linear order of a subset A of 1 of cardinality2A }. 
(2) Qord = U o2 Q~rd 

CLAIM 1.7. Uniformly 

(0) Qord has the form QR. 

( 1) Qmon <int Qj 
or 

(2) If u x K < A then Quq <?ijt Qord and Qeq <int Qord 

(3) Xu X K < Q < ?1-int Qord mod Q~fl andQ <1 -int Q~rd mod QW . 
(4) Qord <?1-iint Ql4 mod ?(Q'4 ) if A < ' < ?/. 

(5) Qrd <int Q if).2 < ?/ in fact, one Eo E Qeq one El e Qeq2 , and one 
P E Qmon suffice. 

PROOF. Straight. A 

CLAIM 1.8. Uniformly 

(1) QKI <int QK2 mod Q is equivalent to QK, < 1-int QK2 mod Q '. 
(2) Similarly for <?inex5 <?exp. 

DEFINITION 1.9. For any equivalence relation E on a set Dom(E) C ?/ we define 

(1) nu>k (E) is the number of equivalence classes of E with > k members. 
(2) uqk(E) = Max{ B: B C / and there areEo, . F..k l E QEV[] such that: 

b f c E B =* (3l < k) [(b e b =_ ce c) V (b e b & c Fe c & -ib Fe c)]}. 
(3) For x E ?/ - Dom(E) let x/E be ?/ - Dom(E). 

CLAIM 1.10. Uniformly 

(1) Qt1>(E) <int QE. 

(2) Qthe <iint QE - 

2 For the infinite case we demand otp (A, R) = A. 
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ON QUANTIFICATION WITH A FINITE UNIVERSE 1063 

PROOF. Let ?/ E at. 
(1) We can find a sequence ( ai : i < 2nu>2(E) ) with no repetitions, ai E ?/ 

such that for i < j we have 

ai E a= i + 1 & "i is even". 

Let Po {a2i : i}, P1 = { a2i+1: i i}. So Po(x) & PI (y) & x E y defines a partial 
one to one function with domain of cardinality 2 nu>2(E). We finish as we can 
interpret Qf'p (or see 2.2 (2)). 

(2) Easy, too. A 

DEFINITION 1.1 1. QarY is quantifying on n-place relation with domain of cardi- 
nality < ,u (21) . 

CLAIM 1.12. 
For n, lettingix (xo, Xn-1) there is aformula (p (x, i , Fn- 1) in monadic 

logic (Fe unary function symbol), such that: 

(*) for ?/ E at, A C /, and an n-place relation R on A we can find a 
model M = (S. FOM, . andpartial one-to-one functions FOM, 
...,FM 1 from / to , such that (x; FOM, .,FM) define R in M, 
where the monadic quantifier is being interpreted as Qm5"f, i > IRI 
provided that 

(0A IAln + IA?I < 2/ orjust IRI < 12/1. 

PROOF. Let { (aei : i < n) : j < IR I} list the n-tuples in R. Without loss of 
generality 12/ Al > IRI (otherwise (so IA I + I AI > 12/1) divide ?/ to k (large 
enough) parts so that the restriction of R to the union of n of them has fewer 
members than the union of the rest, etc.). Choose by E v/ - A for j < JRI with 
no repetition. For each a E A and l < n let Ye if j : aj = a }, so clearly 
a' 7& a" Ye, n Ye,, = 0 and let (Ijalek: k < I Y ) list Ye with no repetition. 
Define FeM by: FeM (a) = b jeO, FeM (bjaek) bjaek?+ except if Yt - 0 then 
FeM (a) = a. 

Let 

p(x, Fo*.* Fn-1) = (3z) A[Fe (xe) well defined 
e 

& --(]y)(y 5# xe & Fe (y) = xe) & O(xe, z, Fe)] 

where 

O(xe,z,Fe) =:X V(xe E X& (Y, y2) 

(YI E X&Y2 = Fe (YI) & YI z& Z Y2 E X) - z E X). 

Those are monadic formulas. Clearly, 

(*)I p does not depend on ! 

(*)2 M =0 (a,b,Fe) if and only if b E {Fi"](a) i > 0} where F[?0(a) = a, 
Fla] (a) = Fe (F [i] (a)) (if well defined) 

(*)3 M l= "Fe(a) well defined &-, (y) (y 7 F(y) = a) if and only if a E A 
[check]. 
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1064 SAHARON SHELAH 

Hence ifa= ( ae < n) E A, by (*)1 + (*)2 and definition of the FeMIs, S? and 
0: 

M l= ( [5-, Fom..*...r 

if andonlyif forsomez, A(ae eA&z E {FI1](a) i>0}) 

if and onlyif for some j, (a:l <n)=(ad <n). n< 

CONCLUSION 1.13. If ,uI, ,u2 are functions with domain a, n < cc and (VW E 

tt) Iui (/) <? /U2( ) < 12/ ] then 

Ql-ary <?iit Q<-1 mod Q 110 

hence 
Q-nary < ?pQ-1 
QP]l _exp P2, 

?2. Monadic analysis of 3R. Our aim is to interpret Q{'O1' in 3R for a maximal i 
and show that except on i elements R is trivial. So continuing later the analysis of ]R, 
we can instead analyze {Qy"Orl, 3R, } or analyze 3R, mod Qm011 where I Dom(RI) I < 
and R, <?int QR and even R, <?1-iint QR mod Qmlon. This is made exact below. 

DEFINITION 2. 1. 
(1) For any relation R (on Wi) let 

Ro = Ro (R) = Min { o(R)} 

where 

Z (R) = Min{ IAI: A C ?/ and for every sequence b, c- eE W 

(of length n (R)) we have b PA - implies R[b] R[5] } 

where on A see below 
(2) b ,_A c means (b i<n), c (C: i< n) and 

(a) bi E A if and only if ci E A 
(b) bi E A implies bi = ci 
(c) bi = bj if and4only if ci = c1j. 

(3) For a set A of formulas Sp(x) (where S? is a formula, x a finite sequence of 
variables including all variables occurring freely in Sp) let 

tPA(b,A,M) ={f(X,) : (x,y) EA, 57 CAandM j= [b,c7]}. 

We omit M when its identity is clear, and when M = (X, R) we may write R 
instead of M. We may write W l= Ap b, a; R]. Replacing A by bs means A = 
{ p (X) : S? atomic or negation of atomic formula }, here bs stands for basic. We 
may write S? instead {Sp} and A will be always finite. 

(4) S71(A,M) {tpA(b, A,M):b C M andlg(b) = n}. 

REMARK. 
(1) Note that R0o(R) < Z (R) < ? Dom(R). 
(2) Note that if an equivalence relation E on a subset of W contains an equiv- 

alence class of cardinality k > I 1/2 or exactly k > I 1/2 singleton classes or 
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ON QUANTIFICATION WITH A FINITE UNIVERSE 1065 

k Dom(E)I > 1/1/2, then Ro (R) = Ro(R) = 1WI-k < 1/1/2. Otherwise, 

o(R) > 12 ,1/2 and Ro (R) = 12 ,1/2. 

The main result of this section is: 

THEOREM 2.2. 

(1) Qmon <int 3R; we mean, of course, uniformly. 
(2) There is a relation R1 on ? with n(R1) = n(R) and, I Dom(R1)I < ,%(R) + n 

such that 3R -int {3RI Q,?(R)}. In fact, 3R -1-int 3R1 mod Q20 (R) 

The proof is broken into some claims. 

CLAIM 2.3. Let R be an n-place relation on / such that n > 1. We canfind a set 
A, sequences ai and elements bi, ci for i < i*, where 

**> 0io(R) 

-n(R) (n (R) -1) 
or 

i* , 
W 
-f 1n(R) 

n (R)(n(R)-1) 

such that: 

(a) &i is with no repetition and is C A 
(b) bi, ci V A, 
(c) ( (by, ci) : i < i* ) iswithno repetition, i.e., i + j \ bi + bj&ci cj&bi 7 c; 
(d) tPbS (ai (bi ), 0, R) :4 tpbs (di ^ (ci), 0, R), that is for some atomic formula S? we 

have (W, R) l= S? (ai, bi )- -p (Ji, ci) 
PROOF. We try to choose by induction on i, (A A: A < n(R) ), (c7, bi, ci) and 

l(i) < n (R) such that: 

(i) t < k < n(R) ==> Ai n A' 0 
(ii) A' C A'~ and AO 0 

(iii) as^7bi)-7ci) is with no repetition and has length < n(R) + 1 
(iV) tPbs(al (bi),0.,R) 7& tpbs(ai&7ci),OR), that is for some atomic formula 

(p(J, y) (so gotten from R(xo... . X,,(R)>1) by substitution) we have 

so (ji, bi)=- -,So(Ji, ci) 

(v) bi, ci V Uf A' : t<n(R)} 
(vi) t(i) =Min~fl: ai nA' = 0} 

(vii) A'+' A'(1) U {bi, ci} 

(viii) A'+' is A' U {Rang(ji) A'j UnA11}if(= 0& (i) > 0) V ( 1 & (i) 0) 
(ix) A'+' = A' in the other cases. 

So for some i i (*) we cannot continue; we claim that A =: Ue A' has cardinality 
> Z (R) or > |WI-n(R). 

Why? Otherwise by the definition of R%(R) there are sequences b, c from W of 
length n(R) such that b A c but b E R 5 - R. Hence we can find sequences b', 
c' from ?/ of the same length < n(R), each with no repetitions such that b' A C- 

but for some S? = R(x) = R(xio, -0,x' .... xi"R _ ), lg(x) = lg(b') lg(c') we have 

(p(b') & -p(J'). Now we can find k and do, . dk such that: do = b', d, = j', and 
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1066 SAHARON SHELAH 

de is with no repetitions, l < k xz#> dte -A dte+1 and l < k xz#> (3! i)tei t de+i ; 
here we use the assumption toward contradiction IA I < J2?/ - n. 

So for some l < k we have (p (te) & (p-(tiel ) . Now let r be such that dte, #t dte+,, 
so without loss of generality r = lg(J) - 1, let ai(*) = de I(lg(be) - 1), bi(*) = 
der,, ci(*) = de+is. Clearly they are as required in clause (iii) + (iv), now (i(*)) is well 
defined by clause (vi) as I Rang(i) < n(R) - 1, so I Rang(5i) n (Ue A')I < n(R). 
Now we can define A'(*)+l for l < n(R) by clauses (vii), (viii) and (ix). Trivially, 
clauses (i) and (ii) hold, and we get a contradiction to the choice of i(*). So really 
AI > ?/(R) or JAI > /, -n(R). 

Now note that I Ue A'(*)I < (n(R) + 1) x i(*), by clauses (vii), (viii), (ix) so 

i (*) > ? Ue A'(*) I /(n (R) + 1) and for some l we have 

Ifi< i()>~)= l},i* 

So if o(R) < IVI - n(R) we get 

n (R) ((n (R) + 1) (n (R)) 

If Z(R)> 2/ -n(R)weget 

< > J2~~/J - n(R) 

{i< i(*) :fl(i) t}1 ? n(R)(n(R) ( 1) 

So renaming we are done. - 

CLAIM 2.4. There is formula (p p * (x, j; R), infirst order logic, of course, such 
that: 

(*) if (R is an n(R)-place relation on / and) Z%(R) < 241WI, then ( * 

exemplifies Q20(R) <int QR even Q2o(R) ?<-int QR; specifically, for 
some d we have { a: (X, R) F (p*(a, t, R) } has Ro(R) members. 

PROOF. Without loss of generality 1X 1/3 > n (R)2 + n (R). 
Let A C / be a set of power R.(R) such that b PA - implies R[b] R[5]. As 

I W - Z (R) is large enough, we can find pairwise distinct di E / \ A for i < n (R)2. 
Define t = (di: i < n(R)2) and Sp*(x, d,R) = V{ (yo,. Yk-I) [the elements 

Yo, . ., Yk -1, x are pairwise distinct and for any m if the elements yo, . . ., Yk -1, 
d,,, x are pairwise distinct and p (x, yo, . . ., Yk- 1) = (dm, YO . * * Yk-1 )](P = 

. (ZO, . . ., Zk, R) is an atomic formula in L(R) (so k + 1 < n(R)) and m < n(R)2, 
so m, k are natural numbers }. By the choice of A we have x V A =.# ?* (x, d, R), 
hence B { x E X/: / = Wp[x, d, R] } is a subset of A. Clearly Qmofn <int 3R 

(uniformly); hence it suffices to prove IB | (R) which follows if we show 

(*) if b -B C then R[b] _ R[c]. 

For this it suffices to prove 

(**) if Sp(J, R) E L(R) is atomic, b, c are sequences of length lg(i) < 
n(R) without repetition then b -JB C implies (p(b, R) _ (p(j, R). 
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ON QUANTIFICATION WITH A FINITE UNIVERSE 1067 

To prove (**), by reordering the sequences we let b5cobc bcbe sequences from X, 
without repetition, b C B, Con cI disjoint to B; by the transitivity of -, without 
loss of generality cI is disjoint to d. Now for'some i, (ddi+,,...,ddi+k1) (where 
k = (Jo)) is disjoint to co (and obviously to cl). 

Now we shall prove that for every atomic 'pQ(, j, R), ?g(x) = k, lg(j) =lg(b) 
we have p (5Ce, b, R) - p((di,...,di+kI ), b, R) thus finishing. For this we define 
5e ,, (m < k) such that each Cef,, is with no repetitions, disjoint to B Ub and ifo , 
CQsk =(di.*, di+k-1), 5e,in+1, 5e,1i are distinct in one place only. By the definition 
of B (and (p) for every atomic 'p, j3, R) we have l= p(ce!,, b, R) _p(5 +i, b, R) 
so we finish easily. (Being more careful, e.g., I / 9 > n(R) suffices.) - 

REMARK. Note that definition of Ro applies to any relation, in particular, the 
relation being defined by a formula so we may freely speak at )oo(qI) or (V(x)). 

CLAIM 2.5. Q<O(R) <?int QR. 

PROOF. We can ignore the cases 'o (R) = 0 (using some SPk built from equality 
only), hence we can assume Qt' <int QR, so we can use Q individual constants 
(see 1.3 (6)). If we can replace in R some variables by constants or other variables 
having at least one equality getting a relation R' such that 

io (R ) > Min io (R), 
1 
(R)2/- 

we do it: or in other words we are inducting on n (R) > 1. 

CASE 1. n(R) = 1. 

So R is unary; now note that each of the sets A = R, A' = 2/, R can serve in 
the definition of Z(R), hence 

Z (R) < Min{AA'}I = Min{R, 1/'R}? < 

so we are clearly done. 

CASE 2. n(R) > 1. 

If Z (R) < 4 ?/ we can interpret Q<') by 2.4, as it suffices to show that at least 

one of several So's interpret. So assume Z(R) > 43?/1.Hence Ro(R) = 121/2 and 
we shall prove that we can interpret Qm (R)' for this it is enough if we can show that 
we can interpret Q~mOl For this is enough to find first order OoQ(J, -1, R), 

Ok (Xk, Yk, R) with the k and Oe depending only on n (R) and not on ?/,I such 
that lg(Je) < n(R) and for some E E {1, . k} and b E lg(Ye)9, we have 

22,,(R - 
0 (0e (-, b, R)). 

For any l < k < n(R) we can consider the formula 

Rek(xO. Xn(R)-1)= R(xo. Xn(R)-1) & Xe = Xk 

and 

R* = R(xo... xl-) & A xe # Xk. 
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1068 SAHARON SHELAH 

Easily 

Z (R) <Z R(R*) + ZEi(Re.k) 
?<k<n (R) 

Now if for some <k, 

- 
- 3n(R)(n(R - 1)) 

we are done by the induction hypothesis. So we can assume 

O(R ) - 3n(R)(n(R) - 1) 

hence by the above (i.e., using 2.4) without loss of generality 'O(R*) > 
21 1 I, so we 

can assume 

(*)O R =R*. 

So atomic formulas not equivalent to a fix truth value except equality are just 
R(_ , x,(7(),. .. ) for a (E Per(n (R)). 

Let A, Ji, bi, ci for i < J* = -n(R))/(n(R)(n(R) - 1)) be as guaranteed 
by 2.3. For some atomic p = p(, y) p (x, y, R) we have 

{ i: so(a&, bi) A -p(aci, ci) }J > ' 

by (*)o. Without loss of generality this occurs for i < ]*/n(R). For i < j* let Fi be 
the permutation of W, interchanging bj, cj for j < i and being the identity otherwise. 
Let Ri Fi" (R), V/i = Vi (x-, y) =: /(x-, y, R. Ri) = [(p (x, y, R) & -- p (x, y, R i) ] so 

(*)~~~~~~V -j(i, bi) & --iV (i, ci) if i < j. 

So by the definition of 20(-) we have Z(V/j) > j for j < j*/n(R), where we 
consider q'j as a (lg(x) + 1)-place relation. 

[Why? If A C 1W/, JAI < j exemplifies the failure of this assertion (by the 
definition of Z (R)) then w { i < j: A n {bi, ci} 7 0 } has < A I members, so 
choose i E j - w, now W /= V. (ai, b;, ci) & V I/ (a;, ci, bi), (holds by (*)) contradict 
the choice of A.] 

So if 

yp3 - 0'i 3 11 

we are done; hence assume not. 
If for every j we have Z(V/j) < - 1, then we get 

[fn(R)2(n (R)1 < 1? YV'[j*/n(R)]) 
< 

so we easily finish by 2.4. 
Also Z (V'o) = Z (0) = 0 as Ro R so < F 'p(x,y,R) - 'p(x,y,Ro) 

hence / V= (xy, R, Ro). Without loss of generality Sp is R. So the bad 
case is that for some j we have Z(q'j) < 3W/I and Zq(',+i) > 2 

-| 1. Let 
B* C / exemplify Z(Vj). < 3| 1. Let for < n(R), Oe(xo, . . . Xn (R) -2, Y R) 
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ON QUANTIFICATION WITH A FINITE UNIVERSE 1069 

R(xo,..*, xel_, y, xe,..., X,(R)-2) and on Oe (( x,71: m < n(R)- I), cj; Rj) we ap- 
ply our induction hypothesis as its arity is lg(x) which is at most n(R) - 1 (see the 
beginning of the proof) hence 

A (0e( Xs7 : m < n(R)-) cj, R)) < ( l 0 ~~~~~~~7n (R) 

and let Be C / exemplify it. Similarly let Be C / exemplify 

0 (0e (( x.. :m < n(R) - 1 ), bj, R)) < 1 0 ~~~~~~~7n (R)' 
Let 

B=B*U U BeU U BeUf{bc1}. 
?<n(R) ?<n1(R) 

Now B is a subset of / with < (2 + 3) 1X + 2 < 23 1X elements. By the definition 
of (/X, V/j+l and (*)o such B exemplifies Z(V/j+I) < 24 1X, contradiction. A 

We have implicitly used: 
CLAIM 2.6. If R is a Boolean combination of R0, Rn-I then 

o(R) < E Zo(Rf) 
f<11 

hence 

Ro(R) < E Ro(Rf)- 
e<,] 

PROOF. If Ae witnesses the value ,Z (Re) then A = Ue<k Ae witnesses 

0Z(R) < JAI < E Af 1. 
i<k 

Now we turn to 2.2 
PROOF OF 2.2(1). Immediate by 2.4, 2.5. A 

PROOF OF 2.2(2). Let di (for i < n(R)) be distinct elements of ?/ -, A where A 
exemplifies A (R) as if )4 (R) + n > ?/,J then we can choose R1 R. Of course, 
we can concentrate on the case n(R) > 1. Let R1 = R r(A U {fd : i < n (R) }. So 
(al,..., an) E R if and only if for some (a ..., a') E R, we have (al,..., an) A 
(al . a') and A 'ae f A + V[a- = dj]], so we can define R1 from R and 
R from R1 by a quantifier free formula using the unary relation A and individual 
constants do, dI, . . ., dn(R) -1 . Hence 3R ?<1-imt 3R, mod Q`71) but Z (R) < 2io (R) 
S0 3R <1-int 3RI mod Qmn). 

Also easily {]R, Qmo7)} <1-int 3R. A 

We can get the parallel result for QK. 

DEFINITION2.7. Let R0o(K) = Min{f : R E K z#o(R) < A}, note that the 
minimum is taken for each / E at separately. 

THEOREM 2.8. 
(1 ) Q~mon <int 3K 
(2) There is K1, n (KI) = n (K) such that 
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1070 SAHARON SHELAH 

(a) 3K =int {3]KI, QmoJnK)} 

(b) R EK K Dom(K) < 4o(K) 
(C) 3K 1-int 3K1 mod Qm01 

PROOF. Immediate by the uniformity of our results. - 

DISCUSSION 2.9. The interpretation here uses first order formulas of low com- 
plexity but use several copies of R. We may wonder if we can just use one copy of 
R by complicating the formula. Now if R is a connected graph every node having a 
valency < m < 12/ 1, we see that not. But we can prove that the general situation in 
the problematic case is not far from this (similar to a model of a strongly minimal 
theory, a local version). Also in general 2 copies of R suffice. 

?3. The one-to-one function analysis. The aim of this section is similar to the 
previous one, going one step further, i.e., we want to analyze 3R, interpreting in it 
Q1-1 for a maximal i, hoping that "the remainder" has domain < A. 

DEFINITION 3. 1. Let i(R) be 

Max{I{tpbs(a,A,R) :a E /A} CA C W}. 

(OntPbS see 2.1(3)). 

FACT 3.2. 2 (R) < R.%(R) + 1 and if equality holds then 'U (R) < 22 (R). 

PROOF. Straight, assume A0 exemplifies Zo(R) and let A C W. Then a, b E 

(X \ A) \,. A0 = tPbS(a, A, R)= tPbs(b, A, R) by the choice of A0 hence 

{tPbs(a, A, R): a E W /- A }| < ?Ao X Al + 1 < IAOI + 1 = O(R)+1. 

Next assume that equality holds, so necessarily IAo0 - Al = IAoI hence A n A0 = 0; 
now choose A' C A with Minfn(R) - 1, IAI} elements. By the choice of A0, if b, 
c E W \N A then 

tPbS(b, A, R)= tpbS(C, A, R) < tpbS(b, A', R)= tpbs(C, A', R). 

[Why? xz#> holds as A' C A; next we shall prove ==a. This suffices so assume 
tPbS(b, A', R) = tpbs(c, A', R). So let (p(x, 

- 
, R) be an atomic formula (i.e., a 

substitution in R(xO, ... . xn(R)-j), so lg(j) + 1 < n(R)) and let al be a sequence of 
length lg(j) from A, we shall show that (p(b, al, R) _ p(c, al, R), this suffices. If 
A <n(R), then A'= A and we are done, so assume A > n(R). 

We can find a sequence a2 from A' which realizes the same equality type as 
a, (because lg(7i) = lg(5) < n(R) - 1 = IA'I). Now by our assumption 
p(b, 2, R) _ p(c, a2, R) (that is as tpbS(b, A', R) = tpbS(c, A', R)), so to get our 
desired p(b, al, R) _ p(c , a1,R) it suffices to prove p(b, ai, R) _ (b, a2, R) and 
p(c , a1,R) _ (c, 2, R). But on both b and c we just assume they are in W . A, 
so by symmetry it is enough to show Sp(b, aj, R) =p(b, a2, R). Now as a1, a2 are 
included in A and have the same equality type (over the 0), by the choice of A0 and 
as A0 n A = 0 necessarily a-, a2 realizes the same equality type over W 'N A, so as 
b E 2/ A we have p(b,a-,R) ~p(ba2,R).] 

Hence 'U (R) < I{ tpbS(b, A', R): b E WI }I < 2V'l where Fd is the set of atomic 
formulas yp(x,a) such that a- C A', clearly I (D < n(R) x (n(R) - l)n(R)-l < 

2n (R 
n 2 
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ON QUANTIFICATION WITH A FINITE UNIVERSE 1071 

CLAIM 3.3. Q2-R <int 'R; of course uniformly. 

PROOF. Suppose h is a one-to-one, one place partial function from ?/ to ?/ with 

i-IDom(h)I < 1I(R) and { < 1/ /(n(R)'[- 1) (weusefreely 1.4). LetA C ? 

be such that { tPbS (a, A, R): a E 2 / A } has cardinality Al (R). So we can find 
as E ?1 - A (for i < A) such that tpbS(ai, A, R) are pairwise distinct. Retaining 
the last sentence (by not necessarily the original demand on A) without loss of 
generality IA I < 1X -i-A. 

[Why? Just for each i1 . - 1 choose di C A of length < n(R) such 
that (tpbS(aj, U= de): j < i) is with no repetitions so without loss of generality 
IAI < (n(R) - 1) x i and compute.] Let h { (bi, ci): i < i }, without loss of 
generality bi, cs V A (just permute R, i.e., using an isomorphic R') and we can 
find F1, F2 permutation of ! which are the identity on A such that F1 (ai) = bi, 
F2(ai) c cs. Let R1 = F1(R) and R2 F2(R) and define the monadic relations 
Po = A, Pi = { bi : i < i }, P2 = { ci i < i } (all of cardinality < Ro(R)). Let 
(p (x, y, Po, PI, P2, RI, R2) "say" that for every atomic q (x, z, R) E L(R) and T E Po 
we have: (p (x, t, RI) _ (p (y, t, R2) and Pi (x), P2 (y). Clearly S? defines h. -A 

LEMMA 3.4. Assume A{I (R) x n(R)2 + n(R) < 1W1. For any set A C !, let EA 

be the following equivalence relation on ?1: tPbS (a, A, R) = tpbS (b, A, R). For any 
A C / and C =(Ce < k) such thatCe Ce C let EA c be the following equivalent 
relation on X: a EAc b if andonly if a EAb& A a E Ce _ b E Ce. There are a set 
A C / and sequence C (Ce: < n(R) - 2) with Ce C ? pairwise such that 

(A) IAI < n(R) x Al (R) 
(B) if b 0 c and bi EA, ci for all i < lg(b) then R(b) R(c-) 
(C) EA has at most IA I + 'U (R) classes 
(D) each Ce has at most Al (R) elements and U Ce C { b: Ib/EA I< n(R) }. 

PROOF. We try by induction on i to choose (A' : X < n (R)) such that 

(i) A' C ! 
(ii) f < k < n (R) ===Ai n A' 0 

(iii) IA' < i 
(iv) Ek<n(R) I{ tPbs (b, Uebk Ak) b E Ak } is at least 
(v) j < i =Ai C A' 

Nowfori =OletA' =0. 
We necessarily are stuck for some i = i (*) < 2?(R) x n (R); i.e., Ai are defined 

for j < i (*) but we cannot choose (A'(*)+l : < n (R) ), otherwise by clause (iv) for 
some k the set { tPbs(b, Ue=k A') b E A' } has at least i/n(R) elements which is (by 
the assumption toward contradiction) > 'I (R), but now A= Ue7k At contradicts 

the definition of 'U(R) as Ai n A 0 by clause (ii). Let A Ue<n(R) Ai(*) 

For X < n(R) - 2, choose Ce as a set of representatives for { a/lEA: a/LEA has 
< n(R) but at least 2 + X elements }, such that Ce is disjoint to Um<e C,1 and 
we shall show that A, C is as required. Now clause (A) holds by clause (iii) 
and the choice of A (and the bound above on i (*)). Toward proving clause (B) 
assume b _0 c and be EA c ce for X < lg(b). Without loss of generality b has 
no repetitions. Note if be f ce then be, ce V A (as b "A c) and be EA ce (see 
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1072 SAHARON SHELAH 

definition of EAtc ), but by the choice of the Ce's, be/EA = ce /EA has > n (R) 
elements, so there is d E be/EA - { bk: k < lg(b) }. Hence by transitivity of all 
the relevant conditions without loss of generality for some k(*) < lg(b) we have 
bk(*) #& Ck(*) & An7k(*) b,7, Cin hence bk(*), Ck(*) f A. For some t < n(R) we 

have { bi m < lg(b), m f k(*) } is disjoint to A'(*). We can find a function 
a from {0. lg(b) - 1} to {O. ,n(R) - 1} such that v(k) t k = k(*), 

bin E Ae(*= v(m) = X and f I f2& bel V A & be, V A V(I1) & U(f2)- 

For s E {1, 2} and r < n(R) let B,5 = AV *) U { be: a(f) = t} if r :& k(*) and 
B,. =A,(*) U {b,()} B2 - A,.(*) U {Ck(*)} if r = k(*). For each s E {1, 2} we ask, 

choosing (A(*)+ r < n(R)) as (B.: r < n(R) ) which of the demands hold. Now 
Bs extends A'.(*) (so clause (v) holds), is a subset of & with < A(*) I + 1 < i(*) + 1 
element (by the choice of a), so clauses (i) + (iii) holds and ri #& r2 B==s n OB. 0 
(again look at the choice of a) so clause (ii) holds. So necessarily clause (iv) fails. 
For r < n (R) let Er. be the following equivalence relation on A.*): a' Er a" if and 
only if a', a" E Ai*) and tPbS(a', U...7i,. A'(*), R) = tPbS(a", Ui7n7r. A'(*), R). For 
s E {1, 2}, k < n(R) let E?7 be the following equivalence relation on B[s: a' Er. a" 
if and only if a', a" E B,5 and tPbS (a', Un =/Iz B 1, R) = tPbs (a", Ulii/ B, R). 

Now by the definition of Er. clearly 

tpbs (a, U A'(*), R): a E A'(*) IAi(*)IE,. 

hence as (A,.*) r < n(R) ) satisfies (i)-(iv) we know that 

(*) i(*) < E IA,.(*)IEkl- 
r<n(R) 

Also 

{ tPbs(a, U B R): a E B }jBs/E, 

hence as (Bs k < n (R) ) fail condition (iv) (see above) we have 

(*)2 i(*) + 1 > E JBis/Er. 
r'<II (R) 

Now for each r < n(R), clearly E?s7A'(*) is an equivalence relation refining Er., 
hence 

(*)3 IA'(*)IEI l < IA'(*)IEs l < JsEJ 

The three together gives 

(4 A A'(*)/E I I'(*)/E7 - Bs/Es 

hence 

(*)5 E,.r= E5 rA'.(*) 

(*)6 if d E B[ 5.' A"(*) then for some d' E A'(*) we have d Es d'. 
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ON QUANTIFICATION WITH A FINITE UNIVERSE 1073 

Apply (*)6 to r t choosing ds = bk(*) if s =1 and choosing d, Ck(*) if s 2 so 

d, E Bs At(*) hence there is df' E At(*) such that d E?s ds' so 

tpbS (ds U Bs 'R) tPbs(d ', U B sI R) 
/.I =/t init-I 

hence 

tPbs (ds ) U A'(*), R) A'*) R 
bs int tnb It 

But 

tPbs (di, U A(*), R) tPbs (bk(*)' U A'(*), R) 
I n7?t l int 

tPbs(Ck(*)~ J A'() R) 

tPb (d2, J A'(*) R) bs 
t 

(second equality as bk(*) EA Ck(*) by the choice of b, c). 
So together with the previous sentences 

tpbs (dI, U A',(*), R) t d) J A'(*) R 
refit lInt 

that is d' Et d' (recall d', d2 E Ai(*)). So by (*)5 we have d E?' d' for s 1, 2. 

Clearly m < n (R) & m t >B,1 = B 2 hence U,7 . Bt1 = U,72t B 2 and let Et be 

the following equivalence relation on ?: a' E* a" if and only if 

rnt 
tpb (a', U Bsbs RIn = tPbs (a", U Bs51 R) 

1717t In 7it 

Clearly Es = E* [Bs, hence dli E* d' (by the choice of di), d' E* d2 (see the two 
previous sentences) and do Et d2 (by the choice of d2). Together as di b 
d2 = Ck(*) we have bk(*) Et* Ck (*); but 

{ce :t f :k(*)} {be :f:# k(*)} C U B, 

(by the choice of a) so 

tPbs(bk (*), { c: ? + k(*) }, R) = tPbs(ck(), { c: ? k(*) }, R) 

a contradiction to the choice of b, c. 
So A = U<n(R) A,(*) satisfies clause (B) of 3.4. Note that EA has < IA + Al (R) 

equivalence classes by the definition of Aj (R), so A satisfies clause (C), and C 
satisfies clause (D) so is really as required. 

CONCLUSION 3.5. Letting R% = (R) we have OR is bi-interpretable with Qjon, 

Q21 OR1, HE}, where I Dom(R1) ? n(R)>I (R) and E is an equivalence relation on 
W1. This is done uniformly (i.e., the formulas depend on n(R) only). 
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1074 SAHARON SHELAH 

REMARK. Note that Q`0' can be omitted being swallowed by HE. 

PROOF. We've shown Q-(R) <int 3R (see 3.3). Let A, C be as in Lemma 3.4, 

choose Al such that Al n A 0, IA1 < n(R)>I(R) and A U Al includes > 
Min{n(R), a/LEA I} elements of each LA equivalence class a/LEA. Lastly let RI 
Rr(A U A1). 

Now by the choice of A and C clearly R(xl,..., sn(R)) if and only if 

(1YI) ... (Yn(R))( A XiLACYi& A xi=XI Yi=yI&R1(Y)) 
1<i<n(R) ij 1=L.n(R) 

SO 3R <int {Qj1, : 
E C}. Now 3R ?int {3R, QY fl} by the definition of R1, 

-EI <int {3R, Q2n } directly and Q1j1 < 3R by 3.3 and Qon < QIj,. So 

{l 
Q- Q Ol r 3RI, EA} <?int {fR' Qm?%0} and we finish. - 

REMARK 3.6. Note that QI-I is uniformly interpretable (for fixed n(R)) in 

Q1j1 including the case Al is finite, so 3.5 holds for it too. 

CLAIM 3.7. If ?1 > k > , R a k-place relation on A C ? and IAI < A (and / 
finite) then QR <exp Qe,lj 

PROOF. By 1.12. 1 

CONCLUSION 3.8. If R is an n (R)-place relation on ?1 and Al (R)11(R) < 1a 1, then 
for some equivalence relation E we have 

{QE QA(R)} <int QR <exp {QE' Q2,I(R)(R)} 

PROOF. We have by 3.3 that Q(R) < 3R. By 3.7 for every binary relation S on 

?1 with domain of cardinality < VW, we have :s < QJR). So every relation on ?1 

with domain of cardinality < I& 11/2n(R) is interpreted in 3R. 1 

REMARK 3.9. So up to expressability and up to a power by n(R) (and possibly 
increasing ?), we have that {Qeq, QIR)} exhaust all the information on QR (Up to 

interpretability). 

We can get the parallel result for QK. 

DEFINITION 3.10. Al (K) = { A: for every R E K we have Al (R) <A}. Note that 
the maximum is taken for each 1 separately. 

CONCLUSION 3.11. 

(0) QI-.(K <-int 3K - 

(2) There are K1 and E, a family of equivalence relations (for each 1 E )i, closed 
under permutations of 1) such that: 
(a) 3K -int {fKI, Q2I(K) QE} 

(b) for any R E K1 we have IDom(R) < n (R)2 x u (K) where u (K) 
Min{ u : R E K z Dom(R)I < u } the minimum taken for each 

i E a separately. 

PROOF. Straight by uniformity. A 
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