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ABSTRACT

In [2] we proved a necessary and sufficient condition for a family of sets to possess a transversal. We
now prove a slightly more concrete version of this result, using the function q of [4].

1. Introduction and definitions

In [2] we established a criterion for deciding whether any family of sets possesses
a transversal. The purpose of the present paper is to prove a variant of this theorem
which is in some sense more explicit. As in [2], we replace the terminology of
'transversals' by that of 'marriage in societies', which we now describe.

If F is a set of ordered pairs, a is any element and A is any set, then F(a)> denotes
{y: (a, y)e F}, F(a) denotes the element of F<a> if |F<a>| = 1, F[/4] denotes
\J{F(a): a e A}, domF (the domain of F) denotes {a: F<a> ^ 0 } ,
F " 1 = {(y, x):{x, y)e F}, rgeF (the range of F) denotes d o m F " 1 and F\A
denotes F n (Ax rgeF) (that is, the restriction of F to A). We say that F is a. function
if |F<a>| = 1 for every a e domF, and that F is injective if IT7" 1<x>| = 1 for every
x e r g e F . An injection of A into a set B is an injective function F such that
domF = A and rgeF ^ B.

A society is a triple (M, W, K) where M, W are disjoint sets and K ^ M x W.
Elements of M and W are men and women of the society respectively. A man m and
woman w are said to know each other if (m, w) e K. For a society A we denote by
MA, WA, KA the sets such that A = (MA, WA, KA). Throughout this paper, the symbol
F will denote a society and the symbols M, W, K will denote Mr, Wv, Kr

respectively.
If X £ W then D(X) denotes {a e M : /C<a> £ X}. If we want to specify that

D{X) is taken in a society A, we shall write D&(X) in place of D(X): thus
D&{X) = {ae MA: KA<a> s X} when X £ WA. When no subscript is attached to
D, it will be understood that D{X) means Dr{X), that is, D{X) is interpreted in
whichever society is denoted by the symbol T unless a subscript is used to indicate
the contrary. For A £ M and X ^ W, F[/4,Ar] denotes the society
{A,X,K n(AxX)), and T - / 1 , T-u (where ueW) , F - z l - X denote,
respectively, F [ M \ / 1 , W~], T[M, W\{u}], V[M\A, W\Xl A society V is
called a subsociety of F if F = F[/l, X] for some A ^ M, X ^ W. The society
F — A — X is denoted in this case by T/T'. A subsociety n of F is said to be saturated
if /Cr[Mn] ^ Wn. We write n o F for 'FI is a saturated subsociety of F'. If ft
denotes a family (( M,, Wh K{): ie I) of subsocieties of F then the union Uft of

these subsocieties is the society I 1J Mh [j Wh (J K{ I, and their join Vft is
Vie/ ie/ i s / /
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F MJ M,-, [j W( . The intersection FI n X of two subsocieties n , £ of F is the society
Lie/ i6/ J

(Mn n Mz, Wn n Wz, Kn n Kz). A society which contains just one woman and no
man is said to be maidenly. The society ( 0 , 0 , 0 ) , which contains no men and no
women, is said to be empty.

An espousal of F is an injective function £ such that dom £ = M and E ^ K. A
society is espousable if it has an espousal (if, informally speaking, all its men can be
assigned distinct wives in such a way that each man marries a woman whom he
knows), and inespousable if not. A partial espousal of F is an injective function £ such
that £ £ K. A society F is critical if it is espousable and rge£ = W for every
espousal £ of F.

In this paper, lower case Greek letters will denote ordinals, and in particular K, \L
will denote cardinals. A K-subset of a set S is a subset of S with cardinality K.

Let K be a regular uncountable cardinal. A subset O of K is closed (in K) if
s u p H e Q u {/c} for every non-empty subset E of Q, and is unbounded (in K) if
supQ = K. A subset 0 of K is stationary (or K-stationary) if $ n Q ^ 0 for every
closed unbounded subset Q of K. A function / : $ -> K is regressive if / (a ) < a for
every ae<I>\{0}.

We require the following property of stationary sets.

LEMMA 1 (Fodor's Lemma: see, for example, [3, Theorem 22]). Let K be a
regular uncountable cardinal IfQ> is K-stationary and f : O -> K is a regressive function
then there exist a K-stationary subset ¥ of O and an ordinal /? < K such that

{£}: in particular, \f~\P}\ = *.

In this paper, the word 'sequence' means 'transfinite sequence', that is, a function
whose domain is an ordinal number or, equivalently, a family of the form (xa: a < £)
indexed by the ordinals less than some ordinal £• (These definitions are equivalent
since we understand a 'family' (x,: i e I) to be the same thing as the function
{(i, x.): i e /}.) We call xa the a-th term of a sequence (xa: a < C). If s denotes this
sequence and 9 ^ C then s0 will denote the sequence (xa: a < 9) or, equivalently, s \6
and will be called an initial segment of s. We write t -< s for 't is an initial segment of
s\ An injective transfinite sequence will be called a string. A string s will be called a
string in a set A if rges s A, and will be called a string on A if rges = A. The
sequence whose domain is the ordinal 0 will be denoted by • . In fact, since the
ordinal 0 is the empty set, it follows that • is also the empty set, but we denote the
empty set by • and not 0 when it plays the role of a sequence. The string {(0, x)}
will be denoted by [x]: in other words, [x] is the string s such that dom s = 1 = {0}
and s(0) = x. If s, t are strings with disjoint ranges and doms = a, dom t = /? then
the concatenation s*t of s and t is the string u with domain a + p such that
u(0) = s(6) for every 9 < a and u(a + <£) = t((f>) for every (p < /?. If s is a string and
a < fl ^ doms then s[a p) will denote the string such that sp = sa* sLaP).

A sequence of subsocieties of F may often be denoted by a Greek capital letter
with a bar above it, and then the a-th term of this sequence will be denoted by the
same Greek capital letter, unbarred, with subscript a. For example, if A is a sequence
of subsocieties of F then Aa is its a-th term. Moreover, if A = (Aa: a < C) and 9 ^ £
then Ao will denote the sequence (A)e = (Aa: a < 9). The sequence A will be called
non-descending if Aa is a subsociety of Ap whenever a < /? < C; and A will be called
continuous if it is non-descending and Q^e = Ao for every limit ordinal 9 < C- A
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THE EXISTENCE OF TRANSVERSALS 195

[,-tower in r is a continuous non-descending sequence (FIa: a ^ £) of saturated
subsocieties of F such that n 0 is empty. A C-ladder in F is a sequence
A = (Aa: a < C) of subsocieties of F such that Aa n A^ is empty whenever a < /? < C
and V Aa\o F for every a ^ C- A sequence of subsocieties of F is a rower (ladder) if it
is a C-tower (C-ladder) for some ordinal C-

If ^" is the set of towers in F and j£? is the set of ladders in F then there is an
obvious bijection l\2T -* S£ such that

(i) if 0 is a C-tower in F then 1{U) is the C-ladder (FIa+1/na: a < 0 ,
(ii) if A is a C-ladder in F then / - 1(A) is the C-tower ( V Aa: a < £).

We shall call l(U) the ladder ofU.
Let Y be the class of all cardinals K such that either 0 < K < Ko or K is regular.

We shall define by induction on K what is meant by saying that a subsociety of F is a
'/c-obstruction' in F, for every K E Y. First, when 0 < K ̂  Xo, a subsociety n of F is
a K-obstruction in F if it is saturated and II —L is critical for some K-subset L of Mn.
Suppose now that K is regular and uncountable and that '/i-obstruction' has been
defined for every n e Y such that n < K. Let a subsociety of F be called a
( < K)-obstruction in Y if it is a ^-obstruction in F for some \i e Y such that /* < K. If
0 is a K-tower in F whose ladder is A, let ^(f l) denote the set of all a < K such that
Aa is a ( < fc)-obstruction in F/Ila. A K-tower It in F whose ladder is A will be said to
be obstructive (in F) if

(a) for each a < K, Aa is either a ( < /c)-obstruction in F/FIa or maidenly, and

(b) ^(f l) is K-stationary (that is, the first alternative of (a) occurs for a
'reasonably large' set of values of a).

A subsociety II of F is a K-obstruction in Y if II = i j n for some obstructive K-tower
n i n F .

The following theorem was proved in [2].

THEOREM 1. A society Y is inespousable if and only if, for some K G Y, there exists
a K-obstruction in Y.

The set of integers will be denoted by Z, and Z* will denote Z u { — oo, oo}, that
is a set whose elements are the integers and two further 'numbers' oo and — oo.
Elements of Z* will be called quasi-integers. The size \\A\\ of a set A is defined to be its
cardinality \A\ if A is finite and to be oo if A is infinite: thus ||y4|| e Z* for every set A.
The sum ax + ... + an of n quasi-integers ax,...,an has its usual meaning if the a( are all
integers, is defined to be oo if at least one a, is oo, and is defined to be - c o if no a{ is
oo but at least one is — oo. The difference a — b of two quasi-integers is the sum of a
and —b; and likewise the sum of the quasi-integers a, —b,c may be denoted by
a — b + c, etc. For our purposes, the most important distinctive feature of these
definitions is that oo — oo is defined to be oo, since we wish to think of oo — oo as the
largest possible value of \\A \B\\ for sets A, B such that B ^ A and \\A\\ = \\B\\ — oo.
Inequalities between quasi-integers are defined in the obvious way. The infimum inf S
of a non-empty subset S of Z* is the greatest quasi-integer a such that a < s for every
seS, and the supremum supS is analogously defined. If X is a limit ordinal and
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aoe Z* for every 6 < X, we define liminf ae to be sup{^ : (f> < X}, where i^ denotes
inf{afl:0 ^ 6 < A}. °^x

If / is a string in W, then D(f), F [ / ] , F / / will denote D(rge/), T\_D(f) rge/] and
F/F[/] respectively. With any string / in W, we associate a quasi-integer q(f),
defined as follows. Define q{D) to be — ||D(0)||. If now dom/ is an ordinal a > 0
and <?(/') has been defined for every string / ' whose domain is less than a, then
define q{f) to be

(i) q(L) +1 -\\D(f)\0(/p)ll if ff is a successor ordinal p +1 ,

(ii) liminfg(/0) - if <T is a limit ordinal.

If we wish to indicate that £>(/) or q(f) are to be interpreted in a society A,
we shall write DA(/) or qjif) respectively. When no subscript is attached to D or
q, it will be understood that D(f) and q(f) mean Dr(f) and qr(f) respectively,
that is, D(f) and q(f) are then interpreted in whichever society is denoted by the
symbol F. For example, the equation in Lemma 4 below means

A society F = (M, W, K) is q-admissible if g(/) ^ 0 for every string / in W, and
is packed if g(/) = 0 for some string / on W. Roughly speaking, as explained in [4],
q(f) is an upper bound for the number of women whom we could hope to leave
unmarried in rge/ after working along the sequence / term by term, trying at each
stage to ensure that wives have been found for all the men who demand them from
amongst the set of women so far considered. Thus an espousable society must
necessarily be ^-admissible: more precisely, this follows from Lemma 2 below. In [4]
it was shown that every ^-admissible society with countably many men is espousable
(and a somewhat stronger version of this result was proved in [5]). The following
result, which was Corollary 3.6 of [1], is more relevant for our present purposes.

THEOREM 2. A society is critical if and only if it is packed and q-admissible.

Since Theorem 2 gives a good understanding of the structure of critical societies,
it is reasonable to use these societies in defining the notion of 'obstruction' which is
the crucial feature of Theorem 1. However, it seems plausible that the power of a
critical subsociety A of F to help to obstruct espousability of F lies in A being packed
and not in its being g-admissible. Thus arguably it might be appropriate to replace
'critical' by 'packed' subsocieties in the definition of 'obstruction' and show that
Theorem 1 still remains true. This is the purpose of the present paper.

These remarks suggest the following modification of the definition of
'^-obstruction'. We shall define by induction on K what is meant by saying that a
subsociety of F is a '/c-hindrance' in F, for every K € Y. First, when 0 < K ̂  Ko, a
subsociety II of F is a K-hindrance in F if it is saturated and II — L is packed for some
K-subset L of Mn. Suppose now that K is regular and uncountable and that
'^-hindrance' has been defined for every \i € Y such that \i < K. Let a subsociety of F
be called a (< K)-hindrance in F if it is a ^-hindrance in F for some n e Y with \i < K.
If Et is a K-tower in F whose ladder is A, let 0(11) denote the set of all a < K such
that Aa is a (< K)-hindrance in F/na. A K-tower n in F whose ladder is A will be said
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to be hindering (in F) if

(a) for each a < K, Aa is either a ( < /c)-hindrance in T/U3 or maidenly, and

(b) <D(f!) is K-stationary.

A subsociety n of F is a K-hindrance in F if FI = (Jfi for some hindering /c-tower fl
in F.

The purpose of this paper is to prove the following theorem.

THEOREM 3. A society F is inespousable if and only if, for some K e Y, there exists
a K-hindrance in F.

An advantage of Theorem 3 (as compared with Theorem 1) might be that it
avoids any suggestion of characterizing espousable societies in terms of espousable
societies. The notion of espousability occurs in the definition of critical societies,
which in turn are mentioned in the definition of a K-obstruction, but the definition of
a K-hindrance contains no direct or indirect reference to espousability. Theorem 3
also gives a somewhat clearer impression of 'how to construct all possible
inespousable societies'.

2. Proof of Theorem 3

Lemmas 2-5 below are (in essence) Lemmas 1.1, 2.8 and 2.13 and Corollary 2.7
of [4], where proofs may be found. They were in fact stated only for countable
strings in [4], but their proofs do not depend on the countability of the strings.

LEMMA 2. / / E is an espousal of F and f is a string in W then
q(f).

LEMMA 3. / / / , g are strings in W with disjoint ranges then
Dr/f(g) = D(f * g)\D(f).

LEMMA 4. / / A is a finite subset of M and f is a string in W then

LEMMA 5. If V ^ W and II = F[£>(F), K], and if f is a string in V then
qn(f) =

LEMMA 6. IfusW and f is a string in W\{u} and <?(/*[w])eZ then

Proof Let A = D(f * [u])\Z)(/). Since q(f) + l-\\A\\ = q(f * [u])e Z, it
follows that A is finite. Let Fi = F[D(/ • [u]), rge/] . Then

n = (F-u)[Dr_u(rge/), rge/] and U-A = F[D(rge/), rge/].

Therefore, by Lemma 5, qr-u(f) = 4n(/) and q(f) = qn.A(f). Hence, using
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Lemma 4,

q(f) = qn-A(f) = qn(f) + \\A n

(since A £ M n = Dn{f)), and so (since A is finite)

LEMMA 7. If f,g are strings in W and q{f) =£ — oo and (rge/) n (rgegf) = 0

(0). (1)

Proo/ Observe first that

Dr/f(0) = {meMr//:Kr//<m> = 0 } = {me M\D(f): X<m>\rge/ = 0 }

= {meM\D(rge/):K<m> ^ r g e /} = 0

by the definition of D(rge/). Therefore qr/f{0) = 0, and so (1) is true when
domgf = 0.

Now suppose that domg = a > 0, and assume the inductive hypothesis that
q(f * h) = q{f) + qr/f{h) for every string h in W \ r g e / with domh < a.

Obviously, if s and t denote strings in W, then

s<t=> D{s) <= D(t). (2)

If a is a successor ordinal p +1 then, by the inductive hypothesis, Lemma 3 and (2),

= q(f * gP) +1 - ||(D(/ * 5) \0( / ) ) \(D{f * gp) \D{f))\\

= q(f*gpni-\\D(f*g)\D(f*gp)\\ =

Now suppose that a is a limit ordinal. Let d o m / = d. The hypothesis that
q(f) ^ — oo and the inductive hypothesis imply that

q{f) + liminfqr//(0e) = lim in
8-KT

= lim inf g ( / * gfe) = lim inf q{{f * g)e).
0 ->a 0 — 5 + o

Moreover, by Lemma 3 and (2),

Dr/f(g)\ (J Dr/f(ge) = (D(f * g)\D{f))\[) (D(f * gB)\D{f))
9 < a 0 < a

[j D{(f * g)e).
6 < S + o
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Hence

(9) = q(f) + liminf qr/f(gg) - \\Dr/f(g)\ (J Dr/f(ge)

= \iminfq((f*g)e) -
• 6 + 0

D(f*g)\ (J *>((f*9)e)
6 <S + a

= <?(/*</)•

LEMMA 8. Let £ be a limit ordinal, let (Jla :cc < £) be a non-descending sequence
of saturated subsocieties ofT and let I l a + 1 /na = (Ma, Wa, Ka)for each a < £,. Let E be
a partial espousal of T and let Q be a subset of W. Let £a = En(Max Wa),
Aa = M a \ d o m £ a , Xa = W a \ rge£ a for each a. < £. Suppose that
W = [j{Wa: a < £} and \Xa\Q\ ^ \Aa\for every a < £. Then

|W\rge£| =£ |M\dom£| + \Q\.

Proof Observe first that, for each a < <!;,

£ [MJ c KIMJ £ U W : 0 < «} (3)

since n a + 1 < i T. For each a < <!;, select an injection Ja of Xa\Q into Aa and let
/ = U{f<x: a < £}• Let 3) be a directed graph whose set of vertices is M KJ W and
whose edges are a directed edge from a to E(a) for each a e dom E and a directed
edge from u to /(«) for each u e dom/. Then each vertex of Q> has invalency 0 or 1
and outvalency 0 or 1, and hence each connected component of S> is a directed path
or directed circuit. Consider any we W \ r g e £ . Since w has invalency 0, it is the
initial vertex of a directed path &>„ which is a component of <2). Let the vertices of 0>w,
in order of occurrence as ^ w is described starting from w, be wt(= w),
mx, w2, m2, w3, m3,... (where this sequence terminates if 2PW is finite). Let w,- e VKa())

for each w,- in ^w. For each m,- in ^w we have (w,-, mf) e / ^ U{-^a
 x ^» "• a < £} a "d

w,- e W (̂/), and therefore w{ e Xa(l) and

w»i 6 Aa(i) = Ma(0 \ d o m (£ n (Ma(0 x Wa{i)j). (4)

If i is such that wt, wi+l both exist, then w1 + 1 = £(m;)^ Wa(l) by (4) but, by (4)
and (3),

wi+1 = £(m,.) 6 £[Ma(0] c y ^ i N a(i)}. (5)

Therefore wi+1 e Ŵ0 for some 0 < <x{i), that is a(i + l) < a(i). Since there cannot be
an infinite decreasing sequence of ordinals a(l) > a(2) > ..., it follows that 0>w has a
terminal vertex g{w). For any i such that w,- exists, either i = 1 and wt = w £ rge£, or
i > 1 and wt e E[Ma{i_^ by (5) which, since <x(i) < a(i — 1), implies that wt £ £[Ma(l)].
In both cases it follows that w{ ^ rge £a(0 and so w, € Xa(i) ^ g u dom/ . Therefore
w,eQ if Wi = g(w). If m, = gf(vv) then clearly m , - e M \ d o m £ ; and so
g{w) e Q u ( M \ d o m £). Hence {(w, gr(vv)) :weW \ r g e £} is an injection of
W \ r g e £ into Q u ( M \ d o m £), which proves the lemma.

LEMMA 9. / / / is a string on W and q{f) elandA^M,X^ W andT-A-X
is espousable then \X\ ^ \A\ + q(f) (with the natural convention that \A\ + q(f) means
\A\ if\A\ is infinite and q(f) is a negative integer).
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Proof. The proof will be by induction on dom/. If dom/ = 0 then
0 = rge/ = W and so D(0) = M and therefore -||Af|| = - | |D(0)| | = q{f)el,
which shows that M is finite. Moreover, since X ^ W = 0 and T-A-X is
espousable, it follows that A = M and \X\ = 0 = |M|-|M| = |4| + g(/).

Now suppose that dom/ > 0, and assume the inductive hypothesis that if A is a
society and g is a string on W^ and <?A(#) e Z and fl £ MA, y £ WA and A - B - Y is
espousable and domg < dom/ then |Y| ^ |# | + <?A(0)-

Let E be an espousal of F — A — X.
Suppose first that A is finite. Since E is an espousal of F — A, it follows by Lemma

2 that

qr.Aif). (6)

Since rge/ = W, it follows that

X s (rge/)\E[Dr_,(/)] (7)

and that D(/) = M, so that A n D(/) = A and therefore, by Lemma 4,

<?.--„(/) = IM*II+ <?(/)• (8)

By (7), (6) and (8), ||X|| ^ ||/4||+ <?(/), which implies that \X\ ^ \A\ + q(f) since A is
finite and q{f)s Z.

Suppose now that A is infinite and dom/ is a successor ordinal. Then
f = g * [u] for some string g and some woman u. Since E is an espousal of
Y — A — X, it follows that E \ {M\E~x(ii)) is an espousal of
{T — u) — {AKjE~l(uy) — {X\{u}). Furthermore, g is a string on Wr_u and
<7r-u(fi0eZ by Lemma 6 (since q{g * [u]) = q{f)eZ). Therefore, by the inductive
hypothesis, | * \ { u } | ^ \A u E~l(u}\ + qr_u(g), which implies that \X\ ^ \A\+q(f)
since /I is infinite and qr-u(g)> q(f)e 2.

Now suppose that /4 is infinite and dom/ is a limit ordinal T. Since

lim i
o- 0 <x

it follows that lim inf q{f0) is an integer m, say. Therefore there exists £ < T such that

^(/o) ^ m for e < 0 < T. Let E = {6: e < 0 < x, q(f0) = m}. If p is a limit ordinal
less than T and p = supS' for some non-empty subset S' of S \ { p } then e < p < x
and therefore m ^ q(fp) ^ lim inf q(f0) ^ m since <j(/0) = m for every 0 e S ' ; and

therefore peE. Hence E is closed in T. Moreover supE = x since lim inf q(f0) = m,

and so we can write S = {$(<x): 1 ^ a < <!;}, where t, is a limit ordinal and
0(a) < 0(jS) whenever 1 ^ a < (1 < £. Let n o be the empty society, and let

and fa = /W(aU(a+1)) for 1 ^ a < <̂ . For every a < £ let

n a + 1 / n a = Aa = (Ma, Wa, Ka), Ea = En (Max Wa),

Aa = Ma \ d o m Ea, Xa= Wa \ r g e Ea.
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Then Ea is an espousal of Aa-Aa- Xa. By Lemma 5, q^if^) = <7(/*(i)) = m and so,
substituting A = Ao, g = /^(1), B = Ao, Y = Xo in our inductive hypothesis, it
follows that \X0\ ^ Mol +

 m- Therefore Xo has a subset Q such that \Q\ ^ max(0, m)
and \X0\Q\ ^ \A0\. If 1 ̂  a < ^ then q^f*) = *,-//„„(/") by Lemma 5 and
q(f<t>{a+i)) = q(f<t>J + <lr/uJftt) by Lemma 7 and q(fm) = <7(/,»(a+1)) = m: therefore
<jAa(/

a) = 0 and so, substituting A = Aa, g = f, B = Aa, Y = Xa in our inductive
hypothesis, it follows that \Aa\ ̂  \Xa\ = \Xa\Q\. Moreover W = [j{Wa:oL < £}
since r g e / = W and E is closed in T and supE = x. Hence, by Lemma 8,

|M\dom£| + |<2| = |A| + |g| = \A\ = \A\ + q(f)

since A is infinite and Q is finite and q(f) e Z.

LEMMA 10. IftceY and H is a K-hindrance in a society then IT is inespousable.

Proof. We shall in fact prove that if II is a K-hindrance in a society T then n is
inespousable and | Ŵn \ r g e £| ^ m a x ( | M n \ d o m £ | , K) for every partial espousal E
of FI. This will be proved first for 1 .< K ̂  Xo, and then induction on K will be used
for regular cardinals K > Ko.

Suppose first that 1 ^ K ̂  Xo. Then there exist a /c-subset L of M n and a string
/ on Wn such that qn-iif) = 0. Let E be any partial espousal of IT,
A = M n \ ( L u dom E), X = Wn \ £ [ M n \ L ] . Since £ f (Mn \ L ) is an espousal of
(Tl-L)-A-X and ^n-L(/) = 0» it follows by Lemma 9 that |A"| ̂  \A\ and so

\L\ = |

fl ^ |/l| + |L\dom£| = |Mn\dom£|,

which implies that

|Mn\dom£| ^ max(|Mn\dom£|, K) ,

and also that | M n \ d o m £ | ^ K > 0, so that £ cannot be an espousal of IT, that is,
n is inespousable.

Now suppose that K > Ko and K is regular. Assume the inductive hypothesis that
if fi € T and fi < K and I is a ^-hindrance in a society then £ is inespousable and
|W r \ rge£ ' | ^ max( |M I \dom£ ' | , n) for every partial espousal £' of S. Let fl be a
hindering K-tower such that ( jn = n , let /(fl) = A and let Aa = (Ma, Wa, Ka) for
each a < K. For each aeO(I l ) let Ka < K be an element of Y such that Aa is a
jca-hindrance in r / n a .

Let £ be a partial espousal of FL For each a < K let Ea = E n (Max Wa),
Aa = M a \ d o m £ a , Xa = W^\rge£a. Then, by the inductive hypothesis,

| * J ^ max (14,1,10 ae<D(fI). (9)

Let S = {a 6 <&(n): \Xa\ ^ \Aa\} and let Q = [j{Xa: a e K \ S } . If a e K \ S then
either ae/c\<l>(n), in which case Aa is maidenly and \Xa\ = \Wa\ = 1, or
a G <P(ft)\E, in which case \XJi > \Aa\ by the definition of S and therefore \Xa\ ^ Ka

by (9). Hence |*J < K for every a e / c \ S and so \Q\ ^ K. Moreover, if a e S then

Sh:196



202 R. AHARONI, C. ST. J. A. NASH-W1LLIAMS AND S. SHELAH

and so

|Wn\rge£|

M«l by the definitions of E and Q, and if a e K \ S then Xa ̂  Q
\Aa\. Hence, by Lemma 8,

|M n \dom£| + K = max(|Mn\dom£|, K) .

Suppose if possible that n has an espousal F. If aeG>(fI) then Aa is a
Ka-hindrance in r/Ila and so is inespousable by the inductive hypothesis, and
therefore F[MJ £ Wa. On the other hand, F [ M , ] s U W : M a } since
na+i o F. Therefore there exists $(a) < a such that F[MJ n W#a) ± 0. For each
ae<l>(fl) select such a <t>(a), thus defining a regressive function </>: <&{TL) -> K. By
Lemma 1 there exist a K-subset 0 of C>(fl) and 8 < K such that 0[0] = {6}. Since

n ^ , ^ 0 for each a e 0 , it follows that

u
_5 < a < K

u
= K. Hence the set of ordinals 6 for which

5 K is non-empty and so has a least element e. Let
0 < a < K J

Fe = F n (MEx We). Since \We\ ^ K, AE cannot be maidenly and so must be a
KE-hindrance in F/II£. Therefore, by the inductive hypothesis,

max(|ME\domF£|, K£):

and consequently |M£\domF£| $
Moreover F[M£] ̂  (J Ŵ, since

U

K (since KS < K), that is | F [ M J \ We\ ^ K .
n£+1 <i F, and therefore (since K is regular)

a ^ e

|F[MJ n WJ ̂  (c for some a < e, which contradicts the definition of e. This
contradiction shows that 11 is inespousable; Lemma 10 is proved.

We can now complete the proof of Theorem 3 as follows. By Theorem 2, every
critical society is packed. From this it easily follows, using induction on K, that every
K-obstruction in F is a K-hindrance in F. From this, and Theorem 1, we see that if F
is inespousable then there exists a K-hindrance in F for some K e T.

Conversely, suppose that there exists a K-hindrance n in F for some K 6 T. Then
n < F : this follows directly from the definition of K-hindrance if K ^ Ko and from
the fact that U. = Ufl for some tower n in F if K > Xo. Hence any espousal E of F
would induce an espousal E \ Mn of n , contradicting Lemma 10. It follows that F is
inespousable.
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