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Summary. We prove here the consistency of u>t where:
u=Min{|X|: X C#(w) generates a non-principle ultrafilter},
i=Min{|«/|: &/ is a maximal independent family of subsets of w}.

In this we continue Goldstern and Shelah [GISh388] where Con(r>u) was
proved using a similar but different forcing. We were motivated by Vaughan [ V]
(which consists of a survey and a list of open problems). For more information on
the subject see [V] and [GISh388].

1 The single forcing

1.1 Definition. Let I be a proper ideal on w containing the finite subsets. We define
a forcing notion Q;:

peQ, iff p=(H,E,A)=(H? E?,A¥) where

(a) E is an equivalence relation on DomECw,

{b) w\DomE¢€l,

(c) each E-equivalence class belongs to I,

(d) A={x: xeDomE, x=Min(x/E)},

(e) H is a function, Dom H =,

(f) foreachnew, H(n)is afunction from #{—1, 1} to { — 1, 1} which depends on
finitely many places only from An{0,...n}, ie. for some finite
w(n)SAn{0,1,...,n},

[n,ve4{—1,1} &nlwn)=vIwn) = H(m[n]=Hn)[v]].
* [ thank Alice Leonhardt for the beautiful typing of the manuscript, as well as the referee for

meticulous work. Partially supported by the Basic Research Fund, Israeli Academy of Science.
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For ie A, we let =; be the function that maps ne“{—1,1} to n(i). So H(n) can be
written as a Boolean combination of the functions «; (i € 4, i < n). We prefer to view
H{n)as a Boolean expression in the formal variables «; (using operations max, min,
—, and constants —1 and 1),

(g) f ne A, H(n) is =,,

() if neDomE\A, nEi and i€ A then H(n) is z; or — ;.

We define the partial order < (on Q;) by p=gq if:

(2) Dom E? 2 Dom E?, Dom E? is a union of a family of EP-equivalence classes,

(B) E?!DomE*? refines E? (hence 42C A7),

(y) if HP(n)==;, ne DomE?, then H%n)=H%i); if H"(n)=—=,, ne DomE?,
then H%n)= — H(j),

() if ne w\DomE?, then*

Hin)[x;:ie A =H(M)[..., %5 -, H()[-. s X - L aas - Jicaa

jeAP\A2

1.1A Remark. The reader may worry about the absence of conditions for the case
where ne€ Dom E?\ Dom E? [especially if n =min(Dom E?\Dom E%)]. The crucial
difference between this forcing and the one in [G1Sh388] is precisely that we don’t
impose any conditions other than (y) in this case.

1.2 Claim. 1) Q,=(Q,, =) is a partial order.

2) If peQ, and E=E? then Q,1{q: q=p} is isomorphic to Q,; as follows: let
h:DomE—w be h(n)=|A’~Min(n/E), J={BSw: {n: hn)eBjel}, then
Q:1{q: q=p} is isomorphic to Q.

1.3 Definition. z,, is (the Q;-name for) the set
{n: for some pe G, , H?(n) is constantly 1}.
1.4 Claim. 1) If i<w and APn\(i+1)=0 then HP(i) is constant.
2) pl-"2g,(n)=¢" (e= —1or e=1) iff H"(n) is constantly e.

3) For each n the set {peQ: HP(n) is constant} is a dense subset of Q.
4) If peQy, then

Lwo\{n: there are p_,,p, Zp such that p.l—o 19 (M=¢" for e=+1, —1}]el.

Proof. E.g.

4) Letpe Q;, ne DomE. We shall construct p_ , p, asrequired. Letee { — 1,1},
i=Min(n/E?), E?>=E?[(DomE"\n/E), A?>=A"\{i}. Lastly H?> is defined as
follows: HP(j) is:

(a) constantly ¢ if jei/E, H?(j)=H"(n),

(b) constantly —e if jei/E, H*(j)= — H*(n),

(c) for jew\Dom(E?), ne A=~ {—1,1} we let

HP() )= H(No{<, H 0>},
(d) for je Dom(EF)\(n/EF) we act as in (c), or less formally
H(j)=H*(j). Oia

Remark. In similar cases later we shall be less formal.

* Here x; is just —1 or 1 not the function «;



Sh:407

CON(u>1) 435

1.5 Conclusion. |—,,“I does not generate a maximal ideal in Ve,

1.6 Definition. 1) p<,q iff p<q and [ke A? & |4’ nk|<n = ke A7].
2) If «C AP, h:zo—{—1,1} then g=pi is defined as follows:

Al= A"\,
E‘1=E"[< U i/E"),
ic AP\u

H%n) is: HPn) where we substitute k(i) for «; for ie«, so in
particular: if nei/EP, i€ «, HP(n)=x, then HYn)=h(i) and if
neifE?, i€ «, HY(n)= — =; then Hn)= — h(i).

1.7 Claim. 1) If p<gq, « a (finite) initial segment of A?, H(i) is constant for each
i€« then for some unique h:z—{1, —1} we have p<p*" <gq.

2) If peQy, « is a finite initial segment of A? then:

(i) for each he*{—1,1} we have p<p™MeQy,

(ii) {p™: he“{~1,1}} is predense above p, and

(i) for each such h:u—{1,—1} we have H?"(i) is constant for each i€ «.

3) If peQy, « a finite initial segment of AP, |«|=n, p"<qeQ, then for some
VEQI, pénréq, r[h]=q'

4) én isa partial order on QD [p§n+1q = pénq = Péqj

1.8 Claim. If peQ;, n<w are given, T a Q,-name of an ordinal, then thereisqeQ,,
p=,q and (letting «={ie A?: |A’ni|<n}):

(%), for every he“{—1,1}, g™ forces a value to 1,
(*), for some set v of £2" ordinals, ql—“tev”.
Proof. By 1.7(2)(ii), 1.7(3), and 1.7(4). [

1.9 Definition. Let I be an ideal on w containing the finite subsets of w.

1) E is an I-equivalence relation if:

(a) DomECwm,

(b) w\DomEel,

(c) each E-equivalence class is in 1.

2) E,ZE, if (both are I-equivalence relations and):

(i) DomE,CDomkE,,

(ii) E,lDomE, refines E,,

(iii) DomE, is the union of a family of E,-equivalence classes.

3) GM/(E) is the following game. It lasts @ moves. In the nth move
the first player chooses an I-equivalence relation E!, [n=0 = El=E],
[n>0 = E2_, <E}], and the second player chooses an I-equivalence relation E2

such that E} <E2. In the end, the second player wins if

U{DomE*\DomE.: n>0}el (otherwise the first player wins).

1.10 Claim. 1) The game GM [(E) is not determined when I is a maximal ideal.
2) P(o)\IF=cce is enough.

Proof. 1) As each player can imitate the other’s strategy.
2) Easy, too, and will not be used in this paper.
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1.11 Claim. Suppose p<€ Q;, t a Q,-name of a function from w to ordinals, m < and
I a maximal (non-principal ) ideal on o (or just: the first player has no winning
strategy in GM (E?) ). Then for some g, p<,,q € Qy, and letting A?={i,: { <w} (in
increasing order ), g™ forces a value to t|(i,+ 1) for any h:{iy, ...,i,} > {1, —1} and
any £=m (but £ <w).

Proof. For this we let E=EP[[| ) {i/E*: i€ A” and |in A?| = m}] and we shall define
a strategy for the first player in GM,(E) during which the first player, on the side,
chooses po<p,=<....

Then as this is not a winning strategy, in some play in which the first player uses
his strategy he loses and then {p,: £ <w) will have an upper bound as required.

In the nth move, the first player in addition to choosing E} chooses q,, p,, #,
such that:

(@) po=4go=p;

(b) D §m+npn+ 1>

(€) wq is {ie AP [inAP|<m},

(d) #ps1=20,0{Min(4%*\«,)}, s0 |u,|=m+n,

(€) EL =Epnr<DomEPn\ U i/EP">,

() q,+. is as follows:

(f,) DomE?%+=Dom E?~,

(f) xE™+1y iff (a) or (B) or (y) holds where

(@) xEZy,

(B) x,ye(DomEP*\DomE?)&xEP"y and for some ke «, we have x, yek/EP,

(v) x,ye|J{k/EP»: ke DomEP", k¢ DomE? and k¢ | i/EP"},

(f;) H%*x(¢) is: first case £ € ®\Dom EP" then ’
H%*+\(£)=H?({) or more exactly

H&" YO oy Xy o Tje gane
=H""(f)[...,xj, e HP YR (s Xy o) dans s ...]‘II;EA(In+1

e AP\ Adn=1
[no vicious circle as only H% (k) such that k</ count];
second case £ € Dom EPM\ A%+ HPY{)= 2, then
Hir ()= H"" (i)
third case £ € Dom EP"\ A% +1, HP"({)= —2; then
Hi ()= — Hi" (i) ;
Jourth case £ € AP\ A%+, then
Her+ ()= HP"(Min#/E%+1),

(g) pn§m+nqn+1 §m+n+1pn+1 H

(h) if he“+D{—1, +1} then p*l, forces a value to £ [(Max«, )+ 1).

(i) W.lo.g. Min DomE?>Maxw,,; so DomE?’"\DomEZC| ) {k/E®+*;
ke Uyt 1}.

Now this strategy is well defined by Claim 1.8. In the nth move, if n=0 define
Po>4do bY (@), «o by (¢), and E} by (e). In the (n+ 1)-th move first define g, ., by (f)
[and check (g)], then use (d), to define «,, . , then choose p, ., by (h) and 1.8, and
lastly (e) to choose E}, ; (the actual move). Now we can try to define a condition g
as required in 1.11: E9=1lim E?» <i.e. DomE?= (| DomE?"~, xE% iff for every n

n<o n<@o
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large enough, xEPry\, H4m) will be H?"(m) for any large enough n (it is eventually

constant) (formalistically its set of variables is decreasing, but the material one
converges).
Now A p,<,+n4, but is g€ Q,? Not necessarily; however, if

(@\DomE% = N (w\Domp")=w\J{i/E*": i€ «,, n<w}

is in I, it does; and this occurs if the second player wins the play, which occurs for
some such play (in which player I uses the strategy defined above) as by 1.10 player
I has no winning strategy. [,

1.12 Conclusion. If I is a maximal ideal, then Q, is “w-bounding and even has the
Sacks property. (See definitions in [Sh-b] or [Sh-f, VI, Sect. 2].)

1.13 Claim. Assume I is a maximal ideal on w (also P(w)/Il=ccc suffices ). Then Q;
is proper (and even (< w,)-proper and (<w,)-strongly proper ).

Proof. Essentially combining the proofs of 1.10, 1.11; i.e. we simulate two plays,
each finite initial segment is in the model, we take care of each Q;-name of an
ordinal from the model eventually, and take care that the second player wins at
least one of them. [

2 The maximal independent family

2.1 Definition. 1) For a family & of subsets of w and partial function h from % to
{1, —1} let #'= N {A": Ae BnDombh}

where A=A, A '=w\A.

2) FF(A) is the family of finite partial functions from % to {1, —1}.
3) o denotes a family of subsets of w which is independent

(i.e. he FF(of) = /" infinite).

4) AP={(of, A): ACw infinite, o7 a countable independent family of subsets of
w, moreover, [he FF(of) = |[Ano/'=K,]}.
5) The order < on AP is

(A1, A1) =(Ay, Ay) M o Sty & A, C* A,
(A,£* A, means A,\A, is finite).
6) For any </,
for ACw let 2(A)={heFF(«): Ans/"is finite} and
id,,={ALw:P(A) is dense in FF(«f)}equivalently:
idy= {ACw: for every hye FF(&/) for some hy,
hoChy € FF(sf) and Ang/™ is finite}

[it is an ideal, increasing with o — why? If Aeid,,, <7, C,, h, e FF(</,) then
hy=h, |/ e FF(o/,) so there is h'e FF(s/,) extending h;, Ans/* =0, hence
Ans/"“" = as required] (if </ is infinite we get the same ideal if we require
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“empty” in the definition of Z(s7) instead of “finite”). Note that for every dense
9 CFF(of), we have ﬂ (w\ ") belongs to id .

7) In 6) let fil, be the dual filter.

22 Claim. 1) If (A A)S(Ayi1,4441) for n<w, in AP, then for some A,
(U AL s A)EAP and

(Vn) [(Jz{,,, A)<E (9 A s A)] .

2) If (o, A)e AP then for some BCA, B¢ o and
(o, A)< (A U{B},A)e AP.

3) If (o, A)e AP, E an equivalence relation on w, each equivalence class finite,
then for some B:

(o, A)=(o, B)e AP,
E!B is equality.

4) If (o4, A)e AP, E an equivalence relation on , hy € FF(f) then for some h,, B
we have:

(a) hoCh,eFF(HL);

(b) (o, A)<(o/, B)e AP;

(¢) ENo/™"NB) is equality or has one equivalence class.

Proof. E.g.

1) Let FF(«,)=1{h,,; {<w}; now choose by induction on n
Ckyom,e: mSn, £=<n) such that: k,,, ,€A4,neP* [possible as h, ,eFF(sf,)
as &£, C o, (when m<n)]. Lastly let A= {kpm.e: <, m=n, £ <nj.

2) Let FF(/)={h,: n<w}, and choose by induction on n, kled

nef"\{k?: £ <n} and kZe Ansf™\{k}: £ <n}. Then let B={k}: n<w}.

3) Let FF(«)= {h n<w}, choose by induction on n<o,
k,e Anst™\| J{k,/E: £ <n}. Let B={k,: n<w}.

(Note that | J{k,/E: £ <n} is finite as each E-equivalence class is finite.)

4) Let {h": n<w}={he FF(<f): hyCh}. Now we try to choose by induction on
n,ky€ 4"\ {k,/E: £ <w}.1f we succeed let h; =ho and B= (A\™)Uik,: n< o},
clearly it is as required. So assume that for some n, we have chosen kg, ..., k, ., but
we cannot choose k,. Now try to choose by 1nduct10n on £/<n, h* "eFF(;zi)
increasing with £, such that: B °=Hh", and /""" "'n\(k,/E) is finite. If we succeed,

""" | (k,/E) is finite (as a finite union of finite sets), while /" "\ U (k,/E) is
Z<n £<n

empty by the choice of n. So necessarily for some £ <n, k™ is defined while we

cannot define #™¢*!. Let h, =h"’, B=(" n(k,/E)u(4A\™); clearly they are as

required. []

2.3 Claim (CH). There is {(o/;, A}): i<, ), such that (let A= ﬂ,-):

(a) (o, A)e AP,

(b) i<j<a)1 (o, A)<(A), A)),

(¢c) i1\ %0,

(d) for each i for some Ae o, )\, ACA,,

(e) for any ASw and hye FF(<f,,) there is hy such that:

hOghleFF(d*):
AMCA or AMnA=0,
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(f) for any equivalence relation E on w and hy€ FF(sf,) there is hy such that:
hoChy e FF(<1,),
Elo/™ is equality or has one equivalence class,

(g) if E is an equivalence relation on w, each equivalence class finite, then for
some i, E| A; is the equality,

(h) id is the ideal generated by {w\A4;: i<w,}; moreover, for every Aeid,,,
for unboundedly many i<w,, AnA,=0,

(i) for n=#m for uncountably many i, ne A; & m¢A,,

(j) A, is a maximal independent famzly

Proof. Straightforward. [

3 The iteration

3P.ll Theorem. (2%° =N, 2% =N,;, O5<ny: rs=ny)- Thereis a forcing notion P such
tnat:
(i) P is proper of cardinality N, satisfying &, — c.c.
(ii) Forcing with P preserves cardinalities and cofinalities, VP=2%0=X,.
(i) In VE, u=X,>N, =t

Remark. We prove more on V7.

Proof. Let (#,4) (i<w;), o, be as in 2.3. We define a CS iteration
0=<P,Qp afw,, f<w,), each Qg of the form Q; , [, a Pp-name of a maximal
ideal on  (containing all finite subsets of w) such’ that:

(*) if in VP2, I isa P, -name of a maximal non-principal ideal on
then for some o, [,C]".

This is possible as &<, or@y=n, holds. Let P=P,, .

Now each Q, is proper (1.13) of cardinality ¥, for a <N, [, “CH”, P, has a
dense subset of power X, (proved by induction on a < w,) hence ([Sh-b] or [Sh-f,
I1]) P=P,, satisfies (i). Now (ii) follows. (2% >N, as each Q, adds a new real.)

Now u>N by (*) above and 1.5, hence (as 28 =¥,) u=N,. We are left with
proving i=¥,; of course, it suffices to prove that <7, is a maximal mdependent
subfamily of #(w).

Now we shall prove for a <w, the following four statements; clearly ®; (for
a=0,) gives the maximality of ./ and thus finishes the proof of 3.1:

®% in V= for every sequence {t,: n<w) e V' of ordinals, and
f:w— o diverging to infinity, f from V, there is (w,: n<w)eV
such that: A t1,ew, and |w,|<1+ f(n).

(This is “P, has the Sacks property” which each Q, satisfies by
1.11, and P, satisfies by the preservation theorem [Sh-f, VI,
Sect. 2] (or [Sh-b, V4.3] — where we use also w-properness there,
but it holds here; or see [Sh326, Appendix 2.41).)

®Z in V¥« for every dense open AS®” w, there is B such that:
BeV, BC A, Bdense open subset of “~ w (we can replace ®” w by
e.g ®72or °7{—1,1}).
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To show that each individual 0, has this property, let peQ;, pIH“45%  w is
dense open”. We follow the proof of 1.11, but in point (h) we require now that for
some fixed enumeration {«,: n<m) of the basic open neighborhoods of “”®

P+l “v, € A” for some basic open «,C«, (not a name!).

This can be achieved as follows. Given g¢,,,, fix an enumeration
Chy i< 2t m*1y of all hetn+0{—1 1} Define conditions p,, , ; such that g,
Shimt1 Pt 1,iSnam+1Pat,itt and Pn+1 il l+1CA” where the vy’s are basic
open neighborhoods such that pitICyl and o0 = 0. This is possible since 4 is
dense open. Then put p, =P,y gneme1-1s and v,,—uz'”'"“

The property just shown for every individual Q, is preserved under CS
iterations by [Sh-f, XVIII, 3.7] or [Sh-f, VL, 2.x].

)

®; every member of (id,, )" "is included in a member of (id,, )"

(Why? It follows by ®? and the definition of id,, — note that if

Aeid,, in V¥« then for some i<w,, A€id,, [see 2.1(6)], now

letting d {B,:n<w}, if Aeid,, then {h: for some n,

h:{Bg,...,B,_1}—{—1,1} and we have An.s/" =0} is open and

dense, hence it includes some dense open [in FF(./;)] set Y {h:

for some n, h:{By,...,B,-}—>{—1,1}} from V, let
- ﬂ (\£"), so A¥eV, ATeid,,, Cid,, and AgAY.)

. ®% in V™= for each h*EFF(.Q/*) for every AC./), either A
includes a member of (fil ,)" + o (see definition below) orAis
disjoint to some .o/%, h*CheFF( ) where (fil,, )"+
={X Co: there is Ae(ﬁl&, )" such that AnLECX}.

Note: that by @2, @2 is equivalent to

®; in V¥« for each h*e FF(s,) for every ACs/) for some h,
h*Che FF(of,) and AnA% =0 or o/2CA.

[Why? Clearly ®: = ®;. So assume ®; and we shall prove ®?,
so let h*e FF(«,). If for some h, h*CheFF(M*) we have
Ans/l=0 then the second pos31b111ty in the conclusion of ®2
holds. If there is no such h, then (by ®? applied to h) for every A,
h,She FF(o,), thereis i such that: hCh' € FF(o/,) and o/% C A.
So =/""\ A belongs to (id )" " hence by ®2 we know "\ 4 isa
subset of some A4’e(id,,)” which is as required in the first
possibility of the conclusion of ®t]

We prove ®; by induction on «. For notational simplicity let h*=0.
First case: a=0 — by 2.3, part (e).

Second case: a=f+1. We work in V72,

SoletpeQ;,, ASwa @, -name of a subset of m, p forces 4 is a counterexample.
By 1.2(2) without loss of generahty p is trivial; i.e. E¥ is equality on o (replacing [
by some [;/E) and by 1.11 without loss of generality from Fo, In we can compute
An(n+1).

If for some ge"{1, — 1}, n<w, Y,=: {m: p¥t, “m¢ A} isnotinfil,, (wecan
use p'® as p is trivial); then note: Y, V*sand V*# satlsﬁes the induction hypothesm
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so apply it to Y,, but the first possibility in @ fails. Hence there is h e FF( *) for
which oinY,= (Z) so pl-“Atng=0" as requlred So assume that there is no
such g. Remember °>{1, —1}= U " —1,1}.

Now foreach ge®> {1, —1} and me Y, there is =g, ,, where p? <ge @, such

that qH—“meA by an assumption in the beginning of the second case, there is

m 0V n€ ®>{1,—1} (= means being an initial segment) such that
f“‘»’ g, ,‘med”. Let n: o—w be defined by (note: £gv, ,,27g0)

h(n)=Max[{n+l}u{/g(vg,m): ee"2{1, -1}, m<n, meY,}].

So by ®; and 2.3(h), for each g€ ®” {1, —1} there is i(¢) € w, such that 4,,,C Y.

So for some i(*)<w, for every i=i(*), N A C*Y,. Let fro—w be such
0> {1, ~ 1}

that: A h(n) < f(n) and for ge™{1, —1}, n<w, 4;,)\ Y, < f(n); there is such fe V'7s,

hence such fe V(by ®;). Choose by induction on £ <w, n, € Ay, U{0} as follows:
no=0,n,,, is thefirst ne 4,, such thatn>n,and A f(m)<n(possible as 4, is

mén;

infinite). Define an equivalence relation E® on w: mE®k iff \/(m, ke [nayna,, 3).
£

This is an equivalence relation on o with each class finite, and E°e V as fe V. So by
2.3(g) there is i,, i(*)<i; <w; such that |A Nnapnae13)| 1 for every 7.
Define an equivalence relation E! on A4, : mE! k iff mke A, and [m=kvk<m
<fll)vm<kZ f(m)]. E*isan equ1va1ence relation by the deﬁmng property of i,.
Easily E'eV, each E'-equivalence class has at most two members. Define an
equivalence relation E? on w: mE2k iff m=k or mE*k. So again applying 2.3(g) for
some i, with i; <i, <, we have: each E2-equivalence class contains at most one
member of 4,,. By 2.3(h), without loss of generality A;, € (4;,n4; \[0, f(0)]. As
we could rename i(*) as i,, without loss of generality:

ne Ay o{0} = f(n)<Min[Ay,\(n+1)].

Let Ckn): n<w) list A,,0{0}, and for g€*”{1, —1} let v, be such
that g<av,e*®*2{1, — } [”QSH—“k (n+1)ed”. It is easy to check v, exists:
k(n+ l)eA as Ay \Y,C f(k(n))<k(n+1) and k(n+ 1)eA », and /g(vg kn+ 1)
<h(k(n+1))<f(k(n+1))<k(n-l—2) SO AnY ¥, V, gom+ 1y<Iv €T D{1, — 1} will be as
required.

Now if BCw, satisfies [/,me B&{/+m = |/ —m|>2]and,[/ e B=¢>2], then
we can define py which is potentially an clement of Q,, (and > p), as follows:

(a) Dom(E"")=w\|J {[k(n—1),k(n+1)): ne B},

(b) EP® is the identity,

(¢) H?®(j)==; for ie Dom E”%,

(d) if £ e w\Dom(E?®), so for some ne B, k(n—1)</ <k(n+ 1) and we want to
define

H()(@)=V,lxm- 1) .
but some g(m), m <¢ should be computed by H(¢), so we define H(¢) by induction
on /, naturally. Let us do it more formally: Suppose k(n—1)</ <k(n+1), and
H(m) has been defined for m<¢. To define H?*[x;: i AP*] (the x; again represent
just minus one’s and one’s), find
Q < HPB(])[ ] ...>iek(n—1)nD0mEp ,

jek(n—17\DomE?P
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and let
HPP[x;: i€ APP] =V, 1y — 1)(£) -
Easily:
(%) if UB[k(n—l),k(n—H))elﬁ then p<pzeQ,;, and

palg, “{k(n): ne B} £ 4”.

So it suffices to find BCw such that: () [k(n—1),k(n+1))el, and
{k(n): ne B} efil,,, or just for some heFF(«/,), {k(n): neB,}efil, +}
(remember @)

As in the paragraph above for some B,Cw, {k(n):neB}efil,, and
[m,neBy&m=*n = |m—n|>2]. We can find contradictory h,, h, € FF(<,), so
M/ =0 so without loss of generality o/} el;, so B={k(n): ne o/} and
ne By} is as required. [Note that actually £g(v, ,,)=max {m,/ge} is O.K.)

Third case: o limit: By 3.2 below applied with o, § [, (fil,,)", {\o%: he FF(/,)}
here standing for 6, @, D, F there. [15,

3.2 Lemma. Suppose

(a) Dis a family of non-empty subsets of w, containing the co-bounded subsets,
closed under (finite) intersection and for every countable BCD for some A€ D we
have )\ AC*B; we denote by [D] the filter D generates,

Be®

(b) F is a family of subsets of o, XeF = X ¢[D],

(c) DisRamsey; ie.if {A,:n<w) isapartition of v, w\A, €D thenwe can find
ko€ A,, {k,: n<w}eD,**

(d) if XCw, X¢[D] then for some AecF, XC* A,

(e) if XCw and XnA=0 for some AcD then X<B for some BeD.

If 0=(P,Qp: a<9, f<b) is a CS proper iteration of “w-bounding proper
forcing notions, such that for a <6, |—p “if XCw, X ¢ [D1""*then for some A€F,
Xc*A” [ie. (d) holds in VF«] then this holds for a=4.

Proof. Also here we could have used the general preservation theorems of [Sh-f,
XVIII, Sect. 2] (see 3.11 there).

Let pe P;, p|—“X Cw”, it suffices to find g, p< g P, and either A € F such that
gl-p,“XC*A” or AeD, qll-p,“AC* X”. As each P, (# £9) is “w-bounding (by the
preservation theorem [Sh-f, VI, Sect. 2], proof of ®; in 3.1), [D] is a Ramsey filter
in V%= for a <4.

For sufficiently large y, let N <(H(x), &, <}) be countable such that p, X, F, D, 0
belong to N. We can assume that for no aenN and p’ satisfying p<p'e Nn P,
and ge P, such that p’'|a<gq, q is (N, P,)-generic and G, P, generic over V such
that ge G, do we have in V[G,]

{n: p'lpye. e X"} ¢ [ D]V
(as in V[G,], (d) still holds).

** Equivalently in the following game player I has no winning strategy: I chooses A,e[D], II
chooses k,e A,; player II wins the play if {k,: n<w}e[D]. The filter fil, has a base linearly
ordered by £* into order type ¥, and is therefore a p-filter. 1t is also a g-filter by 2.3(g). It is well
known that a filter is Ramsey iff it is simultaneously a p-filter and a g-filter
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Without loss of generality d=w, Xn{n} is a P,-name above p (more
exactly, above pln) (as in [Sh-b] or [Sh-f, IIT]). We can find (p?: /<w)>eN,
Ckyi 6 <dEN, pRl-p, kX, PP PPy € Py, {k,: £ <w}eD (use the game).

Let A*e D be such that (YAeDNN)[A*C*A4] and A*C{k,: £ <w}.

We define by induction on n, p,, g, such that:

(a) 4n€ Py, Gpiy f”=(1m 4 is (N Pn)'generic’

(b) p, is a P,-name of a member of P,NN,

(©) Pa=4n

(d) Dx é Pn+1>

(e) if ¢,€G,CP,, G, generic over V, then in V[G,] we can find
{pz £ <wyeNLGIN(P;s/Gy), p LG lSpi=pisy, {Pi{<w}CP,/G,, and for
some B,eDnN, pil—p 6, “B.n{ X7, and A*CB,.

If we succeed, |)q,,[{n}eP; force X2A4* (Why? By our assumption,

n
Pn+1[G.+ 1] decides the truth value of “ne X™. If ne A*, then the existence of p"}}
and (N, P, . ,)-genericity of g, , ; assure us that no ¢’ = g can force n not to be in X.
The p} for n+¢ are needed only to keep the inductive argument going.) Forn=0-
we have taken care of it choosing p?, A*. So let us do the induction step and work in
ViG,] 4, G,EP,, G, generic over V).

So {p}: £ <w)e N[G,] is defined. Working in V[G,]%" we can find, for each Z,
(Pplim<o), PSP Sppts in Po/Gyiy, Pl I-“Xom2 ¥'oom, Y] e D” (use D
is Ramsey); so there are Q,-names for them, Y/, {p%’: m<w). Clearly without
loss of generality those Q,-names belong to N[G,]. Hence, for / <w there is
Pnc€QunNIG,], P E Dyt EPw/Gny Pn, e forces Y7 =Y/ (so is as above), so without
loss of generality {p, ,, Y}: /<w)€eN[G,], and there is Ye DnN, /{\ YC*YQ

Necessarily, 4*C*Y. Note: Y/n/=Bn/2A4*n¢, also the function h:w—w,
defined by h(/)=Min{n: n>¢ and sup(Y\Y/)<n} belongs to N[G,]. As D is
Ramsey, for some {k;:i<w}eDnN[G,], Ahk)<k;.,, so for some i*

[i*<ke A*= (k,h(k)) nA* ={] (we use the forcillqg being “w-bounding to get D in
N rather than in N[G,]). So for some ¢, A*C Y} and we can continue. Choose

qn +1 € pn +.17 qn +1 rn = qna qn + l(n) € Qn iS (N[Gn]: Qn[Gn])'generic and abOVe p;t,t’ and
is as required. [J;.,
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