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Summary. We prove here the consistency of u > i  where: 

n = Min {IXl: s__ ~(o9) generates a non-principle ultrafilter}, 

i = Min{Idl :  d is a maximal independent family of subsets of co}. 

In this we continue Goldstern and Shelah I-G1Sh388] where Con( r>u)  was 
proved using a similar but different forcing. We were motivated by Vaughan IV] 
(which consists of a survey and a list of open problems). For  more information on 
the subject see [V] and [G1Sh388]. 

1 The single forcing 

1.1 Definition. Let I be a proper ideal on co containing the finite subsets. We define 
a forcing notion Qt: 

p ~ Q1 iff p = (H, E, A) = (H p, E p, A p) where 

(a) E is an equivalence relation on DomE=Co), 
(b) on\DomE ~ I, 
(c) each E-equivalence class belongs to I, 
(d) A =  {x: x e D o m E ,  x = M i n ( x / E ) } ,  
(e) H is a function, D o m H =  co, 
(f) for each n ~ co, H(n) is a function from A { __  1, i} to { -  1, 1 } which depends on 

finitely many places only from A~{0, ..., n}, i.e. for some finite 
w(n) C=A~{O, 1 , . . . ,  n}, 

[tl, v e A{ _ 1, 1} & t 1 Iw(n) = v Iw(n) ~ H(n) [-q] = H(n) [v]] .  

* I thank Alice Leonhardt for the beautiful typing of the manuscript, as well as the referee for 
meticulous work. Partially supported by the Basic Research Fund, Israeli Academy of Science. 
Done 11/89 Publ. 407 
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434 S. Shelah 

Fo r  i eA ,  we let x i be the function that  maps r/~A{--1, 1} to r/(i). So H(n) can be 
writ ten as a Boolean combina t ion  of the functions xi  (i e A, i < n). We prefer to view 
H(n) as a Boolean  expression in the formal variables xi  (using operat ions  max, rain, 
- ,  and constants  - 1  and 1), 

(g) if n e A, H(n) is x , ,  
(h) if n ~ D o m E k A ,  nEi and l e a  then H(n) is xi  or -~v i. 
We define the partial  order  < (on Q~) by p < q if: 
(~) D o m  EP~ D o m  E q, D o m E  q is a union of a family of EP-equivalence classes, 
(13) E p I D o m E  e refines E q (hence A e =z Ap), 
(T) if HP(n)=xi, n ~ D o m E  p, then He(n)=He(i); if H P ( n ) = - x i ,  n e D o m E  p, 

then Hq(n) = -He( i ) ,  
(5) if necokDomE p, then*  

He(n) Ix i: i e A el = HP(n) [..., xi,..., He(j) [..., x~,... ],~ A q .. . .  J~ a, 
jeAP\Aq 

1.1A Remark. The reader may  worry  about  the absence of condit ions for the case 
where n e DomEPkDomE e [especially if n = min(DomEPkDomEe)].  The crucial 
difference between this forcing and the one in [G1Sh388] is precisely that  we don ' t  
impose any condit ions other  than (~) in this ease. 

1.2 Claim. 1) QI=(Qt, <) is a partial order. 
2) I f  peQ1 and E = E  p then Qi[{q: q>--p} is isomorphic to Qi/g as follows: let 

h : D o m E - , r  be h(n)=lAPnMin(n/E)l, J--{B____~o: {n: h(n)eB}EI} ,  then 
QiI{q: q>P} is isomorphic to Qs. 

1.3 Definition. ~QI is (the Q r n a m e  for) the set 

(n: for some pe  G e~, HP(n) is constant ly  1}. 

1.4 Claim. 1) I f  i<o9 and APc~( i+ I )=0  then HP(i) is constant. 
2) pl~-"~Qi(n)--e" (e - -  - 1 or e= 1) iff HP(n) is constantly e. 
3) For each n the set {peQi:  HP(n) is constant} is a dense subset of QI. 
4) I f  p e QI, then 

look{n: there are P-I ,Pl  >=P such that p~l}-~"~e~(n)=~" for a =  + 1 , - - 1 } ] e I .  

Proof. E.g. 
4) Let  p e Q~, n e D o m E .  We shall construct  p_ ~, p~ as required. Let  a e { - 1, 1}, 

i=Min(n/EP), EP~=EP[(DomEPkn/E), AP"=AP\{i}. Lastly H p~ is defined as 
follows: HP"(j) is: 

(a) constant ly e if j ~ i/E, HP(j) = HP(n), 
(b) constant ly - e if j ~ ilL, HP(j) = -- HP(n), 
(c) for j ecokDom(EP), t 1 ~ AP"~ { - 1 ,  1} we let 

(HP~(j)) (q) = (HP(j))(qu {(i, UP~(i)>}), 

(d) for j e Dom(EP)k(n/E p) we act as in (c), or  less formally 

HP~ �9 ['~ 1.4 

Remark. In similar cases later we shall be less formal. 

* Here xl is just - 1 or 1 not the function x~ 
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CON(u > i) 435 

1.5 Conclusion. I[--Q,"/does not generate a maximal ideal in V Q*''. 

1.6 Definition. 1) p<,q  iff p<=q and [kEAP&lAPnkl<n ~ k~Aq]. 
2) If ~C=Ap, h : ~ { - 1 ,  1} then q=pthl is defined as follows: 

Aq = AV\ cz , 

E~=EPI (i~ ~\~i/EP) ' 

Hq(n) is: HP(n) where we substitute h(/) for ~vi for i ~ ,  so in 
particular: /f nEi/E p, i ~ , ,  HP(n)=~vi then Hq(n)=h(i) and /f 
n ~ i/E p, i ~ a, HP(n) = - ~v i then Hq(n) = - h(i). 

1.7 Claim. 1) I f  p < q, ~ a (finite) initial segment of A p, H~ is constant for each 
i ~  then for some unique h : ~ { 1 ,  - 1 }  we have p<pthl<q. 

2) I f  P~QI, ~ is a finite initial segment of A p then: 
( i)  for each h ~ { - 1 ,  1} we have p<=p[hl~Qi , 

(ii) {pthl: he~{__l, 1}} is predense above p, and 
( iii ) for each such h : u ~ { 1 ,  - 1 }  we have HPt"~(t)" is constant for each i e ~. 
3) I f  PeQI, ~ a finite initial segment of A r, I~1 =n, pthl<qeQi then for some 

rEQI, p< , r<q ,  rthl=q. 
4) <, is a partial order on QI, [p<,+aq ~ p<,q  =~ p<q]. 

1.8 Claim. I f  p ~ QI, n < co are given, z a Q1-name of an ordinal, then there is q ~ QI, 
p <-,q and (letting ~ = {i ~ AP: IZPnil < n}): 

(*)1 for every h~ '{  - 1, 1}, qthl forces a value to ~, 

(*)2 for some set v of <2" ordinals, q][-"z e v" . 

Proof. By 1.7(2)(ii), 1.7(3), and 1.7(4). [] 

1.9 Definition. Let I be an ideal on co containing the finite subsets of co. 
1) E is an/-equivalence relation if: 
(a) Dora E___c co, 
(b) co\DomE ~ 1, 
(c) each E-equivalence class is in 1. 
2) E 1 ~ E  2 /f (both are/-equivalence relations and): 

(i) D o m E  2____DOmEa, 
(ii) E1 IDomE2 refines E2, 

(iii) DomE2 is the union of a family of El-equivalence classes. 
3) GM~(E) is the following game. It lasts co moves. In the nth move 

the first player chooses an /-equivalence relation E, ~, [-n=0 =~ E~=E], 
En > 0 ~ E 2_ 1 < E,~], and the second player chooses an/-equivalence relation E 2 
such that ~ 2 E, < E,. In the end, the second player wins if 

U {DomE2\DomE,  ~" n >0} e I  (otherwise the first player wins). 

1.10 Claim. 1) The game GMI(E) is not determined when I is a maximal ideal. 
2) ~(co)\I~ ccc is enough. 

Proof. 1) As each player can imitate the other's strategy. 
2) Easy, too, and will not be used in this paper. 
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436 S. Shelah 

1.11 Claim. Suppose p ~ QI, ~ a Qrname of a function from o9 to ordinals, m < co and 
I a maximal (non-principal) ideal on co (or just: the first player has no winning 
strategy in GMI(EP)). Then for some q, p ~mq ~ QI, and letting A q = {i~: ~ < co} (in 
increasing order), qthJ forces a value to Z I(i~ + 1) for any h:{i  o . . . .  , ie} ~ ( 1 ,  - 1} and 
any # > m (but ~ < co). 

Proof. For  this we let E = E r r[ U {i/Ep: i ~ A p and [i~AP[ > m}] and we shall define 
a strategy for the first player in GMI(E ) during which the first player, on the side, 
chooses Po < P l  < . . . .  

Then  as this is not  a winning strategy, in some play in which the first player uses 
his strategy he loses and then (Pc: E<og)  will have an upper  bound  as required. 

In the nth move, the first player  in addi t ion to choosing E,  ~ chooses q,, p,, Un 
such that:  

(a) Po = qo = P, 
(b) Pn<=m+nPn+l, 
(C) ~0 is {i~AP~ linAP~ 

u ,+  1 = u , w { M i n (  Aq"+ l \u,)},  so 
(d)(e) Ea,=EP" I (D~  ' \  lu,I : m + n, 

(f) q ,+ l  is as follows: 
(f0 DomEq"+l = DomEP. ,  
(f2) xEq"+ l y / f f  (~) or (13) or (V) holds where 

xE .y, 
(13) x ,y~(DomEe' \DomE2,)&xEP"y and for some k ~ u ,  we have x , y~k /E  pn, 
(7) x, YeU{k/EP":  k~DomEP",  kCDomEZ, and k(~i~  i/EP" }, 

(f3) Hq"+l(E) is: f irst case f e o g \ D o m E  p" then 

H q"+ ~(E) = HP~ or  more  exactly 

H q"+ ~(f) [..., xj . . . .  ]j~a . . . .  

= HP"(r)[..., x j , . . . ,  Hq"+@)(..., x . . . . .  ),~A, . . . . . . .  ]~A~"+~A, , 
n\  n+ 

[no  vicious circle as only H q"+ ~(k) such that  k < E  coun t ] ;  

second case # ~ DomEP" \A  q" + ', HP"(E) = xi then 

Hq.+ l(f) = Hq.+ '(i); 

third case # ~ DomEP"\A  q"+ ~, HP"(#) = -- x i then 

H"" + l(d) = - H q"+ ~(i) ; 

fourth case d ~ AP"\A ~" + 1, then 

H q-+ l(d) = HP-(Min dIE ~.+ ~), 

(g) P,<,,+,q,+ a <,,+,+ lP,+ a , 
(h) if h ~ ( " + ' ) { - 1 ,  +1}  -Ehl then e , + l  forces a value to ~ I ( ( M a x u , + l ) +  1). 
(i) W.l.o.g. M i n D o m E ~ > M a x ~ , + ~  so D o m E P ' k D o m E 2 ,  C=U {k/Eq"+~: 

k e ~ , + l } .  
N o w  this strategy is well defined by Claim 1.8. In the nth move, if n = 0 define 

Po, qo by (a), u0 by (c), and Eo 1 by (e). In the (n+  1)-th move  first define q ,+ i  by (f) 
[and  check (g)], then use (d), to define ~ ,+  1 then choose p,+ 1 by (h) and 1.8, and 
lastly (e) to choose E,~+ ~ (the actual move). N o w  we can try to define a condi t ion q 
as required in 1.11" Eq= lira E p" (i.e. D o m e  ~= ('] D o m e  ~", xE~y iff for every n 

n<(D ~ rl -< to 
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large enough, xEP"y], Hq(m) will be HP"(m) for any large enough n (it is eventually 
/ 

constant) (formalistically its set of variables is decreasing, but the material one 
converges). 

Now A p,<,,+,q, but is q ~ QI? Not  necessarily; however, if 
11 

(co\DomE q) = ~ (co\Domp") = co\O{i/EP": i ~ ~,, n < co} 
n < : r  

is in I, it does; and this occurs if the second player wins the play, which occurs for 
some such play (in which player I uses the strategy defined above) as by 1.10 player 
I has no winning strategy. []  1.11 

1.12 Conclusion. If I is a maximal ideal, then QI is ~co-bounding and even has the 
Sacks property. (See definitions in [Sh-b] or [Sh-f, VI, Sect. 2].) 

1.13 Claim. Assume I is a maximal ideal on co (also ~(co)/I~ ccc suffices). Then QI 
is proper (and even (< coO-proper and (< co~)-strongly proper). 

Proof. Essentially combining the proofs of 1.10, 1.11; i.e. we simulate two plays, 
each finite initial segment is in the model, we take care of each Qsname of an 
ordinal from the model eventually, and take care that the second player wins at 
least one of them. [] 

2 The maximal independent family 

2.1 Definition. 1) For a family ~ of subsets of co and partial function h from ~ to 
{ 1 , - 1 }  let Nh= (-~{Ah(A): AsNc~Domh}  

where A I = A ,  A - l = c o \ A .  

2) FF(N) is the family of finite partial functions from ~ to {1, -1} .  
3) d denotes a family of subsets of co which is independent 

(i.e. h ~ FF(s~) ~ d h infinite). 

4) AP = {(d, A): A__c co infinite, d a countable independent family of subsets of 
co, moreover, [h s FF(d)  ~ [ A ~  oh] = No] }. 

5) The order < on AP is 

(se~,A1)<=(W2,A9 iff ~l c-_d2&A25*A1 
(AI_-__*A2 means AI\A2 is finite). 

6) For  any d ,  

for A=Cco let N(A)={h~FF(d):  A c s d  h is finite} and 

ida, = {A____ co:~(A) is dense in FF(d)}equivalently: 

i d d =  {A=Cco: for every hoeFF(d)  for some hi, 

h o c= hi ~ FF(d)  and A~dr hi is finite} 

[it is an ideal, increasing with sr - why? If A ~id~, d 1 c__dz, h 2 eFF(dz)  then 
h l = h 2 I d  1 e FF(dl)  so there is h 'eFF(dO extending hi, Ar3~ch'=O, hence 
Af'sxdh2uh'=O as required] (if d is infinite we get the same ideal if we require 
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438 S. Shelah 

"empty" in the definition of ~ ( d )  instead of "finite"). Note  that for every dense 
c= FF(d), we have n (c~ dh)  belongs to ida. 

h E ~  

7) In 6) let fil~ be the dual filter. 

2.2 Claim. 1) I f  (d,,A,)__<(d,+a,A,+ 0 for n<co, in AP, then for some A, 
(~md,,,,A)~AP and 

= , �9 

2) I f  (d ,  A) e AP then for some B c= A, B r d and 

(d ,  A) < ( ~ u  {B}, A) ~ AP. 

3) I f  (d ,  A) e AP, E an equivalence relation on o, each equivalence class finite, 
then for some B: 

(~,  A) < (d ,  B) ~ AP,  

E IB is equality. 

4) I f  (d ,  A) ~ AP, E an equivalence relation on co, h o ~ FF(d)  then for some hi, B 
we have: 

(a) ho C=h 1 eFF(d) ;  
(b) (d ,  A)<=(d, B)~AP; 
(c) E I(dh'nB) is equality or has one equivalence class. 

Proof. E.g. 
1) Let FF(s/,)={h.,e: f<co};  now choose by induction on n 

(k .. . .  e: re<n, f ~ n )  such that: k,,m, teA,n~/h, ",e [-possible as h,,s~FF(x/,) 
as ~/,,____~', (when m<n)]. Lastly let A={k, , , ,s:  n< co, re<n, f <n}. 

2) Let FF(d)={h,:  n<co}, and choose by induction on n, k~,eA 
n~/h"\{k~: f < n} and k2, ~ Ano/h"\{k~: f < n}. Then let B = {k,X: n < co}. 

3) Let FF(s/) = {h,: n < co}, choose by induction on n < co, 
k, ~ A n ~ h " \  U {ke/E: f < n}. Let B = {k,: n < co}. 

(Note that U {ke/E: f < n} is finite as each E-equivalence class is finite.) 
4) Let {h": n < co} = {h e F F ( d ) :  ho _-_ h}. Now we try to choose by induction on 

n, k, ~ o/h"\ U {ke/E: f < m}. If we succeed let h~ = ho and B = (A\~Jh~ {k,: n < co}, 
clearly it is as required. So assume that for some n, we have chosen ko ..... k,_ ~ but 
we cannot choose k,. Now try to choose by induction on ?<<_n, h"'eeFF(~) 
increasing with {, such that: h"' 0= h', and s/h"'e+'n(kJE) is finite. If we succeed, 
d h"'"n U (kt/E)is finite (as a finite union of finite sets), while ~/h-,-~U(ke/E)e< is 

d < n  

empty by the choice of n. So necessarily for some { <  n, h "'~ is defined while we 
cannot define h "s+ ~. Let h~ = h "'~, B = (s/h~ n(kJE)u(A\~/h'); clearly they are as 
required. [] 

2.3 Claim (CH). There is ((M',,A,): i < ~ , } ,  such that \(let ..d.= ,<. / U .~',~, 

(a) (~/~, A~) ~ AP, 
(b) i< j<col =~ (~,Ai)<(~/i,  Ai), 
(c) ~+,Vd~,r 
(d) for each i for some A e~d~+2\~r ACA~, 
(e) for any ACco and hoeFF(~d,) there is h~ such that: 

ho c h~ s gF(~d,),  
h~ Mh, oC=A or ~ / , n A = O ,  
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( f  ) for any equivalence relation E on co and h o e F F ( d . )  there is h 1 such that: 

h o c= ha ~ F F ( d . ) ,  

E Is~ch~ is equality or has one equivalence class, 

(g )  if E is an equivalence relation on co, each equivalence class finite, then for 
some i, E I Ai is the equality, 

(h )  ida. is the ideal generated by {co\Ai: i < cox }; moreover, for every A ~ idd. 
for unboundedly many i < col, Ac~Ai = O, 

( i )  for n :~ m for uncountably many i, n E A i & m q~Ai, 
( j )  d .  is a maximal independent family. 

Proof. Straightforward. []  

3 The iteration 

3.1 Theorem. (2 ~~ = N1, 2 ~' = N2, ~{3<N2: cf~=N1}). There is a forcing notion P such 
that: 

( i )  P is proper of cardinality N 2 satisfying N 2 - e.c. 
(ii) Forcing with P preserves cardinalities and cofinalities, VP~ 2 ~~ M E. 

(iii) In V p, u = N 2 ~ N I = i .  

Remark. We prove more on V P. 

Proof. Let (di, Ai) (i<coi), ~ .  be as in 2.3. We define a CS iteration 
= (P~, Qp: ~--< co2, fl < co2), each Q~ of the form Q~, /p a P~-name of a maximal 

ideal on co (containing all finite subsets of co) such~that: 

(*) /f in VP~ / is a Po~2-name of a maximal non-principal ideal on co 
then for some ~,/~ =/" .  

This is possible as O{~<~,: ~1(~)=~1} holds. Let P- -P~ , .  
Now each Q~ is proper (1.13) of cardinality N1, for ~<NE[~-p "CH" , P~ has a 

dense subset of power N1 (proved by induction on ~ < co2) hence ([-Sh-b] or [-Sh-f, 
III]) P - - P , ~  satisfies (i). Now (ii) follows. (2s~ N1, as each Q~ adds a new real.) 

Now u > N ,  by (*) above and 1.5, hence (as 2~~ l l=N 2. We are left with 
proving i - -N, ;  of course, it suffices to prove that d .  is a maximal independent 
subfamily of ~(co). 

Now we shall prove for ~__< (D E the following four statements; clearly | (for 
~--co2) gives the maximality of ~r and thus finishes the proof of 3.1: 

| in V ~'~, for every sequence <%: n < co) ~ V e of ordinals, and 
f :  co-.co diverging to infinity, f from V, there is (w,: n < co) ~ V 
such that: A z , ~ w ,  and Iw.l__<l +f(n).  

n 

(This is "P~ has the Sacks property" which each Q~ satisfies by 
1.11, and P~ satisfies by the preservation theorem [Sh-f, VI, 
Sect. 2] (or [Sh-b, V4.3] -where  we use also co-properness there, 
but it holds here; or see [-Sh326, Appendix 2.4]).) 

| in V P~, for every dense open A____~ there is B such that: 
B ~ V, B__c A, B dense open subset of ~ > co (we can replace o~ > co by 
e.g. ~>2 or ~ 1}). 
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To show that each individual Q~ has this property, let p e Qx, p I~-"d =c ~ >co is 
dense open". We follow the proof of 1.1 t, but in point (h) we require now that for 
some fixed enumeration (~o,: n < co} of the basic open neighborhoods of ~> c0: 

p,+ll[--"v,C=A_" for some basic open v,c=~, (not a name!). 

This can be achieved as follows. Given q,,+l, fix an enumeration 
(hi: i < 2  "+re+l} of all he  ( . . . .  ){-1,  1}. Define conditions P,,+I i such that q,+l 

[ h i ]  - i + 1 - ' i ~ " <n+m+lp,+l ,~<n+.,+lp,+l , /+l  and pn+l,iEF- v, __CA , where the v, s are basic 
open neighborhoods such that v/+l_c v~ and v ~ = ~0. This is possible since A is 

- -  . 2 n + m + l  
dense open. Then put P~+I =Pn+l,2 . . . .  1_1, aria %=~n  . 

The property just shown for every individual Q~ is preserved under CS 
iterations by [Sh-f, XVIII, 3.7] or [Sh-f, VI, 2.x]. 

| every member of (id%) v~" is included in a member of (ida,) v . 

Why? It follows by | and the definition of id~ - note that if 

A eid.,e, in V v~ then for some i<co~, A eid~,~ [see 2.1(6)], now 
letting d i={Bn:n<co} ,  if Ae id~ ,  then ,~h: for some n, 
h: {B 0 .. . . .  B,_ 1 } ~ { - 1 ,  1} and we have Ac~dl =0} is open and 
dense, hence it includes some dense open [in FF(~r ] set y__c {h: 
for some n, h : {Bo , . . . ,B ,_ t } - - , { -1 ,1}}  from V, let 
AY = h~r ~ (CO\~r SO A Y e If, A r ~ ida, = ida. and A = At.) 

4 Pz * h* | in V , for each h e F F ( d , )  for every A___ ~r either A 
includes a member of (fil~,) r + d~* (see definition below) or A is 
disjoint to some ~r h*C_heFF(~r where (fild)V+~r * 
= {X ____ co: there is - * ~ ' A ~(fil~.) v such that Ac~r  h __cX}. 

Note: that by @~, | is equivalent to 

| in V "- for each h*e FF(~r for every A__c~r h* for some h, 
Ac~A.=O or ~'.__A. h* c= h ~ FF(sJ,)  and h h 

[Why? Clearly | =~ | So assume | and we shall prove | 
so let h * e F F ( ~ , ) .  If for some h,h*C=heFF(~r we have 

h Ansr =0  then the second possibility in the conclusion of | 
holds. If there is no such h, then (by @5 applied to h) for every h, 
h,  c_ h ~ FF(~r there is h' such that: h c__ h' e FF(~r and ~r ____ A. 
So ~r belongs to (ida,) v'~ hence by @3 we know ,.egch*\A is a 
subset of some A' e(id~.) v which is as required in the first 
possibility of the conclusion of | 

We prove @~ by induction on ~. For notational simplicity let h*= 0. 

First case: e = 0  - by 2.3, part (e). 

Second case: ~ = f l +  1. We work in V P". 
So let p e Q~,, A___ co a Qt~-name of a subset of co, p forces A is a counterexample. 

By 1.2(2) without-loss of generality p is trivial; i.e. E ~ is equality on co (replacing/~ 
by some I alE ) and by 1.11 without loss of generality from roL" ~n we can compute 
A- c~(n + 1). 

n [ e l  " " ' " I f forsomcQ~ {1, -1} ,  n<co, Yo=:{m:p I~-,,, m ~ A  } m n o t m f i l ~  (wecan 
use pte] as p IS trivial); then note: Y~ e V P' and VP" satisfies the lnducnon hypothesis 
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so apply it to YQ, but  the first possibility in 0 4 fails Hence there is h c FF(sr for 
i h [Q] - h ~ , ,  " wh ch d , ~ Y o = 0 ,  so p I~- d , c ~ A = 0  as reqmred. So assume that  there ~s no 

such 0. Remember  ~ - 1} = U "{ - 1,1}. 

N o w  for each r ~ o, > { 1, - 1 } and m c Ye there is q = q~,,, where ptQJ < q ~ Qzp such 
i " m  ~ Z "  that  q t-  ~ ; by an assumption in the beginning of the second case, there is 

V-m, 0 ~ % , , ~ ' > { 1 , - - 1 }  ( ~  means being an initial segment) such that  
pY;,,"l l~ e, /"m e d". Let  n: co--co be defined by (note: ~gVo, m>=Eg~) 

h(n)---Max[{n+ 1}u{dg(Ve.m): ff ~"-->{1, - 1}, m<=n, mE Y~}]. 

So by |  and 2.3 (h), for each 0 c ,o> {1, - 1} there is i(r c o)1 such that  A~(o)c= Yo" 
So for some i (*)<col  for every i>i(*), /~ A i c * Y  o. Let f : c o ~ c o  be such 

eel>{1, -1} 
that:  /k h(n)<f(n) and for 0 c "{1, - 1}, n < co, Ai(,)\ Y~ C f(n);  there is such f e V e", 

n 
hence such f c  V(by | Choose  by induct ion on f < co, nt c A~(.)u {0} as follows: 
n o = 0, he+ 1 is the first n e Ai(,) such that  n > ne and A f(m) < n (possible as Ai(,) is 

m--<n~ 

infinite). Define an equivalence relation E ~ on co: mE~ iff V(m, k ~ [n3e, n3e+ 3)). 
e 

This is an equivalence relation on co with each class finite, and E ~ c Vas f ~  V. So by 
2.3(g) there is il, i ( * ) < i l < c o t  such that  IAhn[n3e, n3e+3)l<l for every ~. 

1 1 Define an equivalence relation E on A~: mE k iff r~, k c A(~ and [m = k v k < m 
< f(k) v m < k <= f(m)].  E1 is an equivalence relation by the defining proper ty  of il. 
Easily E I ~  V, each El-equivalence class has at most  two members.  Define an 
equivalence relation E 2 on co: rnE2k iff m = k or mElk. So again applying 2.3 (g) for 
some i2 with il < i2 < co, we have: each E2-equivalence class contains at most  one 
member  of Ai~. By 2.3(h), without  loss of generality Ai~C=(Ai(.)r~Ah)k[O,f(O)]. As 
we could rename i(*) a s  i 2 ,  without  loss of generality: 

n ~ Ai(,)k) { 0} ~ f(n) < Min [Ai(.)k(n + 1)]. 

Let  <k(n): n<co> list A. .)u{0},  and for 0zk("){l , --1} let vQ be such 
that O<~voek(n+2){1,--l}, pt~[?_ 'k (n+l)cA" .  It is easy to check % exists: 
k(n+l )eA~ as Ai(.)\YoC=f(k(n))<k(n+l) and k(n+l)eA. . ) ,  and (g(Vo, k(.+l) ) 
< h(k(n + 1)) < f(k(n + 1)) < k(n + 2), so any v, v~, k(., + 1)~ V e ~(" + 2){ 1, -- 1 } will be as 
required. 

N o w  if B = co, satisfies [~, m c B & r # m ~ [ # -  ml > 23 and, [ r  B ~ ( >  2], then 
we can define ps which is potent ial ly  an element of Q~, (and > p), as follows: 

(a) D o m  (E v') = co\ U { [k(n - 1), k(n + 1)): n c B}, 
(b) E pB is the identity, 
(c) HV"(i) = ~i for i c D o m E  p', 
(d) if ( e co\Dom(EPB), so for some n c B, k ( n -  1) < ( < k(n + 1) and we want  to 

define 

H(~) (0) = ve r k(,- ~)(e) 

but  some 0(m), m < ~ should be computed  by H(~), so we define H(#) by induct ion 
on #, naturally. Let  us do it more  formally: Suppose k ( n - 1 ) < ( < k ( n + l ) ,  and 
H(m) has been defined for m < ~. To  define HW[xi: i c A vB] (the xi again represent  
just  minus one's and one's), find 

0 = <..., xi . . . .  , HP"(j) [ .... x~,...3 . . . .  >i~k(n- 1 ) c ~ D o m E -  , 
j~k(n- 1)\DomEP 
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and let 

Easily: 

(*) 

HP~[xi: i ~ A p~] = v~ Ik(, - ~)(~). 

if U [ k ( n - 1 ) , k ( n + l ) ) e l a  then p<pneQ~.~ and 
n e B  

Pn J~-oz~"{k(n): n e B} ~ d " .  

So it suffices to find B__Co such that: ~) [ k ( n - l ) , k ( n + l ) ) e l a  and 
{k(n): n e B } e f i l ~ ,  or just for some heFF(~r {k(n): nEBo}ef i l~ .+~r  h 
(remember @~). 

As in the paragraph above for some Bo=Cco, {k(n):nEB}Efild. ,  and 
[m, n ~ Bo & m ~ n =:- Im-  nl > 2]. We can find contradictory h~, h 2 ~ FF(~r so 
~,h~n~l,h~=0 SO without loss of generality ~r SO B={k(n): neath, ~ and 
n ~ Bo} is as required. [Note that actually (g(vo.m) = max {m, (g~} is O.K.) 

Third case: ~ limit: By 3.2 below applied with e, 0 I~, (fil~) v, {CO\~r h e FF(~r 
here standing for 6, Q, D, F there. []3.t 

3.2 Lemma. Suppose 
(a)  D is a family of non-empty subsets of co, containing the co-bounded subsets, 

closed under (finite) intersection and for every countable ~ c= D for some A ~ D we 
have /~ AC=*B; we denote by [D] the filter D generates, 

Be~3 

(b )  F is a family of  subsets of  co, X ~ F =*. X ~ [D], 
( c ) D is Ramsey ; i.e. if ( A,: n < co) is a partition of co, co\A n ~ D then we can find 

k ,~A , ,  {k,: n<co} ~D,** 
(d)  if Xr Xq~[D] then for some A ~ F ,  XC=*A, 
(e)  if XC=co and Xc~A=O for some A ~ D  then XC=B for some BeD.  
I f  Q = (P~, Qp: ~ <_ b, fi < 6)  is a CS proper iteration o~ ~og-bounding proper 

forcing notions, such that  for a < 6, [F-e,"if X c= co, X q~ [D] v ~ then for some A ~ F, 
X C=* A" [i.e. (d )  holds in V P~] then this holds for a=6.  

Proof. Also here we could have used the general preservation theorems of [Sh-f, 
XVIII, Sect. 2] (see 3.11 there). 

Let p ~ P~, p [F-"X ~ co", it suffices to find q, p _< q ~ P~ and either A ~ F such that 
~D, qI[-p~ Ac= X .AseachP~ q I~-P~"X __C* A" or A " * " (~ < 6) is '~ (by the 

preservation theorem [Sh-f, VI, Sect. 2], proof of | in 3.1), [D] is a Ramsey filter 
in V r" for a<6 .  

For sufficiently large X, let N<(H(z) ,  ~, <*) be countable such that p, X, F, D, Q. 
belong to N. We can assume that for no ct ~ 6c~N and p' satisfying p <p'~ NnP~  
and q e P~ such that p' Ia < q, q is (N, P~)-generic and G~ c p~ generic over V such 
that q ~ G~ do we have in V [ G j  

{n: p' [~-/,~/~="n r X"} r [D] vtG=] 

(as in V[G,], (d) still holds). 

** Equivalently in the following game player I has no winning strategy: I chooses A n ~ [D], II 
chooses k.eA.; player I1 wins the play if {k.: n<co} ~ [D]. The filter fil~, has a base linearly 
ordered by ~* into order type ~o*, and is therefore a p-filter. It is also a q-filter by 2.3(g). It is well 
known that a filter is Ramsey iff it is simultaneously a p-filter and a q-filter 
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Without loss of generality 5=co, Xn{n} is a P.-name above p (more 
exactly, above p[n) (as in [Sh-b] or [Sh-f, III]). We can find (pO: d<co)eN,  
(ke: d < c o ) ~ N ,  o . . . .  Pe [[-eo, kee X~ , P~ < P~ I e Po,, {ke: d <co } eD  (use the game). 

Let A* e D be such that (V A ~ D nN)  [A* __c* A] and A* __c {ke: g < co}. 
We define by induction on n, p., q. such that: 
(a) q.eP. ,  q.+ ~ In=q., q. is (N.,P.)-generic, 
(b) p. is a P.-name of a member of P~onN, 
(c) p,<q,,  
(d) P,<P,+a, 
(e) if q, EG, Z=P,,, G, generic over V, then in V[G,] we can find 

(p}: d<CO)EN[G,]n(Pa/G,), p,[G,]<p~<p~+l , {pJ: d<co}c=P,o/G,, and for 
some B, e D nN ,  p~ I~-p~/~,"B, c~d ~ Xn#" ,  and A* = B,. 

If we succeed, [Jq,+~[{n}~P~ force ~X2A*. (Why? By our assumption, 
n 

P, + l [G, + 1] decides the truth value of "n ~ X". If n e A*, then the existence o.  r p,, + + ~ 
and (N, P,+ 0-genericity of q,+ 1 assure us that no q' > q can force n not to be in X. 
The p~ for n 4: ( are needed only to keep the inductive argument going.) For  n = 0 - 
we have taken care of it choosing pO, A*. So let us do the induction step and work in 
V[G,] (q, ~ (i, c__ p, ,  G, generic over V). 

So (p~: Y < co) ~ N[G,] is defined. Working in V[G,] Q" we can find, for each d, 
(p~e: re<co), -"< -" e< .,e X n m _  Y~ rim, Ye'~ (use D Pc=Pro =Pm+l in P,o/G,+l,p~elt - ' ' _  ~_ n D" 
is Ramsey); so there are Q,-names for them, ~", (p~;e: m <  co). Clearly without 
loss of generality those Q.-names belong to N[G,]. Hence, for d<co there is 
p',,e e Q,nN[G,], p~ < p',,e e po]G,, p',,e forces ~" = Y~" (so is as above), so without 
loss of generality (P',,e, Y~": d < c o ) e N [ G , ] ,  and there is Y e D n N ,  /~ Yc=*Yt". 

e 
Necessarily, A*=c*Y. Note: Y~"nd=Bnd____A*r~Y, also the function h:co~co, 
defined by h( f )=Min{n:  n > d  and sup(Y\Y~")<n} belongs to N[G,]. As D is 
Ramsey, for some {ki:i<co}eDc~N[G,], Ah(ki)<ki+l, so for some i*, 

i 

[-i*=< k ~ A*=~ (k,h(k)) hA* = 0] (we use the forcing being ~co-bounding to get D in 
N rather than in N[G,]). So for some d, A*__c Yf and we can continue. Choose 
q, + ~ e p, + ~, q, + a In = q,, q, + l(n) e Q, is (N[G,], Q,[G,])-generic and above p',,e and 
is as required. ~3.z 
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