ON CO- κ -SOUSLIN RELATIONS[†]

ΒY

SAHARON SHELAH

ABSTRACT

This is a continuation of Harrington and Shelah [3]; however, the contents of this paper are self-contained.

TABLE OF CONTENTS

§1.	On the density of linear ordering [We prove: if \leq is a co- κ -Souslin relation which defines a quasi-linear order on \mathbb{R} (even after adding a Cohen real) <i>then</i> either there is a perfect set of pairwise disjoint intervals, or (\mathbb{R} , \leq) has a dense subset of power $\leq \kappa$]	139
§2.	Generalizing the model theory [We try to phrase a general theorem replacing quasi-linear order by other structures]	143
§3.	Variants and consequences	146
§4.	Subsets of uncountable cardinals [We look at parallel problems, replacing \mathbb{R} by $\mathscr{P}(\chi)$]	148
§5.	A consistent counterexample [We prove that the condition "even after adding a Cohen real" is necessary]	149
§ 6.	More on partial order	151
	References	152

§1. On the density of linear ordering

THEOREM. Suppose P is a co- κ -Souslin relation (on \mathbb{R}) which is a linear order (so we shall denote it by \leq) even after adding a Cohen real.

Then either (\mathbb{R}, \leq) has a dense subset of power $\leq \kappa$ or there is a perfect set of pairwise disjoint intervals.

[†] This research was partially supported by the Israel – US Binational Science Foundation. Received March 20, 1983 140

S. SHELAH

REMARK. In summer 1979, Friedman and Shelah (see [1]) proved this for P a Borel relation. Shelah proved that (\mathbb{R} , \leq) cannot be Souslin: If it is, by forcing by the set of intervals, we made it to have a strictly decreasing sequence of intervals (a_i, b_i) ($i < \omega_1$). So { $(a_{3i}, a_{3i+2}): i < \aleph_1$ } is a set of \aleph_1 pairwise disjoint intervals. But then, by the completeness theorem for $L_{\omega_1,\omega}$ (Q) (see Keisler [4]), this holds in the original universe (we use hereby the absoluteness). So assuming (\mathbb{R}, \leq) has no countable dense sets, it has \aleph_1 pairwise disjoint intervals. This Friedman uses to prove the Theorem for P Borel, adapting Harrington's proof of Silver's [6] theorem, using "there are \aleph_1 disjoint intervals" as a "bigness" property.

That proof does not seem to apply for the present theorem.

This proof uses the method of [3] (with choice) but is represented fully.

If you have difficulties, read \$2 here and/or [3] and they may be explained in more detail there.

PROOF. First we choose by induction on $i < \kappa^+$, reals a_i , b_i such that (*) $a_i < b_i$, and for every j < i, $a_j < b_j \le a_i < b_i$, or $a_i < b_i < a_j < b_j$ or $a_i < a_j < b_j < b_i$ and

(**) if there are κ^+ pairwise disjoint (closed intervals) then $\{(a_i, b_i) : i < \kappa^+\}$ are such intervals (i.e. for i < j, $b_j < a_i$ or $b_i < a_j$).

Why can we do this? If we cannot choose a_i , b_i , let $A = \{a_i, b_j : j < i\}$, then in every Dedekind cut of A, there is at most one element of $\mathbb{R} - A$ [by the order \leq ; more exactly, one equivalence class modulo $x \leq y \land y \leq x$], so (\mathbb{R} , \leq) has a dense subset of power $|2i| \leq \kappa$.

Taking care of (**) is trivial.

Let $f: {}^{\omega <} \kappa \to$ "the family of open subsets of $\mathbb{R} \times \mathbb{R}$ " be such that

$$\neg x P y \equiv (\exists \eta \in {}^{\omega}\kappa) \bigwedge_{n < \omega} [\langle x, y \rangle \in f(\eta \restriction n)]$$

Extend $(H(\kappa^{++}), \in)$ by Skolem functions and get a model \mathfrak{C} , and let $N < \mathfrak{C}$ be a countable elementary submodel such that $g, h, f \in N$ where $g, h : \kappa^+ \to \mathbb{R}$, $g(i) = a_i$, $h(i) = b_i$.

We define a forcing notion (t ranges over the rationals, $\bar{y}_i = \langle y_{i,i} : i < \omega \rangle$, but the formula φ involves only a finite initial segment)

$$Q = \{\varphi(\mathbf{x}_{t_0}, \bar{\mathbf{y}}_{t_0}, \mathbf{x}_{t_1}, \bar{\mathbf{y}}_{t_1}, \dots, \bar{c}):$$

$$t_0 < \dots < t_n \text{ in } \mathbf{Q}, \ \bar{c} \in N, \ \varphi \vdash_l ``\mathbf{x}_l \text{ an ordinal } < \kappa^+ ``,$$

and $\mathfrak{G} \models \exists^{\kappa^+} \mathbf{x}_{t_0} \exists \bar{\mathbf{y}}_{t_0} \exists^{\kappa^+} \mathbf{x}_{t_1} \exists \bar{\mathbf{y}}_{t_1} \cdots \varphi\},$

the order is $\varphi < \psi$ if $\psi \vdash \varphi$; we shall omit the parameters from N.

Clearly Q is equivalent to Cohen forcing, and we can naturally define a Q-name \underline{M} of an elementary extension of N, with set of elements $\{x_i, y_{i,l} : l \in \mathbb{Q}, l < \omega\}$ in which "sets of power $\leq \kappa$ " are not enlarged.

A. FACT. If $\mathfrak{G} \models (\exists^{\kappa^+} x < \kappa^+)\varphi(x, \bar{c}), n < \omega, \bar{c} \in \mathfrak{G}$ then $(\exists^{\kappa^+} x_1 < \kappa^+)\cdots$ $(\exists^{\kappa^+} x_n < \kappa^+) [\wedge_{l=1}^n \varphi(x_l, \bar{c}) \wedge \text{the intervals } [g(x_l), h(x_l)] (l \le n) \text{ are pairwise disjoint]}.$

If not, then easily there is (in \mathfrak{S}) a set $A \subseteq \kappa^+$, $|A| = \kappa^+$, $(\forall x \in A)\varphi(x, \bar{c})$ such that for no $x_1 < \cdots < x_n$ in A are the intervals $[g(x_i), h(x_i)]$ $(l \leq n)$ pairwise disjoint. Let $\{x_i : i < m\} \subseteq A$ be such that $\{[g(x_i), h(x_i)] : l < m\}$ are pairwise disjoint, and m is maximal (hence < n), so for every $z \in A' = {}^{det}A - \{y : (\exists l)y \leq x_i\}$ for some $i(z) \in \{0, \cdots, m-1\}$ the interval [g(z), h(z)] is not disjoint to $[g(x_{i(z)}), h(x_{i(z)})]$. By the choice of the (a_i, b_i) 's (see (*)), as $x_{i(z)} < z$,

$$g(x_{i(z)}) < g(z) < h(z) < h(x_{i(z)}).$$

Clearly $|A - A'| \leq \kappa$ hence $|A'| = \kappa^+$, hence for some $l_0 < m$

$$B = \{z \in A' : i(z) = l_0\}$$

has power κ^+ . For $z_1 < z_2$ in B the intervals $[g(z_1), h(z_1)]$, $[g(z_2), h(z_2)]$ cannot be disjoint [otherwise $\{x_l : l < m, l \neq l_0\} \cup \{z_1, z_2\}$ contradict the maximality of m] hence (by (*) again)

$$g(z_1) < g(z_2) < h(z_2) < h(z_1),$$

so $\{g(z): z \in B\}$ is strictly increasing; but this means there are in $(\mathbb{R}, \leq) \kappa^+$ pairwise disjoint closed intervals, and so we could have chosen the (a_i, b_i) 's to be pairwise disjoint; in this case by (**) the Fact A is trivial.

B. FACT. If $\varphi(x_{i_1}, \bar{y}_{i_1}, \dots, x_{i_n}, \bar{y}_{i_n}) \in Q$, $t_1 < \dots < t_n < t_{n+1} < \dots < t_{2n}$ in \mathbb{Q} , and among any κ^+ ordinals $< \kappa^+$ there are i < j such that $\mathfrak{C} \models \Psi(i, j), m \in \{1, \dots, n\}$,

$$\theta = \varphi(x_{i_1}, \bar{y}_{i_1}, \cdots, x_{i_n}, \bar{y}_{i_n}) \wedge \varphi(x_{i_{n+1}}, \bar{y}_{i_{n+1}}, \cdots, x_{i_{2n}}, \bar{y}_{i_{2n}}) \wedge \psi(x_{i_m}, \bar{y}_{i_{n+m}}),$$

then $\theta \in Q$.

PROOF. We choose by induction on $\alpha < \kappa^+$, $N_{\alpha} < \emptyset$, $\alpha \subseteq N_{\alpha}$, $N \in N_0$, $||N_{\alpha}|| < \kappa^+$, $\langle N_i : i \leq \alpha \rangle \in N_{\alpha+1}$, for limit α , $N_{\alpha} = \bigcup_{i < \alpha} N_i$. For each α we can by induction on l = 1, n choose

$$\gamma_{l}^{\alpha} \in \kappa^{+} \cap (N_{n\alpha+l} - N_{n\alpha+l-1}), \qquad d_{l}^{\alpha} \in N_{n\alpha+l}$$

S. SHELAH

such that

142

$$(*)_{l} \vDash (\exists^{\kappa^{+}} x_{i_{l+1}})(\exists \bar{y}_{i_{l+1}}) \cdots (\exists^{\kappa^{+}} x_{i_{n}})(\exists \bar{y}_{i_{n}})\varphi(\gamma_{1}^{\alpha}, \bar{d}_{1}^{\alpha}, \cdots, \gamma_{l}^{\alpha}, \bar{d}_{l}^{\alpha}, x_{i_{l+1}}, \bar{y}_{i_{l+1}}, \cdots, x_{i_{n}}, \bar{y}_{i_{n}}).$$

Note that $(*)_0$ holds as $\varphi(x_{i_1}, \bar{y}_{i_1}, \cdots) \in Q$. So to choose for l we know $(*)_{l-1}$, then we can choose first γ_l^{α} (as $\exists^{\kappa^+} x_{i_l}$ and the relevant parameters are in $N_{n\alpha+l}$ as $N_{n\alpha+l-1} \in N_{n\alpha+l}$ so $N_{n\alpha+l-1} \cap \kappa^+$ is "considered" by $N_{n\alpha+l}$ as a bounded subset of κ^+) and then \bar{d}_l^{α} .

Lastly $\{\gamma_m^{\alpha}: \alpha < \kappa^+\}$ is a subset of κ^+ of power κ^+ , so as $\alpha < \beta \Leftrightarrow \gamma_m^{\alpha} < \gamma_i^{\beta}$, by a hypothesis for some $\alpha < \beta \models \psi(\gamma_m^{\alpha}, \gamma_m^{\beta})$. So

$$\mathfrak{G} \models \theta[\gamma_1^{\alpha}, \bar{d}_1^{\alpha}, \gamma_2^{\alpha} \bar{d}_2^{\alpha}, \cdots, \gamma_n^{\alpha} \bar{d}_n^{\alpha}, \gamma_1^{\beta}, \bar{d}_1^{\beta}, \cdots, \gamma_n^{\beta}, \bar{d}_n^{\beta}].$$

Now we can prove by downward induction on l = 1, 2n that

$$\mathfrak{C}\models \exists^{\kappa^+}x_{i_{l+1}}\exists \bar{y}_{i_{l+1}}\cdots \exists^{\kappa^+}x_{i_{2n}}\exists \bar{y}_{i_{2n}}\theta[\gamma_1^{\alpha},\bar{d}_1^{\alpha},\cdots,x_{i_{l+1}},\bar{y}_{i_{l+1}},\cdots].$$

We identify $r, M^{\perp} \models "r$ a real" with a true real r' s.t. [r'(n) = 0 iff $M^{\perp} \models "r(n) = 0$ "] if we identify \mathbb{R} with "2, or [r' > t iff $M^{\perp} \models r > t]$ for any $t \in \mathbb{Q}$.

C. FACT. In the forcing notion $Q \times Q$ we have two names M, M^L, M^R , one for each Q. Now for each $t, s \in Q$

 $\Vdash_{Q \times Q}$ "the intervals $[g(x_i), h(x_i)]^{M^L}$, $[g(x_s), h(x_s)]^{M^R}$ are disjoint".

PROOF. Otherwise there is a condition $(\varphi, \psi) \in Q \times Q$

 $(\varphi, \psi) \Vdash_{Q \times Q}$ "the intervals $[g(x_t), h(x_t)]^{M^{L}}, [g(x_s), h(x_s)]^{M^{R}}$ are not disjoint".

Let

$$\varphi = \varphi(x_{i_1}, \overline{y}_{i_1}, \cdots, x_{i_n}, \overline{y}_{i_n}), \qquad \psi = \psi(x_{s_1}, \overline{y}_{s_1}, \cdots, x_{s_m}, \overline{y}_{s_m})$$

and w.l.o.g. $t \in \{t_1, \dots, t_n\}$, $s \in \{s_1, \dots, s_n\}$ (as we can add to φ dummy variables). So let $t = t_{n(*)}$, $s = s_{m(*)}$. Choose $t_l, s_l \in Q$ $(n < l \leq 2n)$, such that

$$t_n < t_{n+1} < \cdots < t_{2n}, \qquad s_n < s_{n+1} < \cdots < s_{2n}.$$

By Facts A, B, $\varphi^* \in Q$ where

$$\varphi^* = \varphi^*(x_{i_1}\bar{y}_{i_1}, \cdots, x_{i_{2n}}, \bar{y}_{i_{2n}})$$

= $\varphi(x_{i_1}, \bar{y}_{i_1}, \cdots, x_{i_n}, \bar{y}_{i_n}) \wedge \varphi(x_{i_{n+1}}, \bar{y}_{i_{n+1}}, \cdots, x_{i_{2n}}, \bar{y}_{i_{2n}})$

 $\wedge \text{ [the intervals } [g(x_{t_{n(x)}}), h(x_{t_{n(x)}})], [g(x_{t_{n+n(x)}}), h(x_{t_{n+n(x)}})] \text{ are disjoint]}.$

Similarly we can show $\psi^* \in Q$ where

$$\psi^* = \psi(x_{s_1}, \bar{y}_{s_1}, \cdots, x_{s_n}, \bar{y}_{s_n}) \wedge \psi(x_{s_{n+1}}, \bar{y}_{s_{n+1}}, \cdots, x_{s_{2n}}, \bar{y}_{s_{2n}})$$

 $\wedge \text{ [the intervals } [g(x_{s_{m(x)}}), h(x_{s_{m(x)}})], [g(x_{s_{m+m(x)}}), h(x_{s_{m+m(x)}})] \text{ are disjoint]}.$

So $(\varphi^*, \psi^*) \in Q \times Q$ and let $G \subseteq Q \times Q$ be generic, $(\varphi^*, \psi^*) \in G_0$. As Q is equivalent to Cohen forcing also $Q \times Q$ is equivalent to Cohen forcing, hence by a hypothesis, in $V[G], \leq , \text{ i.e. } P$ (i.e. its definition) is still a linear order. Now for reals, i.e. in $\mathcal{M}^{L}[G], \mathcal{M}^{R}[G]$ we have two definitions of \leq : the one in V[G], and the one as an elementary extension of N. Now if $x \in \{L, R\}, r_1, r_2 \in \mathcal{M}^{x}[G], \mathcal{M}^{x}[G] \models r_1 < r_2$ in $\mathcal{M}[G]$ we can find a branch of ${}^{\omega > \kappa}$ which witnesses it, and clearly it continues to witness it in V[G]. But in $\mathcal{M}^{x}[G], \kappa \overset{\mathcal{M}^{x}[G]}{\subseteq} N$. So

$$I_{1} = [g(x_{i_{n(*)}}), h(x_{i_{n(*)}})]_{\sim}^{M^{L(G)}}, \qquad I_{2} = [g(x_{i_{n+n(*)}}), h(x_{i_{n+n(*)}})]_{\sim}^{M^{L(G)}}$$

are disjoint intervals (and they are intervals, i.e.

$$g(x_{i_{n+1}}) < h(x_{i_{n+1}}), \qquad g(x_{i_{n+n}}) < h(x_{i_{n+n}}))$$

Similarly

$$J_{1} = [g(x_{s_{m(\star)}}), h(x_{s_{m(\star)}})] \overset{M^{R[G]}}{\sim}, \qquad J_{2} = [g(x_{s_{m+m(\star)}}), h(x_{s_{m+m(\star)}})] \overset{M^{R[G]}}{\sim}$$

are disjoint intervals.

As $(\varphi, \psi) \leq (\varphi^*, \psi^*) \in G$, and by the choice of (φ, ψ) , the intervals I_1 , I_2 are disjoint. Using the natural automorphisms of $Q \times Q$, I_i is disjoint to J_j for i = 1, 2, j = 1, 2. But no linear order can have four such intervals.

D. FACT. There is a perfect set of pairwise disjoint intervals.

Easy by Fact B (we do not have to really construct generic sets, just enough to compute the branches of ${}^{\omega>}\kappa$ witnessing the κ -Souslin relation).

§2. Generalizing the model theory

(A) Looking at the proofs of the theorem on number of equivalence classes, non-existence of a monotonic ω_1 -sequence in a linear order, in [3] and the theorem of §1, we see that a large part is common. We try to catch this part, and phrase it here in a general way.

We do not try to see how much choice and which cardinals we need (i.e., can we replace ZFC by second-order arithmetic, etc.).

(B) We let \mathfrak{C} be an expansion of some $(H(\lambda), \in)$ (by countably many relations and functions). Let κ^* be a regular cardinal. Let $A^* \in \mathfrak{C}$ be a set, $I \in \mathfrak{C}$ an ideal of subsets of A^* , which is κ^* -complete, let $\exists^* x \varphi(x)$ mean

 $\{x \in A^* : \varphi(x)\} \notin I$. If not mentioned otherwise $I = \{B \subseteq A^* : |B| < \kappa^*\}$ and $A^* = \kappa^*$.

S. SHELAH

We choose a countable elementary submodel N of \mathfrak{C} . In formulas we suppress parameters from N.

We define a forcing notion Q whose members are the $\varphi = \varphi(x_{t_1}, \bar{y}_{t_1}, \dots, x_{t_n}, \bar{y}_{t_n})$ satisfying

(a) φ is a first order formula with parameters in N,

(b) each t_1 is a rational number and $t_1 < t_2 < \cdots < t_n$,

(c) $\bar{y}_{i_l} = \langle y_{i_l,0}, y_{i_l,1}, \cdots \rangle$ (we can replace it by a finite initial segment as φ is first order),

(d) $N \models \{(\exists^* x_{t_1})(\exists \bar{y}_{t_1})(\exists^* x_{t_2})(\exists \bar{y}_{t_2})\cdots(\exists^* x_{t_n})(\exists \bar{y}_{t_n})\varphi\};$ the order in Q is: $\varphi < \psi$ if $\psi \vdash \varphi$.

(C) If G is a generic subset of Q, we let M[G] be a model with universe $|N| \cup \{x_t, y_{t,i} : t \in \mathbb{Q}, l < \omega\}$ and G giving the complete diagram of M. Clearly N < M[G], and for all this it is enough that $G \subseteq Q$ is directed and not disjoint to countably many dense subsets of Q. Moreover if $a \in N$, $N \models$ "a has power $< \kappa^*$ " then $(\forall b \in M[G])$ ($[M \models b \in a] \Rightarrow b \in N$) (by the κ^* -completeness of I).

NOTATION. For any index τ let

$$Q^{\tau} = \{\varphi(\mathbf{x}_{i_1}^{\tau}, \bar{\mathbf{y}}_{i_1}^{\tau}, \cdots) : \varphi(\mathbf{x}_{i_1}, \bar{\mathbf{y}}_{i_1}, \cdots) \in Q, \, \bar{\mathbf{y}}_{l}^{\tau} = \langle \mathbf{y}_{l,l}^{\tau} : l < \omega \rangle\},\$$

 G^{τ} a generic subset of Q^{τ} .

 $M[G^{\tau}]$ is defined similarly. For $\varphi = \varphi(x_{t_1}, \bar{y}_{t_1}, \cdots) \in Q$ let

$$\varphi^{\tau} = \varphi(x_{i_1}^{\tau}, \bar{y}_{i_1}^{\tau}, \cdots).$$

Let $\bar{z}_t = \langle x_t \rangle^{\wedge} \bar{y}_t$; $\exists^* \bar{z}_t$ means $\exists^* x_t \exists \bar{y}_t$. Let \bar{s} , \bar{t} denote increasing sequences from Q; if $\bar{t} = \langle t_1, \dots, t_n \rangle$ then

$$\vec{z}_{\vec{i}} = \vec{z}_{t_1} \wedge \cdots \wedge \vec{z}_{t_n}; \qquad \exists^* \vec{z}_{\vec{i}} \text{ means } \exists^* \vec{z}_{t_1} \cdots \exists^* \vec{z}_{t_n}.$$

Let

$$\vec{z}_{t,i} = \langle x_{t,i} \rangle^{\wedge} \ \vec{y}_{t,i}, \quad \vec{y}_{t,i} = \langle y_{t,0,i}, y_{t,1,i}, \cdots \rangle, \quad \vec{z}_{\bar{t},i} = \vec{z}_{t_1,i}^{\wedge} \ \tilde{z}_{\bar{t}_2,i}^{\wedge} \cdots \wedge \vec{z}_{\bar{t}_{n},i}.$$

(D) We now describe the construction:

We shall define by induction on $k < \omega$, for every $\eta \in {}^{k}2, \varphi_{\eta} = \varphi_{\eta} (\cdots x_{t}, \overline{y}_{t}, \cdots)_{t \in U(n)}$, such that:

- (a) U(n) is a finite subset of Q,
- (b) $U(n) \subseteq U(n+1)$,
- (c) for l < k, $\varphi_{\eta} \vdash \varphi_{\eta \parallel}$.

Sh:202

We call the set of such $\bar{\varphi} = \langle \varphi_{\eta} : \eta \in {}^{\omega>2} \rangle$, Φ . A natural topology is defined on Φ .

We shall prove that various facts holds for "almost all $\bar{\varphi}$ ", i.e., for all but a first category set; later on we usually ignore the "exceptional" $\bar{\varphi}$'s.

(E) For $\bar{\varphi} \in \Phi$, $\eta \in {}^{\omega}2$ let $G_{\bar{\varphi}}^{\eta} = \{\varphi_{\eta \mid k} : k < \omega\}$.

It is easy to prove that for every η , $\bar{\varphi}$, $G^{\eta}_{\bar{\varphi}}$ is directed, and for every dense $D \subseteq Q$, for almost all $\bar{\varphi}$ for every η , $G^{\eta}_{\bar{\varphi}} \cap D \neq \emptyset$ (note the order of quantification).

(F) Hence for almost all $\bar{\varphi}$, $M[G_{\bar{\varphi}}^n]$ is as in (C) (for all $\eta \in {}^{\omega}2$). We denote the elements of $M[G_{\bar{\varphi}}^n]$ by $x_i^n, \bar{y}_i^n = \langle y_{i,l}^n : l < \omega \rangle$ to avoid confusion. Let $M_{\bar{\varphi}}^n = M[G_{\bar{\varphi}}^n]$. Note: if $M_{\bar{\varphi}}^n$ "says" x is a natural number or a real, then it really is (or at least we can consider it as such). Clearly if ψ is a κ -Souslin relation on reals, whose definition belongs to N, $\kappa < \kappa^*$, and $M_{\bar{\varphi}}^n \models \psi[r_1, \dots, r_n]$ then really (in $V) \models \psi[r_1, \dots, r_n]$ (note that $M_{\bar{\varphi}}^n \models x$ is in $w > \kappa$ " then $x \in N$ hence really $x \in w > \kappa$).

(G) Let ψ be κ -Souslin relations on reals, in N.

For almost all $\bar{\varphi}$ the following holds:

for arbitrarily large $k < \omega$, for every distinct $\nu_1, \dots, \nu_m \in {}^{k}2, \bar{t}_1, \dots, \bar{t}_m$ increasing and $\bar{t}_i \subseteq \{\pm l/n : l, n < k\} \cap U(k)$, for some $\psi' \in \{\psi, \neg \psi\}, f_1, \dots, f_m \in N$ function into \mathbb{R} (or ${}^{n}\mathbb{R}$)

$$\langle \varphi_{\nu_1}^1, \cdots, \varphi_{\nu_m}^m \rangle \Vdash_{Q^1 \times Q^2 \times \cdots \times Q^m} " \psi'(f_1(\bar{z}_{\bar{l}}), f_2(\bar{z}_{\bar{l}}), \cdots, f_m(\bar{z}_{\bar{l}m}))"$$

(for this the " κ -Souslinity" is not necessary).

(H) In (G)'s notation when $\psi' = \psi$ (for almost all $\bar{\varphi}$'s) if $\nu_l < \eta_l \in \mathbb{C}^2$ then $\models \psi[f_1(\bar{z}_{i_l}^{\eta_1}), f_2(\bar{z}_{i_l}^{\eta_2}), \cdots].$

PROOF. There is a $Q^1 \times Q^2 \times \cdots \times Q^m$ name η of $\eta \in {}^{\omega}\kappa$ which witnesses the satisfaction of ψ (for some specific $k, v_1, \cdots, \tilde{t_1}, \cdots$).

So it is sufficient that for arbitrarily large $l < \omega$

(*) if $\rho_1, \dots, \rho_m \in {}^l 2$, $\nu_l < \eta_l$ then for some $\eta \in {}^l \kappa$

$$(\varphi_{\rho_1}^1, \cdots, \varphi_{\rho_m}^m) \Vdash_{Q^1 \times \cdots \times Q^m} `` \underline{\eta} \upharpoonright l = \eta ``$$

and this holds for almost every $\bar{\varphi}$.

(I) Now we come to the point which in each application is the heart of the matter. So we assume (remember we can add to φ^i and ψ dummy variables)

$$(\varphi^1,\cdots,\varphi^m) \Vdash_{Q^1 \times Q^2 \times \cdots \times Q^m} " \psi(f_1(\bar{z}_{\bar{t}}^1),\cdots,f_m(\bar{z}_{\bar{t}}^m))",$$

S. SHELAH

 $\varphi_l = \varphi_l(\bar{z}_{\bar{l}}), \psi$ a conjunction of κ -Souslin and negation of κ -Souslin formulas for $\kappa < \kappa^*$. Then

(a) for every generic $G^1 \times \cdots \times G^m \subseteq Q^1 \times \cdots \times Q^m$, there are \bar{s}_i $(i < \omega)$, $\bar{s}_0 < \bar{s}_1 < \cdots$ such that

(a) $M[G^{i}] \models \varphi^{i}[\bar{z}_{\bar{s}_{m+i}}]$ when $j < \omega, i = 1, m$;

(b) if $j_l \equiv l \mod m$ for $l = 1, \dots, m$ then $\models \psi[f_1(\bar{z}_{\bar{s}_{l_i}}^1), \dots, f_m(\bar{z}_{\bar{s}_{l_i}}^1)];$

(c) moreover if $j_l < \omega$, $j_l = l \mod m$, and i_1, \dots, i_m is a permutation of $\{1, \dots, m\}$ then

$$\models \psi[f_1(\bar{z}_{\bar{s}_{j_i}}^{i_1}), \cdots, f_m(\bar{z}_{\bar{s}_{j_m}}^{i_m})].$$

REMARK. Note that $f_i(\bar{z}_{\bar{s}_i}^i)$ is computed in $M[G^i]$.

(β) Suppose in addition that $I^* = \{A \subseteq A^* : |A| < \kappa^*\}, r_i(\xi) \in \{1, \dots, m\}$ for $\xi \in \{1, \dots, j\}, \theta_l = \theta_l (\dots x_{l_i}, \overline{y}_{l_i} \dots)_{i=1, nmj} (l = 1, m)$ are such that:

(*) if $a_1^{\alpha,l}, \bar{b}_1^{\alpha,l}, \dots, a_n^{\alpha,l}, \bar{b}_n^{\alpha,l} \in \mathbb{S}$, $\mathbb{S} \models \varphi_l[a_1^{\alpha,l}, \bar{b}_1^{\alpha,l}, \dots]$ (for $\alpha < \kappa$), the $a_{\beta}^{\alpha,l}$ ($\alpha < \kappa, \beta = 1, n$) are distinct, then for each *l* for some $\alpha(1) < \dots < \alpha(j)$

$$\models \theta_l [\cdots a_{nm\xi+n\zeta+r}^{\alpha(m\xi+\zeta),\zeta} b_{nm\xi+n\zeta+r}^{\alpha(m\xi+\zeta),\zeta} \cdots]_{\xi=1,j;\xi=1,m;r=1,n}$$

Then for some generic $G^1 \times \cdots \times G^m \subseteq Q^1 \times \cdots \times Q^m$ s.t. (in addition to (α) (a) and (α) (b)):

(d) for $l = 1, \dots, m$

$$\models \theta_{l} \left[\cdots x_{nm\zeta+n\zeta+r}^{m\xi+\zeta\zeta}, \bar{y}_{nm\zeta+r\zeta+r}^{m\xi+\zeta\zeta} \cdots \right]_{\substack{\xi=1,j\\ \zeta=1,m\\r=1,n\\r=1}}$$

The proof is like that of (2) (B)

§3. Variants and consequences

(A) Here we remark on various variations of \$2.

(A1) We can use the quantifier \exists^* directly (and not the ideal): so instead of $\mathscr{P}(A^x) - I$ we can have any family of subsets of A^* such that if (\exists^*x) $[\varphi_1(x) \lor \varphi_2(x)]$ then $\exists^*x \varphi_1(x)$ or $\exists^*x \varphi_2(x)$.

(A2) In [3] we use an M generated by one element x; here it is generated by $\{x_t \bar{y}_t \in \mathbb{Q}\}$ (but use more the Skolem functions, which are not needed here). I do not see any difference (the phrasing of §2, (I) will be a little different).

(A3) In (I)(β) instead $I^* = \{A \subseteq A^* : |A| < \kappa^*\}$; if $A^* = \kappa^*$ we can also use $\{A \subseteq \kappa^* : A \text{ not stationary}\}$. Also for any I^* we can just demand that the suitable conditions exist.

(A4) We can phrase §2 as a partition theorem.

(A5) In §2, (I), instead of discussing $V^{Q^1 \times \cdots \times Q^m}$, we can look at a game in which the players build $G^1 \times \cdots \times G^m \subseteq Q^1 \times \cdots \times Q^m$, each giving a finite approximation. The outcome of a play is determined by the satisfaction of some $\psi(\bar{z}_{i_1}^1, \cdots, \bar{z}_{i_n}^m)$. We shall require that such games are determined.

(B)(a) How do we use \$2? We want to find a perfect set of reals satisfying something.

We define A^* , I^* (usually the standard one). And take a $\bar{\varphi}$ which is like almost all $\bar{\varphi}$'s. Then we want to show that $\{x_0^{\eta} : \eta \in {}^{\omega}2\}$ (or something similar) is as required. We assume not, and use (I) ((α) or (β)) to show that in $V^{Q^{1} \times \cdots \times Q^{m}}$ there are some reals satisfying some κ -Souslin and co- κ -Soulsin formulas $\kappa < \kappa^*$. $Q^1 \times \cdots \times Q^m$ is equivalent to Cohen forcing, and so in $V^{Q^1 \times \cdots \times Q^m}$ supposedly we got something forbidden by a hypothesis in the specific theorem we are trying to prove.

(B)(b) Instead of assuming that even after adding Cohen reals there are no reals r_1, \dots, r_n satisfying $\bigwedge_{i=1}^m \psi_i[r_1, \dots, r_n] \land \bigwedge_{i=m+1}^n \psi_i[r_1, \dots, r_n]$ ($\psi_i \kappa$ -Souslin), we can demand

(*) if f_1, \dots, f_n define ψ_1, \dots, ψ_n , r a real, then in V there is a real generic over $L[r, f_1, \dots, f_n]$. This holds if \mathbb{R} is not the union of κ nowhere-dense sets.

If each φ_i is Σ_2^1 hence \aleph_1 -Souslin, we can omit f_1, \dots, f_n in (*), and then, of course, $\aleph_1^{L[r]} < \aleph_1$ is sufficient.

(C) THEOREM. If \leq is a co- κ -Souslin relation on \mathbb{R} , (\mathbb{R} , \leq) is a quasi-linear order (even after adding a Cohen real), then there is no (strictly) increasing sequence of length κ^+ .

REMARK. This essentially appears in [3] (for $\kappa = \aleph_0$); $x \leq y \land y \leq x$ may be here a non-trivial equivalence relation.

PROOF. We use (2) with $\kappa^* = \kappa^+$, $A^* = \{r_i : i < \kappa^*\}$ strictly increasing, *i* and the definition of \leq is in *N*, *I*^{*} standard. Let $\bar{\varphi} \in \Phi$ be as usual.

So for $\eta \neq \nu$, x_0^{η} , x_0^{ν} are comparable, so w.l.o.g. $x_0^{\eta} \leq x_0^{\nu}$; so $\neg (x_0^{\nu} < x_0^{\eta})$ hence for some $(\varphi_1^1, \varphi_2^2) \in Q^1 \times Q^2$, $(\varphi_1^1, \varphi_2^2) \Vdash \cdots \neg (x_0^2 < x_0^1)^{\nu}$ (as it cannot force the negation) hence $(\varphi_1^1, \varphi_2^2) \Vdash_{Q^1 \times Q^2} \cdots x_0^1 \leq x_0^{2\nu}$. By §2 (I)(α)(b) for some $(\psi^1, \psi^2) \in Q^1 \times Q^2$ and $t_0 < t_1$, $(\psi^1, \psi^2) \Vdash_{Q^1 \times Q^2} \cdots x_{t_1}^1 \leq x_{t_0}^2 \wedge x_{t_1}^2 \leq x_{t_0}^{1\nu}$. But we know that

$$(\psi^1, \psi^2) \Vdash_{Q^1 \times Q^2} "x_{t_0}^1 < x_{t_1}^1 \land x_{t_0}^2 < x_{t_1}^2"$$

So (ψ^1, ψ^2) forces that $x_{t_0}^1 < x_{t_1}^1 \le x_{t_0}^2 < x_{t_1}^2 \le x_{t_0}^1$, contradiction.

(D) THEOREM. Suppose $M = (\mathbb{R}, \dots, f_i, \dots)_{i < \omega}$ is an algebra, d(-,-) a semimetric on \mathbb{R} . Suppose each relation (τ a term of L(M)) $d(x, \tau(y_1, \dots, y_n)) < \varepsilon$ (ε rational) is κ -Soulsin. If \mathbb{R} has no dense subset of power κ then for some $\varepsilon > 0$ $(\varepsilon \in \mathbb{Q})$ there are $x_n \in \mathbb{R}$ $(\eta \in \mathbb{Q})$, such that the distance of each x_n to the subalgebra generated by $\{x_{\nu} : \nu \in \mathbb{C}^{2}, \nu \neq \eta\}$ is $> \varepsilon$.

We assume, of course, that adding a Cohen real does not change the hypothesis.

REMARKS. (1) We can apply it to an algebra by using a trivial d: d(x, y) is 1 if $x \neq y$, 0 if x = y. This case, for Borel relations, appears in Friedman [1].

(2) This also holds for a metric space (no functions), also for Banach spaces (operations x + y, x - y, qy ($q \in \mathbb{Q}$)), and we get $d(x_{\eta}, \operatorname{Sp}\{x_{\nu} : \nu \in \mathbb{Q} - \{\eta\}) \ge \varepsilon$ (clearly adding rx ($r \in \mathbb{R}$) does not change), and we can replace ε by 1.

PROOF. Let $\kappa^* = \kappa^+$; as \mathbb{R} has no dense subset of power κ , there is $A^* = \{x_i : i < \kappa\}, d(x_i, x_i) > \varepsilon_i \text{ for every } i < i, \text{ w.l.o.g. } \varepsilon_i = \varepsilon.$

Let $\bar{\varphi}$ be as usual, $\eta_1, \dots, \eta_n \in \mathbb{Z}$ (distinct), τ a term. We shall show $d(x_0^{\eta_n}, \tau(x_0^{\eta_1}, \dots, x_{n-1}^{\eta_{n-d}})) \ge \varepsilon/2$. Otherwise (by $\S2(I)(\alpha)$) for some generic $G \times \cdots \times G^n \subset Q \times \cdots \times Q^n$ and $t_0 < t_1$,

$$d(x_{t_l}^n, \tau(x_0^1, \cdots, x_0^{n-1})) < \varepsilon/2 \qquad (l = 0, 1).$$

But also (see §2)

$$d(x_{t_0}^n, x_{t_1}^n) \geq \varepsilon.$$

This contradicts d being semi-metric.

Subsets of uncountable cardinals **§4**.

(A) Can we replace \aleph_0 by some other cardinal χ (and \mathbb{R} by $\overline{\mathscr{P}}(\chi)$)? Clearly we have a chance for positive results only for χ strong limit of cofinality \aleph_0 . The results are quite weak.

(B) It is not hard to prove, and it is known, that

THEOREM. If $A^* \subseteq \mathcal{P}(\chi)$ is κ -Souslin of power $> \kappa, \chi < \kappa < \chi^{\aleph_0}$ then |A| =χ^{*}₀.

PROOF. Let λ be large enough, $N < (H(\lambda), \in)$, $\lambda \subseteq N$, $H(\chi) \subseteq N$, N = $\bigcup_{l < \omega} N_l, \|N_l\| < \chi, \ \mathcal{P}(N_l) \subseteq N_{l+1}. \text{ And } f: {}^{\omega >}\kappa \to \text{``family of open subsets of}$ $\mathscr{P}(\chi)$ " exemplify A being κ -Souslin, $f \in N$. We can find elementary extensions N_n of N for $\eta \in {}^{\omega}\chi$ and $X_n \in N_n$, $N_n \models {}^{\omega}X_n \subseteq \chi$ and so identifying X_n and $\{i < \chi : N_n \models i \in X_n\}$ the X_n are distinct. Just let $I^* = \{B \subseteq A^* : |B| \le \kappa\}$. (See Magidor, Shelah and Stavi [5] on related problems.)

Sh:202

148

(C) Another approach is to consider relations on $\mathscr{P}(\chi)$ which are Borel (i.e., the closure of the family of open subsets by complementation and countable intersection). As a result we shall get a perfect set (i.e., like "2 not " χ). Remembering §3(A5) it is not hard to repeat §2 (and the consequences).

So it is sufficient to show we cannot have a too long Borel well-ordering.

(D) Can we, in (C), replace Borel by analytic? (The quantification is $(\exists B \subseteq \chi)$.) The problem is to make the games determined which holds if there are enough B^{*} (B a set of ordinals). But we know they exist if G.C.H. fails for strong limit cardinal $\geq \sup B$.

(E) Another approach is to replace Borel by $\sum_{\alpha}^{\lambda} = \prod_{\alpha}^{\lambda}$ which we define to be $\{\{A \in \mathscr{P}(\chi) : (\chi, A, \alpha)_{\alpha \in \chi} \models \varphi\} : \varphi \in L_{\chi^{+}, \omega}\}$ and $\sum_{\alpha}^{\chi}, \prod_{\alpha}^{\chi}$ are defined naturally.

The parallel of §2 holds if we replace Cohen forcing by $\operatorname{Col}(\aleph_0, \chi) = \{f : f \text{ a finite function from } \omega \text{ to } \chi\}$.

§5. A consistent counterexample

We would have liked to remove the hypothesis "even after adding a Cohen generic real, R still defines, e.g., an equivalence relation". Unfortunately

5.1. THEOREM. $ZFC + "2^{n_0} = N_2" + "there is a co-N_1-Souslin equivalence relation E with <math>2^{n_0}$ equivalence classes but with no perfect set of pairwise non-E-equivalent elements" is consistent.

PROOF. We start with a universe $V \models 2^{\aleph_0} = \aleph_2$ and we shall define a finite support iteration $\langle P_i, Q_i : i < \omega_1 \rangle$ of forcing satisfying the c.c.c., letting $V_i = V^{P_i}$. In V^{P_i} a sequence $\bar{B_i} = \langle B_j : j < \omega i \rangle$ will be defined, such that B_i is a Borel function from "2 to "2. We define relations R_i , R_i^- on "2: and $xR_i^- y$ iff $\bigvee_m [y = B_{\omega i+m}(x)]$. Then we define $xR_i y \stackrel{\text{oef}}{=} (\forall j < i) [\neg xR_i^- y \land \neg yR_j^- x]$. Now R_{ω_1} will be the relation we need. Clearly R_i^- , R_i are Borel relations and R_{ω_1} is a co- \aleph_1 -Souslin relation. However it is not apriori clear that R_{ω_1} is an equivalence relation. Note that R_i^- is (defined) in $V^{P_{i+1}}$, R_i in V^{P_i} .

We shall define by induction on $i < \omega_1$ (in V^{P_i}) a c.c.c. forcing notion Q_i , an equivalence relation E_i on $({}^{\omega}2)^{V^{P_i}}$, and a sequence $\langle F_{\alpha}^i : \alpha < \omega_1 \rangle$ of functions such that:

(a) for j < i, $E_i \upharpoonright ({}^{\omega}2)^{V^{P_j}} = E_j$, moreover if $x \in ({}^{\omega}2)^{V^{P_j}}$ then $x/E_i \subseteq ({}^{\omega}2)^{V^{P_j}}$;

- (b) Q_i has power \aleph_2 , and satisfies the c.c.c.;
- (c) each F^i_{α} is a one-place function from $({}^{\omega}2)^{V^{P_i}}$ to itself, $\neg(xE_iF^i_{\alpha}(x))$ and

$$\neg (xE_iy) \Rightarrow \bigvee_{\alpha < \omega_1} (x = F^i_{\alpha}(y) \lor y = F^i_{\alpha}(x));$$

(d) for odd *i* if $x = F_{\alpha}^{i}(y)$, j < i, $\alpha < i$ then $xR_{i}^{-}y$ (in $V^{P_{i+1}}$);

(e) for even *i* for every perfect non-empty set $A \subseteq {}^{\omega}2$ in V^{P_i} , whose definition

is in V^{P_j} for fome j < i, there are $x, y \in A$, xE_iy ;

(f) if j < i, xR_i^-y then $\neg xE_iy$ (in V^{P_i});

(e) E_0 has at least two equivalence classes.

Case I: i is odd

First we choose any E_i satisfying (a). Second we define F_{α}^i ($\alpha < \omega_2$) as explained below. Third let $\{A_{\alpha}^i : \alpha < \omega_2\}$ list all perfect non-empty sets $A \subseteq {}^{\omega}2$ in $V^{P_i}, A_{2\alpha}^i = A_{2\alpha+1}^i$ and let Q_i force, for each $\alpha < \aleph_2$, a generic real inside A_{α}^i , i.e.,

 $Q_i = \{g : g \text{ is a finite function with domain } \subseteq \omega_2, \text{ such that} \\ \text{for each } \alpha \in \text{Dom } g, f(\alpha) \in \mathbb{C}^2 \text{ and } (\exists \eta \in A_{\alpha}^i)[g(\alpha) \leq \eta] \}.$

Let $\mathcal{L}^{i}_{\alpha} = \bigcup \{g(\alpha) : g \in \mathcal{G}^{Q_{i}}\}.$

Case II: i is even

We define E_i : for $x, y \in V^{P_i}$, $xE_i y$ iff $xE_{i-1}y$ (so $x, y \in V^{P_{i-1}}$), or x = y or for some $\alpha < \omega_2$, $\{x, y\} = \{r_{2\alpha+1}^{i-1}, r_{2\alpha}^{i-1}\}$.

(This takes care of (e).) Second we define F^i_{α} ($\alpha < \omega_2$) as explained below. Now we take care of (d).

Let \mathscr{P} be the set of f, f a finite one-to-one function from ${}^{\omega \geq 2}$ 2, preserving the order \leq , i.e., for $\eta, \nu \in \text{Dom } F$, $\eta < \nu$ iff $f(\eta) < f(\nu)$ (\leq is an initial segment), $l(\eta) = \omega$ iff $l(f(\eta)) = \omega$, and if $\eta \neq \nu \in \text{Dom } f$ then for some $\rho \in$ Dom f, $\rho < \eta$, $\rho < \psi$ and

$$Q_i = \{ \langle f_0, \cdots, f_n \rangle : \text{ for each } i < n, f_i \in \mathcal{P} \text{ and if } x \in (\text{Dom } f_i) \cap (^{\omega} 2)^{\vee^{P_{i-1}}} \\ \text{ then } f_i(x) \in \{ F_{\alpha}^i(x) : j < i, \alpha < i \} \}.$$

The order is $\langle f_0, \dots, f_n \rangle \leq \langle f'_0, \dots, f'_m \rangle$ iff $n \leq m$, and $f_l \subseteq f'_l$ for $l \leq n$.

As the number of possible values of $f_i(x)$ is countable Q_i satisfies the c.c.c., and in $V^{P_{i+1}}$ we will define $B_{\omega i+k}$ as the unique continuous function extending

 $\bigcup \{f_k : \text{for some } n \ge k \text{ and } f_0, \cdots, f_{k-1}, f_{k+1}, \cdots, f_n, \langle f_0, \cdots, f_n \rangle \in Q^{O_i} \}.$

The only point left is defining F^i_{α} ($\alpha < \omega_2$). So let ($^{\omega}2$)^{$V^{P_i} = \{\tau^i_{\xi} : \xi < \omega_2\}$, and for each $\xi < \omega_2$ we define $\langle F^i_{\alpha}(r^i_{\xi}) : \alpha < \omega_1 \rangle$ such that}

$$\{r_{\zeta}^{i}: \zeta < \xi, \neg r_{\xi}^{i} E_{i} r_{\zeta}^{i}\} \subseteq \{F_{\alpha}^{i}(r_{\xi}^{i}): \alpha < \omega_{2}\} \subseteq \{r_{\zeta}^{i}: \zeta < \omega_{2}, \neg r_{\zeta}^{i} E_{i} r_{\xi}^{i}\}$$

as $|\{\zeta : \zeta < \xi\}| \leq \aleph_1$ and by (g) this can be done trivially.

§6. More on partial order

In summer 1983, in answer to a question of D. Marker, we proved the following, which was added to the paper after it had already been sent to the press.

THEOREM. Suppose \mathcal{P} is a co- κ -Souslin relation (on \mathbb{R}) which is a partial quasi-order (i.e., satisfies transitivity) even after adding a Cohen real. We denote the relation by $\leq x \leq y$.

Suppose further that there is no perfect set of reals which are pairwise incomparable. Then for every sequence $\langle a_i : i < \kappa^+ \rangle$ of reals there are sets X, $Y \subseteq \kappa^+$ each of power κ^+ , such that for every $i \in X$ and $j \in Y$, $a_i \leq a_j$.

REMARKS. (1) We can replace κ^+ by any regular $\kappa_1 > \kappa$.

(2) We could use the general method of §2, but we present it as in §1.

PROOF. Suppose $\langle a_i : i < \kappa^+ \rangle$ is a counterexample to the conclusion.

Let λ be a regular, large enough cardinality. Let N be an elementary submodel of $(\mathfrak{G} = (H(\lambda), \in, \leq, <^*))$ which is countable and to which $\langle a_i : i < \kappa^+ \rangle$ belongs, where $<^*$ is a well-ordering of $H(\lambda)$.

Let \mathfrak{C} be an expansion of $(H(\lambda), \in, \leq)$ by Skolem functions and N a countable elementary submodel of \mathfrak{C} .

As \leq is a co- κ -Souslin relation, there is a function f from ${}^{\omega}{}^{\kappa}\kappa$ to the family of open subsets of $\mathbb{R} \times \mathbb{R}$ such that

$$x \leq y$$
 iff for no $\eta \in \kappa$, $(\forall n)[\langle x, y \rangle \in f(\eta \restriction n)].$

Let

 $Q = \{\varphi(\bar{x}): \varphi \text{ a (first order) formula with parameters from } N \text{ (in its language)} \\ \{x \in N : \models \varphi[x]\} \text{ is an unbounded subset of } \kappa^+\}$

with the order: $\varphi_1 \leq \varphi_2$ iff $N \models (\forall x) [\varphi_2(x) \rightarrow \varphi_1(x)]$.

We consider Q as a forcing notion; clearly it is equivalent to Cohen forcing. For $G \subseteq Q$ generic and variable y we can define an elementary extension N[G, y] of N which is the Skolem hull of $N \cup \{y\}$, and for $\varphi(x) \in Q$

$$N[G, y] \vDash \varphi[y]$$
 iff $\varphi(x) \in Q$.

We can also define a real $\tau = \tau_G$: so $\tau \in 2$, $\tau(n) = 0$ iff $[a_x(n) = 0] \in G$.

If we force by $Q \times Q$ we get a generic subset $G_1 \times G_2$ and two elementary extensions of N, say $N[G_1, y_1]$, $N[G_2, y_2]$. Now we may ask (in $V[G_1 \times G_2]$) whether $\tau_{G_1} \leq \tau_{G_2}$ holds.

By standard methods it will be enough to prove

MAIN FACT. If $\varphi(x) \in Q$ then there is $\langle \varphi^1(x), \varphi^2(x) \rangle \in Q \times Q$ such that (a) $\varphi^1 \ge \varphi, \varphi^2 \ge \varphi$ (in Q), (b) $\langle z \rangle = 0$ (c) $\langle z \rangle = 0$

(b) $\langle \varphi^1, \varphi^2 \rangle \Vdash_{Q \times Q} :: \tau_{G_1} \not\leq \tau_{G_2} \text{ and } \tau_{G_2} \not\leq \tau_{G_1} ::$

PROOF. We can use the forcing notion $Q \times Q \times Q$ (calling the generic set $G_1 \times G_2 \times G_3$). So $\langle \varphi, \varphi, \varphi \rangle \in Q \times Q \times Q$. Hence there is a condition $\langle \varphi_1, \varphi_2, \varphi_3 \rangle$,

$$\langle \varphi, \varphi, \varphi \rangle \leq \langle \varphi_1, \varphi_2, \varphi_3 \rangle \in Q \times Q \times Q,$$

which, for each of the following statements, force it or its negation:

$$\tau_{G_l} \leq \tau_{G_m}$$
 (*l* = 1, 2, 3 and *m* = 1, 2, 3).

Clearly already $\langle \varphi_l, \varphi_m \rangle$ forces this (in the right naming).

By absoluteness, if τ_{G_l} , τ_{G_m} are forced to be \leq -incomparable, then $\langle \varphi_l, \varphi_m \rangle$ is as required. So we assume this does not hold. By symmetry, w.l.o.g.

$$\langle \varphi_1, \varphi_2, \varphi_3 \rangle \Vdash_{Q \times Q \times Q} `` \tau_{G_1} \leq \tau_{G_2} \leq \tau_{G_3} ".$$

Let $X_i = \{i < \kappa^+ : \varphi_i(a_i)\}$, so clearly $|X_i| = \kappa^+$. Also, as $\langle a_i : i < \kappa^+ \rangle$ is a counterexample to the conclusion, X_1 , X_3 cannot serve as X, Y there; and moreover, for every $\alpha < \kappa^+$, $X_1 - \alpha$, $X_3 - \alpha$ cannot serve as X, Y there. So we can find $X \subseteq X_1$ of power κ^+ and order (of the ordinals) preserving $h : X \to X_3$ such that $a_i \not\leq a_{h(i)}$ for $i \in X$. We can assume $h \in N$.

Now $\langle \varphi_1, \varphi_2, \varphi_3 \rangle \leq \langle x \in X, y_2, h^{-1}(x) \in X \rangle \in Q_1 \times Q_2 \times Q_3$ and suppose $G_1 \times G_2 \times G_3 \subseteq Q \times Q \times Q$ is generic (over V),

$$\langle x \in X, \varphi_2(x), h^{-1}(x) \in X \rangle \in G_1 \times G_2 \times G_3.$$

By our assumption on $\langle \varphi_1, \varphi_2, \varphi_3 \rangle$, $\tau_{G_1} \leq \tau_{G_2} \leq \tau_{G_3}$. Now let $G_1^* = \{\varphi(x) : \varphi(h^{-1}(x)) \in G_1\}$, $G_3^* = \{\varphi(x) : \varphi(h(x)) \in G_3\}$. Clearly $G_3^* \times G_2 \times G_1^* \subseteq Q \times Q \times Q$ is generic (over V).

As $\varphi_3 \in G_1^*$, $\varphi_1 \in G_3^*$, clearly $\tau_{G_3^*} \leq \tau_{G_2} \leq \tau_{G_1^*}$. So together $\tau_{G_1} \leq \tau_{G_1^*}$. But in $N[G_1, y]$, τ_{G_1} , $\tau_{G_1^*}$ are represented by a_y , $a_{h(y)}$ respectively (i.e., $\tau_{G_1^*}(n) = 0$ iff $N[G_1, y] \models a_{h(y)}(n) = 0$ and similarly for y). Also, by h's definition $N[G, y] \models a_y \leq a_{h(y)}$. As $f \in N$ (and its choice), this implies that really (in $V[G_1 \times G_2 \times G_3]$) $\tau_{G_1} \leq \tau_{G_1^*}$, contradicting the previous paragraph.

ACKNOWLEDGEMENT

The author thanks R. M. Solovay for pointing out an inaccuracy in the proof of 5.1 (in the definition of \mathcal{P} we demanded that f preserve the level, hence the c.c.c. fails).

REFERENCES

1. H. Friedman, Notes on Borel model theory, mimeographed notes.

2. L. Harrington and Sami, Equivalence relations projective and beyond, Logic Colloquium 1978.

3. L. Harrington and S. Shelah, $Co - \kappa$ -Souslin equivalence relations, Proc. of the non-conference in Prague 1980 (D. Van-Dalen, ed.), North-Holland, 1982.

4. H. J. Keisler, On the quantifier "there are uncountably many", Ann. Math. Logic 1 (1970), 1-90.

5. M. Magidor, S. Shelah and J. Stavi, *Countably decomposable admissible sets*, Proc. 1980/1 Model Theory Year in Jerusalem, Ann. Pure Appl. Logic, in press.

6. J. Silver, Π_1^1 equivalence relation, preprint, 1974.

INSTITUTE OF MATHEMATICS

THE HEBREW UNIVERSITY OF JERUSALEM

Jerusalem, Israel

AND

INSTITUTE FOR ADVANCED STUDIES

THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL 153