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ABSTRACT 

This is a continuation of Harrington and Shelah [3]; however, the contents of 
this paper are self-contained. 
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w On the density of linear ordering 

THEOREM. Suppose P is a co-K-Souslin relation (on R) which is a linear order 

(so we shall denote it by <= ) even after adding a Cohen real. 

Then e i t h e r  (R,  =< ) has a dense subset of power <-_ K o r  there is a perfect set of 

pairwise disjoint intervals. 
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140 s.  S H E L A H  Isr. J. Math. 

REMARK. In summer 1979, Friedman and Shelah (see [1]) proved this for P a 

Borel relation. Shelah proved that (R, =< ) cannot be Souslin: If it is, by forcing by 

the set of intervals, we made it to have a strictly decreasing sequence of intervals 

(a ,  b,) (i < coO. So {(a3, a3~+2) : i < N,} is a set of N1 pairwise disjoint intervals. 

But then, by the completeness theorem for L .... (Q) (see Keisler [4]), this holds 

in the original universe (we use hereby the absoluteness). So assuming (R, _-<) 

has no countable dense sets, it has N1 pairwise disjoint intervals. This Friedman 

uses to prove the Theorem for P Borel, adapting Harrington's proof of Silver's 

[6] theorem, using "there are N~ disjoint intervals" as a "bigness" property. 

That proof does not seem to apply for the present theorem. 

This proof uses the method of [3] (with choice) but is represented fully. 

If you have difficulties, read w here and/or [3] and they may be explained in 

more detail there. 

PROOF. First we choose by induction on i < r § reals a ,  b~ such that 

(*) a, < b,, and for every j < i, aj < bj =< a~ < b~, or 

a, < b, < aj < bj or a~ < aj < bj < b, 

and 
(**) if there are r + pairwise disjoint (closed intervals) then {(a, b~): i < K +} 

are such intervals (i.e. for i < j, bj < a~ or b~ < aj). 

Why can we do this? If we cannot choose a ,  b~, let A = {aj, bj : j < i}, then in 

every Dedekind cut of A, there is at most one element of R - A  [by the order 

_--- ; more exactly, one equivalence class modulo x _-< y ^ y _-< x], so (R, _-< ) has a 

dense subset of power 12il_- < K. 
Taking care of (**) is trivial. 

Let f :~'<K ~ "the family of open subsets of R • R" be such that 

~xey-~(3n ~'K) ^ [(x,y)~/(n rn)]. 
n<(o 

Extend (H(K +§ E ) by Skolem functions and get a model ~, and let N < ~ be a 

countable elementary submodel such that g, h,: E N where g, h : K +----~ R, g(i) = 

a. h(i) = b~. 

We define a forcing notion (t ranges over the rationals, ~, = (y,, : i < co), but 

the formula ~ involves only a finite initial segment) 

O = {,p (x~, ~ ,  x,,, ~,., �9 �9 ~): 

to< �9 �9 �9 < t, in Q, ~ E N, qp t-t "x~ an ordinal < K*", 

and ~ 3~+ x~3~3~§ x,, 3~,1... ~}, 
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the order  is q~ < ~0 if q~ F q~ ; we shall omit  the parameters  from N. 

Clearly (9 is equivalent  to Cohen  forcing, and we can naturally define a 

(9-name fiZ/of an e lementa ry  extension of N, with set of e lements  {x,, y,.~ �9 t E Q, 

l < oJ} in which "sets of power  =< K" are not enlarged.  

A. FACT. If fS~(=P+x<K+)q~(x ,~) ,  n < t o ,  ~ E ( S  then ( 3 ~ x ~ < K + )  . . .  

(3*+x. < K*) [ ^  L,  ~(x~, ~) ^ the intervals [g(x~), h(x~)] (l =< n)  are pairwise 

disjoint]. 

If not,  then easily there  is (in G) a set A _C K +, I A [ = K +, (Vx E A )q~ (x, g) such 

that for  no xt < . . .  < x. in A are the intervals [g(x~), h(x~)] (l < n)  pairwise 

disjoint. Let  {x~ : i  < m}C_A be such that {[g(x~),h(x~)]: l  < m} are pairwise 

disjoint, and m is maximal (hence < n ) ,  so for  every  z C A ' = d ~ ' A  - 

{y- (= l l )y  <x~)} for some i ( z ) E { O , . . . , m -  1} the interval [ g ( z ) , h ( z ) ]  is not 

disjoint to [g(x ,~) ,  h (x,~))]. By the choice of the (a~, b~)'s (see (*)), as x ,~  < z, 

g(X,z))< g ( z ) <  h ( z ) <  h(x,~)). 

Clearly [A - A ' I  =< K hence I A'I = K +, hence for some lo < m 

B = { z  E A " i ( z ) = / 0 }  

has power  K +. For  z~ < z2 in B the intervals [g(z  0, h ( z0 ] ,  [g(z2), h(z2)] cannot  

be disjoint [otherwise {x~ : l < m, l ~  lo} U {z~, z2} contradict  the maximali ty of m] 

hence (by (*) again) 

g ( z , ) <  g(z2) < h(z2) < h(z,), 

so {g (z ) :  z E B} is strictly increasing; but  this means  there  are in (~, < )  K + 

pairwise disjoint closed intervals,  and so we could have chosen the ( a .  b~)'s to be 

pairwise disjoint;  in this case by (**) the Fact  A is trivial. 

B. FACT. I f~(x, , ,y , , , . . . ,x , . ,~, . )E(9,  t ~ < . . . < t , < t , + t < . . . < t 2 ,  inQ, and 
among any K + ordinals < K + there  are i < j such that ~ ~ ~( i ,  j) ,  m E {1,. �9 n }, 

0 = ,p(x,,,  y , , , . . . , x ,o ,  ~,.) ^ ,p(x,o+,, y,o+, , . .  ", x,2., ~,2.) ^ ~ ( x , . ,  ~,o+.), 

then 0 E Q. 

PROOF. We choose by induct ion on a < K +, N~ < ~, a C_ No, N E No, 

1[ N~ 11 < K *, (N~ : i <-: a )  E N~+t, for  limit a, N~ = U ,<~ N~. For  each a we can by 

induction on l = 1, n choose 

T7 E K + g3 (N.~+~ - N.o+H).  d7 E N.~+, 
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142 s .  S H E L A H  Isr. J. Math. 

such that  

( . ) , ~  ( 3 ~ + x , , + , ) ( 3 L . , )  - . .  ( 3 ~ x , . ) ( 3 9 , . ) ~ ( ~ , L  d L " . ,  ~,7, d~, x,,+,, L . , , ' "  ", x,., y , . ) .  

Note  that  (*)0 holds as q~(x,,,y,,,.--)E O. So to choose for l we know (*)t-~, then 

we can choose first y7 (as 3~§ and the relevant  parameters  are in N,~+l as 

N,~+H E N,~+~ so N,~+H fq K § is "cons ide red"  by N.~+~ as a bounded  subset of 

K +) and then fiT. 

Lastly {7, , .  a < K § is a subset of K + of power  K , so as a < /3  r 7 , . <  ~'~, by 

a hypothesis  for  some a </3,  I = r  7~). So 

~ 0[v;' ,  d~, v~d~,  �9 �9  ~, :d: ,  r  dl~, .-  . ,  ~,.~, d~.] . 

Now we can prove by downward  induction on I = 1, 2n that  

~3"+x, ,+,3~, , , . . .3~+x,~.39~.o[3,LdL. . . ,x  ..... ~, .... . - .1 .  

We identify r, M c ~  " r  a rea l"  with a t rue real r '  s.t. [ r ' (n )  = 0 iff M c ~  " r ( n )  = 

0"]  if we identify R with ~2, or [ r ' >  t iff M L ~  r > t] for  any t E O. 

C. FAc'r. In the forcing notion Q • O we have two names M, M c, ~Z/rt, one  

for  each O. Now for each t, s ~ O 

II-o• " the  intervals [g(x,), h(x,)] ~ ,  [g(x,) ,  h (x,)] ~" are disjoint" .  

PROOF. Otherwise  there  is a condi t ion (~o, ~ )  E O x O 

(~o, qJ) II-o • " the  intervals [g (x,), h (x,)]~, [g (x,), h (x,)]~" are not disjoint" .  

Let  

,r = ~o(x,,, ~,,,. . . ,x , . ,  ~,.), qJ = ~(x, , ,  ys,,. . . , x , . ,  ~ . )  

and w.l.o.g, t E { f i , - . . ,  t,}, s E {s~,. �9 -, s.} (as we can add to ~ d u m m y  variables). 

So let t = t,~.), s = s,,c.). Choose  tt, s~ E O (n < l =<2n), such that 

t .  < t . + ~  < �9 �9 �9 < t 2 . ,  S .  < S .+~  < " �9 �9 < S 2 . .  

By Facts A, B, q~*~ Q where  

~o * = ,~ * (x , , y , , ,  . . . , x ~ . ,  % . )  

= ,r ~ , , , .  �9 -, x,.,  y,.) ^ ~(x, .+, ,  ~ . . . . .  . .  - ,  x~.,  y~.) 

^ [the intervals [g(x,. , ,) ,  h (x , . , ) ] ,  [g(x,.+.,,), h(x,.. . ,)] are disjoint]. 

Similarly we can show r  O where  
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r = 6(x, , ,  ~ , , , . . . , x , . ,  ~,.) ^ ~,(x ..... ~ ..... "" ,x ,2~ ~ ~  

^ [the intervals [g(xs.,,,), h(xs,,,)], [g(x . . . .  ,.,), h(x  . . . .  ,,)] are disjoint]. 

So ( ~ * , 6 * ) C Q  •  and let G C _ Q •  be generic, ( ~ * , 6 * ) E  Go. As 0 is 

equivalent to Cohen forcing also 0 • 0 is equivalent to Cohen forcing, hence by 

a hypothesis, in V[G], -<_, i.e. P (i.e. its definition) is still a linear order. Now for 

reals, i.e. in ML[G], M " [ G ]  we have two definitions of =<: the one in V[G},  and 

the one as an elementary extension of N. Now if x ~{L,  R}, r~, r~ E MX[G], 

M ' [ G ] ~  r, < r2 in M [ G ]  we can find a branch of ~>~ which witnesses it, and 

clearly it continues to witness it in V[G].  But in MX[G], s:~t~Jc_ N. So 

, h IX ~IMt-Ir I1 = [g(x,.(.i ), h(xt.<.l)] MEt61 I2. = [g(x .... <.,), , .... ,.~:,- 

are disjoint intervals (and they are intervals, i.e. 

g(x,.,.,)< h(x,,,.,), g(x  .... ,.,)< h(x .... ,.,)). 

Similarly 

t ZXs \ h ' X s  xl MrIGI J~ = lgt  ~<.~), t ~.01~ , J2 = [g(x . . . .  ~.~), htx, ~,~,,,.,,Jl~lm"l~l 

are disjoint intervals. 

As (~, q,)=< (~*, q,*)E G, and by the choice of (q~, q,), the intervals L, I, are 

disjoint. Using the natural automorphisms of O x 0,  L is disjoint to Jj for 

i = 1,2, j = 1,2. But no linear order can have four such intervals. 

D. FACT. There is a perfect set of pairwise disjoint intervals. 

Easy by Fact B (we do not have to really construct generic sets, just enough to 

compute the branches of ~:>r witnessing the K-Souslin relation). 

w Generalizing the model theory 

(A) Looking at the proofs of the theorem on number of equivalence classes, 

non-existence of a monotonic tol-sequence in a linear order, in [3] and the 

theorem of w we see that a large part is common. We try to catch this part, and 

phrase it here in a general way. 

We do not try to see how much choice and which cardinals we need (i.e., can 

we replace ZFC by second-order arithmetic, etc.). 

(B) We let (~ be an expansion of some (H(A), E )  (by countably many 

relations and functions). Let r* be a regular cardinal. Let A * E ~ be a set, I E (~ 

an ideal of subsets of A*, which is n*-complete, let 3*xq~(x) mean 
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144 s. SHELAH Isr. J. Math. 

{x @ A * : to (x)} E / .  If not men t ioned  otherwise  I = {B C A * :1 B [ < K*} and 

A * = K * .  

We choose  a countab le  e l emen ta ry  submode l  N of E. In formulas  we suppress  

p a r a m e t e r s  f rom N. 

We  define a forcing not ion Q whose m e m b e r s  are the to = to (x,,, if, l,. . . ,  x,., if,.) 
satisfying 

(a) to is a first o rde r  fo rmula  with pa r ame te r s  in N, 

(b) each t~ is a ra t ional  n u m b e r  and t] < h < �9 �9 �9 < t., 

(c) if,, = (y,,.o, y,,:, �9 �9 ") (we can replace it by a finite initial s egment  as to is first 

order) ,  

(d) N~{(3*x,,)(:rtif , ,)(3*xe)(3~).. .  (3*x, . )(3if , . ) to};  

the o rder  in Q is: to < ~ if O t- to. 

(C) If G is a gener ic  subset  of Q, we let M[G] be a mode l  with universe 

IN] U{x,, y,.+ : t E Q ,  l < to} and G giving the comple te  d iagram of M. Clear ly 

N < M[G], and for  all this it is enough  that  G C_ Q is d i rected and not disjoint  

to coun tab ly  m a n y  dense  subsets  of Q. M o r e o v e r  if a E N, N ~ " a  has power  

< K*"  then  (Vb E M [ G ] )  ( [ M ~ b  E a ]  ~ b E N )  (by the K*-comple teness  of 

I) .  

NOTATION. For  any index ~" let 

Q"  = {t0(x,;, i f , ; , - ' '  ) : to(x,, ,  i f , , , ' "  ) E  Q, i f , =  (y,+.~ : 1 < co)}, 

G "  a gener ic  subset  of Q ' .  

M[G']  is def ined similarly. For  to = to(x,,, y"rl,""" )(~ Q let 

r 
to" = to(x,,, ~ ; , , . . .  ). 

Let  ~?, = (x,) ^ ~, ; 3"+, means  3*x, 3if,. Let  g, [ denote  increasing sequences  

f rom Q; if t = ( t , , .  �9 t, ) then  

Let  

f r  = f,, ^ ' "  ^ ~?,. ; 3"~?~ means  3"i , ,  �9 �9 �9 3"~?, n. 

~,., = (x, . , )  ^ Y,.,, if,., = (y,.o.,, y , . , . , , . . .  ),  & ,  = +,,., 

(D) We  now describe the construct ion:  

We  shall define by induct ion on 

to. (. �9 �9 x,, if,,-. �9 ),eut.),  such that:  

(a) U(n) is a finite subset  of Q, 

(b) U(n) C_ U(n + 1), 

(c) for  1 < k, to~ I- to.r,- 

k < +o, for  

^ - -  ^ ^ 

Z t 2 , i  " �9 �9 Z t n , i .  

every  ~ E k 2 ,  t o , =  
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We call the set of such ~5 = (~,  �9 77 E ~>2), qb. A natural  topology is defined on dp. 

We shall prove that  various facts holds for  "a lmost  all ~ " ,  i.e., for  all but  a first 

ca tegory set; later  on we usually ignore the "excep t iona l "  q3's. 

(E) For  ~ ~qb,  rl E ~ 2  let G~ = {~,rk " k < to}. 

It is easy to prove that for  every  r/, ~5, G,~ is directed,  and for every  dense 

D C_ O, for almost all ,~ for  every  r/, G~- fq D ~  O (note the order  of quantifica- 

tion). 

(F) Hence  for almost  all if, M[G~]  is as in (C) (for all ~ /E  ~2). We denote  the 

e lements  of M[GT~] by x?,y7=(y, ' , : l<to) to avoid confusion. Let  ~ = 

M[G~-]. Note:  if ~ "says"  x is a natural  number  or a real, then it really is (or at 

least we can consider  it as such). Clearly if ff is a K-Souslin relat ion on reals, 

whose  definition belongs to N, K < K*, and M-~ ~ b [ r ~ , . . . , r , ]  then really (in 

V)~t!,[r,, . . . ,r,] (note that M ~ " x  is in ~>K" then x @ N  hence really 

(G) Let  ~b be r -Sous l in  relations on reals, in N. 

For  almost all ~ the following holds: 

for  arbitrarily large k < w, for  every  distinct vl, �9 �9 ", vm E k 2, t-~,- �9 7,. increas- 

ing and ~ C _ { -  + l / n : l , n < k } N U ( k ) ,  for  some ~ ' E { ~ , - l q , } ,  f ~ , . . - , f m E N  

function into R (or "R) 

1 m ~ ,  ! - - v  - - v  2 ( ~ , , - . . ,  ~0..)IFo,•215215 ~ (f,(z ,'),f2(z;=)," ",f,, (eT-~))" 

(for this the "K-Sousl in i ty"  is not  necessary). 

(H) In (G)'s nota t ion when ~/,' = ~/, (for almost all q5 's) if v, < r/, ~ ~2 then 

r [f,(e~'),  f~(e~-~), . . .  ]. 

PROOF. There  i s a  Q ~ •  2 x . . . •  name ~ of 77E~K which witnesses 

the satisfaction of ~b (for some specific k, v~,. �9 t~,- �9 �9 ). 

So it is sufficient that  for  arbitrari ly large l < to 

(*) if p~,"',pm E~2, v~ < rl~ then for some r~ ~ 

(q~p,,'" ", q~ , ) IFo , •215  r I = r/ 

and this holds for  almost every  ft. 

(I) Now we come to the point  which in each applicat ion is the hear t  of the 

matter .  So we assume ( r emember  we can add to ~ '  and ~ d u m m y  Variables) 

m {r  1 
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q~ = q~t ( ~ ) ,  ~' a conjunct ion  of K-Souslin and negat ion  of K-Souslin fo rmulas  for  

K < K*. Then 
(at) for  every  generic  G 1 •  • G "  C Q1 •  • Q,. ,  there  are g~ (i < to), 

go < gl < �9 �9 �9 such that  

(a) M[G']  ' - '  I = ~ [z~.j.,] when  j < to, i = 1, m ; 
- I  j ~ l  

(b) if j~ =-I m o d  m for  l =  1 , . . . , m  then ~b[ f~(zs j , ) , ' " , f , , (  sj)]; 

(c) m o r e o v e r  if jt < to, j~ = l rood m, and i~ , . . . , i , ,  is a p e r m u t a t i o n  of 

{ 1 , . . . , m }  then 
__i I i 

~b[fl(z e,,), " ", f,. (~,~)]. 

REMARK. Note  that  ]~(~-) is c o m p u t e d  in M[G~]. 

(13) Suppose  in addi t ion that  I* = { A  C A *  :l A I <  K*}, r ~ ( ~ ) E { l , . . . , m }  for  

~ { 1 , . . . , j } ,  0, = O,(. . .x, , ,  ~,,...),=,.,,.j (l = 1, m )  are such that:  

(*) if a?" ,bT" , . . . ,a~" ,b:"E~,  ~q~ , [a?" ,6?" , . . . ]  
(for a < K), the a~ 't (a  < K,/3 = 1, n)  are distinct, then for  each l for  some  

a ( 1 ) < . . .  < a ( ] )  

a ( r t f f + ~ ) , ~  h a ( m / j + ~ ) . ~ .  �9 . ]l~=l,j;~,=l,m;r=l.n. 

Then for  some  generic  G ~ x �9 �9 �9 • G '~ C_ Q~ • �9 �9 �9 x Q m s.t. (in addi t ion to (at) 

(a) and (a)  (b)): 

(d) for  1 = 1 , . . . , m  

I = 0 , [ ' "  "~ '~  - m ~ . .  . X,,,r162 y,,,~+~r �9 �9 ] 
~ = l , j  

~ = l , r a  
r = l , n  

The  p roof  is like that  of (2) (B) 

w Variants and consequences 

(A) H e r e  we r e m a r k  on var ious  var ia t ions of  w 

(A1) We  can use the quant if ier  :l* directly (and not  the ideal): so instead of 

~ ( A X ) - I  we can have  any family of subsets  of A *  such that  if ( 3 * x )  

[q~l(x) v q~2(x)] then  3*xq~l(x) or  3*xq~2(x). 

(A2) In  [3] we use an M gene ra t ed  by one e l emen t  x ; he re  it is gene ra t ed  by 

{x,~, E Q} (but use m o r e  the Sko lem functions,  which are not  needed  here).  I do 

not  see any difference (the phras ing of w (I) will be a little different).  

(A3) In  (I)(13) instead I*  -- {A C_A* : I A  I <  K*}; if A *  -- K* we can also use 

{A C_ K * : A  not  stationary}. Also for  any I*  we can just d e m a n d  that  the 

sui table condi t ions exist. 
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(A4) We can phrase  w as a part i t ion theorem.  

(A5) In w (I), instead of discussing V ~ ...... on, we can look at a game in which 

the players build G I • . . -  x G "  C_ Q1 • . . .  x Qm, each giving a finite approxi-  

mation.  The  ou tcome  of a play is de te rmined  by the satisfaction of some 
~ 1  . .  tO( i,, . , ,~?~).  We shall require  that such games are de te rmined .  

(B)(a) H o w  do we use w We want to find a perfect  set of reals satisfying 

something.  

We define A * ,  I* (usually the s tandard one).  And  take a ff which is like 

almost  all qS's. Then  we want to show that {xg: 77 ~ ~2} (or something similar) is 

as required.  We assume not,  and use (I) ((a) or ([3)) to show that  in V ~ ...... o-  

there  are some reals satisfying some K-Souslin and co-K-Soulsin formulas 

K < r * .  Q l •  X Q "  is equivalent  to Cohen  forcing, and so in V ~ ...... o~ 

supposedly we got something forbidden by a hypothesis  in the specific t heo rem 

we are trying to prove.  

(B)(b) Instead of assuming that even after  adding Cohen  reals there  are no 

reals r h - "  ", r, satisfying A?=I tO~ [ r~ , . . . ,  r .]  ^ A 7=,,+~ tO~ [r~,. �9 r ,]  (tO, K-Souslin), 

we can dem and  

(*) if f l , .  �9 f,  define tOt,"  ", tO,, r a real, then in V there  is a real  generic  over  

L[r, f t , . . . , f . ] .  This holds if ~ is not  the union of K nowhere-dense  sets. 

If each q~j is E~ hence  l~t-Souslin, we can omit  f ~ , . . . ,  f ,  in (*), and then,  of 

course,  1~ t'j < I, ll is sufficient. 

(C) THEOREM. I f  <= is a co-K-Souslin relation on R, (~, ~ )  is a quasi- l inear 

order (even after adding a Cohen real), then there is no (strictly) increasing 

sequence of  length K § 

REMARK. This essentially appears  in [3] (for K = 1%); X ~ y ^ y =< X may be 

here  a non-trivial equivalence relation. 

PROOF. We use (2) with K* = r +, A * = {r~ : i < K*} strictly increasing, i and 

the definit ion of =< is in N, I* standard.  Let  q5 E qb be as usual. 
v v -t 1 So for r t #  v, x;', Xo are comparable ,  so w.l.o.g, xg_- < x~; so --n(xo < xo) hence 

for  some (q~, q ~ ) E  Q~•  O 2, (r q~)l~-"--1 (x~<  x~)" (as it cannot  force the 

negat ion)  hence (q~ll, q~2,)lt-o,• By w ( I ) (a) (b)  for  some 
(tOt, t O 2 ) E Q ~ x Q 2 a n d t o < t t , ( t O l ,  2 ,, 1 2 2 <  t, ,  tO ) [ I - Q I x o  2 X i1 ~ X Iv ^ X if I = X |0 �9 But  we know 

that  

(4 ,1 ,  t O ~ ) I I - o , •  t x t ~ ~ "  to < q A Xto < X q  �9 

1 So (tOt, tO2) forces that  X,to < x~, <= x,Z. < x2,, <= X,o, contradict ion.  
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(D) THEOREM. Suppose M = (R , . . . ,  f i , " "  )~<~ is an algebra, d ( - , - )  a semi- 

metric on R. Suppose each relation (r a term of L (M) )  d(x, z ( y , , . . . ,  y . ) ) <  e 

(e rational) is K-Soulsin. If R has no dense subset of power K then for some e > 0 

(e E Q) there are x, E R (~1 E~2) ,  such that the distance of each x,  to the 

subalgebra generated by {x~ : v E ~2, v ~  ~} is > e. 

We assume, of course, that adding a Cohen real does not change the hypothesis. 

REMARKS. (1) We can apply it to an algebra by using a trivial d : d (x, y) is 1 if 

x ~ y, 0 if x = y. This case, for Borel relations, appears in Friedman [1]. 

(2) This also holds for a metric space (no functions), also for Banach spaces 

(operations x + y, x -  y, qy (q EQ)) ,  and we get d(x,,Sp{x~ :v E ~ 2 - { ~ } )  > e 

(clearly adding rx (r E R) does not change), and we can replace e by 1. 

PROOF. Let K*=  K+; as R has no dense subset of power K, there is 

A * = {x~ : i < K}, d(x,, xj) > e~ for every j < i, w.l.o.g, e~ = e. 

Let  ff be as usual, ~ , . . . , ~ ,  E~2  (distinct), z a term. We shall show 

d(xo ,~'(Xo , ' " , x , : ~ ) ) >  e/2. Otherwise (by w for some generic 

G x . . . x G " C Q x . . . x O "  and to<fi, 

d(x,",, r (x i ,"  " - '  �9 ,xo ) )<  e/2 ( / = 0 ,  1). 

But also (see w 
n n 

d (x ,o, x ,,) = e. 

This contradicts d being semi-metric. 

w Subsets of uncountable cardinals 

(A) Can we replace No by some other cardinal X (and R by ~ (X))? Clearly we 

have a chance for positive results only for X strong limit of cofinality No. The 

results are quite weak. 

(B) It is not hard to prove~ and it is known, that 

THEOREM. I r A *  C_ 9~(X) is r-Souslin of power > K, X < K < X  "o then [A [ = 

X NO 

PROOF. Let A be large enough, N < ( H ( A ) , E ) ,  A C_N, H ( x ) C N ,  N =  

U,<oN,, II ll<x, C_ N,+, And f :~>K-->"family  of open subsets of 

9~(g) ' ' exemplify A being K-Souslin, f E N. We can find elementary extensions 

N. of N for ~1 E ~X and X, E N,, N, ~ "X, C_ X" and so identifying X, and 
{i < X : N. l = i E X.} the X, are distinct. Just let I* = {B __ A* :tB I -_< K}. (See 
Magidor, Shelah and Stavi [5] on related problems.) 
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(C) Another  approach is to consider relations on ~(X)  which are Borel (i.e., 

the closure of the family of open subsets by complementation and countable 

intersection). As a result we shall get a perfect set (i.e., like ~2 not ~X)- 

Remembering w it is not hard to repeat w (and the consequences). 

So it is sufficient to show we cannot have a too long Borel well-ordering. 

(D) Can we, in (C), replace Borel by analytic? (The quantification is ( 3 B  C_ 

X).) The problem is to make the games determined which holds if there are 

enough B "  (B a set of ordinals). But we know they exist if G.C.H. fails for 

strong limit cardinal ~ Sup B. 

(E) Another  approach is to replace Borel by Y~g = Hg which we define to be 

{{A E ~ (X) :  (X, A, a ) ~  ~ ~o}" q~ E L~§ and 1~x,, lq, x are defined naturally. 

The parallel of w holds if we replace Cohen forcing by Col(No, X) = {f : f a 

finite function from w to X). 

w A consistent counterexample 

We would have liked to remove the hypothesis "even after adding a Cohen 

generic real, R still defines, e.g., an equivalence relation". Unfortunately 

5.1. THEOREM. Z F C + " 2  "~ = •2"+"there  is a co-~l-Souslin equiva- 

lence relation E with 2 x~ equivalence classes but with no perfect set of pairwise non- 
E-equivalent elements" is consistent. 

PROOF. We start with a universe V ~ 2  "'' = N~ and we shall define a finite 

support iteration (/9,., (2i " i < w~) of forcing satisfying the c.c.c., letting ~ = V p,. 

In V ~' a sequence /~i = (Bj "j < oJi) will be defined, such that B~ is a Borel 

function from ~2 to ~2. We define relations R~, R /  on ~2: and x R / y  iff 
V,,[y = B~+,, (x)]. Then we define xR~y aef ( V j  < i )[--nxRiy A --nyRfx]. Now 

R,o, will be the relation we need. Clearly R ~, R~ are Borel relations and R~ is a 

co-~-Souslin relation. However  it is not apriori clear that R.,~ is an equivalence 

relation. Note that R;- is (defined) in V ~,+,, R~ in V p,. 

We shall define by induction on i < r (in V e,) a c.c.c, forcing notion O~, an 

equivalence relation G on C2) v~', and a sequence (F~ : a < o9~) of functions such 

that: 

(a) for j < i, E, [C2)  V~= Ej, moreover if x E (~2) V~ then x/E,  C C2)V~'; 

(b) Q, has power ~ ,  and satisfies the c.c.c.; 

(c) each F2 is a one-place function from C2) v~ to itself, --1 (xE,F,dx )) and 

i ---1 (xE~y) ~ V (x = Fi~(y) v y = Fc,(x)), 
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(d) for  odd i if x = F/~(y), j < i, a < i then xRTy (in Ve,+'); 

(e) for  even i for  every  perfect  non-empty  set A C_ ~2 in V e,, whose definition 

is in V% for fome j < i, there  are x, y E A, xE~y; 
(f) if j < i, xR jy  then ~ xE~y (in Ve');  

(e) Eo has at least two equivalence classes. 

Case I: i is odd 
First we choose any E~ satisfying (a). Second we define F~ (a  < to2) as 

expla ined below. Third let {A ~o : a < to2} list all perfect  non-empty  sets A C_ ~ 2 in 

V P,, A ~  = A~o+, and let Oi force,  for  each a < ~2, a generic real inside A~,  i.e., 

Q~ = {g : g is a finite funct ion with domain  C_ to2, such that 

for  each a E D o m g ,  f ( a ) E ~ 2  and (:l n EA~)[g (a )~  7/]}. 

Let  L~ = U{g(a) :g  E Qo,}. 

Case H: i is even 
We define E~: for  x, y E V ' ,  xE~y iff xE~-ly (so x, y E VP,-1), or  x = y or for  

= { r 2 a + l ,  i - i  some a < oJ2, {x, y} ' - '  r2~ }. 

(This takes care of (e).) Second we define F~ (a  < ~o2) as explained below. 

Now we take care of (d). 

Le t  ~ be the set of f, f a finite one- to-one  funct ion from ~=~2 to ~ 2 ,  preserving 

the order  < ,  i.e., for  "O, v E D o m F ,  r / < v  iff fOT)<f(v)  ( <  is an initial 

segment), l(n) = oJ itI l(f(~/)) = o~, and if r /~  v @ D o m f  then for some p E 

D o m f ,  P< 'O ,  p ,~v  and 

O~ = {(/o, �9 " " , f , ) :  for  each [ < n,/~ E ~ and if x E ( D o m / t )  f) ( ' 2 )  Vp'-. 

then f~(x)E{F~(x): j< i , a  < i}}. 

The  order  is (/o,"" ",f,)<=([;,'" ",f ') iff n <= m, and [t C[] for  l =< n. 

As the number  of possible values o f / t  (x)  is countable  Oi satisfies the c.c.c., 

and in V e,+, we will define B,i+k as the unique cont inuous funct ion extending 

U{/k : for  some n => k and fo , . .  ",fk-I,fk+l,'" ",f,, (fo,'" ",f ,)E Qo,}. 

The  only point  left is defining F~ (a  < oJ2). So let ('~ = {r~: ~ < ~o2}, and for 

each s < ~o2 we define (F~(r~):a < oJi) such that 

{r~: ~ < ~:, --'1 r~Eir~} C {F,,(r~) : a < ~o2} C {r~: ~ < ~o2, ---1 r'~E,r~ 

as [{ff : ff < ~}l =< N1 and by (g) this can be done  trivially. 
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w More on partial order 

In summer 1983, in answer to a question of D. Marker, we proved the 

following, which was added to the paper after it had already been sent to the 

press. 

THEOREM. Suppose ~ is a co-K-Souslin relation (on R) which is a partial 

quasi-order (i.e., satisfies transitivity) even after adding a Cohen real. We denote 

the relation by <-_ : x <= y. 

Suppose further that there is no perfect set of reals which are pairwise 

incomparable. Then for every sequence (al : i < K ~) of reals there are sets X, 

Y C_ K + each of power K +, such that for every i E X and j E Y, a~ <= ai. 

REMARKS. (1) We can replace K + by any regular K~ > K. 

(2) We could use the general method of w but we present it as in w 

PROOF. Suppose (ai : i < K +) is a counterexample to the conclusion. 

Let A be a regular, large enough cardinality. Let N be an elementary 

submodel of ~ = (H(A), E ,  _-< ,<*) which is countable and to which (a~:i < •+) 

belongs, where <* is a well-ordering of H(A). 

Let (S be an expansion of ( H ( A ) , E , < )  by Skolem functions and N a 

countable elementary submodel of ~. 

As _<- is a CO-K-Souslin relation, there is a function f from ~>K to the family of 

open subsets of I~ • ~ such that 

x <- y iff for no r t E ~K, (Vn)[(x, y) E f(-q r n)]. 

Let 

Q = {~0(,~): ~o a (first order) formula with parameters from N (in its language) 

{x E N : I = q~[x]} is an unbounded subset of K +} 

with the order: q~ =< q~2 iff N ~  (Vx)[q~2(x)----~q~(x)]. 

We consider Q as a forcing notion; clearly it is equivalent to Cohen forcing. 

For G _C Q generic and variable y we can define an elementary extension 

N[G,  y] of N which is the Skolem hull of N O{y}, and for q~(x)E Q 

N[G,  y]l= q~[y] iff q~(x)E O. 

We can also define a real ~-= z~: so ~- E'~2, r ( n ) = 0  iff [ a , ( n ) = 0 ]  E G. 

If we force by Q x Q we get a generic subset G1 x G2 and two elementary 

extensions of N, say N[Gt,  yl], N[G2, y2]. Now we may ask (in V[GI • G2]) 

whether ~-~, =< ~'~2 holds. 
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By s tandard methods  it will be enough to prove 

MAIN FACT. If q~(X)E Q then there  is (~ol(x),q~2(X))E Q • Q such that 

(a) ~o ~ => ~o, ~o 2 ~ ~o (in Q) ,  

(b) (~o ~, q2)IFo• "~'a, Z ~'e2 and ~'e2 ;~ re,".  

PROOF. We can use the forcing notion Q • Q x Q (calling the generic  set 

GI x G2 x G3). So (~p, q% re) ~ O x O x O. Hence  there  is a condi t ion (~l, ~2, ~)3), 

(q~, q~, ~o)--< (q~,, q~2, ~o3) E O x Q x Q, 

which, for  each of the following statements ,  force it or  its negation:  

r~,<--_Te, (I = 1,2,3 and m = 1,2,3).  

Clearly already (q~,q~,,) forces this (in the right naming). 

By absoluteness,  if re,, ~'e, are forced to be _-< - incomparable ,  then (q~, q~,,) is 

as required.  So we assume this does not hold. By symmetry ,  w.l.o.g. 

(qh, q~2, q~3) I~-o•215 "re ,  --- ~'e2 =< ~'e3"- 

Let  X~={i<K*:q~,(a,)}, so clearly Ix, I=K +. Also, as (a,: i<K +) is a 

coun te rexample  to the conclusion, X,, X3 cannot  serve as X, Y there;  and 

moreover ,  for  every  a < i< +, X, - a, X 3 -  a cannot  serve as X, Y there.  So we 

can find X C X~ of power  K + and order  (of the ordinals) preserving h : X ~ X3 

such that a~Z ahd~ for  i E X. We can assume h @ N. 

Now (qgl, q~2, q~3)~(xEX, y2, h l ( x ) E X ) c Q i x Q 2 x Q 3  and suppose 

G, x G2 x G3 C Q x Q x Q is generic (over V), 

(x ~EX, q~2(x), h ' ( x )EX)~  Gt • G 2 x  G3. 

By our  assumption on (~1, q~2,~3), re,--< ~-e~--<~'e~. Now let G*  = 

{~o(x) : ~ ( h - l ( x ) )  ~ Gl}, G*  = {~o(x) : r ~ G3}. Clearly G3* x G:  x G*  C 

Q x Q x Q is generic (over V). 

As ~03 ~ G* ,  q~, ~ G* ,  clearly re;  - r~_-< re; .  So together  re, ---- rG .  But  in 

N[GI, y], 7G,, "rc~; are represented  by a~, ah~, respectively (i.e., r e ; ( n ) =  0 if[ 

N[G,,y]~"aht,(n)=O" and similarly for y). Also, by h ' s  definition 

N[G, y ] ~ " a ~  a a U ' .  As f E N  (and its choice), this implies that really (in 

V[Gl x G2 x G3]) re, ~ ' r~,  contradict ing the previous paragraph.  
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