PSEUDO PCF

BY

Saharon Shelah*

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram
The Hebrew University of Jerusalem, Jerusalem, 91904, Israel and
Department of Mathematics, Hill Center-Busch Campus
Rutgers, The State University of New Jersey 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA
e-mail: shelah@math.huji.ac.il
URL: http://shelah.logic.at

ABSTRACT

We continue our investigation on pcf with weak forms of the axiom of choice. Characteristically, we assume $\mathrm{DC}+\mathscr{P}(Y)$ when looking at $\prod_{s \in Y} \delta_{s}$. We get more parallels of pcf theorems.

Anotated Contents

§0. Introduction 186
§1. On pseudo true cofinality 189
[We continue $[\mathrm{Sh}: 938, \S 5]$ to try to generalize the pcf theory for \aleph_{1} complete filters D on Y assuming only $\mathrm{DC}+\mathrm{AC}_{\mathscr{P}(Y)}$. So this is similar to [Sh:b, Ch. XII]. We suggest replacing cofinality by pseudo

[^0]Received February 26, 2013
cofinality. In particular, we get the existence of a sequence of generators, get a bound to $\operatorname{Reg} \cap \operatorname{pp}(\mu) \backslash \mu_{0}$, the size of $\operatorname{Reg} \cap \mu \backslash \mu_{0}$ using a no-hole claim and existence of lub (unlike [Sh:835]).
§2. Composition and generating sequences for pseudo pcf 203 [We deal with pseudo true cofinality of $\prod_{i \in Z} \prod_{j \in Y_{i}} \lambda_{i, j}$, also with the degenerated case in which each $\left\langle\lambda_{i, j}: j \in Y_{i}\right\rangle$ is constant. We then use it to clarify the state of generating sequences; see 2.1, 2.2, $2.3,2.5,2.11,2.12$.]
§3. Measuring reduced products 215 $\S 3 \mathrm{~A})$. On ps- $\mathbf{T}_{D}(g) \quad 215$
[We get that several measures of ${ }^{\kappa} \mu / D$ are essentially equal.]
$\S 3$ B). Depth of reduced powers of ordinals 221
[Using the independence property for a sequence of filters we can bound the relevant depth. This generalizes [Sh:460] or really [Sh:513, §3].]
$\S 3 \mathrm{C})$. Bounds on the depth
[We start by basic properties dealing with the No-Hole
Claim $(1.12(1))$ and dependence on $\langle | \alpha_{s}|: s \in Y\rangle / D$ only
(3.23). We give a bound for $\lambda^{+\alpha(1)} / D$ (in Theorems 3.24
and 3.26).]
References 231

0. Introduction

In the first section we deal with generalizing the pcf theory in the direction started in [Sh:938, §5], trying to understand the pseudo true cofinality of small products of regular cardinals. The difference with earlier works is that here we assume $\mathrm{AC}_{\mathscr{U}}$ for any set \mathscr{U} of power $\leq|\mathscr{P}(\mathscr{P}(Y))|$ or, actually working harder, just $\leq|\mathscr{P}(Y)|$ when analyzing $\prod_{t \in Y} \alpha_{t}$, whereas in [Sh:497] we assumed $\mathrm{AC}_{\text {sup }\left\{\alpha_{t}: t \in Y\right\}}$ and in [Sh:835] we have (in addition to $\mathrm{AC}_{\mathscr{P}(\mathscr{P}(Y))}$) assumptions like " $\left[\sup \left\{\alpha_{t}: t \in Y\right\}\right]^{\aleph_{0}}$ is well ordered". In [Sh:938, §1-§4] we assume only $\mathrm{AC}_{<\mu}+D C$ and consider \aleph_{1}-complete filters on μ, but in the characteristic case μ is a limit of measurable cardinals.

Note that generally in this work, though we try occasionally not to use DC, it will not be a real loss to assume it all the time. More specifically, we prove the existence of a minimal \aleph_{1}-complete filter D on Y such that $\lambda=\operatorname{ps-tcf}\left(\Pi \bar{\alpha},<_{D}\right)$
assuming $\mathrm{AC}_{\mathscr{P}(Y)}$ and (of course) DC and α_{t} of large enough cofinality. We then prove the existence of one generator, that is, of $X \subseteq Y$ such that $J_{\leq \lambda}^{\aleph_{1} \text {-comp }}[\bar{\alpha}]=$ $J_{<\lambda}^{\aleph_{1} \text {-comp }}[\bar{\alpha}]+X$, see 1.5 and even (in 1.7) the parallel of the existence of a $<_{D_{1}}$-lub for an $<_{D}$-increasing sequence $\left\langle\mathscr{F}_{\alpha}: \alpha<\lambda\right\rangle$, generalize the no-hole claim in 1.12, and give a bound on pp for non-fix points (in 1.10).

In $\S 2$ we further investigate true cofinality. In Claim 2.2, assuming AC_{λ} and D an \aleph_{1}-complete filter on Y, we start from $\operatorname{ps-tcf}\left(\Pi \bar{\alpha},<_{D}\right)$, dividing by $\mathrm{eq}(\bar{\alpha})=\left\{(s, t): \alpha_{s}=\alpha_{t}\right\}$. We also prove the composition Theorem 2.5: it tells us when $\operatorname{ps-tcf}\left(\prod_{i} \operatorname{ps}-\operatorname{tcf}\left(\prod_{j} \lambda_{i, j},{<_{D_{i}}}\right),<_{E}\right)$ is equal to $\operatorname{ps}-\operatorname{tcf}\left(\prod_{(i, j)} \lambda_{i, j},<_{D}\right)$.

We then prove the pcf closure conclusion, giving a sufficient condition for the operation ps-pcf ${\aleph_{\aleph_{1}} \text {-comp }}$ to be idempotent. Lastly, we revisit the generating sequence.

In $\S(3 \mathrm{~A})$ we measure $\prod_{t \in Y} g(t)$ modulo a filter D on Y for $g \in^{Y}(\operatorname{Ord} \backslash\{0\})$ in three ways and show they are almost equal in 3.2. The price is that we replace (true) cofinality by pseudo (true) cofinality, which is inevitable. We try to sort out the "almost equal" in 3.5-3.7.

In $\S(3 \mathrm{~B})$ we prove a relative of $[\mathrm{Sh}: 513, \S 3]$, again dealing with depth (instead of rank as in [Sh:938]), adding some information even under ZFC. Assuming that the sequence $\left\langle D_{n}: n<\omega\right\rangle$ of filters has the independence property (IND) (see Definition 3.12), with D_{n} a filter on Y_{n} we can bound the depth of $\left({ }^{\left(Y_{n}\right)} \zeta,<_{D_{n}}\right)$ by ζ, for every ζ for many n 's; see 3.13 . Of course, we can generalize this to $\left\langle D_{s}: s \in S\right\rangle$. This is incomparable with the results of [Sh:938, §4]. See a continuation of [Sh:835] and [Sh:1005]

Note that the assumptions like $\operatorname{IND}(\bar{D})$ are complementary to ones used in [Sh:835] to get considerable information. Our original hope was to arrive at a dichotomy. The first possibility will say that one of the versions of an axiom suggested in [Sh:835] holds, which means "for some suitable algebra" there is no independent ω-sequence; in this case [Sh:835] tells us much. The second possibility will be a case of IND, and then we try to show that there is a rank system in the sense of [Sh:938]. But presently for this we need too much choice. The dichotomy we succeed to prove is with small o-Depth in one side, the results of [Sh:835] on the other side. It would be better to have ps-o-Depth in the first side.

Question 0.1: $\left[\mathrm{DC}+\mathrm{AC}_{\mathscr{P}(Y)}\right]$
Assume
(a) $\bar{\alpha} \in{ }^{Y}$ Ord,
(b) $\operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}(\mathscr{P}(Y)$ for every $t \in Y$,
(c) $\lambda_{t} \in \operatorname{pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha})$ for $t \in Z$; in fact, $\lambda_{t}=\operatorname{ps-tcf}\left(\Pi \bar{\alpha},<_{D_{t}}\right), D_{t}$ is an \aleph_{1}-complete filter on Y,
(d) $\lambda=\operatorname{ps-tcf}_{\aleph_{1}-\operatorname{comp}}\left(\left\langle\lambda_{t}: t \in Z\right\rangle\right)$,
(e) (a possible help) $X_{t} \in D_{t},\left\langle X_{t}: t \in Y\right\rangle$ are pairwise disjoint.
(A) Now does $\lambda \in \operatorname{ps}^{-p^{\prime}} f_{\aleph_{1} \text {-comp }}(\bar{\alpha})$? (See 2.5.)
(B) Can we say something about D_{λ} from $[\mathrm{Sh}: 938,5.9]$ improved in 1.2 ?

Question 0.2: How well can we generalize the RGCH , see [Sh:460] and [Sh:829]; the above may be relevant, see [Sh:938] and here in $\S(3 \mathrm{C})$.

Recall
Notation 0.3: 1) For any set X let
$\operatorname{hrtg}(X)=\min \{\alpha: \alpha$ an ordinal such that there is no function from X onto $\alpha\}$.
2) $A \leq_{\mathrm{qu}} B$ means that either $A=\emptyset$ or there is a function from A onto B.

Central in this work is
Definition 0.4: For a quasi order P we say P has pseudo true cofinality λ when λ is a regular cardinal and there is a sequence $\overline{\mathscr{F}}$ such that:
(a) $\mathscr{F}=\left\langle\mathscr{F}_{\alpha}: \alpha<\lambda\right\rangle$,
(b) $\mathscr{F}_{\alpha} \subseteq P$,
(c) if $\alpha_{1}<\alpha_{2}, p_{1} \in \mathscr{F}_{\alpha_{1}}$ and $p_{2} \in \mathscr{F}_{\alpha_{2}}$, then $p_{1} \leq_{P} p_{2}$,
(d) if $q \in \mathscr{F}$, then for some $\alpha<\lambda$ and $p \in \mathscr{F} \alpha$ we have $q<_{P} p_{1}$,
(e) $\lambda=\sup \left\{\alpha<\lambda: \mathscr{F}_{\alpha} \neq \emptyset\right\}$.

We may consider replacing AC_{A} by a more refined version, $\mathrm{AC}_{A, B}$ defined below (e.g., in 1.1, 2.5), but we have not dealt with it systematically.

Definition 0.5: 1) $\mathrm{AC}_{A, B}$ means: if $\left\langle X_{a}: a \in A\right\rangle$ is a sequence of nonempty sets then there is a sequence $\left\langle Y_{a}: a \in A\right\rangle$ such that $Y_{a} \subseteq X_{a}$ is not empty and $Y_{a} \leq_{\mathrm{qu}} B$.
2) $\mathrm{AC}_{A,<\kappa}, \mathrm{AC}_{A, \leq B}$ are defined similarly but $\left|Y_{a}\right|<\kappa,\left|Y_{a}\right| \leq|B|$ respectively in the end.

Observation 0.6: 1) AC_{A} iff $\mathrm{AC}_{A, 1}$.
2) $\mathrm{AC}_{A, B}$ fails if $B=\emptyset$.
3) If $\mathrm{AC}_{A, B}$ and $\left|A_{1}\right| \leq|A|$ and $B \leq{ }_{\text {qu }} B_{1}$, then $\mathrm{AC}_{A_{1}, B_{1}}$.

1. On pseudo true cofinality

We continue [Sh:938, §5].
Below we improve [Sh:938, 5.19] by omitting DC from the assumptions, but first we observe

Claim 1.1: Assume AC_{Z}.

(1) We have $\theta \geq \operatorname{hrtg}(Z)$ when $\bar{\alpha}=\left\langle\alpha_{t}: t \in Y\right\rangle$ and $\theta \in \operatorname{ps-pcf}(\Pi \bar{\alpha})$ and $t \in Y \Rightarrow \operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}(Z)$.
(2) We have $\operatorname{cf}\left(\operatorname{rk}_{D}(\bar{\alpha})\right) \geq \operatorname{hrtg}(Z)$ when $\bar{\alpha}=\left\langle\alpha_{t}: t \in Y\right\rangle, t \in Y \Rightarrow$ $\operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}(Z)$.

Proof. (1) If we have AC_{α} for every $\alpha<\operatorname{hrtg}(Z)$, then we can use [Sh:938, $5.7(4)]$ but we do not assume this. In general, let D be a filter on Y such that $\theta=$ ps-tcf $\left(\Pi \bar{\alpha},<_{D}\right)$, exists as we are assuming $\theta \in \operatorname{ps-pcf}(\Pi \bar{\alpha})$. Let $\overline{\mathscr{F}}=\left\langle\mathscr{F}_{\alpha}: \alpha<\theta\right\rangle$ witness $\theta=\operatorname{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha},<_{D}\right)$, i.e., as in $[\operatorname{Sh}: 938,5.6(2)]$ or see 0.4 here; note $t \in Y \Rightarrow \alpha_{t}>0$, as we are assuming $\mathscr{F}_{\alpha} \subseteq \Pi \bar{\alpha}$ is non-empty for some $\alpha<\theta$; also we can assume $\mathscr{F}_{\alpha} \neq \emptyset$ for every $\alpha<\theta$.

Toward a contradiction assume $\theta<\operatorname{hrtg}(Z)$. As $\theta<\operatorname{hrtg}(Z)$, there is a function h from Z onto θ, so the sequence $\left\langle\mathscr{F}_{h(z)}: z \in Z\right\rangle$ is well defined. As we are assuming AC_{Z}, there is a sequence $\left\langle f_{z}: z \in Z\right\rangle$ such that $f_{z} \in \mathscr{F}_{h(z)}$ for $z \in Z$. Now define $g \in{ }^{Y}$ (Ord) by $g(s)=\bigcup\left\{f_{z}(s): z \in Z\right\}$; clearly g exists and $g \leq \bar{\alpha}$. But for each $s \in Y$, the set $\left\{f_{z}(s): z \in Z\right\}$ is a subset of α_{s} of cardinality $\leq \theta<\operatorname{hrtg}(Z)$, hence $<\operatorname{cf}\left(\alpha_{s}\right)$, hence $g(s)<\alpha_{s}$. Together $g \in \Pi \bar{\alpha}$ is a $<_{D}$-upper bound of $\bigcup\left\{\mathscr{F}_{\varepsilon}: \varepsilon<\theta\right\}$, a contradiction to the choice of $\overline{\mathscr{F}}$.
(2) Otherwise let $\theta=\operatorname{cf}\left(\operatorname{rk}_{D}(\bar{\alpha})\right)$ so $\theta<\operatorname{hrtg}(Z)$, let $\left\langle\alpha_{\varepsilon}: \varepsilon<\theta\right\rangle$ be increasing with limit $\operatorname{rk}_{D}(\bar{\alpha})$ and again let g be a function from Z onto θ. As AC_{Z} holds, we can find $\left\langle f_{z}: z \in Z\right\rangle$ such that for every $z \in Z$ we have $\operatorname{rk}_{D}\left(f_{z}\right) \geq \alpha_{h(z)}$ and $f_{z}<_{D} \bar{\alpha}$ and, without loss of generality, $f_{z} \in \Pi \bar{\alpha}$. Let $f \in \Pi \bar{\alpha}$ be defined by $f(t)=\sup \left\{f_{h(z)}(t): z \in Z\right\}$ so $\operatorname{rk}_{D}(f) \geq \sup \left\{\alpha_{z}: z \in Z\right\}=\operatorname{rk}_{D}(\bar{\alpha})>\operatorname{rk}_{D}(f)$, a contradiction. $\mathbf{■}_{1.1}$

Theorem 1.2 (The Canonical Filter Theorem): Assume $\mathrm{AC}_{\mathscr{P}(Y)}$.
Assume $\bar{\alpha}=\left\langle\alpha_{t}: t \in Y\right\rangle \in{ }^{Y}$ Ord and $t \in Y \Rightarrow \operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}(\mathscr{P}(Y))$ and $\partial \in \operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha})$, hence it is a regular cardinal. Then there is $D=D_{\partial}^{\bar{\alpha}}$, an
\aleph_{1}-complete filter on Y such that $\partial=\operatorname{ps-tcf}(\Pi \bar{\alpha} / D)$ and $D \subseteq D^{\prime}$ for any other such $D^{\prime} \in \operatorname{Fil}_{\aleph_{1}}^{1}(D)$.

Remark 1.3: (1) By [Sh:938, 5.9] there are some such ∂ if DC holds.
(2) We work more to use just $\mathrm{AC}_{\mathscr{P}(Y)}$ and no more.
(3) If $\kappa>\aleph_{0}$ we can replace " \aleph_{1}-complete" by " κ-complete".
(4) If we waive " ∂ regular" so just ∂, an ordinal, is a pseudo true cofinality of $\left(\Pi \bar{\alpha},<_{D}\right)$ for $D \in \mathbb{D} \subseteq \operatorname{Fil}_{\aleph_{1}}^{1}(Y)$, exemplified by $\overline{\mathscr{F}}^{D}, \mathbb{D} \neq \emptyset$, the proof gives some $\partial^{\prime}, \operatorname{cf}\left(\partial^{\prime}\right)=\operatorname{cf}(\partial)$ and $\overline{\mathscr{F}}$ witnessing $\left(\Pi \bar{\alpha},<_{D_{*}}\right)$ has pseudo true cofinality ∂^{\prime} where $D_{*}=\bigcap\{D: D \in \mathbb{D}\}$ for \mathbb{D} as below.

Proof. Note that by 1.1
$\boxplus_{1} \quad \partial \geq \operatorname{hrtg}(\mathscr{P}(Y))$.
Let
\boxplus_{2} (a) $\mathbb{D}=\left\{D: D\right.$ is an \aleph_{1}-complete filter on Y such that $(\Pi \bar{\alpha} / D)$ has pseudo true cofinality $\partial\}$,
(b) $D_{*}=\bigcap\{D: D \in \mathbb{D}\}$.

Now obviously
\boxplus_{3} (a) \mathbb{D} is non-empty,
(b) D_{*} is an \aleph_{1}-complete filter on Y.

For $A \subseteq Y$ let $\mathbb{D}_{A}=\{D \in \mathbb{D}:(Y \backslash A) \notin D\}$ and let $\mathscr{P}_{*}=\left\{A \subseteq Y: \mathbb{D}_{A} \neq \emptyset\right\}$, equivalently $\mathscr{P}_{*}=\{A \subseteq Y: A \neq \emptyset \bmod D$ for some $D \in \mathbb{D}\}$. As $\mathrm{AC}_{\mathscr{P}(Y)}$ holds also $A C_{\mathscr{P}_{*}}$ holds, so we can find $\left\langle D_{A}: A \in \mathscr{P}_{*}\right\rangle$ such that $D_{A} \in \mathbb{D}_{A}$ for $A \in \mathscr{P}_{*}$. Let $\mathbb{D}_{*}=\left\{D_{A}: A \in \mathscr{P}_{*}\right\} ;$ clearly
$\boxplus_{4} \quad$ (a) $D_{*}=\bigcap\left\{D: D \in \mathbb{D}_{*}\right\}$,
(b) $\mathbb{D}_{*} \subseteq \mathbb{D}$ is non-empty.

As $\mathrm{AC}_{\mathscr{P}_{*}}$ holds, clearly
$(*)_{1}$ we can choose $\left\langle\overline{\mathscr{F}}^{A}: A \in \mathscr{P}_{*}\right\rangle$ such that $\overline{\mathscr{F}}^{A}$ exemplifies $D_{A} \in \mathbb{D}$ as in [Sh:938, 5.17,(1),(2)], so in particular $\overline{\mathscr{F}}^{A}$ is \aleph_{0}-continuous and, without loss of generality, $\mathscr{F}_{\alpha}^{A} \neq \emptyset, \mathscr{F}_{\alpha}^{A} \subseteq \Pi \bar{\alpha}$ for every $\alpha<\partial$.
For each $\beta<\partial$ let
$(*)_{2} \mathbf{F}_{\beta}^{1}=\left\{\bar{f}=\left\langle f_{A}: A \in \mathscr{P}_{*}\right\rangle: \bar{f}\right.$ satisfies $\left.A \in \mathscr{P}_{*} \Rightarrow f_{A} \in \mathscr{F}_{\beta}^{A}\right\}$,
$(*)_{3}$ for $\bar{f} \in \mathbf{F}_{\beta}^{1}$ let $\sup \left\{f_{A}: A \in \mathscr{P}_{*}\right\}$ be the function $f \in{ }^{Y}$ Ord defined by $f(y)=\sup \left\{f_{A}(y): A \in \mathscr{P}_{*}\right\}$,
$(*)_{4} \mathscr{F}_{\beta}^{1}=\left\{\sup \left\{f_{A}: A \in \mathscr{P}_{*}\right\}: \bar{f}=\left\langle f_{A}: A \in \mathscr{P}_{*}\right\rangle\right.$ belongs to $\left.\mathbf{F}_{\beta}^{1}\right\}$.

Now
$(*)_{5}$ (a) $\left\langle\mathscr{F}_{\beta}^{1}: \beta<\partial\right\rangle$ is well defined, i.e., exists,
(b) $\mathscr{F}_{\beta}^{1} \subseteq \Pi \bar{\alpha}$.
[Why? Clause (a) holds by the definitions, clause (b) holds as $t \in Y \Rightarrow \operatorname{cf}\left(\alpha_{t}\right) \geq$ $\operatorname{hrtg}(\mathscr{P}(Y))$.
$(*)_{6} \mathscr{F}_{\beta}^{1} \neq \emptyset$ for $\beta<\partial$.
[Why? As for $\beta<\lambda$, the sequence $\left\langle\overline{\mathscr{F}}_{\beta}^{A}: A \in \mathscr{P}_{*}\right\rangle$ is well defined (as $\left\langle\overline{\mathscr{F}}^{A}: A \in \mathscr{P}_{*}\right\rangle$ is) and $A \in \mathscr{P}_{*} \Rightarrow \mathscr{F}_{\beta}^{A} \neq \emptyset$, so we can use $\mathrm{AC}_{\mathscr{P}(Y)}$ to deduce $\mathscr{F}_{\beta}^{1} \neq \emptyset$.]

Define
$(*)_{7}$ (a) for $f \in \Pi \bar{\alpha}$ and $A \in \mathscr{P}_{*}$ let $\beta_{A}(f)=\min \left\{\beta<\partial: f<g \bmod D_{A}\right.$ for every $\left.g \in \mathscr{F}_{\beta}^{A}\right\}$,
(b) for $f \in \Pi \bar{\alpha}$ let $\beta(f)=\sup \left\{\beta_{A}(f): A \in \mathscr{P}_{*}\right\}$.

Now
$(*)_{8} \quad$ (a) for $A \in \mathscr{P}_{*}$ and $f \in \Pi \bar{\alpha}$, the ordinal $\beta_{A}(f)<\partial$ is well defined,
(b) for $f \in \Pi \bar{\alpha}$ the sequence $\left\langle\beta_{A}(f): A \in \mathscr{P}_{*}\right\rangle$ is well defined.
[Why? Clause (a) holds because $\left\langle\mathscr{F}_{\gamma}^{A}: \gamma<\partial\right\rangle$ is cofinal in $\left(\Pi, \bar{\alpha},<_{D_{A}}\right)$, clause (b) holds by $\left.(*)_{7}(a).\right]$
$(*)_{9} \quad$ (a) For $f \in \Pi \bar{\alpha}$ the ordinal $\beta(f)$ is well defined and $<\partial$,
(b) if $f \leq g$ are from $\Pi \bar{\alpha}$ then $\beta(f) \leq \beta(g)$.
[Why? For clause (a), first, $\beta(f)$ is well defined and $\leq \partial$ by $(*)_{8}$ and the definition of $\beta(f)$ in $(*)_{7}(\mathrm{~b})$. Second, recalling that ∂ is regular $\geq \operatorname{hrtg}(\mathscr{P}(Y)) \geq$ $\operatorname{hrtg}\left(\mathscr{P}_{*}\right)$ clearly $\beta(f)<\partial$. Clause (b) is obvious.]

Now
$(*)_{10} \quad$ (a) if $A \in \mathscr{P}_{*}, \gamma<\partial$ and $f \in \mathscr{F}_{\gamma}^{A}$ then $\beta_{A}(f)>\gamma$,
(b) if $\gamma<\partial$ and $f \in \mathscr{F}{ }_{\gamma}^{1}$ then $\beta(f)>\gamma$.
[Why? Clause (a) holds because $\beta<\gamma \wedge g \in \mathscr{F}_{\beta}^{A} \Rightarrow g<f \bmod D_{A}$ and $\beta=\gamma \Rightarrow f \in \mathscr{F}_{\gamma}^{A} \wedge f \not \leq f \bmod D_{A}$. Clause (b) holds because for some $\left\langle f_{B}: B \in \mathscr{P}_{*}\right\rangle \in \Pi\left\{\mathscr{F}_{\gamma}^{B}: B \in \mathscr{P}_{*}\right\}$ we have $f=\sup \left\{f_{B}: B \in \mathscr{P}_{*}\right\}$, hence $B \in \mathscr{P}_{*} \Rightarrow f_{B} \leq f$, hence in particular $f_{A} \leq f$; now recalling $\beta\left(f_{A}\right)>\gamma$ by clause (a) it follows that $\beta(f)>\gamma$.]
$(*)_{11}$ (a) For $\xi<\partial$ let $\gamma_{\xi}=\min \left\{\beta(f): f \in \mathscr{F}_{\xi}^{1}\right\}$,
(b) for $\xi<\partial$ let $\mathscr{F}_{\xi}^{2}=\left\{f \in \mathscr{F}_{\xi}^{1}: \beta(f)=\gamma_{\xi}\right\}$.
$(*)_{12}$ (a) $\left\langle\left(\gamma_{\xi}, \mathscr{F}_{\xi}^{2}\right): \xi<\partial\right\rangle$ is well defined, i.e., exists,
(b) if $\xi<\partial$ then $\xi<\gamma_{\xi}<\partial$.
[Why? γ_{ξ} is the minimum of a set of ordinals which is non-empty by $(*)_{6}$ and $\subseteq \partial$, by $(*)_{9}(\mathrm{a})$, and all members are $>\gamma$ by $\left.(*)_{10}(\mathrm{~b}).\right]$
$(*)_{13}$ For $\xi<\partial$ we have $\mathscr{F}_{\xi}^{2} \subseteq \Pi \bar{\alpha}$ and $\mathscr{F}_{\xi}^{2} \neq \emptyset$.
[Why? By $(*)_{11}$ as $\mathscr{F}_{\xi}^{1} \neq \emptyset$ and $\mathscr{F}_{\xi}^{1} \subseteq \Pi \bar{\alpha}$.]
$(*)_{14}$ We try to define $\beta_{\varepsilon}<\partial$ by induction on the ordinal $\varepsilon<\partial$.

$$
\begin{aligned}
& \varepsilon=0: \beta_{\varepsilon}=0 \\
& \varepsilon \text { limit: } \beta_{\varepsilon}=\bigcup\left\{\beta_{\zeta}: \zeta<\varepsilon\right\} \\
& \varepsilon=\zeta+1: \beta_{\varepsilon}=\gamma_{\beta_{\zeta}}
\end{aligned}
$$

$(*)_{15} \quad$ (a) If $\varepsilon<\partial$ then $\beta_{\varepsilon}<\partial$ is well defined $\geq \varepsilon$,
(b) if $\zeta<\varepsilon$ is well defined then $\beta_{\zeta}<\beta_{\varepsilon}$.
[Why? Clause (a) holds as ∂ is a regular cardinal, so the case ε limit is O.K.; the case $\varepsilon=\zeta+1$ holds by $(*)_{12}$ (b). As for clause (b) we prove this by induction on ε; for $\varepsilon=0$ this is empty, for ε a limit ordinal use the induction hypothesis and the choice of β_{ε} in $(*)_{14}$, and for $\varepsilon=\xi+1$, clearly by $(*)_{12}(\mathrm{~b})$ and the choice of γ_{ε} in $(*)_{14}$ we have $\beta_{\xi}<\beta_{\varepsilon}$ and use the induction hypothesis.]
$(*)_{16}$ If $f \in \Pi \bar{\alpha}$, then for some $g \in \bigcup\left\{\mathscr{F}_{\beta_{\varepsilon}}^{2}: \varepsilon<\partial\right\}$ we have $f<g \bmod D_{*}$.
[Why? Recall that $\beta_{A}(f)$ for $A \in \mathscr{P}_{*}$ and $\beta(f)$ are well defined ordinals $<\partial$ and $A \in \mathscr{P}_{*} \Rightarrow \beta_{A}(f) \leq \beta(f)$. Now let $\zeta<\partial$ be such that $\beta(f)<\beta_{\zeta}$, exists as we can prove by induction on ε (using $\left.(*)_{15}(\mathrm{~b})\right)$ that $\beta_{\varepsilon} \geq \varepsilon$. As $\overline{\mathscr{F}}^{A}$ is $<_{D_{A}}$-increasing for $A \in \mathscr{P}_{*}$ clearly $A \in \mathscr{P}_{*} \wedge g \in \mathscr{F}_{\beta_{\zeta}}^{A} \Rightarrow f<g \bmod D_{A}$. So by the definition of $\mathscr{F}_{\beta_{\zeta}}^{1}$ we have $A \in \mathscr{P}_{*} \wedge g \in \mathscr{F}_{\beta_{\zeta}}^{1} \Rightarrow f<g \bmod D_{A}$, hence $g \in \mathscr{F}_{\beta_{\zeta}}^{1} \Rightarrow f<g \bmod D_{*}$. As $\mathscr{F}_{\beta_{\zeta}}^{2} \subseteq \mathscr{F}_{\beta_{\zeta}}^{1}$ we are done.]
$(*)_{17}$ If $\zeta<\xi<\partial$ and $f \in \mathscr{F}_{\zeta}^{2}$ and $g \in \mathscr{F}_{\xi}$, then $f<g \bmod D_{*}$.
[Why? As in the proof of $(*)_{16}$ but now $\beta(f)=\gamma_{\zeta}$.]
Together by $(*)_{13}+(*)_{16}+(*)_{17}$ the sequence $\left\langle\mathscr{F}_{\beta_{\varepsilon}}^{2}: \varepsilon<\partial\right\rangle$ is as required. $\mathbf{■}_{1.2}$

A central definition here is
Definition 1.4: (1) For $\bar{\alpha} \in{ }^{Y}$ Ord let

$$
J_{<\lambda}^{\aleph_{1}-\text { comp }}[\bar{\alpha}]=\left\{X \subseteq Y: \operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha} \upharpoonright X) \subseteq \lambda\right\}
$$

So for $X \subseteq Y, X \notin J_{<\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]$ iff there is an \aleph_{1}-complete filter D on Y such that $X \neq \emptyset \bmod D$ and $\operatorname{ps-tcf}\left(\Pi \bar{\alpha},<_{D}\right)$ is well defined $\geq \lambda$ iff there is an \aleph_{1}-complete filter D on Y such that $\operatorname{ps-tcf}\left(\Pi \bar{\alpha},<_{D}\right)$ is well defined $\geq \lambda$ and $X \in D$.
(2) $J_{\leq \lambda}^{\aleph_{1}-\text { comp }}$ is $J_{<\lambda+}^{\aleph_{1}-\text { comp }}$ and we can use a set \mathfrak{a} of ordinals instead of $\bar{\alpha}$.

Claim 1.5 (The Generator Existence Claim): Let $\bar{\alpha} \in^{Y}(\operatorname{Ord} \backslash\{0\})$.
(1) $J_{<\lambda}^{<\aleph_{1}-\text { comp }}(\bar{\alpha})$ is an \aleph_{1}-complete ideal on Y for any cardinal λ except that it may be $\mathscr{P}(Y)$.
(2) $\left[\mathrm{AC}_{\mathscr{P}(Y)}\right]$ Assume $t \in Y \Rightarrow \operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}(\mathscr{P}(Y))$. If $\lambda \in \operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha})$ then for some $X \subseteq Y$ we have
(A) $J_{<\lambda+}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]=J_{<\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]+X$,
(B) $\lambda=\operatorname{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha},<_{J_{=\lambda}^{\aleph_{1}}-\operatorname{comp}}[\bar{\alpha}]\right)$ where $J_{=\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]:=J_{<\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]+$ $(Y \backslash X)$,

Remark 1.6: Recall that if $\mathrm{AC}_{\mathscr{P}(Y)}$ then without loss of generality $\mathrm{AC}_{\aleph_{0}}$ holds. Why? Otherwise by $\mathrm{AC}_{\mathscr{P}(Y)}$ we have Y is well ordered and AC_{Y}, hence $|Y|=n$ for some $n<\omega$ and in this case our claims are obvious, e.g., 1.5(2), 1.7.

Proof. (1) Clearly $J_{<\lambda}^{<\aleph_{1}-\operatorname{comp}}(\bar{\alpha})$ is a \subseteq-downward closed subset of $\mathscr{P}(Y)$. If the desired conclusion fails, then we can find a sequence $\left\langle A_{n}: n<\omega\right\rangle$ of members of $J_{<\lambda}^{\aleph_{1}-\text { comp }}[\bar{\alpha}]$ such that their union $A:=\bigcup\left\{A_{n}: n<\omega\right\}$ does not belong to it. As $A \notin J_{<\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]$, by the definition there is an \aleph_{1}-complete filter D on Y such that $A \neq \emptyset \bmod D$ and $\operatorname{ps-tcf}\left(\Pi \bar{\alpha},<_{D}\right)$ is well defined, so let it be $\mu=\operatorname{cf}(\mu) \geq \lambda$ and let $\left\langle\mathscr{F}_{\alpha}: \alpha<\lambda\right\rangle$ exemplify it.

As D is \aleph_{1}-complete and $A=\bigcup\left\{A_{n}: n<\omega\right\} \neq \emptyset \bmod D$ necessarily for some $n, A_{n} \neq \emptyset \bmod D$, but then D witnesses $A_{n} \notin J_{<\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]$, a contradiction.
(2) Recall λ is a regular cardinal by $[\operatorname{Sh}: 938,5.8(0)]$ and $\lambda \geq \operatorname{hrtg}(\mathscr{P}(Y))$ by 1.1.

Let $D=D_{\lambda}^{\bar{\alpha}}$ be as in $[\mathrm{Sh}: 938,5.19]$ when DC holds, and as in 1.2 in general, i.e., $\Pi \bar{\alpha} / D$ has pseudo true cofinality λ and D contains any other such \aleph_{1} complete filter on Y. Now if $X \in D^{+}$, then
hence $X \notin J_{<\lambda}^{\aleph_{1}-c o m p}[\bar{\alpha}]$, so
$(*)_{1} \quad X \in J_{<\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}] \Rightarrow X=\emptyset \bmod D$.
A major point is
$(*)_{2}$ some $X \in D$ belongs to $J_{<\lambda^{+}}^{\aleph_{1}-\text { comp }}[\bar{\alpha}]$.

Why $(*)_{2}$? The proof will take awhile; assume that not, so we have $\mathrm{AC}_{\mathscr{P}(Y)}$, hence AC_{D}, so we can find $\left\langle\left(\overline{\mathscr{F}}^{X}, D_{X}, \lambda_{X}\right): X \in D\right\rangle$ such that:
(a) λ_{X} is a regular cardinal $\geq \lambda^{+}$, i.e., $>\lambda$,
(b) D_{X} is an \aleph_{1}-complete filter on Y such that $X \in D_{X}$ and $\lambda_{X}=$ $\operatorname{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha},<_{D_{X}}\right)$,
(c) $\overline{\mathscr{F}}^{X}=\left\langle\mathscr{F}_{\alpha}^{X}: \alpha<\lambda_{X}\right\rangle$ exemplifies that $\lambda_{X}=\operatorname{ps-tcf}\left(\Pi \bar{\alpha},<_{D_{X}}\right)$,
(d) moreover $\overline{\mathscr{F}}^{X}$ is as in $[\mathrm{Sh}: 938,5.17(2)]$, that is, it is \aleph_{0}-continuous and $\alpha<\lambda_{X} \Rightarrow \mathscr{F}_{\alpha}^{X} \neq \emptyset$.

Let
(e) $D_{1}^{*}=\left\{A \subseteq Y\right.$: for some $X_{1} \in D$ we have $\left.X \in D \wedge X \subseteq X_{1} \Rightarrow A \in D_{X}\right\}$. Clearly
(f) D_{1}^{*} is an \aleph_{1}-complete filter on Y extending D.
[Why? First, clearly $D_{1}^{*} \subseteq \mathscr{P}(Y)$ and $\emptyset \notin D_{1}^{*}$ as $X \in D \Rightarrow \emptyset \notin D_{X}$. Second, if $A \in D$ then $X \in D \wedge X \subseteq A \Rightarrow A \in D_{X}$ by clause (b), hence choosing $X_{1}=A$ the demand for " $A \in D_{1}^{*}$ " holds, so indeed $D \subseteq D_{1}^{*}$. Third, assume $\bar{A}=\left\langle A_{n}: n<\omega\right\rangle$ and " $A_{n} \in D_{1}^{* "}$ for $n<\omega$; then for each A_{n} there is a witness $X_{n} \in D$, so by $\mathrm{AC}_{\aleph_{0}}$, recalling 1.6, there is an ω-sequence $\left\langle X_{n}: n<\omega\right\rangle$ with X_{n} witnessing $A_{n} \in D_{1}^{*}$. Then $X=\bigcap\left\{X_{n}: n<\omega\right\}$ belongs to D and witnesses that $A:=\bigcap\left\{A_{n}: n<\omega\right\} \in D_{1}^{*}$ because every D_{X} is \aleph_{1}-complete. Fourth, if $A \subseteq B \subseteq Y$ and $A \in D_{1}^{*}$, then some X_{1} witnesses $A \in D_{1}^{*}$, i.e., $X \in D \wedge X \subseteq X_{1} \Rightarrow A \in D_{X}$; but then X_{1} witnesses also $B \in D_{1}^{*}$.]
(g) Assume $\left\langle\mathscr{F}_{\alpha}: \alpha<\lambda\right\rangle$ is ${{ }_{D}}_{D}$-increasing in $\Pi \bar{\alpha}$, i.e., $\alpha<\lambda \Rightarrow \mathscr{F}_{\alpha} \subseteq \Pi \bar{\alpha}$ and $\alpha_{1}<\alpha_{2} \wedge f_{1} \in \mathscr{F}_{\alpha_{1}} \wedge f_{2} \in \mathscr{F}_{\alpha_{2}} \Rightarrow f_{1}<_{D} f_{2}$ and $\mathscr{F}_{\alpha} \neq \emptyset$ for every or at least unboundedly many $\alpha<\lambda$; then $\bigcup_{\alpha<\lambda} \mathscr{F}_{\alpha}$ has a common $<_{D_{1}^{*}}$-upper bound.
[Why? For each $X \in D$ recall $\left(\Pi \bar{\alpha},<_{D_{X}}\right)$ has true cofinality λ_{X} which is regular $>\lambda$ hence by $\left[\operatorname{Sh}: 938,5.7(1 \mathrm{~A})\right.$] is pseudo λ^{+}-directed, hence there is a common $<_{D_{X}}$-upper bounded h_{X} of $\bigcup\left\{\mathscr{F}_{\alpha}: \alpha<\lambda\right\}$. As we have $\mathrm{AC} \mathscr{P}_{(Y)}$ we can find a sequence $\left\langle h_{X}: X \in D\right\rangle$ with each h_{X} as above. Define $h \in \Pi \bar{\alpha}$ by $h(t)=\sup \left\{h_{X}(t): X \in D\right\}$; it belongs to $\Pi \bar{\alpha}$ as we are assuming $t \in Y \Rightarrow \operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}(\mathscr{P}(Y)) \geq \operatorname{hrtg}(D)$. So $h \in \Pi \bar{\alpha}$ is a $<_{D_{X}}$-upper bound of $\bigcup\left\{\mathscr{F}_{\alpha}: \alpha<\lambda\right\}$ for every $X \in D$, hence by the choice of D_{1}^{*} it is a $<_{D_{1}^{*}}$-upper bound of $\bigcup\left\{\mathscr{F}_{\alpha}: \alpha<\lambda\right\}$.]

But by the choice of D in the beginning of the proof we have $\lambda=$ ps-tcf $\left(\Pi \bar{\alpha},<_{D}\right)$, so there is a sequence $\left\langle\hat{\mathscr{F}}_{\alpha}: \alpha<\lambda\right\rangle$ witnessing it. By clause (f) we have $D \subseteq D_{1}^{*}$, so clearly $\left\langle\hat{\mathscr{F}}_{\alpha}: \alpha<\lambda\right\rangle$ is also $<_{D_{1}^{*}}$-increasing, hence we can apply clause (g) to the sequence $\left\langle\hat{\mathscr{F}}_{\alpha}: \alpha<\lambda\right\rangle$ and get a $<_{D_{1}^{*}}$-upper bound $f \in \Pi \bar{\alpha}$, a contradiction to the choice of $\left\langle\hat{\mathscr{F}}_{\alpha}: \alpha<\lambda\right\rangle$ recalling $0.4(\mathrm{~d})$ because $D \subseteq D_{1}^{*}$, contradiction. So $(*)_{2}$ really holds.

Choose X as in $(*)_{2}$; now
$(*)_{3} D=\operatorname{dual}\left(J_{<\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]+(Y \backslash X)\right)$.
[Why? The inclusion \supseteq holds by $(*)_{1}$ and $(*)_{2}$, i.e., the choice of X as a member of D. Now for every $Z \subseteq X$ which does not belong to $J_{<\lambda}^{\aleph_{1}-c o m p}[\bar{\alpha}]$, by the definition of $J_{<\lambda}^{\aleph_{1}-\text { comp }}[\bar{\alpha}]$ there is an \aleph_{1}-complete filter D_{Z} on Y to which Z belongs such that $\theta:=\operatorname{ps}-\operatorname{cf}\left(\Pi \bar{\alpha},<_{D}\right)$ is well defined and $\geq \lambda$. But $\theta \geq \lambda^{+}$is impossible as we know that $Z \subseteq X \in J_{<\lambda^{+}}^{\aleph_{1} \text {-comp }}[\bar{\alpha}]$, so necessarily $\theta=\lambda$, hence by the choice of D by using 1.2 we have $D \subseteq D_{Z}$, hence $Z \neq \emptyset \bmod D$. Together we are done.]
$(*)_{4} \lambda=\operatorname{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha},<_{\substack{\aleph_{1}-\operatorname{comp}}}\right)$; see clause (B) of the conclusion of 1.5(2).
[Why? By $(*)_{3}$, the choice of $J_{=\lambda}^{\aleph_{1}-c o m p}[\bar{\alpha}]$, and as $\lambda=\operatorname{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha},<_{D}\right)$ by the choice of D.]
$(*)_{5} \lambda \notin{\operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha} \upharpoonright(Y \backslash X)) .}$
[Why? Otherwise there is an \aleph_{1}-complete filter D^{\prime} on Y such that $Y \backslash X \in D^{\prime}$ and $\lambda=\operatorname{ps-tcf}\left(\Pi \bar{\alpha},<_{D^{\prime}}\right)$. But this contradicts the choice of D by using 1.2.]

So X is as required in the desired conclusion of $1.5(2)$: clause (B) by $(*)_{4}$, clause (C) by $(*)_{5}$ and clause (A) follows. Note that the notation $J_{=\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]$ is justified, as if X^{\prime} satisfies the requirements on X then

$$
X^{\prime}=X \bmod J_{<\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}] . \quad \mathbf{■}_{1.5}
$$

Conclusion 1.7: $\left[\mathrm{AC}_{\mathscr{P}(Y)}\right]$ Assume $\bar{\alpha} \in{ }^{Y}$ Ord and each α_{t} a limit ordinal of cofinality $\geq \operatorname{hrtg}(\mathscr{P}(Y))$ and $\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha})$ is not empty.
(1) If $t \in Y \Rightarrow \operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}\left(\operatorname{Fil}_{\aleph_{1}}^{1}(Y)\right)$ then there is a function h such that:
\bullet_{1} the domain of h is $\mathscr{P}(Y)$,
$\bullet_{2} \operatorname{Rang}(h)$ includes ps $-\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha})$ and is included in

$$
\operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha}) \cup\{0\} \cup\left\{\mu: \mu=\sup \left(\mu \cap{\left.\left.\operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha})\right)\right\}, ~}\right.\right.
$$

also $\operatorname{Rang}(h)$ includes $\left\{\operatorname{cf}\left(\alpha_{t}\right): t \in Y\right\}$, but see \bullet_{5},
$\bullet_{3} A \subseteq B \subseteq Y \Rightarrow h(A) \leq h(B)$ and $h(A)=0 \Leftrightarrow A=\emptyset$,
$\bullet_{4} h(A)=\min \left\{\lambda: A \in J_{\leq \lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]\right\}$,
\bullet_{5} if $h(A)=\lambda$ and $\operatorname{cf}(\lambda)>\aleph_{0}$ then λ is regular and $\lambda \in \operatorname{ps-tcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha})$, i.e., for some \aleph_{1}-complete filter D on Y we have $A \in D$ and $\operatorname{ps-tcf}\left(\Pi \bar{\alpha},<_{D}\right)=\lambda$,
${ }^{\bullet} 6$ the set ps-pcf $\aleph_{\aleph_{1}-\text { comp }}(\bar{\alpha})$ has cardinality $<\operatorname{hrtg}(\mathscr{P}(Y))$,
${ }^{\bullet}{ }_{7}$ if $h(A)=\lambda$ and $\operatorname{cf}(\lambda)=\aleph_{0}$ then we can find a sequence $\left\langle A_{n}: n<\omega\right\rangle$ such that $A=\bigcup\left\{A_{n}: n<\omega\right\}$ and $h\left(A_{n}\right)<\lambda$ for $n<\omega$,
$\bullet_{8} J_{<\lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]=\{A \subseteq Y: h(A)<\lambda\}$ when $\operatorname{cf}(\lambda)>\aleph_{0}$,
 member.
(2) Without the extra assumption of part (1), still there is h such that:
${ }^{\bullet}{ }_{1} h$ is a function with domain $\mathscr{P}(Y)$,
\bullet_{2} the range of h is
 or just $\operatorname{cf}(\mu)<\operatorname{hrtg}\left(\operatorname{ps-pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha})\right)$ and

$$
\left.J_{<\mu}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}] \neq \cup\left\{J_{<\chi}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]: \chi<\mu\right\}\right\},
$$

- ${ }_{3} A \subseteq B \subseteq Y \Rightarrow h(A) \leq h(B)$ and $h(A)=0 \Leftrightarrow A=\emptyset$,
$\bullet_{4} h(A)=\min \left\{\lambda: A \in J_{\leq \lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]\right\}$,
\bullet_{5} if $h(A)=\lambda$ and $\operatorname{cf}(\lambda) \geq \operatorname{hrtg}\left(\operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]\right)$ then $\lambda \in \operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha})$, i.e., there is an \aleph_{1}-complete filter D on Y such that $\left(\Pi \bar{\alpha},<_{D}\right)$ has true cofinality λ,
\bullet_{6} as above,
${ }^{-} 7$ as above,
-8 as above.
(3) The set $\mathfrak{c}:=\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\mathfrak{a})$ satisfies $\mathfrak{c} \leq_{\mathrm{qu}} \mathscr{P}(Y)$. If also AC_{α} holds for $\alpha<\operatorname{hrtg}(\mathscr{P}(Y))$ or just $\mathrm{AC}_{\mathrm{ps}-\mathrm{pcf}_{\aleph_{1}-\mathrm{comp}}(\bar{\alpha})}$ then we can find a sequence $\left\langle X_{\lambda}: \lambda \in \mathfrak{c}\right\rangle$ of subsets of Y such that for every cardinality $\mu, J_{<\mu}^{\aleph_{1}-\text { comp }}[\bar{\alpha}]$ is the \aleph_{1}-complete ideal on Y generated by $\left\{X_{\lambda}: \lambda<\mu\right.$ and $\left.\lambda \in \operatorname{ps-pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha})\right\}$.

Proof. (1) Let $\Theta=\operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha})$. We define the function h from $\mathscr{P}(Y)$ into Θ^{+}which is defined as the closure of $\Theta \cup\{0\}$, i.e., $\Theta \cup\{\mu: \mu=\sup (\mu \cap \Theta)\}$, by $h(X)=\operatorname{Min}\left\{\lambda \in \Theta^{+}: X \in J_{\leq \lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]\right\}$. It is well defined as ps-$\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha})$ is a set (see $\left.[\operatorname{Sh}: 938,5.8(2)]\right)$, non-empty by an assumption and $J_{\leq \lambda}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]=\mathscr{P}(Y)$ when $\lambda \geq \sup \left(\operatorname{ps-pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha})\right)$. For this function, its
range is included in Θ^{+}, but $\operatorname{otp}\left(\Theta^{+}\right) \leq \operatorname{otp}(\Theta)+1$; also clearly \bullet_{1} of the conclusion holds. Also, if $\lambda \in \Theta$ and X is as in $1.5(2)$ then $h(X)=\lambda$; so h is a function from $\mathscr{P}(Y)$ into Θ^{+}and its range includes Θ, hence $|\Theta|<\operatorname{hrtg}(\mathscr{P}(Y))$ so \bullet_{2} 's first clause holds; the second clause of \bullet_{2} holds as trivially $h(\emptyset)=0$ and the definition of Θ^{+}, and the third clause by $t \in Y \Rightarrow h(\{t\})=\operatorname{cf}\left(\alpha_{t}\right)$ holds. Now first by 1.1 we have $\theta \in \Theta \Rightarrow \theta \geq \operatorname{hrtg}(\mathscr{P}(Y))$, hence $\theta \in \Theta \Rightarrow \theta>\sup (\Theta \cap \theta)$, so the range of h is as required in \bullet_{2}.

Second, if $\lambda \in \Theta^{+}$and $\operatorname{cf}(\lambda)=\aleph_{0}$ then clearly $\lambda \in \Theta^{+} \backslash \Theta$, and we can find an increasing sequence $\left\langle\lambda_{n}: n<\omega\right\rangle$ of members of ps-pcf ${ }_{\aleph_{1}-c o m p}(\bar{\alpha})$ with limit λ. For each n there is $X_{n} \in J_{\leq \lambda_{n}}^{\aleph_{1}-\text { comp }}[\bar{\alpha}] \backslash J_{<\lambda_{n}}^{\aleph_{1} \text {-comp }}[\bar{\alpha}]$ by 1.5(2), but $\mathrm{AC}_{\aleph_{0}}$ holds (see 1.6), hence such a sequence $\left\langle X_{n}: n<\omega\right\rangle$ exists. Easily $A:=\cup\left\{X_{n}: n<\omega\right\} \in \mathscr{P}(Y)$ satisfies $h(A)=\lambda$, hence $\lambda \in \operatorname{Rang}(h)$. Third, if $\lambda=\sup \left(\operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha})\right)$ and $\operatorname{cf}(\lambda)>\aleph_{0}$, then $\bigcup_{\mu<\lambda} J_{<\mu}[\bar{\alpha}] \neq \mathscr{P}(Y)$ because Y does not belong to the union while $J_{<\lambda^{+}}(\bar{\alpha})=\mathscr{P}(Y)$, so $h(Y)=\lambda$.
 find $\left\langle\lambda_{i}: i<\operatorname{cf}(\lambda)\right\rangle$, an increasing sequence with limit λ, but by the def-
 so without loss of generality all are members of $\operatorname{ps-pcf}_{\aleph_{1}-\text { comp }}(\Pi \bar{\alpha})$. Now $\left\langle J_{i}:=J_{<\lambda_{i}}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]: i<\operatorname{cf}(\lambda)\right\rangle$ is a \subseteq-increasing sequence of \aleph_{1}-complete ideals on Y, no choice is needed, and by our present assumption $\aleph_{0}<\operatorname{cf}(\lambda)$, hence the union $J=\bigcup\left\{J_{i}: i<\operatorname{cf}(\lambda)\right\}$ is an \aleph_{1}-complete ideal on Y and obviously $A \notin J$. So also $D_{1}=\operatorname{dual}(J)+A$ is an \aleph_{1}-complete filter hence (recalling the extra assumption $t \in Y \Rightarrow \operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}\left(\operatorname{Fil}_{\aleph_{1}}^{1}(Y)\right)$), by [Sh:938, 5.9] for some \aleph_{1}-complete filter D_{2} extending D_{1} we have $\mu=\operatorname{ps-tcf}\left(\Pi \alpha,<_{D_{2}}\right)$ is well defined, so by $1.5(2)$ we have some $D_{2} \cap J_{\leq \mu}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}] \neq \emptyset$; but $\emptyset=D_{2} \cap J_{i}=$ $D_{2} \cap J_{<\lambda_{i}}^{\aleph_{1}-\operatorname{comp}}[\bar{\alpha}]$, hence $\mu \geq \lambda_{i}$. Hence $\mu \geq \lambda_{i}$ for every $i<\operatorname{cf}(\lambda)$; but λ is singular, so $\mu>\lambda$ and $\mu \in \operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha})$. Hence $\chi:=\min \left(\operatorname{ps}^{-p c f_{\aleph_{1}-c o m p}}(\bar{\alpha}) \backslash \lambda\right)$ is well defined and $J_{<\chi}^{\aleph_{1}-\text { comp }}[\bar{\alpha}]=J$ trivially $\chi \geq \lambda$, but as χ is regular while λ is singular clearly $\chi>\lambda$. But as $h(A)=\lambda<\chi$ we get that $A \in J_{<\chi}^{\aleph_{1}-c o m p}[\bar{\alpha}]$, a contradiction to the definition of h.

So we have proved \bullet_{5}, the fifth clause of the conclusion. The other clauses follow from the properties of h.
(2) A similar proof.
(3) We define a function g with domain $\mathscr{P}(Y)$ by

$$
g(A)=\min \left\{\lambda: A \in J_{<\lambda^{+}}[\bar{\alpha}]\right\} .
$$

This function is well defined as if $\lambda=\operatorname{hrtg}(\Pi \bar{\alpha})$, then $A \subseteq Y \Rightarrow A \in J_{\leq \lambda}[\bar{\alpha}]$; and the cardinals are well ordered. Also $\mathfrak{c} \subseteq \operatorname{Rang}(h)$ because if $\lambda \in \mathfrak{c}$, then by $1.5(2)$, we are done recalling that we are assuming $\mathrm{AC}_{\mathscr{P}(Y)}$.

So clearly $\mathfrak{c} \leq_{\text {qu }} \mathscr{P}(Y)$, so as \mathfrak{c} is a set of cardinals, clearly $\operatorname{otp}(\mathfrak{c})<\operatorname{hrtg}(\mathscr{P}(Y))$, hence $|\mathfrak{c}|<\operatorname{hrtg}(\mathscr{P}(Y))$.

For the second sentence in 1.7(3), by the last sentence it suffices to assume $\mathrm{AC}_{\mathfrak{c}}$. For $\lambda \in \mathfrak{c}$ let $\mathscr{P}_{\lambda}=\{X \subseteq Y: X$ as in $1.5(2)\}$, so $\mathscr{P}_{\lambda} \neq \emptyset$. By $\mathrm{AC}_{\mathfrak{c}}$ there is a sequence $\left\langle X_{\lambda}: \lambda \in \mathfrak{c}\right\rangle \in \prod_{\lambda \in \mathfrak{c}} \mathscr{P}_{\lambda}$. For $\lambda \in \mathfrak{c}$, let J_{λ}^{*} be the \aleph_{1}-complete ideal on Y generated by $\left\{X_{\mu}: \mu \in \mathfrak{c} \cap \lambda\right\}$, so by the definitions of \mathscr{P}_{λ} we have $\mu<\lambda \wedge \mu \in \mathfrak{c} \Rightarrow X_{\mu} \in J_{\leq \mu}[\bar{\alpha}] \subseteq J_{<\lambda}[\bar{\alpha}]$, also $J_{<\lambda}[\bar{\alpha}]$ is \aleph_{1}-complete, hence $\lambda \in \mathfrak{c} \Rightarrow J_{\lambda}^{*} \subseteq J_{<\lambda}[\bar{\alpha}]$.

If for every λ equality holds, we are done, otherwise there is a minimal counterexample and use 1.5(2). $\boldsymbol{\square}_{1.7}$

Definition 1.8: Assume $\operatorname{cf}(\mu)<\operatorname{hrtg}(Y)$ and μ is singular of an uncountable cofinality limit of regulars. We let
(a) $\operatorname{pp}_{Y}^{*}(\mu)=\sup \{\lambda$: for some $\bar{\alpha}, D$ we have
(a) $\lambda=\operatorname{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha},<_{D}\right)$,
(b) D is an $\aleph_{1}-$ complete filter on Y,
(c) $\bar{\alpha}=\left\langle\alpha_{t}: t \in Y\right\rangle$, each α_{t} regular,
(d) $\left.\mu=\lim _{D} \bar{\alpha}\right\}$,
(b) $\operatorname{pp}_{Y}^{+}(\mu)=\sup \left\{\lambda^{+}: \lambda\right.$ as above $\}$,
(c) similarly $\mathrm{pp}_{\kappa-\text { comp }, Y}^{*}(\mu), \mathrm{pp}_{\kappa-\text { comp }, Y}^{+}(\mu)$ restricting ourselves to κ-complete filters D; similarly for other properties,
(d) we can replace Y by an \aleph_{1}-complete filter D on Y, which means we fix D but not $\bar{\alpha}$ above.

Remark 1.9: (1) Of course, if we consider sets Y such that AC_{Y} may fail, it is natural to omit the regularity demands, so $\bar{\alpha}$ is just a sequence of ordinals.
(2) We may use $\bar{\alpha}$ a sequence of cardinals, not necessarily regular; see $\S 3$.

Conclusion $1.10\left(\mathrm{DC}+\mathrm{AC}_{\mathscr{P}(Y)}\right)$: Assume $\theta=\operatorname{hrtg}(\mathscr{P}(Y))<\mu, \mu$ is as in Definition 1.8, $\mu_{0}<\mu$ and $\bar{\alpha} \in{ }^{Y}\left(\operatorname{Reg} \cap \mu_{0}^{+}\right) \wedge \operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha}) \neq \emptyset \Rightarrow$ $\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha}) \subseteq \mu$. If $\sigma=\left|\operatorname{Reg} \cap \mu \backslash \mu_{0}\right|<\mu$ and $\kappa=\left|\operatorname{Reg} \cap \operatorname{pp}_{Y}^{+}(\mu) \backslash \mu_{0}\right|$ then $\kappa<\operatorname{hrtg}\left(\theta \times{ }^{Y} \sigma\right)$.

Remark 1.11: In the ZFC parallel the assumption on $\mu_{0}<\mu$ is not necessary.

Proof. Obvious by Definition [Sh:938, 5.6] noting Conclusion 1.7 above and 1.12 below. That is, letting $\Xi:=\operatorname{Reg} \cap \mathrm{pp}_{Y}^{+}(\mu) \backslash \mu_{0}$ so $|\Xi|=\kappa$ and $\Lambda=\operatorname{Reg} \cap \mu \backslash \mu_{0}$, for every $\bar{\alpha} \in{ }^{Y} \Lambda$ by Definition 1.8 the set $\operatorname{ps-pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha})$ is a subset of $\operatorname{Reg} \cap \operatorname{pp}_{Y}^{+}(\mu) \backslash \mu_{0}$, and by claim 1.7 it is a set of cardinality $<\operatorname{hrtg}(\mathscr{P}(Y))$. By Definition 1.8 and Claim 1.12 below we have $\Xi=\bigcup\left\{\operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\bar{\alpha}): \bar{\alpha} \in{ }^{Y} \Lambda\right\}$. Clearly there is a function h with domain $\operatorname{hrtg}(\mathscr{P}(Y)) \times{ }^{Y} \sigma$ such that $\varepsilon<$ $\operatorname{hrtg}(\mathscr{P}(Y)) \wedge \bar{\alpha} \in^{Y} \sigma \Rightarrow\left(h(\varepsilon, \bar{\alpha})\right.$ is the ε-th member of ps-pcf ${\aleph_{\aleph_{1}-c o m p}(\bar{\alpha}) \text { if }}$ there is one, $\min (\Lambda)$ otherwise). So h is a function from $\operatorname{hrtg}(\mathscr{P}(Y)) \times{ }^{Y} \sigma$ onto a set including Ξ which has cardinality κ, so we are done. $\quad \mathbf{■}_{1.10}$

Claim 1.12 (The No Hole Claim [DC]):
(1) If $\bar{\alpha} \in{ }^{Y} \operatorname{Ord}$ and $\lambda_{2} \in \operatorname{ps-pcf} \aleph_{\aleph_{1}-\operatorname{comp}}(\bar{\alpha})$, for transparency $t \in Y \Rightarrow$ $\alpha_{t}>0$ and $\operatorname{hrtg}(\mathscr{P}(Y)) \leq \lambda_{1}=\operatorname{cf}\left(\lambda_{1}\right)<\lambda_{2}$, then for some $\bar{\alpha}^{\prime} \in \Pi \bar{\alpha}$ we have $\lambda_{1}=\operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}\left(\bar{\alpha}^{\prime}\right)$.
(2) In part (1), if in addition $A C_{Y}$ then without loss of generality $\bar{\alpha}^{\prime} \in{ }^{Y}$ Reg.
(3) If in addition $\mathrm{AC}_{\mathscr{P}(Y)}+\mathrm{AC}_{<\kappa}$ then even witnessed by the same filter (on Y).

Proof. (1) Let D be an \aleph_{1}-complete filter on Y such that $\lambda_{2}=\operatorname{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha},<_{D}\right)$; let $\left\langle\mathscr{F}_{\alpha}: \alpha<\lambda_{2}\right\rangle$ exemplify this.

First assume $\operatorname{hrtg}\left(\operatorname{Fil}_{\aleph_{1}}^{1}(Y)\right) \leq \lambda_{1}$; clearly $f \in \mathscr{F}_{\alpha} \Rightarrow \operatorname{rk}_{D}(f) \geq \alpha$ for every $\alpha<\lambda_{2}$, hence in particular for $\alpha=\lambda_{1}$, hence there is $f \in{ }^{Y}$ Ord such that $\operatorname{rk}_{D}(f)=\lambda_{1}$ and now use [Sh:938, 5.9], but there we change the filter D, (extend it), so it is O.K. for part (1). In general, i.e., without the extra assumption $\operatorname{hrtg}\left(\operatorname{Fil}_{\aleph_{2}}^{1}(Y)\right) \leq \lambda_{1}$, use $1.13(1),(2)$ below.
(2) Easy, too.
(3) Similarly using $1.13(3)$ below. $\quad \mathbf{■}_{1.12}$

Claim 1.13: Assume $D \in \operatorname{Fil}_{\kappa}^{1}(Y), \kappa>\aleph_{0}, \mathscr{F}_{\alpha} \subseteq{ }^{Y}$ Ord non-empty for $\alpha<\delta$ and $\overline{\mathscr{F}}=\left\langle\mathscr{F}_{\alpha}: \alpha<\delta\right\rangle$ is $<_{D^{-}}$-increasing, δ a limit ordinal.
(1) $[\mathrm{DC}]$ There is $f^{*} \in \Pi \bar{\alpha}$ which satisfies $f \in \bigcup\left\{\mathscr{F}_{\alpha}: \alpha<\lambda_{1}\right\} \Rightarrow f<_{D} f^{*}$ but there is no such $f^{* *} \in \Pi \bar{\alpha}$ satisfying $f^{* *}<_{D} f$.
(2) $\left[\mathrm{AC}_{<\kappa}\right]$ For f^{*} as above, let

$$
\begin{aligned}
& D_{1}=D_{f^{*}, \overline{\mathscr{F}}}:=\{Y \backslash A: A=\emptyset \bmod D \text { or } \\
& A \in D^{+} \text {and there is } f^{* *} \in{ }^{Y} \text { Ord such that } \\
&\left.f^{* *}<_{D+A} f^{*} \text { and } f \in \cup\left\{\mathscr{F}_{\alpha}: \alpha<\lambda_{1}\right\} \Rightarrow f<_{D+A} f^{* *}\right\} .
\end{aligned}
$$

Now D_{1} is a κ-complete filter and $\emptyset \notin D_{1}, D_{1}$ extends D, and if $\operatorname{cf}(\delta) \geq$ $\operatorname{hrtg}(\mathscr{P}(Y))$ then $\left\langle\mathscr{F}_{\alpha}: \alpha<\delta\right\rangle$ witnesses that f^{*} is a $<_{D_{1}}$-exact upper bound of $\overline{\mathscr{F}}$, hence $\left(\prod_{y \in Y} f^{*}(y),<_{D_{1}}\right)$ has pseudo true cofinality $\operatorname{cf}(\delta)$.
(3) $\left[\mathrm{DC}+\mathrm{AC}_{<\kappa}+\mathrm{AC}_{\mathscr{P}(Y)}\right]$ If $\operatorname{cf}(\delta) \geq \operatorname{hrtg}(\mathscr{P}(Y))$ then there is $f^{\prime} \in{ }^{Y}$ Ord which is an $<_{D}$-exact upper bound of $\overline{\mathscr{F}}$, i.e.,

$$
f<_{D} f^{\prime} \Rightarrow(\exists \alpha<\delta)\left(\exists g \in \mathscr{F}_{\alpha}\right)[f<g \bmod D]
$$

and

$$
f \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha} \Rightarrow f<_{D} f^{\prime}
$$

Proof. (1) If not, then by DC we can find $\bar{f}=\left\langle f_{n}: n<\omega\right\rangle$ such that:
(a) $f_{n} \in{ }^{Y}$ Ord,
(b) $f_{n+1}<f_{n} \bmod D$,
(c) if $f \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha}$ and $n<\omega$ then $f<f_{n} \bmod D$.

So $A_{n}=\left\{t \in Y: f_{n+1}(t)<f_{n}(t)\right\} \in D$, hence $\bigcap\left\{A_{n}: n<\omega\right\} \in D$, contradiction.
(2) First, clearly $D_{1} \subseteq \mathscr{P}(Y)$ and by the assumption $\emptyset \notin D_{1}$. Second, if $f^{* *}$ witnesses $A \in D_{1}$ and $A \subseteq B \subseteq Y$ then $f^{* *}$ witnesses $B \in D_{1}$.

Third, we prove D_{1} is closed under intersection of $<\kappa$ members, so assume $\zeta<\kappa$ and $\bar{A}=\left\langle A_{\varepsilon}: \varepsilon<\zeta\right\rangle$ is a sequence of members of D_{1}. Let $A:=\bigcap\left\{A_{\varepsilon}: \varepsilon<\zeta\right\}$, $B_{\varepsilon}=Y \backslash A_{\varepsilon}$ for $\varepsilon<\zeta$ and $B_{\varepsilon}^{\prime}=B_{\varepsilon} \backslash \bigcup\left\{B_{\xi}: \xi<\varepsilon\right\}$ and $B=\bigcup\left\{B_{\varepsilon}: \varepsilon<\zeta\right\}$. Clearly $B=Y \backslash A, A \subseteq Y$ and $\left\langle B_{\varepsilon}^{\prime}: \varepsilon<\zeta\right\rangle$ is a sequence of pairwise disjoint subsets of Y with union B. But AC_{ζ} holds and $\varepsilon<\zeta \Rightarrow A_{\varepsilon} \in D_{1}$, hence we can find $\left\langle f_{\varepsilon}^{* *}: \varepsilon<\zeta\right\rangle$ such that $f_{\varepsilon}^{* *} \in{ }^{Y}$ Ord and if $A_{\varepsilon} \notin D$ then $f_{\varepsilon}^{* *}$ witnesses $A_{\varepsilon} \in D_{1}$. Let $f^{* *} \in{ }^{Y}$ Ord be defined by $f^{* *}(t)=f_{\varepsilon}^{* *}(t)$ if $t \in B_{\varepsilon}^{\prime}$ or $\varepsilon=0 \wedge t \in Y \backslash B$; easily $B_{\varepsilon}^{\prime} \in D^{+} \wedge f \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha} \Rightarrow f<f_{\varepsilon}^{* *}=f^{* *} \bmod \left(D+B_{\varepsilon}^{\prime}\right)$ but $B=\bigcup\left\{B_{\varepsilon}^{\prime}: \varepsilon<\zeta\right\}$ and D is κ-complete hence $f \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha} \Rightarrow f<f^{* *} \bmod (D+B)$. So as $A=$ $Y \backslash B$ clearly $f^{* *}$ witnesses $A=\bigcap_{\varepsilon<\zeta} A_{\varepsilon} \in D_{1}$ so D_{1} is indeed κ-complete.

Lastly, assume $\operatorname{cf}(\delta) \geq \operatorname{hrtg}(\mathscr{P}(Y))$ and we shall show that f^{*} is an exact upper bound of $\overline{\mathscr{F}}$ modulo D_{1}. So assume $f^{* *} \in{ }^{Y}$ Ord and $f^{* *}<f^{*} \bmod D_{1}$ and we shall prove that there are $\alpha<\delta$ and $f \in \mathscr{F}_{\alpha}$ such that $f^{* *} \leq f \bmod D_{1}$.

Let $\mathscr{A}=\left\{A \in D_{1}^{+}\right.$: there is $f \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha}$ such that $\left.f^{* *} \leq f \bmod (D+A)\right\}$, yes, not D_{1} !

Case 1: For every $B \in D_{1}^{+}$there is $A \in \mathscr{A}, A \subseteq B$.
For every $A \in \mathscr{A}$ let

$$
\alpha_{A}=\min \left\{\beta: \text { there is } f \in \mathscr{F}_{\beta} \text { such that } f^{* *} \leq f \bmod (D+A)\right\}
$$

So the sequence $\left\langle\alpha_{A}: A \in \mathscr{A}\right\rangle$ is well defined.
Let $\alpha(*)=\sup \left\{\alpha_{A}+1: A \in \mathscr{A}\right\}$; it is $<\delta$ as $\operatorname{cf}(\delta) \geq \operatorname{hrtg}(\mathscr{P}(Y)) \geq \operatorname{hrtg}(\mathscr{A})$.
Choose $f \in \mathscr{F}_{\alpha(*)}$ and let $B_{f}:=\left\{t \in Y: f^{* *}(t)>f(t)\right\}$. Now if $A \in \mathscr{A}$ (so $A \in D_{2}^{+}$) and $f^{\prime} \in \mathscr{F}_{\alpha_{A}}$ witnesses this (i.e., $f^{* *} \leq f^{\prime} \bmod (D+A)$), then $A \nsubseteq B_{f}$ as otherwise $f^{* *} \leq f^{\prime}<f<f^{* *} \bmod (D+A)$. So B_{f} contains no $A \in \mathscr{A}$, hence necessarily B_{f} is $=\emptyset \bmod D_{1}$ by the case assumption; this means that $f^{* *} \leq f \bmod D_{1}$. So recalling $f \in \mathscr{F}_{\alpha(*)} \subseteq \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha}$, we have " f is as required" thus finishing the proof of " f^{*} is an exact upper bound of $\overline{\mathscr{F}}$ $\bmod D "$.

Case 2: $B \in D_{1}^{+}$and there is no $A \in \mathscr{A}$ such that $A \subseteq B$.
For $f \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha}$ let $B_{f}=\left\{t \in B: f(t)<f_{* *}(t)\right\}$, and for $\alpha<\delta$ we define $\mathscr{B}_{\alpha}=\left\{B_{f}: f \in \mathscr{F}_{\alpha}\right\}$ and we define a partial function h from $\mathscr{P}(Y)$ into δ by $h(A)=\sup \left\{\alpha<\delta: A \in \mathscr{B}_{\alpha}\right\}$. As $\operatorname{cf}(\delta) \geq \operatorname{hrtg}(\mathscr{P}(Y))$ necessarily $\alpha(*)=\sup \delta \cap \operatorname{Rang}(h)$ is $<\delta$. Choose $g \in \mathscr{F}_{\alpha(*)+1}$, hence

$$
u:=\left\{\alpha: \alpha \in[\alpha(*), \delta] \text { and } B_{g} \in \mathscr{B}_{\alpha}\right\}
$$

is an unbounded subset of δ.
Let $A=B \cap B_{g}$. Now if $A \in D^{+}$then $\alpha \in u \Rightarrow \bigvee_{f \in \mathscr{F}_{\alpha}} f<f_{* *} \bmod (D+A)$, but $\overline{\mathscr{F}}$ is $<_{D}$-increasing and $\delta=\sup (u)$ hence $f \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha} \Rightarrow f<f_{* *} \bmod (D+A)$, hence by the definition of $D_{1}, f_{* *}$ witnesses that $Y \backslash A \in D_{1}$, hence $A=\emptyset$ $\bmod D_{1}$. As $B \in D_{1}^{+}$and $A=B \cap B_{g}$ it follows that $B \backslash B_{g} \in D_{1}^{+}$, and by the choice of \mathscr{A} the set $B \backslash B_{g}$ belongs to \mathscr{A}. But $B \backslash B_{g} \subseteq B$ by its definition, so we get a contradiction to the case assumption.
(3) By [Sh:938, 5.12], without loss of generality, $\overline{\mathscr{F}}$ is \aleph_{0}-continuous. For every $A \in D^{+}$the assumptions hold even if we replace D by $D+A$, and so there are D_{1}, f^{*} as in part (2); we are allowed to use part (1) as we have DC
and part (2) as we have $\mathrm{AC}_{<\kappa}$. As we are assuming $\mathrm{AC}_{\mathscr{P}(Y)}$ there is a sequence $\left\langle\left(D_{A}, f_{A}\right): A \in D^{+}\right\rangle$such that:
$(*)_{1} \quad\left(\right.$ a) D_{A} is a κ-complete filter extending $D+A$,
(b) $f_{A} \in{ }^{Y}$ Ord is a $<D_{A}$-exact upper bound of $\overline{\mathscr{F}}$.

Recall $|A| \leq_{\mathrm{qu}}|B|$ is defined as: A is empty or there is a function from B onto A. Of course, this implies $\operatorname{hrtg}(A) \leq \operatorname{hrtg}(B)$.

Let $\overline{\mathscr{U}}=\left\langle\mathscr{U}_{t}: t \in Y\right\rangle$ be defined by

$$
\mathscr{U}_{t}=\left\{f_{A}(t): A \in D^{+}\right\} \cup\left\{\sup \left\{f(t): f \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha}\right\}\right\}
$$

hence $t \in Y \Rightarrow 0<\left|\mathscr{U}_{t}\right| \leq_{\text {qu }} \mathscr{P}(Y)$ even uniformly, so there is a sequence $\left\langle h_{t}: t \in Y\right\rangle$ such that h_{t} is a function from $\mathscr{P}(Y)$ onto \mathscr{U}_{t}, hence $\left|\prod_{t \in Y} \mathscr{U}_{t}\right| \leq_{\text {qu }}$ $\mathscr{P}(Y) \times Y \leq_{\text {qu }} \mathscr{P}(Y \times Y)$; but $\mathrm{AC}_{\mathscr{P}(Y)}$ holds, hence Y can be well ordered. However, without loss of generality Y is infinite, hence $|Y \times Y|=Y$, so $\left|\prod_{t \in Y} \mathscr{U}_{t}\right| \leq_{\mathrm{qu}}|\mathscr{P}(Y)|$.

Let
$\mathscr{G}=\left\{g: g \in \prod_{t \in Y} \mathscr{U}_{t}\right.$ and not for every $f \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha}$ do we have $\left.f<g \bmod D\right\}$,
so $|\mathscr{G}| \leq\left|\prod_{t \in Y} \mathscr{U}_{t}\right| \leq_{\mathrm{qu}}|\mathscr{P}(Y \times Y)|=|\mathscr{P}(Y)|$, hence $\operatorname{hrtg}(\mathscr{G}) \leq \operatorname{hrtg}(\mathscr{P}(Y)) \leq$ $\operatorname{cf}(\delta)$.

Now for every $g \in \mathscr{G}$ the sequence $\left\langle\left\{\{t \in Y: g(t) \leq f(t)\}: f \in \bigcup_{\beta<\alpha} \mathscr{F}_{\beta}\right\}: \alpha<\delta\right\rangle$ is a \subseteq-increasing sequence of subsets of $\mathscr{P}(Y)$, but $\operatorname{hrtg}(\mathscr{P}(Y)) \leq \operatorname{cf}(\delta)$, hence the sequence is eventually constant and let $\alpha(g)<\delta$ be minimal such that

$$
\begin{aligned}
(*)_{g}(\forall \beta)[\alpha(g) \leq \beta<\delta & \Rightarrow\left\{\{t \in Y: g(t) \leq f(t)\}: f \in \bigcup_{\gamma<\beta} \mathscr{F}_{\gamma}\right\} \\
& \left.=\left\{\{t \in Y: g(t) \leq f(t)\}: f \in \bigcup_{\gamma<\alpha(g)} \mathscr{F}_{\gamma}\right\}\right]
\end{aligned}
$$

But recalling $\operatorname{hrtg}(\mathscr{G}) \leq \operatorname{cf}(\delta)$, the ordinal $\alpha(*):=\sup \{\alpha(g): g \in \mathscr{G}\}$ is $<\delta$. Now choose $f^{*} \in \mathscr{F}_{\alpha(*)+1}$ and define $g^{*} \in \prod_{t \in Y} \mathscr{U}_{t}$ by $g^{*}(t)=\min \left(\mathscr{U}_{t} \backslash f^{*}(t)\right)$, well defined as $\sup \left\{f(t): t \in \bigcup_{\alpha<\delta} \mathscr{F}_{\alpha}\right\} \in \mathscr{U}_{t}$. It is easy to check that g^{*} is as required. $\mathbf{\Xi}_{1.13}$

Observation 1.14: (1) Let D be a filter on Y.
If D is κ-complete for every κ then for every $f \in{ }^{Y}$ Ord and $A \in D^{+}$there is $B \subseteq A$ from D^{+}such that $f \upharpoonright B$ is constant.
(2) If $\bar{\alpha}=\left\langle\alpha_{s}: s \in Y\right\rangle$ and $X_{\varepsilon} \subseteq Y$ for $\varepsilon<\zeta<\kappa$ and $X=\bigcup_{\varepsilon<\zeta} X_{\varepsilon}$ then $\mathrm{ps}-\operatorname{pcf}_{\kappa-\mathrm{comp}}(\bar{\alpha} \upharpoonright X)=\bigcup_{\varepsilon<\zeta} \mathrm{ps}-\operatorname{pcf}_{\kappa-\mathrm{comp}}\left(\bar{\alpha} \upharpoonright X_{\varepsilon}\right)$.

Remark 1.15: (1) Note that 1.14(1) is not empty; its assumptions hold when Y is an infinite set such that: for every $X \subseteq Y,|X|<\kappa \vee|Y \backslash X|<\kappa$ and $D=\{X \subseteq Y:|Y \backslash X| \not \leq \kappa\}$.

Proof. Straightforward. $\mathbf{■}_{1.14}$

2. Composition and generating sequences for pseudo pcf

How much choice suffices to show $\lambda=\mathrm{ps}-\operatorname{tcf}\left(\prod_{(i, j) \in Y} \lambda_{i, j} / D\right)$ when λ_{i} is the pseudo true equality of $\left(\prod_{j \in Y_{i}} \lambda_{i, j},{<_{D_{i}}}\right.$) for $i \in Z$, where $Z=\{i:(i, j) \in Y\}$ and $Y_{i}=\left\{(i, j): i \in Z, j \in Y_{i}\right\}$ and $\lambda=\operatorname{ps-tcf}\left(\prod_{i \in Z} \lambda_{i},<_{E}\right)$? This is 2.5, the parallel of [Sh:g, Ch. II, 1.10, p. 12].

Claim 2.1: If \boxplus below holds then for some partition $\left(Y_{1}, Y_{2}\right)$ of Y and club E of λ we have
\oplus (a) if $Y_{1} \in D^{+}$and $f, g \in \cup\left\{\mathscr{F}_{\alpha}: \alpha \geq \min (E)\right\}$ then $f=g \bmod \left(D+Y_{1}\right)$,
(b) if $Y_{2} \in D^{+}$then $\left\langle\mathscr{F}_{\alpha}: \alpha \in E\right\rangle$ is $<_{D+Y_{2}}$-increasing,
where
\boxplus (a) λ is regular $\geq \operatorname{hrtg}(\mathscr{P}(Y)))$,
(b) $\mathscr{F}_{\alpha} \subseteq{ }^{Y}$ Ord for $\alpha<\lambda$ is non-empty,
(c) D is an \aleph_{1}-complete filter on Y,
(d) if $\alpha_{1}<\alpha_{2}<\lambda$ and $f_{\ell} \in \mathscr{F} \alpha_{\ell}$ for $\ell=1,2$ then $f_{1} \leq f_{2} \bmod D$.

Proof. For $Z \in D^{+}$let
$(*)_{1} \quad$ (a) $S_{Z}=\left\{(\alpha, \beta): \alpha \leq \beta<\lambda\right.$ and for some $f \in \mathscr{F}_{\alpha}$ and $g \in \mathscr{F}_{\beta}$ we have $f<g \bmod (D+Z)\}$,
(b) $S_{Z}^{+}=\left\{(\alpha, \beta): \alpha \leq \beta<\lambda\right.$ and for every $f \in \mathscr{F}_{\alpha}$ and $g \in \mathscr{F}_{\beta}$ we have $f<g \bmod (D+Z)\}$.
Note
$(*)_{2} \quad$ (a) if $\alpha_{1} \leq \alpha_{2} \leq \alpha_{3} \leq \alpha_{4}$ and $\left(\alpha_{2}, \alpha_{3}\right) \in S_{Z}$ then $\left(\alpha_{1}, \alpha_{4}\right) \in S_{Z}$,
(b) similarly for S_{Z}^{+},
(c) if $\alpha_{1} \leq \alpha_{2} \leq \alpha_{3} \leq \alpha_{4}$ and $\left(\alpha_{1} \neq \alpha_{2}\right) \wedge\left(\alpha_{3} \neq \alpha_{4}\right)$ and $\left(\alpha_{2}, \alpha_{3}\right) \in S_{Z}$ then $\left(\alpha_{1}, \alpha_{4}\right) \in S_{Z}^{+}$,
(d) $S_{Z} \subseteq S_{Z}^{+}$.
[Why? By the definitions.]
Let
$(*)_{3} J:=\left\{Z \subseteq Y: Z \in \operatorname{dual}(D)\right.$ or $Z \in D^{+}$and $\left.(\forall \alpha<\lambda)(\exists \beta)\left((\alpha, \beta) \in S_{Z}^{+}\right)\right\}$.
Next
$(*)_{4} \quad$ (a) J is an \aleph_{1}-complete ideal on Y,
(b) if D is κ-complete then J is κ-complete ${ }^{1}$,
(c) $J=\left\{Z \subseteq Y: Z \in \operatorname{dual}(D)\right.$ or $Z \in D^{+}$and $\left.(\forall \alpha<\lambda)(\exists \beta)\left((\alpha, \beta) \in S_{Z}\right)\right\}$.
[Why? For clauses (a), (b) check, and for clause (c) recall $\left.(*)_{2}(\mathrm{c}).\right]$
Let
$(*)_{5} \quad$ (a) for $Z \in J^{+}$let
$\alpha(Z)=\min \left\{\alpha<\lambda:\right.$ for no $\beta \in(\alpha, \lambda)$ do we have $\left.(\alpha, \beta) \in S_{Z}\right\}$,
(b) $\alpha(*)=\sup \left\{\alpha_{Z}: Z \in J^{+}\right\}$.
$(*)_{6} \quad$ (a) For $Z \in J^{+}$we have $\alpha(Z)<\lambda$,
(b) $\alpha(*)<\lambda$.
[Why? Clause (a) by the definition of the ideal J, and clause (b) as $\lambda=\operatorname{cf}(\lambda) \geq$ $\operatorname{hrtg}(\mathscr{P}(Y))$.]

Let
$(*)_{7}$ (a) for $Z \in D^{+}$let $f_{Z}: \lambda \rightarrow \lambda+1$ be defined by $f_{Z}(\alpha)=$ $\min \left\{\beta:(\alpha, \beta) \in S_{Z}^{+}\right.$or $\left.\beta=\lambda\right\}$,
(b) $f_{*}: \lambda \rightarrow \lambda$ be defined by $f_{*}(\alpha)=\sup \left\{f_{Z}(\alpha): Z \in D^{+} \cap J\right\}$,
(c) $E=\left\{\delta: \delta\right.$ a limit ordinal $<\lambda$ such that $\left.\alpha<\delta \Rightarrow f_{*}(\alpha)<\delta\right\} \backslash \alpha(*)$.

Hence
$(*)_{8} \quad$ (a) if $Z \in D^{+} \cap J$ then f_{Z} is indeed a function from λ to λ,
(b) f_{*} is indeed a function from λ to λ,
(c) f_{*} is non-decreasing,
(d) E is a club of λ.
[Why? Clause (a) by the definition of J and of f_{*}, and clause (b) as $\lambda=\operatorname{cf}(\lambda) \geq$ $\operatorname{hrtg}(\mathscr{P}(Y))$, and clause (c) by $(*)_{2}$, and clause (d) follows from (b)+(c).]
$(*)_{9}$ Let $\alpha_{0}=\min (E), \alpha_{1}=\min \left(E \backslash\left(\alpha_{0}+1\right)\right)$, choose $f_{0} \in \mathscr{F} \alpha_{0}, f_{1} \in \mathscr{F} \alpha_{1}$ and let $Y_{1}=\left\{y \in Y: f_{0}(y)=f_{1}(y)\right\}$ and $Y_{2}=Y \backslash Y_{1}$,
$(*)_{10}\left(Y_{1}, Y_{2}, E\right)$ are as required.
[Why? Think.] $\boldsymbol{■}_{2.1}$

[^1]CLAIm 2.2: We have $\lambda=\mathrm{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha}_{1},{<_{D_{1}}}\right)=\mathrm{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha},{<_{D}}\right)$, which means also that one of them is well defined iff the other is, when
(a) $\bar{\alpha} \in{ }^{Y}$ Ord and $t \in Y \Rightarrow \operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}(Y)$,
(b) E is the equivalence relation on Y such that $s E t \Leftrightarrow \alpha_{s}=\alpha_{t}$,
(c) D is a filter on X,
(d) $Y_{1}=Y / E$,
(e) $D_{1}=\{Z \subseteq Y / E: \bigcup\{X: X \in Z\} \in D\}$, so a filter on Y_{1},
(f) $\bar{\alpha}_{1}=\left\langle\alpha_{1, y_{1}}: y_{1} \in Y_{1}\right\rangle$ where $y_{1}=y / E \Rightarrow \alpha_{1, y_{1}}=\alpha_{y}$.

Proof. First, the "only if" direction holds by 2.3 .
Second, for the "if direction", assume that $\operatorname{ps}-\operatorname{pcf}\left(\Pi \bar{\alpha}_{1},<_{D_{1}}\right)$ is well defined and call it λ_{1}. Let $\left\langle\mathscr{F}_{1, \alpha}: \alpha<\lambda\right\rangle$ witness this, for $f \in \mathscr{F}_{1, \alpha}$ let $f^{[0]} \in{ }^{Y}$ Ord be defined by $f^{[0]}(s)=f(s / E)$ and let $\mathscr{F}_{\alpha}=\left\{f^{[0]}: f \in \mathscr{F}_{1, \alpha}\right\}$. It is easy to check that $\left\langle\mathscr{F}_{\alpha}: \alpha<\lambda\right\rangle$ witnesses $\lambda_{1}=\mathrm{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha},<_{D}\right)$ recalling $t \in Y \Rightarrow \operatorname{cf}\left(\alpha_{t}\right) \geq$ $\operatorname{hrtg}(Y)$ by clause (d), so we have proved also the "if" implication. $\boldsymbol{\square}_{2.2}$

By the following claims we do not really lose by using $\mathfrak{a} \subseteq$ Reg instead $\bar{\alpha} \in{ }^{Y} \operatorname{Ord}$ as by 2.4 below, without loss of generality, $\alpha_{t}=\operatorname{cf}\left(\alpha_{t}\right)\left(\right.$ when $\left.\mathrm{AC}_{Y}\right)$ and by 2.2 .

Claim 2.3: Assume $\bar{\alpha} \in{ }^{Y} \operatorname{Ord}, D \in \operatorname{Fil}(Y)$ and $\lambda=\operatorname{ps-pcf}\left(\Pi \bar{\alpha},<_{D}\right)$, so λ is regular and $y \in Y \Rightarrow \alpha_{y}<\lambda$.

If $\left\langle\mathscr{F}_{\alpha}: \alpha<\lambda\right\rangle$ witnesses $\lambda=\operatorname{ps-tcf}\left(\Pi \bar{\alpha},<_{D}\right)$ and $y \in Y \Rightarrow \operatorname{cf}\left(\alpha_{y}\right) \geq \operatorname{hrtg}(Y)$ and $\lambda \geq \operatorname{hrtg}(Y)$ then for some e :
(a) $e \in \mathrm{eq}(Y)=\{e: e$ an equivalence relation on $Y\}$,
(b) the sequence $\mathscr{F}_{e}=\left\langle\mathscr{F}_{e, \alpha}: \alpha<\lambda\right\rangle$ witnesses $\left.\operatorname{ps-tcf}\left(\left\langle\alpha_{y / e}: y \in Y / e\right\rangle, D / e\right\rangle\right)$ where
(c) $\alpha_{y / e}=\alpha_{y}, D / e=\{A / e: A \in D\}$ where $A / e=\{y / e: y \in A\}$ and $\mathscr{F}_{e, \alpha}=\left\{f^{[*]}: f \in \mathscr{F}_{\alpha}\right\}, f^{[*]}: Y / e \rightarrow$ Ord is defined by $f^{[*]}(t / e)=$ $\sup \{f(s): s \in t / e\}$, noting $\operatorname{hrtg}(Y / e) \leq \operatorname{hrtg}(Y)$,
(d) $e=\left\{\left(s_{1}, s_{2}\right): \alpha_{s_{1}}=\alpha_{s_{2}}\right\}$.

Proof. Let $e=\operatorname{eq}(\bar{\alpha})=\left\{\left(y_{1}, y_{2}\right): y_{1} \in Y, y_{2} \in Y\right.$ and $\left.\alpha_{y_{1}}=\alpha_{y_{2}}\right\}$. For each $f \in \Pi \bar{\alpha}$ let the function $f^{[*]} \in \Pi \bar{\alpha}$ be defined by $f^{[*]}(y)=\sup \{f(z): z \in y / e\}$. Clearly $f^{[*]}$ is a function from $\prod_{y \in Y}\left(\alpha_{y}+1\right)$ and it belongs to $\Pi \bar{\alpha}$ as $y \in Y \Rightarrow$ $\operatorname{cf}\left(\alpha_{y}\right) \geq \operatorname{hrtg}(Y)$. Let $H: \lambda \rightarrow \lambda$ be $H(\alpha)=\min \{\beta<\lambda: \beta>\alpha$ and there are $f_{1} \in \mathscr{F}_{\alpha}$ and $f_{2} \in \mathscr{F}_{\beta}$ such that $\left.f_{1}^{[*]}<f_{2} \bmod D\right\}$, well defined as \mathscr{F} is cofinal
in $\left(\Pi \bar{\alpha},<_{D}\right)$. We choose $\alpha_{i}<\lambda$ by induction on i by $\alpha_{i}=\bigcup\left\{H\left(\alpha_{j}\right)+1: j<i\right\}$. So $\alpha_{0}=0$ and $\left\langle\alpha_{i}: i<\lambda\right\rangle$ is increasing continuous. Let
$\mathscr{F}_{i}^{\prime}=\left\{f^{[*]}: f \in \mathscr{F}_{\alpha_{i}}\right.$ and there is $g \in \mathscr{F}_{H\left(\alpha_{i}\right)}=\mathscr{F}_{\alpha_{i+1}-1}$ such that $\left.f^{[*]}<g \bmod D\right\}$.
So
$(*)_{1} \mathscr{F}_{i}^{\prime} \subseteq\{f \in \Pi \bar{\alpha}: \mathrm{eq}(\bar{\alpha})$ refine eq $(f)\}$.
[Why? By the choice of \mathscr{F}_{i}^{\prime} and of e.]
$(*)_{2} \quad \mathscr{F}_{i}^{\prime}$ is non-empty.
[Why? By the choice of $H\left(\alpha_{i}\right)$.]
$(*)_{3}$ If $i(1)<i(2)<\lambda$ and $h_{\ell} \in \mathscr{F}_{i_{\ell}}^{\prime}$ for $\ell=1,2$, then $h_{1}<h_{2} \bmod D$.
[Why? For $\ell=1,2$ let $g_{\ell} \in \mathscr{F}_{H\left(\alpha_{i(\ell)}\right)}$ be such that $h_{\ell}=f_{\ell}^{[*]}<g_{\ell} \bmod D$ exists by the definition of $\mathscr{F}_{i(\ell)}^{\prime}$. But $H\left(\alpha_{i(1)}\right)<\alpha_{i(1)+1} \leq \alpha_{i(2)}$, hence $g_{1} \leq f_{2}$ $\bmod D$ so together $h_{1}=f_{1}^{[*]}<g_{1} \leq f_{2} \leq f_{2}^{[*]}=h_{2} \bmod D$, hence we are done.]
$(*)_{4} \bigcup_{i<\lambda} \mathscr{F}_{i}^{\prime}$ is cofinal in $\left(\Pi \bar{\alpha},<_{D}\right)$.
[Easy, too.]
Lastly, let $\mathscr{F}_{i}^{+}=\left\{f / e: e \in \mathscr{F}_{i}^{\prime}\right\}$ where $f / e \in{ }^{Y / e}$ Ord is defined by $(f / e)(y / e)=f(y)$, clearly well defined. $\quad \boldsymbol{\square}_{2.3}$

Claim 2.4: Assume AC_{Y} and $\bar{\alpha}_{\ell}=\left\langle\alpha_{y}^{\ell}: y \in Y\right\rangle \in{ }^{Y}$ Ord for $\ell=1,2$. If $y \in Y \Rightarrow \operatorname{cf}\left(\alpha_{y}^{1}\right)=\operatorname{cf}\left(\alpha_{y}^{2}\right)$ then $\lambda=\operatorname{ps-tcf}\left(\Pi \bar{\alpha}_{1},{<_{D}}\right)$ iff $\lambda=\operatorname{ps}-\operatorname{tcf}\left(\Pi \bar{\alpha}_{2},<_{D}\right)$.

Proof. Straightforward. $\mathbf{■}_{2.4}$
Now we come to the heart of the matter
Theorem 2.5 (The Composition Theorem): [Assume AC_{Z} and $\kappa \geq \aleph_{0}$.]
We have $\lambda=\operatorname{ps-tcf}\left(\prod_{(i, j) \in Y} \lambda_{i, j},<_{D}\right)$ and D is a κ-complete filter on Y when:
(a) E is a κ-complete filter on Z,
(b) $\left\langle\lambda_{i}: i \in Z\right\rangle$ is a sequence of regular cardinals,
(c) $\lambda=\operatorname{ps-tcf}\left(\prod_{i \in Z} \lambda_{i},<_{E}\right)$,
(d) $\bar{Y}=\left\langle Y_{i}: i \in Z\right\rangle$,
(e) $\bar{D}=\left\langle D_{i}: i \in Z\right\rangle$,
(f) D_{i} is a κ-complete filter on Y_{i},
(g) $\bar{\lambda}=\left\langle\lambda_{i, j}: i \in Z, j \in Y_{i}\right\rangle$ is a sequence of regular cardinals (or just limit ordinals),
(h) $\lambda_{i}=\operatorname{ps-tcf}\left(\prod_{j \in Y_{i}} \lambda_{i, j},<_{D_{i}}\right)$,
(i) $Y=\left\{(i, j): j \in Y_{i}\right.$ and $\left.i \in Z\right\}$,
(j) $D=\left\{A \subseteq Y\right.$: for some $B \in E$ we have $\left.i \in B \Rightarrow\{j:(i, j) \in A\} \in D_{i}\right\}$.

Proof. $\quad(*)_{0} D$ is a κ-complete filter on Y.
[Why? Straightforward (and we do not need any choice).]
Let $\left\langle\mathscr{F}_{i, \alpha}: \alpha<\lambda_{i}, i \in Z\right\rangle$ be such that
$(*)_{1} \quad$ (a) $\overline{\mathscr{F}}_{i}=\left\langle\mathscr{F}_{i, \alpha}: \alpha<\lambda_{i}\right\rangle$ witnesses $\lambda_{i}=\operatorname{ps}-\operatorname{tcf}\left(\prod_{j \in Y_{i}} \lambda_{i, j},<_{D_{i}}\right)$, (b) $\mathscr{F}_{i, \alpha} \neq \emptyset$.
[Why? Exists by clause (h) of the assumption and AC_{Z}; for clause (b) recall [Sh:938, 5.6].]

By clause (c) of the assumption let $\overline{\mathscr{G}}$ be such that
$(*)_{2} \quad$ (a) $\overline{\mathscr{G}}=\left\langle\mathscr{G}_{\beta}: \beta<\lambda\right\rangle$ witnesses $\lambda=\operatorname{ps}-\operatorname{tcf}\left(\prod_{i \in Z} \lambda_{i},<_{E}\right)$,
(b) $\mathscr{G}_{\beta} \neq \emptyset$ for $\beta<\lambda$.

Now for $\beta<\lambda$ let
$(*)_{3} \quad \mathscr{F}_{\beta}:=\left\{f: f \in \prod_{(i, j) \in Y} \lambda_{i, j}\right.$ and for some

$$
\begin{aligned}
& g \in \mathscr{G}_{\beta} \text { and } \bar{h}=\left\langle h_{i}: i \in Z\right\rangle \in \prod_{i \in Z} \mathscr{F}_{i, g(i)} \text { we have } \\
& \left.(i, j) \in Y \Rightarrow f((i, j))=h_{i}(j)\right\} .
\end{aligned}
$$

$(*)_{4}$ The sequence $\left\langle\mathscr{F}_{\beta}: \beta<\lambda\right\rangle$ is well defined (so exists).
[Why? Obviously.]
$(*)_{5}$ If $\beta_{1}<\beta_{2}, f_{1} \in \mathscr{F}_{\beta_{1}}$ and $f_{2} \in \mathscr{F}_{\beta_{2}}$ then $f_{1}<_{D} f_{2}$.
[Why? Let $g_{\ell} \in \mathscr{G}_{\beta_{\ell}}$ and $\bar{h}_{\ell}=\left\langle h_{i}^{\ell}: i \in Z\right\rangle \in \prod_{i \in Z} \mathscr{F}_{i, g_{\ell}(i)}$ witnesses $f_{\ell} \in \mathscr{F}_{\beta_{\ell}}$ for $\ell=1,2$. As $\beta_{1}<\beta_{2}$ by $(*)_{2}$ we have $B:=\left\{i \in Z: g_{1}(i)<g_{2}(i)\right\} \in E$. For each $i \in B$ we know that $g_{1}(i)<g_{2}(i)<\lambda_{i}$ and $h_{i}^{1} \in \mathscr{F}_{i, g_{i}(i)}, h_{i}^{2} \in \mathscr{F}_{i, g_{2}(i)}$; hence recalling the choice of $\left\langle\mathscr{F}_{i, \alpha}: \alpha<\lambda_{i}\right\rangle$, see $(*)_{1}$, we have $A_{i} \in D_{i}$, where for every $i \in Z$ we let $A_{i}:=\left\{j \in Y_{i}: h_{i}^{1}(j)<h_{i}^{2}(j)\right\}$. As \bar{h}_{1}, \bar{h}_{2} exists clearly $\left\langle A_{i}: i \in Z\right\rangle$ exist, hence $A=\left\{(i, j): i \in B\right.$ and $\left.j \in A_{i}\right\}$ is a well-defined subset of Y and it belongs to D by the definition of D.

Lastly, $(i, j) \in A \Rightarrow f_{1}((i, j))<f_{2}((i, j))$, shown above; so by the definition of D we are done.]
$(*)_{6}$ For every $\beta<\lambda$ the set \mathscr{F}_{β} is non-empty.
[Why? Recall $\mathscr{G}_{\beta} \neq \emptyset$ by $(*)_{2}(\mathrm{~b})$ and let $g \in \mathscr{G}_{\beta}$. As $\left\langle\mathscr{F}_{i, g(i)}: i \in Z\right\rangle$ is a sequence of non-empty sets (recalling $(*)_{2}(\mathrm{~b})$), and we are assuming AC_{Z}, there is a sequence $\left\langle h_{i}: i \in Z\right\rangle \in \prod_{i \in Z} \mathscr{F}_{i, g(i)}$. Let f be the function with domain Y defined by $f((i, j))=h_{i}(j)$; so g, \bar{h} witness $f \in \mathscr{F}_{\beta}$, so $\mathscr{F}_{\beta} \neq \emptyset$ as required.]
$(*)_{7}$ If $f_{*} \in \prod_{(i, j) \in Y} \lambda_{i, j}$ then for some $\beta<\lambda$ and $f \in \mathscr{F}_{\beta}$ we have $f_{*}<f \bmod D$.
[Why? We define $\bar{f}=\left\langle f_{i}^{*}: i \in Z\right\rangle$ as follows: f_{i}^{*} is the function with domain Y_{i} such that

$$
j \in Y_{i} \Rightarrow f_{i}^{*}(j)=f((i, j))
$$

Clearly \bar{f} is well defined and for each $i, f_{i}^{*} \in \prod_{j \in Y_{i}} \lambda_{i, j}$, hence by $(*)_{1}$ (a) for some $\alpha<\lambda_{i}$ and $h \in \mathscr{F}_{i, \alpha}$ we have $f_{i}^{*}<h \bmod D_{i}$, and let α_{i} be the first such α, so $\left\langle\alpha_{i}: i \in Z\right\rangle$ exists.

By the choice of $\left\langle\mathscr{G}_{\beta}: \beta<\lambda\right\rangle$ there are $\beta<\lambda$ and $g \in \mathscr{G}_{\beta}$ such that $\left\langle\alpha_{i}: i \in Z\right\rangle<g \bmod E$, hence $A:=\left\{i \in Z: \alpha_{i}<g(i)\right\}$ belongs to E. So $\left\langle\mathscr{F}_{i, g(i)}: i \in Z\right\rangle$ is a sequence of non-empty sets, hence recalling AC_{Z} there is a sequence $\bar{h}=\left\langle h_{i}: i \in Z\right\rangle \in \prod_{i \in Z} \mathscr{F}_{i, g(i)}$. By the property of $\left\langle\mathscr{F}_{i, \alpha}: \alpha<\lambda_{i}\right\rangle$, we have $i \in A \Rightarrow f_{i}^{*}<h_{i} \bmod D_{i}$.

Lastly, let $f \in \prod_{(i, j) \in Y} \lambda_{i, j}$ be defined by $f((i, j))=h_{i}(j)$. Easily g, \bar{h} witness that $f \in \mathscr{F}_{\beta}$, and by the definition of D, recalling $A \in E$ and the choice of \bar{h} we have $f_{*}<f \bmod D$, so we are done.]

Together we are done proving the theorem. $\quad \square_{2.5}$
Conclusion 2.6 (The pcf closure conclusion.): Assume $\mathrm{AC}_{\mathscr{P}(\mathfrak{a})}$. We have $\mathfrak{c}=$ ps-pcf ${\underset{\aleph_{1}-c o m p}{ }(\mathfrak{c}) \text { when : }}$
(a) \mathfrak{a} is a set of regular cardinals,
(b) $\operatorname{hrtg}(\mathscr{P}(\mathfrak{a})) \leq \min (\mathfrak{a})$,
(c) $\mathfrak{c}=\operatorname{ps}-\mathrm{pcf}_{\aleph_{1}-\operatorname{comp}}(\mathfrak{a})$.

Proof. Assume $\lambda \in \operatorname{ps-pc}_{\aleph_{1}-\operatorname{comp}}(\mathfrak{c})$, hence there is E, an \aleph_{1}-complete filter on \mathfrak{c}, such that $\lambda=\operatorname{ps}-\operatorname{tcf}\left(\Pi \mathfrak{c},<_{E}\right)$. As we have $\mathrm{AC}_{\mathscr{P}(\mathfrak{a})}$ by 1.2 (as the D there is unique) there is a sequence $\left\langle D_{\theta}: \theta \in \mathfrak{c}\right\rangle, D_{\theta}$ an \aleph_{1}-complete filter on \mathfrak{a} such that $\theta=\operatorname{ps-}-\operatorname{tcf}\left(\Pi \mathfrak{a},<_{D_{\theta}}\right)$; also by 1.7 there is a function h from $\mathscr{P}(\mathfrak{a})$ onto \mathfrak{c}. Let $E_{1}=\left\{S \subseteq \mathscr{P}(\mathfrak{a}):\left\{\theta \in \mathfrak{c}: h^{-1}\{\theta\} \subseteq S\right\} \in E\right\}$. By Claim 2.2 , the "if" direction with $\mathscr{P}(Y)$ here standing for Y there, we have $\lambda=$ $\operatorname{ps-tcf}\left(\Pi\{h(A): A \in \mathscr{P}(\mathfrak{a})\},<_{E_{1}}\right)$ and E_{1} is an \aleph_{1}-complete filter on $\mathscr{P}(\mathfrak{a})$.

Now we apply Theorem 2.5 with $E_{1},\left\langle D_{h(\mathfrak{b})}: \mathfrak{b} \in \mathscr{P}(\mathfrak{a})\right\rangle, \lambda,\langle h(\mathfrak{b}): \mathfrak{b} \in \mathscr{P}(\mathfrak{a})\rangle$, $\langle\theta: \theta \in \mathfrak{a}\rangle$ here standing for $E,\left\langle D_{i}: i \in Z\right\rangle, \lambda,\left\langle\lambda_{i}: i \in Z\right\rangle,\left\langle\lambda_{i, j}: j \in Y_{i}\right\rangle$ for every $j \in Z$ (constant here). We get a filter D_{1} on $Y=\{(\mathfrak{b}, \theta): \mathfrak{b} \in \mathscr{P}(\mathfrak{a}), \theta \in \mathfrak{a}\rangle$ such that $\lambda=\mathrm{ps}-\operatorname{tcf}\left(\Pi\{\theta:(\mathfrak{b}, \theta) \in Y\},<_{D_{1}}\right)$.

Now $|Y|=|\mathscr{P}(\mathfrak{a})|$ as \mathfrak{a} can be well ordered (hence $\aleph_{0} \leq|\mathfrak{a}|$ or \mathfrak{a} finite and all is trivial), so applying 2.2 again we get an \aleph_{1}-complete filter D on \mathfrak{a} such that $\lambda=\operatorname{ps-tcf}\left(\Pi \mathfrak{a},<_{D}\right)$, so we are done. $\boldsymbol{■}_{2.6}$

Definition 2.7: Cornsider a set \mathfrak{a} of regular cardinals.
(1) We say $\overline{\mathfrak{b}}=\left\langle\mathfrak{b}_{\lambda}: \lambda \in \mathfrak{c}\right\rangle$ is a generating sequence for \mathfrak{a} when:
$(\alpha) \mathfrak{b}_{\lambda} \subseteq \mathfrak{a} \subseteq \mathfrak{c} \subseteq \operatorname{ps}^{-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}(\mathfrak{a}),}$
(β) $J_{<\lambda^{+}}[\mathfrak{a}]=J_{<\lambda}[\mathfrak{a}]+\mathfrak{b}$ for $\lambda \in \mathfrak{c}$ hence $(\beta)^{\prime} \cup \mathfrak{c}=\operatorname{ps}-\operatorname{tcf}_{\aleph_{1}-c o m p}(\mathfrak{a})$ and λ a card then $J_{<\lambda}[\mathfrak{a}]$ is the \aleph_{1}-complete ideal on \mathfrak{a} generated by

$$
\left\{\mathfrak{b}_{\theta}: \theta \in \operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}(\mathfrak{a}) \text { and } \theta<\lambda\right\}
$$

(2) We say $\overline{\mathscr{F}}$ is a witness for $\overline{\mathfrak{b}}=\left\langle\mathfrak{b}_{\lambda}: \lambda \in \mathfrak{c} \subseteq \operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}(\mathfrak{a})\right\rangle$ when:
$(\alpha) \quad \overline{\mathscr{F}}=\left\langle\overline{\mathscr{F}}_{\lambda}: \lambda \in \mathfrak{c}\right\rangle$,
(β) $\overline{\mathscr{F}}_{\lambda}=\left\langle\mathscr{F}{ }_{\lambda, \alpha}: \alpha<\lambda\right\rangle$ witnesses ps-tcf($\left.\Pi \mathfrak{a},<_{J_{=\lambda}[\mathfrak{a}]}\right)$.
(3) Above, $\overline{\mathfrak{b}}$ is closed when $\mathfrak{b}_{\lambda}=\mathfrak{a} \cap \operatorname{ps-pcf}{\underset{\aleph}{\aleph_{1}}-\operatorname{comp}}\left(\mathfrak{b}_{\lambda}\right)$.
(3A) Above, $\overline{\mathfrak{b}}$ is smooth when $\theta \in \mathfrak{b}_{\lambda} \Rightarrow \mathfrak{b}_{\theta} \subseteq \mathfrak{b}_{\lambda}$.
(4) We say above $\overline{\mathfrak{b}}$ is full when $\mathfrak{c}=\operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\mathfrak{a})$.

Remark 2.8: (1) Note that 1.7 gives sufficient conditions for the existence of a full $\overline{\mathfrak{b}}$ as in $2.7(1)$.
(2) Of course, Definition 2.7 is interesting particularly when $\mathfrak{a}=$

Theorem 2.9: Assume $\mathrm{AC}_{\mathfrak{c}}$ and $\mathrm{AC}_{\mathscr{P}(\mathfrak{a})}$. Then $\mathfrak{c}=\operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}(\mathfrak{c})$ has a full closed generating sequence for \aleph_{1}-complete filters (see below) when:
(a) \mathfrak{a} is a set of regular cardinals,
(b) $\operatorname{hrtg}(\mathscr{P}(\mathfrak{a})) \leq \min (\mathfrak{a})$,
(c) $\mathfrak{c}=\operatorname{ps-pcf}_{\aleph_{1}-\operatorname{comp}}(\mathfrak{a})$.

Proof of 2.9.

$$
(*)_{1} \mathfrak{c}=\operatorname{ps}^{-p c f} f_{\aleph_{1}-\operatorname{com}}(\mathfrak{c})
$$

[Why? By 2.6 using $\mathrm{AC}_{\mathscr{P}(\mathfrak{a})}$.]
$(*)_{2}$ There is a generating sequence $\left\langle\mathfrak{b}_{\lambda}: \lambda \in \mathfrak{c}\right\rangle$ for \mathfrak{a}.
[Why? By $1.7(3)$ using also AC_{c}.]
$(*)_{3}$ Let $\mathfrak{b}_{\lambda}^{*}=\operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\mathrm{com}}\left(\mathfrak{b}_{\lambda}\right)$ for $\lambda \in \mathfrak{c}$.
$(*)_{4} \quad$ (a) $\overline{\mathfrak{b}}^{*}=\left\langle\mathfrak{b}_{\lambda}^{*}: \lambda \in \mathfrak{c}\right\rangle$ is well defined,
(b) $\mathfrak{b}_{\lambda} \subseteq \mathfrak{b}_{\lambda}^{*} \subseteq \mathfrak{c}$,
(c) $\mathfrak{b}_{\lambda}^{*}=\operatorname{ps-pcf}_{\aleph_{1}-\operatorname{com}}\left(\mathfrak{b}_{\lambda}^{*}\right)$,
(d) $\lambda=\max \left(\mathfrak{b}_{\lambda}^{*}\right)$,
(e) $\lambda \notin \operatorname{pcf}\left(\mathfrak{c} \backslash \mathfrak{b}_{\lambda}^{*}\right)$.
[Why? First, $\overline{\mathfrak{b}}^{*}$ is well defined as $\overline{\mathfrak{b}}=\left\langle\mathfrak{b}_{\lambda}: \lambda \in \mathfrak{c}\right\rangle$ is well defined. Second, $\mathfrak{b}_{\lambda} \subseteq \mathfrak{b}_{\lambda}^{*}$ by the choice of $\mathfrak{b}_{\lambda}^{*}$ and $\mathfrak{b}_{\lambda}^{*} \subseteq \mathfrak{c}$ as $\mathfrak{b}_{\lambda} \subseteq \mathfrak{a}$, hence

$$
\mathfrak{b}_{\lambda}^{*}=\operatorname{ps-pcf}_{\aleph_{1}-\operatorname{com}}\left(\mathfrak{b}_{\lambda}^{*}\right) \subseteq{\mathrm{ps}-\mathrm{pcf}_{\aleph_{1}-\mathrm{com}}(\mathfrak{c})=\mathfrak{c}, ~}
$$

 it is easy to check that its assumption holds recalling $\mathfrak{b}_{\lambda} \subseteq \mathfrak{a}$. Fourth, $\lambda \in \mathfrak{b}_{\lambda}^{*}$ as $J_{=\lambda}[\mathfrak{a}]$ witnesses $\lambda \in \mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\mathrm{com}}\left(\mathfrak{b}_{\lambda}\right)=\mathfrak{b}_{\lambda}^{*}$ and $\max \left(\mathfrak{b}_{\lambda}^{*}\right)=\lambda$ by $(*)_{2}$ recalling Definition 2.7.

Lastly, note that

$$
\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\mathrm{comp}}(\mathfrak{a})=\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\mathrm{comp}}\left(\mathfrak{b}_{\lambda}\right) \cup \mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\mathrm{comp}}\left(\mathfrak{a} \backslash \mathfrak{b}_{\lambda}\right)
$$

by $1.14(2)$, hence $\mu \in \mathfrak{c} \backslash \mathfrak{b}_{\lambda}^{*} \Rightarrow \mu \in \operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}\left(\mathfrak{a} \backslash \mathfrak{b}_{\lambda}\right)$; so if $\lambda \in \operatorname{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}\left(\mathfrak{c} \backslash \mathfrak{b}_{\lambda}^{*}\right)$ by 2.6 it follows that $\lambda \in \operatorname{pcf}\left(\mathfrak{a} \backslash \mathfrak{b}_{\lambda}^{*}\right)$, which contradicts $1.7(3), 1.5(2)$, so $\lambda \notin \mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\mathrm{comp}}\left(\mathfrak{c} \backslash \mathfrak{b}_{\lambda}^{*}\right)$, that is, clause (e) holds.]

We can now choose $\overline{\mathscr{F}}$ such that
$(*)_{5} \quad$ (a) $\overline{\mathscr{F}}=\left\langle\overline{\mathscr{F}}_{\lambda}: \lambda \in \mathfrak{c}\right\rangle$,
(b) $\overline{\mathscr{F}}_{\lambda}=\left\langle\mathscr{F}_{\lambda, \alpha}: \alpha<\lambda\right\rangle$,
(c) $\overline{\mathscr{F}}_{\lambda}$ witnesses $\lambda=\operatorname{ps-tcf}\left(\Pi \mathfrak{a},<_{J_{=\lambda}[\mathfrak{a}]}\right)$,
(d) if $\lambda \in \mathfrak{a}, \alpha<\lambda$ and $f \in \mathscr{F}_{\lambda, \alpha}$ then $f(\lambda)=\alpha$.
[Why? For each λ there is such $\overline{\mathscr{F}}$ as $\lambda=\operatorname{ps}-\operatorname{tcf}\left(\Pi \mathfrak{a},<_{J_{=\lambda}[\mathfrak{a}]}\right)$. But we are assuming $\mathrm{AC}_{\mathfrak{c}}$ and for clause (d) it is easy; in fact it is enough to use $\mathrm{AC}_{\mathscr{P}(\mathfrak{a})}$ and h as in 2.6 , getting $\left\langle\overline{\mathscr{F}}_{\mathfrak{b}}: \mathfrak{b} \in \mathscr{P}(\mathfrak{a})\right\rangle, \overline{\mathscr{F}}_{\mathfrak{b}}$ witness $h(\mathfrak{b})=\operatorname{ps-tcf}\left(\Pi \mathfrak{a},<_{J_{=\lambda}}[\mathfrak{a}]\right)$ and putting $\left\langle\overline{\mathscr{F}}_{\mathfrak{b}}: \mathfrak{b} \in h^{-1}\{\lambda\}\right\rangle$ together for each $\lambda \in \mathfrak{c}$.]
$(*)_{6} \quad$ (a) For $\lambda \in \mathfrak{c}$ and $f \in \Pi \mathfrak{b}_{\lambda}$ let $f^{[\lambda]} \in \Pi \mathfrak{b}_{\lambda}^{*}$ be defined by: $f^{[\lambda]}(\theta)=$ $\min \left\{\alpha<\lambda\right.$: for every $g \in \mathscr{F}_{\theta, \alpha}$ we have $\left.f \upharpoonright \mathfrak{b}_{\lambda} \leq\left(g \upharpoonright \mathfrak{b}_{\lambda}\right) \bmod J_{=\theta}\left[\mathfrak{b}_{\lambda}\right]\right\}$,
(b) for $\lambda \in \mathfrak{c}$ and $\alpha<\lambda$ let $\mathscr{F}_{\lambda, \alpha}^{*}=\left\{\left(f \upharpoonright \mathfrak{b}_{\lambda}\right)^{[\lambda]}: f \in \mathscr{F}_{\lambda, \alpha}\right\}$.

Now
$(*)_{7} \quad$ (a) $f^{[\lambda]}\left\lceil\mathfrak{a} \geq f\right.$ for $f \in \Pi \mathfrak{b}_{\lambda}, \lambda \in \mathfrak{c}$,
(b) $\left\langle\mathscr{F}_{\lambda, \alpha}^{*}: \lambda \in \mathfrak{c}, \alpha<\lambda\right\rangle$ is well defined (hence exists),
(c) $\mathscr{F}_{\lambda, \alpha}^{*} \subseteq \Pi \mathfrak{b}_{\lambda}^{*}$.
[Why? Obvious.]
$(*)_{8}$ Let J_{λ} be the \aleph_{1}-complete ideal on $\mathfrak{b}_{\lambda}^{*}$ generated by $\left\{\mathfrak{b}_{\theta}^{*} \cap \mathfrak{b}_{\lambda}^{*}: \theta \in \mathfrak{c} \cap \lambda\right\}$. $(*)_{9} J_{\lambda} \subseteq J_{<\lambda}^{\aleph_{1}-c o m p}\left[\mathfrak{b}_{\lambda}^{*}\right]$.
[Why? As for $\theta_{0}, \ldots, \theta_{n}, \ldots \in \mathfrak{c} \cap \lambda$ by $1.14(2)$ we have

$$
\begin{aligned}
\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}\left(\bigcup\left\{\mathfrak{b}_{\theta_{n}}^{*}: n<\omega\right\}\right) & =\bigcup\left\{\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}\left(\mathfrak{b}_{\theta_{n}}^{*}\right): n<\omega\right\} \\
& \left.=\bigcup\left\{\mathfrak{b}_{\theta_{n}}^{*}: n<\omega\right\} \in J_{<\lambda}^{\aleph_{1}-\operatorname{comp}}[\mathfrak{c}] .\right]
\end{aligned}
$$

\odot_{1} If $\lambda \in \mathfrak{c}$ and $\alpha_{1}<\alpha_{2}<\lambda$ and $f_{\ell} \in \mathscr{F} \lambda, \alpha_{\ell}$ for $\ell=1,2$ then $f_{1}^{[\lambda]} \leq f_{2}^{[\lambda]} \bmod J_{\lambda}$.
[Why? Let $\mathfrak{a}_{*}=\left\{\theta \in \mathfrak{b}_{\lambda}: f_{1}(\theta) \geq f_{2}(\theta)\right\}$, hence by the assumption on $\left\langle\mathscr{F}_{\lambda, \alpha}: \alpha<\lambda\right\rangle$ we have $\mathfrak{a}_{*} \in J_{<\lambda}^{\aleph_{1}-c o m p}[\mathfrak{a}]$, hence we can find a sequence $\left\langle\theta_{n}\right.$: $n<\mathbf{n} \leq \omega\rangle$ such that $\theta_{n} \in \mathfrak{c} \cap \lambda$ and $\mathfrak{a}_{*} \subseteq \mathfrak{b}_{*}:=\bigcup\left\{\mathfrak{b}_{\theta_{n}}: n<\mathbf{n}\right\}$, hence $\mathfrak{c}_{*}:=$ ps-pcf ${\underset{\aleph}{\aleph_{1}-\operatorname{com}}}\left(\mathfrak{a}_{*}\right) \subseteq \bigcup\left\{\mathfrak{b}_{\theta_{n}}^{*}: n<\mathbf{n}\right\} \in J_{\lambda}$. So it suffices to prove $f_{1}^{[\lambda]} \upharpoonright\left(\mathfrak{b}_{\lambda}^{*} \backslash \mathfrak{c}_{*}\right) \leq$ $f_{2}^{[\lambda]} \upharpoonright\left(\mathfrak{b}_{\lambda}^{*} \backslash \mathfrak{c}_{*}\right)$, so let $\theta \in \mathfrak{b}_{\lambda}^{*} \backslash \bigcup_{n} \mathfrak{b}_{\theta_{n}}^{*}$. By $(*)_{4}(\mathrm{~d})$ we have $\theta \leq \lambda$, let $\alpha:=f_{2}^{[\lambda]}(\theta)$, so by the definition of $f_{2}^{[\lambda]}(\theta)$ we have

$$
\left(\forall g \in \mathscr{F}_{\theta, \alpha}\right)\left(\left(f_{2} \upharpoonright \mathfrak{b}_{\lambda}\right) \leq\left(g \upharpoonright \mathfrak{b}_{\lambda}\right) \bmod J_{=\theta}\left[\mathfrak{b}_{\lambda}\right]\right)
$$

But $\mathfrak{a}_{*} \subseteq \bigcup_{n} \mathfrak{b}_{\theta_{n}}$ and $n<\omega \Rightarrow \theta \notin \mathfrak{b}_{\theta_{n}}^{*}=\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}\left(\mathfrak{b}_{\theta_{n}}\right)$, hence by 1.14(2) we have $\theta \notin \mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}\left(\bigcup_{n} \mathfrak{b}_{\theta_{n}}\right)$, hence $\bigcup_{n} \mathfrak{b}_{\theta_{n}} \in \mathbf{J}_{\theta}^{\aleph_{1}-\operatorname{comp}}\left[\mathfrak{b}_{\lambda}\right]$, hence $\mathfrak{a}_{*} \in J_{=\theta}^{\aleph_{1}-c o m p}\left[\mathfrak{b}_{\lambda}\right]$. So (first, inequality by the previous sentence and the choice of \mathfrak{a}_{*}, second, by the earlier sentence)

$$
\left(f_{1} \upharpoonright \mathfrak{b}_{\lambda}\right) \leq\left(f_{2} \upharpoonright \mathfrak{b}_{\lambda}\right) \leq\left(g \upharpoonright \mathfrak{b}_{\lambda}\right) \quad \bmod J_{=\theta}^{\aleph_{1}-\operatorname{comp}}\left[\mathfrak{b}_{\lambda}\right]
$$

hence by the definition of $f_{1}^{[\lambda]}, f_{1}^{[\lambda]}(\theta) \leq \alpha=f_{2}^{[\lambda]}(\theta)$. So we are done.]
\odot_{2} If $\lambda \in \mathfrak{c}$ and $g \in \Pi \mathfrak{b}_{\lambda}^{*}$ then for some $\alpha<\lambda$ and $f \in \mathscr{F}_{\lambda, \alpha}$ we have $g<f \bmod J_{\lambda}$.
[Why? We choose $\left\langle h_{\theta}: \theta \in \mathfrak{b}_{\lambda}^{*}\right\rangle$ such that $h_{\theta} \in \mathscr{F}_{\theta, g(\theta)}$ for each $\theta \in \mathfrak{b}_{\lambda}^{*}$. Let $h_{1} \in \Pi \mathfrak{b}_{\lambda}^{*}$ be defined by $h_{1}(\kappa)=\sup \left\{h_{\theta}^{[\lambda]}(\kappa): \kappa \in \mathfrak{b}_{\theta}\right.$ and $\left.\theta \in \mathfrak{b}_{\lambda}^{*}\right\}$, hence there are $\alpha<\lambda$ and $h_{2} \in \mathscr{F}{ }_{\lambda, \alpha}$ such that $h_{1} \leq h_{2} \bmod J_{=\lambda}[\mathfrak{a}]$. Now $f:=h_{2}^{[\lambda]} \in \Pi \mathfrak{b}_{\lambda}^{*}$ is as required, in particular $f \in \mathscr{F}_{\lambda, \alpha}^{*}$.]
\odot_{3} The sequence $\left\langle\mathscr{F}_{\lambda, \alpha}: \alpha<\lambda\right\rangle$ witness $\lambda=\operatorname{ps}-\operatorname{tcf}\left(\Pi \mathfrak{b}_{\lambda}^{*},<_{J_{\lambda}}\right)$.
[Why? In $(*)_{7}(\mathrm{~b}),(\mathrm{c})+\odot_{1}+\odot_{2}$. .]
\odot_{4} If $\lambda \in \mathfrak{c}$ then $J_{<\lambda}=J_{<\lambda}^{\aleph_{1}-\operatorname{comp}\left[\mathfrak{b}_{\lambda}^{*}\right] . ~}$
[Why? By $(*)_{4},(*)_{8},(*)_{9}$ and \odot_{3}.]
So
$\odot_{5} \overline{\mathfrak{b}}^{*}=\left\langle\mathfrak{b}_{\lambda}^{*}: \lambda \in \mathfrak{c}\right\rangle$ is a generating sequence for \mathfrak{c}.
$\left[\right.$ Why? By $\odot_{4},(*)_{7}$ recalling that $\lambda \notin \mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}\left(\mathfrak{c} \backslash \mathfrak{b}_{\lambda}^{*}\right)$ by $\left.(*)_{4}(\mathrm{e}).\right] \quad \boldsymbol{\Xi}_{2.9}$
Remark 2.10: Clearly $\overline{\mathfrak{b}}^{*}$ is full and closed, but what about smoooth? Is this necessary for generalizing [Sh:460]?

Discussion 2.11: Naturally the definition now of $\overline{\mathscr{F}}$ as in $2.7(2)$ for $\Pi \mathfrak{a}$ is more involved, where $\overline{\mathscr{F}}=\left\langle\overline{\mathscr{F}}_{\lambda}: \lambda \in \operatorname{ps-pcf}_{\kappa-\operatorname{com}}(\mathfrak{a})\right\rangle, \overline{\mathscr{F}}_{\lambda}=\left\langle\mathscr{F}_{\lambda, \alpha}: \alpha<\lambda\right\rangle$ exemplifies ps-tcf($\left.\Pi \mathfrak{a}, J_{=\lambda}(\mathfrak{a})\right)$.

Claim 2.12: $\left[\mathrm{DC}+\mathrm{AC}_{<\kappa}\right]$ Assume
(a) \mathfrak{a} a set of regular cardinals,
(b) κ is regular $>\aleph_{0}$,
(c) $\mathfrak{c}=\operatorname{ps}^{-\operatorname{pcf}_{\kappa-\text { comp }}}(\mathfrak{a})$,
(d) $\min (\mathfrak{a})$ is $\geq \operatorname{hrtg}(\mathscr{P}(\mathfrak{c}))$ or at least $\geq \operatorname{hrtg}(\mathfrak{c})$,
(e) $\overline{\mathscr{F}}=\left\langle\overline{\mathscr{F}}_{\lambda}: \lambda \in \mathfrak{c}\right\rangle, \overline{\mathscr{F}}_{\lambda}=\left\langle\mathscr{F}_{\lambda, \alpha}: \alpha<\lambda\right\rangle$ witness $^{2} \lambda=\operatorname{ps-tcf}\left(\Pi \gamma,<_{=\lambda}^{J^{\kappa-c o m p}}[\mathfrak{a}]\right)$.

Then
\boxplus for every $f \in \Pi \mathfrak{a}$ for some $g \in \Pi \mathfrak{c}$, if $g \leq g_{1} \in \Pi \mathfrak{c}$ and $\bar{h} \in \Pi\left\{\mathscr{F}_{\lambda, g_{1}(\lambda)}: \lambda \in \mathfrak{c}\right\}$ then $\left(\exists \mathfrak{d} \in[\mathfrak{c}]^{<\kappa}\right)\left(f<\sup \left\{h_{\lambda}: \lambda \in \mathfrak{d}\right\}\right)$.

Proof. Let $f \in \Pi$. For each $\lambda \in \operatorname{ps}^{-p_{c}} f_{\kappa-\mathrm{com}}(\mathfrak{a})$ let

$$
\alpha_{f, \lambda}=\min \left\{\alpha<\lambda: f<g \quad \bmod J_{=\lambda}[\mathfrak{a}] \text { for every } g \in \mathscr{F}_{\lambda, \alpha}\right\}
$$

so clearly each α_{f} is well defined hence $\bar{\alpha}=\left\langle\alpha_{f, \lambda}: \lambda \in \operatorname{ps-pcf}_{\kappa-\operatorname{com}}(\mathfrak{a})\right\rangle$ exists. So $g=\left\langle\alpha_{f, \lambda}: \lambda \in \mathfrak{c}\right\rangle \in \Pi \mathfrak{c}$ is well defined. Assume $g_{1} \in \Pi \mathfrak{c}$ and $g \leq g_{1}$. Let $\left\langle h_{\lambda}: \lambda \in \mathfrak{c}\right\rangle$ be any sequence from $\prod_{\lambda \in \mathfrak{c}} \mathscr{F}_{\lambda, g_{1}(\lambda)}$; at least one exists when $\mathrm{AC}_{\mathfrak{c}}$ holds. Let $\mathfrak{a}_{f, \lambda}=\left\{\theta \in \mathfrak{a}: f(\theta)<h_{\lambda}(\theta)\right\}$ so $\left\langle\mathfrak{a}_{f, \lambda}: \lambda \in \mathfrak{c}\right\rangle$ exists, and we claim that for some $\mathfrak{d} \in[\mathfrak{c}]^{<\kappa}$ we have $\mathfrak{a}=\bigcup\left\{\mathfrak{a}_{f, \lambda}: \lambda \in \mathfrak{d}\right\}$. Otherwise let J be the κ-complete ideal on \mathfrak{a} generated by $\left\{\mathfrak{a}_{f, \lambda}: \lambda \in \mathfrak{c}\right\}$; it is a κ-complete ideal. So by [Sh:938, 5.9], applicable by our assumptions, there is a κ-complete ideal J_{1} on \mathfrak{a} extending J such that $\lambda_{*}=\operatorname{ps-tcf}\left(\Pi \mathfrak{a},<_{J_{1}}\right)$ is well defined. So $\lambda_{*} \in \mathfrak{c}$ and $\mathfrak{a}_{f, \lambda_{*}} \in J_{1}$, easy contradiction. $\quad \mathbf{\Xi}_{2.12}$

[^2]CLAIM 2.13: $\left[\mathrm{AC}_{\aleph_{0}}\right]$ We can uniformly define a \aleph_{0}-continuous witness for $\lambda=$ $\mathrm{ps}-\operatorname{pcf}_{\kappa-\text { comp }}\left(\bar{\Pi} \bar{\alpha},<_{D}\right)$ where:
(a) $\bar{\alpha} \in{ }^{Y}$ Ord,
(b) each α_{t} is a limit ordinal with $\operatorname{cf}\left(\alpha_{t}\right) \geq \operatorname{hrtg}(S)$,
(c) λ is regular $\geq \operatorname{hrtg}(S)$,
(d) $\overline{\mathscr{F}}=\left\langle\overline{\mathscr{F}}_{a}: a \in S\right\rangle$ satisfies: each $\overline{\mathscr{F}}_{a}$ is a witness for $\lambda=\operatorname{pcf}_{\kappa-\operatorname{comp}}\left(\Pi \bar{\alpha},<_{D}\right)$,
(e) if $a \in S$ then $\overline{\mathscr{F}}_{a}$ is \aleph_{0}-continuous and $f_{1}, f_{2} \in \mathscr{F}_{a, \alpha} \Rightarrow f_{1}=f_{2} \bmod D$.

Proof. $\quad(*)_{0} \operatorname{hrtg}(S \times S)$ is $\leq \lambda$ and $\leq \operatorname{cf}\left(\alpha_{t}\right)$ for $t \in Y$.
[Why? As $\lambda, \operatorname{cf}\left(\alpha_{t}\right)$ are regular cardinals.]
For $a, b \in S$ let
$(*)_{1} \quad$ (a) $E_{a, b}=\{\delta<\lambda$:if $\alpha<\delta$ then for some $\beta \in(\alpha, \delta)$ and $f_{1} \in \mathscr{F}_{a, \alpha}, f_{2} \in \mathscr{F}_{b, \beta}$ we have $\left.f_{1}<f_{2} \bmod D\right\}$,
(b) define $g_{a, b}: \lambda \rightarrow \lambda$ by

$$
\begin{gathered}
g_{a, b}(\alpha)=\min \left\{\beta<\lambda: \text { there are } f_{1} \in \mathscr{F}_{a, \alpha} \text { and } f_{2} \in \mathscr{F}_{b, \beta}\right. \\
\text { such that } \left.f_{1}<f_{2} \bmod D\right\}
\end{gathered}
$$

$(*)_{2} g_{a, b}$ is well defined.
[Why? As $\overline{\mathscr{F}}_{b}$ is cofinal in $\left(\Pi \bar{\alpha},<_{D}\right)$.]
$(*)_{3} g_{a, b}$ is non-decreasing.
[Why? As $\overline{\mathscr{F}}_{a}$ is $<_{D}$-increasing.]
Hence
$(*)_{4} E_{a, b}=\left\{\delta<\lambda: \delta\right.$ a limit ordinal and $\left.(\forall \alpha<\delta)\left(g_{a, b}(\alpha)<\delta\right)\right\}$.
Also
$(*)_{5} \quad E_{a, b}$ is a club of λ.
[Why? By its definition, $E_{a, b}$ is a closed subset of λ and it is unbounded as $\operatorname{cf}(\lambda)=\lambda>\aleph_{0}$, because for every $\alpha<\lambda$ letting $\alpha_{0}=\alpha, \alpha_{n+1}=g_{a, b}\left(\alpha_{n}\right)+1<\lambda$ clearly $\beta:=\bigcup\left\{\alpha_{n}: n<\omega\right\}$ is $<\lambda$ and $\gamma<\delta \Rightarrow(\exists n)\left(\gamma<\alpha_{n}\right) \Rightarrow(\exists n)\left(g_{a, b}(\gamma)<\right.$ $\left.\alpha_{n+1}\right)$).]
$(*)_{6}$ Let $g: \lambda \rightarrow \lambda$ be $g(\alpha)=\sup \left\{g_{a, b}(\alpha): a, b \in S\right\}$.
$(*)_{7} g$ is a (well-defined) non-decreasing function from λ to λ.
[Why? "Non-decreasing trivial", and it is "into λ " as $\operatorname{hrtg}(S \times S) \leq \lambda$, recalling $\left.(*)_{0}.\right]$
$(*)_{8} E=\bigcap\left\{E_{a, b}: a, b \in S\right\}=\{\delta<\lambda:(\forall \alpha<\delta)(g(\alpha)<\delta)\}$ is a club of λ.
[Why? Like $(*)_{7}$.]
$(*)_{9}$ Let $E_{1}=\left\{\delta \in E: \operatorname{cf}(\delta)=\aleph_{0}\right\}$ so $E_{1} \subseteq \lambda=\sup (\lambda), \operatorname{otp}\left(E_{1}\right)=\lambda$.
$(*)_{10}$ For $\delta \in E$ of cofinality \aleph_{0} let
$\mathscr{F}_{\delta}=\left\{\sup \left\{f_{n}: n<\omega\right\}:\right.$ for some $a \in S$ and $\bar{\alpha}=\left\langle\alpha_{n}: n<\omega\right\rangle$ increasing of cofinality \aleph_{0} we have $\left.\left.\left\langle f_{n}: n<\omega\right\rangle \in \prod_{n} \mathscr{F}_{a, \alpha_{n}}\right\rangle\right\}$.
$(*)_{11}\left\langle\mathscr{F}_{\delta}: \delta \in E_{1}\right\rangle$ is $<_{D}$-increasing cofinal in $\left(\Pi \bar{\alpha},<_{D}\right)$, in particular $\mathscr{F}_{\delta} \neq \emptyset$.
[Why? $\mathscr{F}_{\delta} \neq \emptyset$ as $\delta \in E, \operatorname{cf}(\delta)=\aleph_{0}$ and $\mathrm{AC}_{\aleph_{0}}$.]
We can correct $\left\langle\mathscr{F}_{\delta}: \delta \in E_{1}\right\rangle$ to be \aleph_{0}-continuous easily (and as in [Sh:938, §5]). $\quad \boldsymbol{■}_{2.13}$

Question 2.14: If 2.9 suffices to assume $\mathrm{AC}_{\mathscr{P}(\mathfrak{a})}$ (and omit $\mathrm{AC}_{\mathfrak{a}}$), we can conclude that $\mathfrak{c}=\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}(\mathfrak{c})$ has a full closed generating sequence.

We may try to repeat the proof of 2.9 , only in the proof of $(*)_{5}$ we use Claim 2.15 below.

Claim 2.15: In 2.9 we can add " $\overline{\mathfrak{b}}$ is weakly smooth", which means $\theta \in \mathfrak{b}_{\lambda} \Rightarrow$ $\theta \notin \mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}\left(\mathfrak{c} \backslash \mathfrak{b}_{\lambda}\right)$.

Proof. Let $\left\langle\mathfrak{b}_{\lambda}: \lambda \in \mathfrak{c}\right\rangle$ be a full closed generating sequence.
We choose $\mathfrak{b}_{\lambda}^{1}$ by induction on $\lambda \in \mathfrak{c}$ such that
$(*)_{1} \quad$ (a) $J_{\leq \lambda}[\mathfrak{a}]=J_{<\lambda}^{\aleph_{1}-c o m p}[\mathfrak{a}]+\mathfrak{b}_{\lambda}^{1}$,
(b) $\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\mathrm{comp}}\left(\mathfrak{b}_{\lambda}^{1}\right)=\mathfrak{b}_{\lambda}^{1}$,
(c) $\max \left(\mathfrak{b}_{\lambda}^{1}\right)=\lambda$,
(d) if $\theta \in \mathfrak{b}_{\lambda}^{1}$ then $\mathfrak{b}_{\lambda}^{1} \supseteq \mathfrak{b}_{\theta}^{1} \bmod J=\theta[\mathfrak{a}]$, i.e., $\mathfrak{b}_{\theta}^{1} \backslash \mathfrak{b}_{\lambda} \in J_{<\theta}^{\aleph_{1}-\operatorname{comp}}[\mathfrak{a}]$.

Arriving at λ let $\mathfrak{d}_{\lambda}=\left\{\theta \in \mathfrak{b}_{\lambda}: \mathfrak{b}_{\theta}^{1} \backslash \mathfrak{b}_{\lambda}^{1} \notin J_{<\theta}^{\aleph_{1}-\operatorname{comp}}[\mathfrak{a}]\right\}, \mathfrak{d}_{\lambda}^{1}=\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}\left(\mathfrak{d}_{\lambda}\right)$. Now

$$
(*)_{2} \mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}\left(\mathfrak{d}_{\lambda}\right) \subseteq \mathfrak{b}_{\lambda} \cap \lambda
$$

$\left[\right.$ Why? $\subseteq \mathfrak{b}_{\lambda}$ is obvious, if $\nsubseteq \lambda$ recall $\mathfrak{d}_{\lambda}^{1}=\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}\left(\mathfrak{d}_{\lambda}\right) ;$ now $\mathfrak{d}_{\lambda} \subseteq \mathfrak{b}_{\lambda}$ hence $\mathfrak{d}_{\lambda}^{1} \subseteq \mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\text { comp }}\left(\mathfrak{b}_{\lambda}\right) \subseteq \lambda^{+}$. So the only problematic case is $\lambda \in$ $\mathfrak{d}_{\lambda}^{1}=\mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}\left(\mathfrak{d}_{\lambda}\right)$. But then, as $\mathfrak{d}_{\lambda} \subseteq \mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}\left(\mathfrak{c} \backslash \mathfrak{b}_{\lambda}\right)$ by the composition theorem we have $\lambda \in \mathrm{ps}-\operatorname{pcf}_{\aleph_{1}-\operatorname{comp}}\left(\mathfrak{c} \backslash \mathfrak{b}_{\lambda}\right)$, contradicting an assumption on $\overline{\mathfrak{b}}$.]
$(*)_{3}$ There is a countable $\mathfrak{e}_{\lambda} \subseteq \mathfrak{d}_{\lambda}^{1}$ such that $\mathfrak{d}_{\lambda}^{1} \subseteq \bigcup\left\{\mathfrak{b}_{\sigma}^{1}: \sigma \in \mathfrak{e}\right\}$.
[Why? Should be clear.]
Lastly, let $\mathfrak{b}_{\lambda}^{1}=\bigcup\left\{\mathfrak{b}_{\theta}^{1}: \theta \in \mathfrak{e}_{\lambda}\right\} \cup \mathfrak{b}_{\lambda}$ and check. $\quad \mathbf{\Xi}_{2.15}$

3. Measuring reduced products

$3(\mathrm{~A})$. On $\mathrm{PS}-\mathbf{T}_{D}(g)$. Now we consider some ways to measure the size of ${ }^{\kappa} \mu / D$ and show that they essentially are equal; see Discussion 3.9 below.

Definition 3.1: Let $\bar{\alpha}=\left\langle\alpha_{t}: t \in Y\right\rangle \in{ }^{Y}$ Ord be such that $t \in Y \Rightarrow \alpha_{t}>0$.
(1) For D a filter on Y let
$\mathrm{ps}-\mathbf{T}_{D}(\bar{\alpha})=\sup \{\operatorname{hrtg}(\mathbf{F}): \mathbf{F}$ is a family of non-empty subsets of $\Pi \bar{\alpha}$ such that for every $\mathscr{F}_{1} \neq \mathscr{F}_{2}$ from \mathbf{F} we have

$$
\left.f_{1} \in \mathscr{F}_{1} \wedge f_{2} \in \mathscr{F}_{2} \Rightarrow f_{1} \neq{ }_{D} f_{2}\right\}
$$

recalling $f_{1} \neq D f_{2}$ means $\left\{t \in Y: f_{1}(t) \neq f_{2}(t)\right\} \in D$.
(2) Let

$$
\operatorname{ps}-\mathbf{T}_{\kappa-\operatorname{comp}}(\bar{\alpha})=\sup \{\operatorname{hrtg}(\mathbf{F}): \text { for some } \kappa \text {-complete filter } D \text { on } Y,
$$

\mathbf{F} is as above for $D\}$.
(3) If we allow $\alpha_{t}=0$ just replace $\Pi \bar{\alpha}$ by

$$
\Pi^{*} \bar{\alpha}:=\left\{f: f \in \prod_{t}\left(\alpha_{t}+1\right) \text { and }\left\{t: f(t)=\alpha_{t}\right\}=\emptyset \quad \bmod D\right\}
$$

Theorem 3.2: $\left[\mathrm{DC}+\mathrm{AC}_{\mathscr{P}(Y)}\right]$ Assume that D is a κ-complete filter on Y and $\kappa>\aleph_{0}$ and $g \in{ }^{Y}$ (Ord $\backslash\{0\}$); if g is constantly α we may write α. The following cardinals are equal or at least $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are $\operatorname{Fil}_{\kappa}^{1}(D)$-almost equal which means: for $\ell_{1}, \ell_{2} \in\{1,2,3\}$ we have $\lambda_{\ell_{1}} \leq_{\mathrm{Fil}_{\kappa}^{1}(D)}^{\text {sal }} \lambda_{\ell_{2}}$, which means if $\alpha<\lambda_{\ell_{1}}$ then α is included in the union of S sets each of order type $<\lambda_{\ell_{2}}$:
(a) $\lambda_{1}=\sup \left\{\left|\operatorname{rk}_{D_{1}}(g)\right|^{+}: D_{1} \in \operatorname{Fil}_{\kappa}^{1}(D)\right\}$,
(b) $\lambda_{2}=\sup \left\{\lambda^{+}:\right.$there are $D_{1} \in \operatorname{Fil}_{\kappa}^{1}(D)$ and a
$<_{D_{1}}$-increasing sequence $\left\langle\mathscr{F}_{\alpha}: \alpha<\lambda\right\rangle$ such that $\mathscr{F}_{\alpha} \subseteq \prod_{t \in Y} g(t)$ is non-empty $\}$,
(c) $\lambda_{3}=\sup \left\{\mathrm{ps}-\mathbf{T}_{D_{1}}(g): D_{1} \in \operatorname{Fil}_{\kappa}^{1}(D)\right\}$.

Remark 3.3: (1) Recall that for D a κ-complete filter on Y we let $\operatorname{Fil}_{\kappa}^{1}(D)=\{E: E$ is a κ-complete filter on Y extending $D\}$.
(2) The conclusion gives slightly less than equality of $\lambda_{1}, \lambda_{1}, \lambda_{3}$.
(3) See 3.10 (6) below; by it $\lambda_{2}=\mathrm{ps}-$ Depth $^{+}\left({ }^{\kappa} \mu,<_{D}\right)$, recalling 3.10(5).
(4) We may replace κ-complete by $(\leq Z)$-complete if $\aleph_{0} \leq|Z|$.
(5) Compare with Definition 3.10.
(6) Note that those cardinals are $\leq \operatorname{hrtg}\left(\Pi^{*} g\right)$.

Proof. Stage A: $\lambda_{1} \leq_{\mathrm{Fil}_{\kappa}^{1}(D)}^{\text {sal }} \lambda_{2}, \lambda_{3}$.
Why? Let $\chi<\lambda_{1}$, so by clause (a) there is $D_{1} \in \operatorname{Fil}_{\kappa}^{1}(D)$ such that $\operatorname{rk}_{D_{1}}(g) \geq$ χ. Let

$$
\begin{gathered}
X_{D_{2}}=\left\{\alpha<\chi: \text { some } f \in \prod_{t \in Y} g(t) \text { satisfies }^{3} D_{2}=\operatorname{dual}\left(J\left[f, D_{1}\right]\right)\right. \\
\text { and } \left.\alpha=\operatorname{rk}_{D_{1}}(f)\right\}
\end{gathered}
$$

for any $D_{2} \in \operatorname{Fil}_{\kappa}^{1}\left(D_{1}\right)$. By $[\operatorname{Sh}: 938,1.11(5)]$ we have $\chi=\bigcup\left\{X_{D_{2}}: D_{2} \in \operatorname{Fil}_{\kappa}^{1}\left(D_{1}\right)\right\}$.
Now
$\odot D_{2} \in \operatorname{Fil}_{\kappa}^{1}\left(D_{1}\right) \Rightarrow\left|\operatorname{otp}\left(X_{D_{2}}\right)\right|<\lambda_{2}, \lambda_{3} ;$ this is enough.
Why does this hold? Letting

$$
\mathscr{F}_{D_{2}, i}=\left\{f \in{ }^{Y} \mu: \operatorname{rk}_{D_{1}}(f)=i \text { and } J\left[f, D_{1}\right]=\operatorname{dual}\left(D_{2}\right)\right\}
$$

by [Sh:938, 1.11(2)] we have: $i<j \wedge i \in X_{D_{2}} \wedge j \in X_{D_{2}} \wedge f \in \mathscr{F}_{D_{2}, i} \wedge g \in \mathscr{F}_{D_{2}, j} \Rightarrow$ $f<g \bmod D_{2}$, so by the definitions of λ_{2}, λ_{3} we have $\operatorname{otp}\left(X_{D_{2}}\right)<\lambda_{2}, \lambda_{3}$.
Stage B: $\lambda_{2} \leq_{\mathrm{Fil}_{\kappa}^{1}(D)}^{\text {sal }} \lambda_{1}, \lambda_{3}$, moreover $\lambda_{2} \leq \lambda_{1}, \lambda_{3}$.
Why? Let $\chi<\lambda_{2}$ and let D_{1} and $\left\langle\mathscr{F}_{\alpha}: \alpha<\chi\right\rangle$ exemplify $\chi<\lambda_{2}$. Let $\gamma_{\alpha}=\min \left\{\mathrm{rk}_{D_{1}}(f): f \in \mathscr{F}_{\alpha}\right\}$ so easily $\alpha<\beta<\chi \Rightarrow \gamma_{\alpha}<\gamma_{\beta}$, hence $\operatorname{rk}_{D}(g) \geq \chi$. So $\chi<\lambda_{1}$ by the definition of λ_{1}, and as for $\chi<\lambda_{3}$ this holds by Definition 3.1(2) as $\alpha<\beta \wedge f \in \mathscr{F}_{\alpha} \wedge g \in \mathscr{F}_{\beta} \Rightarrow f<g \bmod D_{1} \Rightarrow f \neq g \bmod$ D_{1} as $\chi^{+}=\operatorname{hrtg}(\chi) \leq \lambda_{3}$.
Stage C: $\lambda_{3} \leq_{\text {Fil }_{\kappa}^{1}(D)}^{\text {sal }} \lambda_{1}, \lambda_{2}$.
Why? Let $\chi<\lambda_{3}$. Let $\left\langle\mathscr{F}_{\alpha}: \alpha<\chi\right\rangle$ exemplify $\chi<\lambda_{3}$. For each $\alpha<\chi$ let $\mathbf{D}_{\alpha}=\left\{\operatorname{dual}(J[f, D]): f \in \mathscr{F}_{\alpha}\right\}$, so a non-empty subset of $\operatorname{Fil}_{\kappa}^{1}(Y)$. Now for every $D_{1} \in \mathbf{D}_{*}:=\bigcup\left\{\mathbf{D}_{\alpha}: \alpha<\lambda\right\}$ let $X_{D_{1}}=\left\{\alpha<\chi: D_{1} \in \mathbf{D}_{\alpha}\right\}$ and for $\alpha \in X_{D_{1}}$ let $\zeta_{D_{1}, \alpha}=\min \left\{\operatorname{rk}_{D}(f): f \in \mathscr{F}_{\alpha}\right.$ and $\left.D_{1}=\operatorname{dual}(J[f, D])\right\}$ and let

[^3]$\mathscr{F}_{D_{1}, \alpha}=\left\{f \in \mathscr{F}_{\alpha}: D_{1}=J[f, D]\right.$ and $\left.\operatorname{rk}_{D_{1}}(f)=\zeta_{D_{1}, \alpha}\right\}$ so a non-empty subset of \mathscr{F}_{α} and clearly $\left\langle\left(\zeta_{D_{1}, \alpha}, \mathscr{F}_{D_{1}, \alpha}\right): \alpha \in X_{D_{1}}\right\rangle$ exists.

Now
(a) $\alpha \mapsto \zeta_{D_{1}, \alpha}$ is a one-to-one function with domain $X_{D_{1}}$ for $D_{1} \in \mathbf{D}_{*}$,
(b) $\chi=\bigcup\left\{X_{D_{1}}: D_{1} \in \mathbf{D}_{*}\right\}$ noting $\mathbf{D}_{*} \subseteq \operatorname{Fil}_{\kappa}^{1}(D)$,
(c) for $D \in \mathbf{D}_{*}$, if $\alpha<\beta$ are from $X_{D_{1}}$ and $\zeta_{D_{1}, \alpha}<\zeta_{D_{1}, \beta}, f \in \mathscr{F}_{D_{1}, \alpha}, g \in$ $\mathscr{F}_{D_{2}, \beta}$ then $f<g \bmod D_{1}$.
[Why? For clause (a), if $\alpha \neq \beta \in X_{\zeta_{1}}, f \in \mathscr{F}_{D_{1}, \alpha}, g \in \mathscr{F}_{D_{1}, \beta}$ then $f \neq g \bmod$ D, hence by $[\mathrm{Sh}: 938,1.11]$ we have $\zeta_{D_{1}, \alpha} \neq \zeta_{D_{1}, \beta}$. For clause (b), it follows by the choices of $\mathbf{D}_{\alpha}, X_{D_{1}}$. Lastly, clause (c) follows by [Sh:938, 1.11(2)].]

Hence (by clause (c))
(d) $\operatorname{otp}\left(X_{D_{1}}\right)$ is $<\lambda_{2}$ and is $\leq \operatorname{rk}_{D_{1}}(g)$ for $D_{1} \in \bigcup\left\{\mathbf{D}_{\alpha}: \alpha<\chi\right\} \subseteq \operatorname{Fil}_{\kappa}^{1}(D)$. Together clause (d) shows that $D \in \mathbf{D}_{*} \Rightarrow\left|X_{D}\right|<\lambda_{1}, \lambda_{2}$ so, by clause (b), $\lambda_{3} \leq_{\mathrm{Fil}_{*}^{1}(D)}^{\mathrm{sal}} \lambda_{1}, \lambda_{2}$, hence we are done. $\quad \mathbf{\Xi}_{3.2}$
Observation 3.4: If D is a filter on Y and $\bar{\alpha} \in{ }^{Y}(\operatorname{Ord} \backslash\{0\})$ then

$$
\begin{aligned}
\mathrm{ps}- & \mathbf{T}_{D}(\bar{\alpha})=\sup \left\{\lambda^{+}:\right. \\
& \text {there is a sequence }\left\langle\mathscr{F}_{\alpha}: \alpha<\lambda\right\rangle \\
& \text { such that } \mathscr{F}_{\alpha} \subseteq \Pi \bar{\alpha}, \mathscr{F}_{\alpha} \neq \emptyset \\
& \text { and } \left.\alpha \neq \beta \wedge f_{1} \in \mathscr{F}_{\alpha} \wedge f_{2} \in \mathscr{F}_{\beta} \Rightarrow f_{1} \neq{ }_{D} f_{2}\right\} .
\end{aligned}
$$

Proof. Clearly the new definition gives a cardinal $\leq \mathrm{ps}-\mathbf{T}_{D}(\bar{\alpha})$. For the other inequality assume $\lambda<\mathrm{ps}-\mathbf{T}_{D}(\bar{\alpha})$, so there is \mathbf{F} as there such that $\lambda<\operatorname{hrtg}(\mathbf{F})$. As $\lambda<\operatorname{hrtg}(\mathbf{F})$ there is a function h from \mathbf{F} onto λ. For $\alpha<\lambda$ define $\mathscr{F}_{\alpha}^{\prime}=\bigcup\{\mathscr{F}: \mathscr{F} \in \mathbf{F}$ and $h(\mathscr{F})=\alpha\}$. So $\left\langle\mathscr{F}_{\alpha}^{\prime}: \alpha<\lambda\right\rangle$ exists and is as required. $\quad \mathbf{■}_{3.4}$

Concerning Theorem 3.2 we may wonder "when does λ_{1}, λ_{2} being S-almost equal imply they are equal?". We consider a variant this time for sets (or powers, not just cardinals).

Definition 3.5: (1) We say the power of \mathscr{U}_{1} is S-almost smaller than the power of \mathscr{U}_{2}, or write $\left|\mathscr{U}_{1}\right| \leq\left|\mathscr{U}_{2}\right| \bmod S$ or $\left|\mathscr{U}_{1}\right| \leq_{S}^{\text {alm }}\left|\mathscr{U}_{2}\right|$ when: we can find a sequence $\left\langle u_{1, s}: s \in S\right\rangle$ such that $\mathscr{U}_{1}=\bigcup\left\{u_{1, s}: s \in S\right\}$ and $s \in S \Rightarrow\left|\mathscr{U}_{1, s}\right| \leq$ $\left|\mathscr{U}_{2}\right|$.
(2) We say the power $\left|\mathscr{U}_{1}\right|,\left|\mathscr{U}_{2}\right|$ are S-almost equal (or $\left|\mathscr{U}_{1}\right|=\left|\mathscr{U}_{2}\right| \bmod S$ or $\left.\left|\mathscr{U}_{1}\right|={ }_{S}^{\text {alm }}\left|\mathscr{U}_{2}\right|\right)$ when $\left|\mathscr{U}_{1}\right| \leq \leq_{S}^{\text {alm }}\left|\mathscr{U}_{2}\right| \leq \leq_{S}^{\text {alm }}\left|\mathscr{U}_{2}\right|$.
(3) Let $\left|\mathscr{U}_{1}\right| \leq_{<S}^{\text {alm }}\left|\mathscr{U}_{2}\right|$ be defined naturally.
(4) In particular, this applies to cardinals.
(5) Let $\left|\mathscr{U}_{1}\right|<{ }_{S}^{\text {alm }}\left|\mathscr{U}_{2}\right|$ mean there is a sequence $\left\langle u_{1, s}: s \in S\right\rangle$ with union \mathscr{U}_{1} such that $s \in S \Rightarrow\left|\mathscr{U}_{s}\right|<\left|\mathscr{U}_{2}\right|$.
(6) Let $\left|\mathscr{U}_{1}\right| \leq_{S}^{\text {sal }}\left|\mathscr{U}_{2}\right|$ mean that if $|\mathscr{U}|<\left|\mathscr{U}_{1}\right|$ then $|\mathscr{U}|<{ }_{S}^{\text {alm }}\left|\mathscr{U}_{2}\right|$.

Observation 3.6: (1) If $\left|\mathscr{U}_{1}\right| \leq\left|\mathscr{U}_{2}\right|$ and $S \neq \emptyset$ then $\left|\mathscr{U}_{1}\right| \leq{ }_{S}^{\text {alm }}\left|\mathscr{U}_{2}\right|$.
(2) If $\lambda_{1} \leq \lambda_{2}$ and $S \neq \emptyset$ then $\lambda_{1} \leq_{S}^{\mathrm{sal}} \lambda_{2}$.
(3) If $\lambda_{2}=\lambda_{1}^{+}$and $\operatorname{cf}\left(\lambda_{2}\right)<\operatorname{hrtg}(S)$ then the power of λ_{2} is S-almost smaller than S.

Proof. Immediate. $\square_{3.6}$
Observation 3.7: (1) The cardinals λ_{1}, λ_{2} are equal when $\lambda_{1}={ }_{S}^{\text {alm }} \lambda_{2}$ and $\operatorname{cf}\left(\lambda_{1}\right)$, $\operatorname{cf}\left(\lambda_{2}\right) \geq \operatorname{hrtg}(\mathscr{P}(S))$.
(2) The cardinals λ_{1}, λ_{2} are equal when $\lambda_{1}={ }_{S}^{\text {alm }} \lambda_{2}$ and λ_{1}, λ_{2} are limit cardinals $>\operatorname{hrtg}(\mathscr{P}(S))$.
(3) If $\lambda_{1} \leq_{S}^{\text {alm }} \lambda_{2}$ and $\partial=\operatorname{hrtg}(\mathscr{P}(S))$ then $\lambda_{1} \leq_{<\partial}^{\text {alm }} \lambda_{2}$.
(4) If $\lambda_{1} \leq<\theta$ alm λ_{2} and $\operatorname{cf}\left(\lambda_{1}\right) \geq \theta$ then $\lambda_{1} \leq \lambda_{2}$.
(5) If $\lambda_{1} \leq<\theta=\lambda_{2}^{\operatorname{alm}}$ and $\theta \leq \lambda_{2}^{+}$then $\lambda_{1} \leq \lambda_{2}^{+}$.

Proof. (1) Otherwise, let $\partial=\operatorname{hrtg}(\mathscr{P}(S))$, without loss of generality $\lambda_{2}<\lambda_{1}$, and by part (3) we have $\lambda_{1} \leq{ }_{<\partial}^{\text {alm }} \lambda_{2}$, and by part (4) we have $\lambda_{1} \leq \lambda_{2}$, a contradiction.
(2) Otherwise, letting $\partial=\operatorname{hrtg}(\mathscr{P}(S))$, without loss of generality $\lambda_{2}<\lambda_{1}$ and by part (3) we have $\lambda_{1} \leq \ll \lambda_{2}$, but $\partial<\lambda_{2}$ is assumed and $\lambda_{2}^{+}<\lambda_{1}$, as λ_{2} is a limit cardinal, so together we get a contradiction to part (5).
(3) If $\left\langle u_{s}: S \in S\right\rangle$ witnesses $\lambda_{1} \leq{ }_{S}^{\text {alm }} \lambda_{2}$, let

$$
w=\left\{\alpha<\lambda_{1}: \text { for no } \beta<\alpha \text { do we have }(\forall s \in S)\left(\alpha \in u_{s} \equiv \beta \in u_{s}\right)\right\}
$$

so clearly $|w|<\operatorname{hrtg}(\mathscr{P}(S))=\theta$, and for $\alpha \in w$ let

$$
v_{\alpha}=\left\{\beta<\lambda_{1}:(\forall s \in S)\left(\alpha \in u_{s} \equiv \beta \in u_{s}\right)\right\}
$$

so $\left\langle v_{\alpha}: \alpha \in w\right\rangle$ witnesses $\lambda_{1} \leq_{w}^{\text {alm }} \lambda_{2}$, hence $\lambda_{1} \leq_{<\theta}^{\text {alm }} \lambda_{2}$.
(4), (5) Let $\sigma<\theta$ be such that $\lambda_{1} \leq_{\sigma}^{\text {alm }} \lambda_{2}$ and let $\left\langle u_{\varepsilon}: \varepsilon<\sigma\right\rangle$ witness $\lambda_{1} \leq_{\sigma}^{\text {alm }} \lambda_{2}$, that is $\left|u_{\varepsilon}\right| \leq \lambda_{2}$ for $\varepsilon<\sigma$ and $\bigcup\left\{u_{\varepsilon}: \varepsilon<\sigma\right\}=\lambda_{1}$.

For part (4), if $\lambda_{2}<\lambda_{1}$, then we have $\varepsilon<\sigma \Rightarrow\left|u_{\varepsilon}\right|<\lambda_{1}$, but $\operatorname{cf}\left(\lambda_{1}\right)>\sigma$ hence $\mid\left\{\bigcup\left\{u_{\varepsilon}: \varepsilon<\sigma\right\} \mid<\lambda_{1}\right.$, a contradiction.

For part (5), for $\varepsilon<\sigma$, let $u_{\varepsilon}^{\prime}=u_{\varepsilon} \backslash \bigcup\left\{u_{\zeta}: \zeta<\varepsilon\right\}$ and so otp $\left(u_{\varepsilon}^{\prime}\right) \leq \operatorname{otp}\left(u_{\varepsilon}\right)<$ $\left|u_{\varepsilon}\right|^{+} \leq \lambda_{2}^{+}$, so easily $\left|\lambda_{1}\right|=\left|\bigcup\left\{u_{\varepsilon}: \varepsilon<\sigma\right\}\right|=\left|\bigcup\left\{u_{\varepsilon}^{\prime}: \varepsilon<\sigma\right\}\right| \leq \sigma \cdot \lambda_{2}^{+} \leq$ $\lambda_{2}^{+} \cdot \lambda_{2}^{+}=\lambda_{2}^{+} . \quad \square_{3.7}$

Similarly

(2) If $\lambda_{1} \ll \theta \lambda_{2}$ and $\operatorname{cf}\left(\lambda_{1}\right) \geq \theta$ then $\lambda_{1}<\lambda_{2}$.
(3) If $\lambda_{1} \lll{ }_{<\theta}^{\operatorname{alm}} \lambda_{2}$ and $\theta \leq \lambda_{2}^{+}$then $\lambda_{1} \leq \lambda_{2}$.
(4) If $\lambda_{1} \leq_{S}^{\text {sal }} \lambda_{2}$ and $\partial=\operatorname{hrtg}(\mathscr{P}(S))$ then $\lambda_{1}<_{<\partial}^{\text {sal }} \lambda_{2}$.
(5) If $\lambda_{1} \leq_{<\theta}^{\text {sal }} \lambda_{2}$ and $\partial \leq \lambda_{2}^{+}, \theta<\lambda_{2}$ and $\operatorname{cf}\left(\lambda_{2}\right) \geq \theta$ then $\lambda_{1} \leq \lambda_{2}$.
(6) If $\lambda_{1} \leq_{<\theta}^{\text {sal }} \lambda_{2}$ and $\theta \leq \lambda_{2}^{+}$then $\lambda_{1} \leq \lambda_{2}^{+}$.

Discussion 3.9: (1) We like to measure $\left({ }^{Y} \mu\right) / D$ in some ways and show their equivalence, as was done in ZFC. Natural candidates are:
(A) $\operatorname{pp}_{D}(\mu)$: say of length of increasing sequence \bar{P} (not \bar{p} !, i.e., sets) ordered by $<_{D}$,
(B) $\operatorname{pp}_{Y}^{+}(\mu)=\sup \left\{\operatorname{pp}_{D}^{+}(\mu): D\right.$ an \aleph_{1}-complete filter on $\left.Y\right\}$,
(C) As in 3.1.
(2) We may measure ${ }^{Y} \mu$ by considering all ∂-complete filters.
(3) We may be more lenient in defining "same cardinality". For instance:
(A) we define when sets have similar powers, say by divisions to $\mathscr{P}(\mathscr{P}(Y))$ sets, we measure $\left({ }^{Y} \mu\right) / \approx_{\mathscr{P}(\mathscr{P}(Y))}$, where \approx_{B} is the following equivalence relation on sets:
$X \approx_{B} Y$ when we can find sequences $\left\langle X_{b}: b \in B\right\rangle,\left\langle Y_{b}: b \in B\right\rangle$ such that:
(a) $X=\bigcup\left\{X_{b}: b \in B\right\}$,
(b) $Y=\bigcup\left\{Y_{b}: b \in B\right\}$,
(c) $\left|X_{b}\right|=\left|Y_{b}\right|$;
(B) we may demand more: the $\left\langle X_{b}: b \in B\right\rangle$ are pairwise disjoint and the $\left\langle Y_{b}: b \in B\right\rangle$ are pairwise disjoint;
(C) we may demand less: e.g.
$(\mathrm{c})^{\prime}\left|X_{b}\right| \leq_{*}\left|Y_{b}\right| \leq_{*}\left|X_{b}\right|$, and/or
$(\mathrm{c})_{*}(\forall b \in B)(\exists c \in B)\left(\left|X_{b}\right| \leq\left|Y_{c}\right|\right)$ and $(\forall b \in B)(\exists c \in B)\left(\left|Y_{b}\right| \leq\left|X_{c}\right|\right)$.
Note that some of the main results of [Sh:835] can be expressed this way.
(D) $\operatorname{rk}-\sup _{Y, \partial}(\mu)=\operatorname{rk}-\sup \left\{\operatorname{rk}_{D}(\mu): D\right.$ is ∂-complete filters on $\left.Y\right\}$;
(E) for each non-empty $X \subseteq{ }^{Y} \mu$ let

$$
\begin{aligned}
& \operatorname{sp}_{\alpha}^{1}(X)=\left\{(D, J): D \text { an } \aleph_{1} \text {-complete filter on } Y\right. \\
& \left.\quad J=J[f, D], \alpha=\operatorname{rk}_{D}(f) \text { and } f \in X\right\} \\
& \operatorname{sp}_{1}(X)=\bigcup\left\{\operatorname{sp}_{\alpha}^{1}(X): \alpha\right\}
\end{aligned}
$$

(F) question: If $\left\{\operatorname{sp}\left(X_{s}\right): s \in S\right\}$ is constant, can we bound J ?
(G) X, Y are called connected when $\left.\operatorname{sp}\left(X_{1}\right), \operatorname{sp}\left(X_{2}\right)\right)$ are non-disjoint or equal.
(4) We hope to prove, at least sometimes, $\gamma:=\Upsilon\left({ }^{Y} \mu\right) \leq \mathrm{pp}_{\kappa}(\mu)$, that is, we like to imitate [Sh:835] without the choice axioms on ${ }^{\omega} \mu$. So there is $\bar{f}=\left\langle f_{\alpha}: \alpha<\delta\right\rangle$ witnessing $\gamma<\Upsilon\left({ }^{Y} \mu\right)$. We define
$u=u_{\bar{f}}=\left\{\alpha\right.$: there is no $\bar{\beta} \in{ }^{\omega} \alpha$ such that $\left.(\forall i t \in Y)\left(f_{\alpha}(t) \in\left\{f_{\beta_{n}}(t): n<\omega\right\}\right)\right\}$.
You may say that $u_{\bar{f}}$ is the set of $\alpha<\delta$ such that f_{α} is "really novel".
By DC this is O.K., i.e.,
\boxplus_{1} for every $\alpha<\delta$ there is $\bar{\beta} \in{ }^{\omega}\left(u_{\bar{f}} \cap \alpha\right)$ such that $(\forall t \in Y)\left(f_{\alpha}(t)\right)=$ $\left\{f_{\beta_{n}}(t): n<\omega\right\}$.

Next, for $\alpha \in u_{\bar{f}}$ we can define $D_{\bar{f}, \alpha}$, the \aleph_{1}-complete filter on Y generated by $\left\{\left\{t \in Y: f_{\beta}(t)=f_{\alpha}(t)\right\}: \beta<\alpha\right\}$. So clearly $\alpha \neq \beta \in u_{\bar{f}} \wedge D_{\bar{f}, \alpha}=D_{\bar{f}, \beta} \Rightarrow$ $f_{\alpha} \neq{ }_{D} f_{\beta}$. Now for each pair $\bar{D}=\left(D_{1}, D_{2}\right) \in \operatorname{Fil}_{Y}^{4}$ (i.e., for the \aleph_{1}-complete case) let $\Lambda_{\bar{f}, \bar{D}}=\left\{\alpha \in u_{\bar{f}}: D_{\bar{f}, \alpha}=D_{1}\right.$ and $\left.J\left[f_{\alpha}, D_{1}\right]\right\}=\operatorname{dual}\left(D_{2}\right)$. So γ is the union of $\leq \mathscr{P}(\mathscr{P}(Y))$-sets (as $|Y|=|Y| \times|Y|$, well ordered).

So
$(*)_{1} \gamma \leq \operatorname{hrtg}\left(\left({ }^{Y} \omega \times{ }^{\omega}(\mu)\right)\right.$,
$(*)_{2} u$ is the union of $\mathscr{P}(\mathscr{P}(\kappa))$-sets each of cardinality $<\mathrm{pp}_{Y, \aleph_{1}}^{+}(\mu)$.
(I) What about $\operatorname{hrtg}\left({ }^{\kappa} \mu\right)<\operatorname{ps}-\mathrm{pp}_{Y, \aleph_{1}}(\mu)$?

We are given $\left\langle\mathscr{F}_{\alpha}: \alpha<\kappa\right\rangle \neq F_{\alpha} \neq \emptyset, \mathscr{F}_{\alpha} \subseteq \mu, \alpha \neq \beta \Rightarrow \mathscr{F}_{\alpha} \cap \mathscr{F}_{\beta}=\emptyset$.
Easier: looking modulo a fix filter D,
$(*)_{2}$ for $D \in \operatorname{Fil}_{Y, \aleph_{1}}$, let $\mathscr{F}_{\alpha, D}=\left\{f \in \mathscr{F}_{\alpha}: \neg\left(\exists g \in \mathscr{F}_{\alpha}\right)\left(g<_{D} f\right)\right\}$.
Maybe we have somewhere a bound on the size of $\mathscr{F}_{\alpha, D}$.

3(B). Depth of reduced power of ordinals. Our intention has been to generalize a relative of [Sh:460], but actually we are closed to [Sh:513, §3]. So as there we use IND but unlike [Sh:938] rather than with rank we deal with depth.

Definition 3.10: (1) Let $\operatorname{suc}_{X}(\alpha)$ be the first ordinal β such that we cannot find a sequence $\left\langle\mathscr{U}_{x}: x \in X\right\rangle$ of subsets of β, each of order type $<\alpha$ such that $\beta=\bigcup\left\{\mathscr{U}_{x}: x \in X\right\}$.
(2) We define $\operatorname{suc}_{X}^{[\varepsilon]}(\alpha)$ by induction on ε naturally: if $\varepsilon=0$ it is α, if $\varepsilon=\zeta+1$ it is $\operatorname{suc}_{X}\left(\operatorname{suc}_{X}^{[\zeta]}(\alpha)\right)$, and if ε is a limit ordinal then it is $\bigcup\left\{\operatorname{suc}_{X}^{[\zeta]}(\alpha): \zeta<\varepsilon\right\}$.
(3) For a quasi-order P let the pseudo ordinal depth of P, denoted by ps-o-Depth (P), be
$\sup \left\{\gamma\right.$: there is a $<_{P}$-increasing sequence $\left\langle X_{\alpha}: \alpha<\gamma\right\rangle$ of non-empty subsets of $\left.P\right\}$.
(4) o-Depth (P) is defined similarly, demanding $\left|X_{\alpha}\right|=1$ for $\alpha<\gamma$.
(5) Omitting the "ordinal" means γ is replaced by $|\gamma|$; similarly in the other variants including omitting the letter o in ps-o-Depth.
(6) Let
ps-o-Depth ${ }^{+}(P)=\sup \left\{\gamma+1\right.$:there is an increasing sequence $\left\langle X_{\alpha}: \alpha<\gamma\right\rangle$ of non-empty subsets of $P\}$.

Similarly for the other variants, e.g. without o we use $|\gamma|^{+}$instead of $\gamma+1$ in the supremum.
(7) For D a filter on Y and $\bar{\alpha} \in{ }^{Y}(\operatorname{Ord} \backslash\{0\})$ let

$$
\operatorname{ps-o}^{-D e p t h}{ }_{D}^{+}(\bar{\alpha})=\mathrm{ps}-\mathrm{o}-\operatorname{Depth}^{+}\left(\Pi \bar{\alpha},<_{D}\right)
$$

Similarly for the other variants and we may allow $\alpha_{t}=0$ as in 3.1(3).
(8) Let ps-o-depth ${ }_{D}^{+}(\bar{\alpha})$ be the cardinality of ps-o- $\operatorname{Depth}_{D}^{+}(\bar{\alpha})$.

Remark 3.11: Note that 1.13 can be phrased using this definition.
Definition 3.12: (0) We say \mathbf{x} is a filter ω-sequence when

$$
\mathbf{x}=\left\langle\left(Y_{n}, D_{n}\right): n<\omega\right\rangle=\left\langle Y_{\mathbf{x}, n}, D_{\mathbf{x}, n}: n<\omega\right\rangle
$$

is such that D_{n} is a filter on Y_{n} for each $n<\omega$; we may omit Y_{n} as it is $\bigcup\{Y: Y \in D\}$ and may write D if $\bigwedge_{n} D_{n}=D$.
(1) Let $\operatorname{IND}(\mathbf{x}), \mathbf{x}$ has the independence property, mean that for every sequence $\bar{F}=\left\langle F_{m, n}: m<n<\omega\right\rangle$ from alg(x) (see below), there is $\bar{t} \in \prod_{n<\omega} Y_{n}$ such that $m<n<\omega \Rightarrow t_{m} \notin F_{m, n}(\bar{t} \upharpoonright(m, n])$. Let $\operatorname{NIND}(\mathbf{x})$ be the negation.
(2) Let $\operatorname{alg}(\mathbf{x})$ be the set of sequences $\left\langle F_{n, m}: m<n<\omega\right\rangle$ such that $F_{m, n}: \prod_{\ell=m+1}^{n} Y_{\ell} \rightarrow \operatorname{dual}\left(D_{n}\right)$.
(3) We say \mathbf{x} is κ-complete when each $D_{\mathbf{x}, n}$ is a κ-complete filter.

Theorem 3.13: Assume $\operatorname{IND}(\mathbf{x})$, where $\mathbf{x}=\left\langle\left(Y_{n}, D_{n}\right): n<\omega\right\rangle$ is as in Definition $3.12, D_{n}$ is κ_{n}-complete, $\kappa_{n} \geq \aleph_{1}$.
(1) $\left[\mathrm{DC}+\mathrm{AC}_{Y_{n}}\right.$ for $\left.n<\omega\right]$ For every ordinal ζ, for infinitely many n, ps-o-Depth $\left({ }^{\left(Y_{n}\right)} \zeta,<_{D_{n}}\right) \leq \zeta$.
(2) $[\mathrm{DC}]$ For every ordinal ζ, for infinitely many n, o- $\operatorname{Depth}\left({ }^{\left(Y_{n}\right)} \zeta,<_{D_{n}}\right) \leq \zeta$; equivalently there is no $<_{D_{n}}$-increasing sequence of length $\zeta+1$.

Remark 3.14: (0) Note that the present results are incomparable with [Sh:938, §4]-the loss is using depth instead of rank and possibly using "pseudo".
(1) [Assume $\mathrm{AC}_{\aleph_{0}}$] If, for every n, we have $\operatorname{rk}_{D_{n}}(\zeta)>\operatorname{suc}_{\mathrm{Fil}_{\kappa}^{1}\left(D_{n}\right)}(\zeta)$ then for some $D_{n}^{1} \in \operatorname{Fil}_{\aleph_{1}}^{1}\left(Y_{n}\right)$ for $n<\omega$ we have $\operatorname{NIND}\left(\left\langle Y_{n}, D_{n}^{1}\right): n<\omega\right\rangle$. (Why? By [Sh:938, 5.9]). But we do not know much on the D_{n}^{1} 's.
(2) This theorem applies to, e.g., $\zeta=\aleph_{\omega}, Y_{n}=\aleph_{n}, D_{n}=\operatorname{dual}\left(J_{\aleph_{n}}^{\mathrm{bd}}\right)$. So even in ZFC, it tells us things not covered by [Sh:513, §3]. Note that Depth and pcf are closely connected but only for sequences of length $\geq \operatorname{hrtg}(\mathscr{P}(Y))$, and see 3.19 below.
(3) If we assume $\operatorname{IND}\left(\left\langle Y_{\eta(n)}, D_{\eta(n)}: n<\omega\right\rangle\right)$ for every increasing $\eta \in{ }^{\omega} \omega$, which is quite reasonable, then in Theorem 3.13 we can strengthen the conclusion, replacing "for infinitely many n " by "for every $n<\omega$ large enough".
(4) Note that $3.13(2)$ is complimentary to [Sh:835].

Observation 3.15: (1) If \mathbf{x} is a filter ω-sequence, \mathbf{x} is \aleph_{1}-complete and $n_{*}<\omega$ and $\operatorname{IND}\left(\mathbf{x} \upharpoonright\left[n_{*}, \omega\right)\right.$ then $\operatorname{IND}(\mathbf{x})$.
(2) If \mathbf{x} is a filter ω-sequence and $\operatorname{IND}(\mathbf{x})$ and $\eta \in{ }^{\omega} \omega$ is increasing and $\mathbf{y}=\left\langle Y_{\mathbf{x}, \eta(n)}, D_{\mathbf{x}, \eta(n)}: n\langle\omega\rangle\right.$ then \mathbf{y} is a filter ω-sequence and $\operatorname{IND}(\mathbf{y})$.

Proof. (1) Let

$$
\bar{F}=\left\langle F_{n, m}: n<m<\omega\right\rangle \in \operatorname{alg}(\mathbf{x})
$$

so $\left\langle F_{n, m}: n \in\left[n_{*}, \omega\right)\right.$ and $\left.m \in(n, \omega)\right\rangle$ belongs to $\operatorname{alg}\left(\mathbf{x} \upharpoonright\left[n_{*}, \omega\right)\right.$, hence by the assumption " $\operatorname{IND}\left(\mathbf{x} \upharpoonright\left[n_{*}, \omega\right)\right)$ " there is $\bar{t}=\left\langle t_{n}: n \in\left[n_{*}, \omega\right)\right\rangle \in \prod_{n \geq n_{*}} Y_{n}$ such
that $t_{n} \notin F_{n, m}(\bar{t} \upharpoonright(n, m))$ when $n_{*} \leq n<\omega$. Now by downward induction on $n<n_{*}$ we choose $t_{n} \in Y_{n}$ such that $t_{n} \notin F_{n, m}(\langle\bar{t}\rangle[n+1, m])$ for $m \in[n+1, \omega)$. This is possible as the countable union of members of dual $\left(D_{n}\right)$ is not equal to Y_{n}. We can carry the induction and $\left\langle t_{n}: n<\omega\right\rangle$ is as required to verify $\operatorname{IND}(\mathbf{x})$.
(2) Let $\bar{F}=\left\langle F_{i, j}: i<j<\omega\right\rangle \in \operatorname{alg}(\mathbf{y})$. For $m<n$ we define $F_{m, n}^{\prime}$ as the following function from $\prod_{k=m-1}^{n} Y_{\mathbf{x}, k}$ into $\operatorname{dual}\left(D_{\mathbf{x}, m}\right)$ by

- if $i<j, m=\eta(i), n=\eta(j)$ and $\bar{s}=\left\langle s_{k}: k \in(m, n]\right\rangle \in \prod_{k=m+1}^{n} Y_{\mathbf{x}, k}$ then $\left.F_{m, n}^{\prime}(\bar{s})=F_{i, j}\left(\left\langle s_{\eta(i+k)}: k \in[1, j-i)\right]\right\rangle\right)$,
- if there are no such i, j then $F_{m, n}$ is constantly \emptyset.

As $\operatorname{IND}(\mathbf{x})$ holds there is $\bar{t} \in \prod_{n} Y_{\mathbf{x}, k}$ such that $m<n \Rightarrow t_{m} \notin F_{m, n}(\bar{t} \upharpoonright(m, n))$. Now $\bar{t}^{\prime}=\left\langle t_{\eta(k)}: k<\omega\right\rangle \in \prod_{n} Y_{\mathbf{x}, \eta(n)}=\prod_{n} Y_{\mathbf{y}, n}$ is necessarily as required. $\mathbf{■}_{3.15}$

Proof of Theorem 3.13. We concentrate on proving part (1); part (2) is easier, (i.e., below each $\mathscr{F}_{n, \varepsilon}$ is a singleton, hence so is $\mathscr{G}_{m, n, \varepsilon}^{1}$, so there is no need to use $\mathrm{AC}_{Y_{n}}$).

Assume this fails. So for some $n_{*}<\omega$ for every $n \in\left[n_{*}, \omega\right)$ there is a counterexample. As $\mathrm{AC}_{\aleph_{0}}$ holds we can find a sequence $\left\langle\overline{\mathscr{F}}_{n}: n \in\left[n_{*}, \omega\right)\right\rangle$ such that:
\odot for $n \in\left[n_{*}, \omega\right)$
(a) $\overline{\mathscr{F}}_{n}=\left\langle\mathscr{F}_{n, \varepsilon}: \varepsilon \leq \zeta\right\rangle$,
(b) $\mathscr{F}_{n, \varepsilon} \subseteq{ }^{Y_{n}} \zeta$ is non-empty,
(c) $\overline{\mathscr{F}}_{n}$ is a $<_{D_{n}}$-increasing sequence of sets, i.e., $\varepsilon_{1}<\varepsilon_{2} \leq \zeta \wedge f_{1} \in$ $\mathscr{F}_{n, \varepsilon_{1}} \wedge f_{2} \in \mathscr{F}_{n, \varepsilon_{2}} \Rightarrow f_{1}<_{D_{n}} f_{2}$.
Now by $\mathrm{AC}_{\aleph_{0}}$ we can choose $\left\langle f_{n}: n \in\left[n_{*}, \omega\right)\right\rangle$ such that $f_{n} \in \mathscr{F}_{n, \zeta}$ for $n \in\left[n_{*}, \omega\right)$.
(*) Without loss of generality $n_{*}=0$.
[Why? As $\mathbf{x} \upharpoonright\left[n_{*}, \omega\right)$ satisfies the assumptions on \mathbf{x} by $3.15(2)$.]
Now
\boxplus_{1} for $m \leq n<\omega$ let $Y_{m, n}^{0}=\prod_{\ell=m}^{n-1} Y_{\ell}$ and for $m, n<\omega$ let $Y_{m, n}^{1}:=\bigcup\left\{Y_{k, n}^{0}: k \in[m, n]\right\}$, so $Y_{m, n}^{0}=\emptyset=Y_{m, n}^{1}$ if $m>n$ and $Y_{m, n}^{0}=\{\langle \rangle\}=Y_{m, n}^{1}$ if $m=n$; so if $\eta \in Y_{m+1, n}^{0}$ and $s \in Y_{m}, t \in Y_{n+1}$ we define $\langle s\rangle^{\wedge} \eta \in Y_{m, n}^{0}$ and $\eta^{\wedge}\langle t\rangle \in Y_{m+1, n+1}$ naturally;
\boxplus_{2} for $m \leq n$ let $\mathscr{G}_{m, n}^{1}$ be the set of functions g such that:
(a) g is a function from $Y_{m, n}^{1}$ into $\zeta+1$,
(b) $\left\rangle \neq \eta \in Y_{m, n}^{1} \Rightarrow g(\eta)<\zeta\right.$,
(c) if $k \in[m, n)$ and $\eta \in Y_{k+1, n}^{0}$ then the sequence $\left\langle g\left(\langle s\rangle^{\wedge} \eta\right): s \in Y_{k}\right\rangle$ belongs to $\mathscr{F}_{k, g(\eta)}$;
$\boxplus_{3} \mathscr{G}_{m, n, \varepsilon}^{1}:=\left\{g \in \mathscr{G}_{m, n}^{1}: g(\langle \rangle)=\varepsilon\right\}$ for $\varepsilon \leq \zeta$ and $m \leq n<\omega$.
Now the sets $\mathscr{G}_{m, n}^{1}$ are non-trivial, i.e.
\boxplus_{4} if $m \leq n$ and $\varepsilon \leq \zeta$ then $\mathscr{G}_{m, n, \varepsilon}^{1} \neq \emptyset$.
[Why? We prove it by induction on n : First, if $n=m$ this is trivial because the unique function g with domain $\left\{\rangle\}\right.$ and value ε belongs to $\mathscr{G}_{m, n, \varepsilon}^{1}$. Next, if $m<n$ we choose $f \in \mathscr{F}_{n-1, \varepsilon}$, hence the sequence $\left\langle\mathscr{G}_{m, n-1, f(s)}^{1}: s \in Y_{n-1}\right\rangle$ is well defined and by the induction hypothesis each set in the sequence is non-empty. As $\mathrm{AC}_{Y_{n-1}}$ holds there is a sequence $\left\langle g_{s}: s \in Y_{n-1}\right\rangle$ such that $s \in Y_{n-1} \Rightarrow g_{s} \in \mathscr{G}_{m, n-1, f(s)}^{1}$. Now define g as the function with domain $Y_{m, n}^{1}$:

$$
\begin{aligned}
g(\rangle) & =\varepsilon \\
g\left(\nu^{\wedge}\langle s\rangle\right) & =g_{s}(\nu) \quad \text { for } \nu \in Y_{m, n-1}^{1} \text { and } s \in Y_{n}
\end{aligned}
$$

It is easy to check that $g \in \mathscr{G}_{m, n, \varepsilon}^{1}$, indeed so \boxplus_{4} holds.]
\boxplus_{5} If $g, h \in \mathscr{G}_{m, n}^{1}$ and $g(\rangle)<h(\langle \rangle)$ then there is an (m, n)-witness Z for (h, g) which means (just being an (m, n)-witness means we omit clause (d)):
(a) $Z \subseteq Y_{m, n}^{1}$ is closed under initial segments, i.e., if $\eta \in Y_{k, n}^{0} \cap Z$ and $m \leq k<\ell \leq n$ then $\eta \upharpoonright\lceil\ell, n) \in Y_{\ell, n}^{0} \cap Z$,
(b) $\rangle \in Z$,
(c) if $\eta \in Z \cap Y_{k+1, n}^{0}, m \leq k<n$ then $\left\{s \in Y_{k}:\langle s\rangle^{\wedge} \eta \in Z\right\} \in D_{k}$,
(d) if $\eta \in Z$ then $g(\eta)<h(\eta)$.
[Why? By induction on n, similarly to the proof of \boxplus_{4}.]
\boxplus_{6} (a) We can find $\bar{g}=\left\langle g_{n}: n<\omega\right\rangle$ such that $g_{n} \in \mathscr{G}_{0, n, \zeta}^{1}$ for $n<\omega$;
(b) for \bar{g} as above for $n<\omega, s \in Y_{n}$ let $g_{n+1, s} \in \mathscr{G}_{0, n}^{1}$ be defined by $g_{n+1, s}(\nu)=g_{n+1}\left(\nu^{\wedge}\langle s\rangle\right)$ for $\nu \in Y_{0, n}$.
[Why? Clause (a) by \boxplus_{4} as $\mathrm{AC}_{\aleph_{0}}$ holds, clause (b) is obvious by the definitions in $\boxplus_{2}+\boxplus_{3}$.]

We fix \bar{g} as in \boxplus_{6} (a) for the rest of the proof.
\boxplus_{7} There is $\left\langle\left\langle Z_{n, s}: s \in Y_{n}\right\rangle: n<\omega\right\rangle$ such that $Z_{n, s}$ witness $\left(g_{n}, g_{n+1, s}\right)$ for $n<\omega, s \in Y_{n}$.
[Why? For a given $n<\omega, s \in Y_{n}$ we know that $g_{n+1}(\langle s\rangle)<\zeta=g_{n}(\langle \rangle)$, hence $Z_{n, s}$ as required exists by \boxplus_{5}. By $\mathrm{AC}_{Y_{n}}$ for each n a sequence $\left\langle Z_{n, s}: s \in Y_{n}\right\rangle$ as required exists, and by $\mathrm{AC}_{\aleph_{0}}$ we are done.]
$\boxplus_{8} Z_{n}:=\{\langle \rangle\} \cup\left\{\nu^{\wedge}\langle s\rangle: s \in Y_{n-1}, \nu \in Z_{n-1, s}\right\}$ is a $(0, n)$-witness.
[Why? By our definitions.]
\boxplus_{9} There is \bar{F} such that:
(a) $\bar{F}=\left\langle F_{m, n}: m<n<\omega\right\rangle$,
(b) $F_{m, n}: Y_{m+1, n+1}^{1} \rightarrow \operatorname{dual}\left(D_{m}\right)$,
(c) $F_{m, n}(\nu)$ is $\left\{s \in Y_{m}: \nu^{\wedge}\langle s\rangle \notin Z_{n-1}\right\}$ when $\nu \in Z_{n}$ and is \emptyset otherwise.
[Why? As clauses (a), (b), (c) define \bar{F}.]
$\boxplus_{10} \bar{F}$ witnesses $\operatorname{IND}\left(\left\langle\left(Y_{n}, D_{n}\right): n<\omega\right\rangle\right)$ fails.
Why? Clearly $\bar{F}=\left\langle F_{m, n}: m<n<\omega\right\rangle$ has the right form.
So toward a contradiction assume $\bar{t}=\left\langle t_{n}: n<\omega\right\rangle \in \prod_{n<\omega} Y_{n}$ is such that
$(*)_{1} \quad m<n<\omega \Rightarrow t_{m} \notin F_{m, n}(\bar{t} \upharpoonright(m, n])$.
Now

$$
(*)_{2} \bar{t} \upharpoonright[m, n) \in Z_{n} \text { for } m \leq n<\omega .
$$

[Why? For each n, we prove this by downward induction on m. If $m=n$ then $\bar{t} \upharpoonright[m, n)=\langle \rangle$, but $\left\rangle \in Z_{n}\right.$ by its definition. If $m<n$ and $\bar{t} \upharpoonright[m+1, n) \in Z_{n}$ then $t_{m} \notin F_{m, n-1}(\bar{t} \upharpoonright(m, n])$ by $(*)_{1}$, so $\bar{t} \upharpoonright[m, n)=\left\langle t_{m}\right\rangle^{\wedge}(\bar{t} \upharpoonright[m+1, n)) \in Z_{n}$ holds by clause $\left.\boxplus_{9}(\mathrm{c}).\right]$

$$
(*)_{3} \quad g_{n+1}(\bar{t} \upharpoonright[m, n])<g_{n}(\bar{t} \upharpoonright[m, n)) .
$$

[Why? Note that $Z_{n, t_{n}}$ is a witness for $\left(g_{n}, g_{n+1, t_{n}}\right)$ by \boxplus_{7}. So by \boxplus_{5} (see clause (d) there) we have $\eta \in Z_{n, t_{n}} \Rightarrow g_{n+1, t_{n}}(\eta)<g_{n}(\eta)$. But $m<n \Rightarrow$ $\bar{t} \upharpoonright[m, n] \in Z_{n+1} \Rightarrow \bar{t} \upharpoonright[m, n) \in Z_{n, t_{n}}$, the first implication by $(*)_{2}$, the second implication by the definition of Z_{n+1} in \boxplus_{8}. Hence by $\boxplus_{6}(\mathrm{~b})$ and the last sentence, and by the sentence before last $g_{n+1}(\bar{t} \upharpoonright[m, n])=g_{n+1, t_{n}}(\bar{t} \upharpoonright[m, n))<$ $g_{n}(\bar{t} \upharpoonright[m, n))$ as required. So $(*)_{3}$ holds indeed. $]$

So for each $m<\omega$ the sequence $\left\langle g_{n}(\bar{t} \upharpoonright[m, n): n \in[m, \omega)\rangle\right.$ is a decreasing sequence of ordinals, a contradiction. Hence there is no \bar{t} as above, so indeed \boxplus_{10} holds. But \boxplus_{10} contradicts an assumption, so we are done. $\boldsymbol{\Xi}_{3.13}$

Remark 3.16: (1) Note that in the proof of 3.13 there was no use of completeness demands; it is still natural to assume \aleph_{1}-completeness because: if D_{n}^{\prime} is the \aleph_{1} completion of D_{n} then $\operatorname{IND}\left(\left\langle D_{n}^{\prime}: n<\omega\right\rangle\right)$ is equivalent to $\operatorname{IND}\left(D_{n}: n<\omega\right)$.
(2) Recall that by [Sh:513, 2.7], iff $\operatorname{pp}\left(\aleph_{\omega}\right)>\aleph_{\omega_{1}}$ then for every $\lambda>\aleph_{\omega}$ for infinitely many $n<\omega$ we have $(\forall \mu<\lambda)\left(\operatorname{cf}(\mu)=\aleph_{n} \Rightarrow \operatorname{pp}(\mu) \leq \lambda\right)$.
(3) Concerning 3.17 below recall that:
(A) if Y_{n} is a regular cardinal, D_{n} witnesses Y_{n} is a measurable cardinal, then clause (a) of 3.17 holds, but [Sh:938, §4] says more:
(B) if $\mu=\mu^{<\mu}$ and \mathbb{P}_{μ} is the Levy collapse, of a measurable λ cardinal to be μ^{+}with D a normal ultrafilter on λ, then $\Vdash_{\mathbb{P}_{\mu}}$ "the filter which D generates is as required in (b) with μ in the role of $Z_{n}{ }^{\prime \prime}$, by Jech-Magidor-Mitchell-Prikry [JMMP80].

So we can force that $n<\omega \Rightarrow Y_{n}=\aleph_{2 n}$.
(4) So
(a) if $\operatorname{pp}\left(\aleph_{\omega}\right)>\aleph_{\omega_{1}}$ and \aleph_{ω} divides $\delta, \operatorname{cf}(\delta)<\aleph_{\omega}$ and $\delta<\aleph_{\delta}$, then $\operatorname{pp}\left(\aleph_{\delta}\right)<$ $\aleph_{|\delta|^{+}}$,
(b) we can replace \aleph_{ω} by any singular $\mu<\aleph_{\mu}$,
(c) if, e.g., $\delta_{n}<\lambda_{n}=\aleph_{\delta_{n}}, \delta_{n}<\delta_{n+1}$ and $\operatorname{cf}\left(\delta_{n}\right)<\lambda_{0}$ for $n<w$, then, except at most one $n, \operatorname{pp}\left(\aleph_{\lambda_{n}}\right) \geq \aleph_{\lambda_{n}^{+}}$.
(5) We had thought that maybe: (in ZFC) if μ is singular and $\operatorname{pp}(\mu)>\aleph_{\mu^{+}}$ then some case of IND follows, because by [Sh:513, 2.7] this holds if $\mu<\aleph_{\mu^{+}}$ (even getting $\operatorname{IND}\left(\left\langle\operatorname{dual}\left(J_{\lambda_{n}}^{\mathrm{bd}}\right): n<\omega\right\rangle\right)$. Moreover for some increasing sequence $\left\langle\lambda_{n}: n<\omega\right\rangle$ of regular cardinals $<\mu$ (with limit μ if $\operatorname{cf}(\mu)=\aleph_{0}$ and $\subseteq\left\{\lambda^{+}:\right.$ $\lambda \in E\}$ for any club E of μ if $\left.\operatorname{cf}(\mu)>\aleph_{0}\right)$ provided that $\mu=\aleph_{\delta} \wedge|\delta|^{\aleph_{0}}<\mu$; see [Sh:513, 2.8]).
Claim 3.17: [DC] For $\mathbf{x}=\left\langle Y_{n}, D_{n}: n<\omega\right\rangle$ with each D_{n} being an \aleph_{1}-complete filter on Y_{n}, each of the following is a sufficient condition for $\operatorname{IND}(\mathbf{x})$, letting $Y(<n):=\prod_{m<n} Y_{m}$ and for $m<n$, let

$$
Z_{m, n}=\left\{t: t \text { is a function from } \prod_{\ell=m+1}^{n-1} Y_{\ell} \text { into } Y_{m}\right\}
$$

and let $Z_{n}=\prod_{m<n} Z_{m, n}$:
(a) D_{n} is a $\left(\leq Z_{n}\right)$-complete ultrafilter,
(b) $\quad D_{n}$ is a $\left(\leq Z_{n}\right)$-complete filter,

- for each n in the following game $\partial_{\mathbf{x}, n}$ the non-empty player has a winning strategy. A play lasts ω-moves. In the k-th move the empty player chooses $A_{k} \in D_{n}$ and $\left\langle X_{t}^{k}: t \in Z_{n}\right\rangle$, a partition of A_{k} and the non-empty player chooses $t_{k} \in Z_{n}$. In the end the non-empty player wins the play if $\bigcap_{k<\omega} X_{t_{k}}^{k}$ is non-empty,
(c) like clause (b) but in the second part the non-empty player instead of t_{k} chooses $S_{k} \subseteq Z_{n}$ satisfying $\left|S_{k}\right| \leq_{X}|S|$ and every $D_{\mathbf{x}, n}$ is $(\leq S)$ complete, S is infinite,
(d) if $m<n<\omega$ then D_{m} is $\left(\leq \prod_{k=m+1}^{n} Y_{k}\right)$-complete ${ }^{4}$.

Proof. Straightforward; for instance:
Clause (B):
Let $\left\langle\mathbf{s t}_{n}: n<\omega\right\rangle$ be such that $\mathbf{s t}_{n}$ is a winning strategy of the non-empty player in the game $\partial_{\mathbf{x}, n}$.

Let $\bar{F}=\left\langle F_{m, n}: m<n<\omega\right\rangle \in \operatorname{alg}(\mathbf{x})$ and we should find a member of $\prod_{n} Y_{n}$ as required in Definition 3.12(2). We now, by induction on $i<\omega$, choose the following objects satisfying the following condition:
$(*)_{i} \quad$ (a) for $k<m$ and $j<i, G_{j, k, m}$ is a function from $\prod_{\ell=k+1}^{m} Y_{\ell}$ into Y_{k};
(b) (α) for $m<\omega,\left\langle\left(\bar{X}_{j, m}, \mathbf{t}_{j, m}\right): j<i\right\rangle$ is an initial segment of a play of the game $\partial_{\mathbf{x}, m}$ in which the non-empty player uses the strategy $\mathbf{s t}_{m}$;
(β) we have $\bar{X}_{j, m}=\left\langle X_{j, m, \mathbf{t}}: \mathbf{t} \in Z_{m}\right\rangle$ and $\mathbf{t}_{j, m}=\left\langle t_{j, k, m}: k<m\right\rangle$ and $t_{j, k, m} \in Z_{k}$ and we have $X_{j, m, \mathbf{t}}=\bigcap_{k<m} X_{j, k, m, t_{k}}$ when $\mathbf{t}=\left\langle t_{k}: k<m\right\rangle, \bigwedge_{k} t_{k} \in Z_{k, m} ;$
(c) $\quad(\alpha) Y_{j, m}$ is Y_{m} if $j=0$;
(β) $Y_{j, m}$ is $\cap\left\{X_{\iota, m, k, t_{j, k, m}}: \iota<j\right\} \subseteq Y_{m}$ if $j \in(0, i)$;
(d) (α) If $j=0<i$ then $G_{j, k, m}$ is $F_{k, m}$;
(β) if $j \in(0, i)$ then $G_{j, k, m}$ is defined by: for $\left\langle y_{k+1}, \ldots, y_{m}\right\rangle \in$ $\prod_{\ell=k+1}^{m} Y_{\ell}$ we have

$$
G_{j, k, m}\left(\left\langle y_{k+1}, \ldots, y_{m}\right\rangle\right)=G_{j-1, k, m+1}\left(\left\langle y_{k+1}, \ldots, y_{m+1}\right\rangle\right)
$$

for any $y_{m+1} \in Y_{j, m+1}$ (so the value does not depend on $\left.y_{m+1}!\right)$;

[^4](e) for $k<m$ and $t \in Z_{k, m}$ let $X_{j, k, m, t}$ be
\[

$$
\begin{aligned}
& \left\{y \in Y_{m}: \text { if }\left\langle y_{k+1}, \ldots, y_{m-1}\right\rangle \in \prod_{\ell=k+1}^{m-1} Y_{\ell}\right. \text { then } \\
& \left.\quad G_{j, k, m}\left(y_{k+1}, \ldots, y_{m-1}, y\right)=\left(y_{k+1}, \ldots, y_{m-1}\right)\right\}
\end{aligned}
$$
\]

Clearly $(*)_{0}$ holds emptily.
For $i \geq 1$, let $j=i-1$; clearly $\left\langle Y_{j, m}: m<\omega\right\rangle$ is well defined by (c), hence we can define $\left\langle X_{j, k, m, t}: t \in Z_{k, m}\right\rangle$ by clause (e) and let

$$
X_{j, m, \mathbf{t}}=\bigcap\left\{X_{j, k, m, t_{k}}: k<m\right\}
$$

when $\mathbf{t}=\left\langle t_{k}: k<m\right\rangle$.
So $\bar{X}_{j, m}=\left\langle X_{j, m, \mathbf{t}}: \mathbf{t} \in Z_{m}\right\rangle$ is a legal j-move of the empty player in the game $\partial_{\mathbf{x}, m}$, so we can use $\mathbf{s t}_{m}$ to define $\mathbf{t}_{j, m}=\left\langle t_{j, k, m}: k<m\right\rangle$ as the j-th move of the non-empty player.

Lastly, the function $G_{j, k, m}$ is well defined. Having carried the induction, for each m clearly $\left\langle\left(\bar{X}_{j, m}, \mathbf{t}_{j, m}\right): j<\omega\right\rangle$ is a play of the game $\partial_{\mathbf{x}, n}$ in which the non-empty player uses the strategy $\mathbf{s t}_{n}$, hence win in the play, so $\bigcap\left\{X_{j, m, \mathbf{t}_{j, m}}: j<\omega\right\}$ is non-empty, so by $\mathrm{AC}_{\aleph_{0}}$ we can choose $\bar{y}=\left\langle y_{m}: m<\omega\right\rangle$ such that $y_{m} \in \bigcap\left\{X_{j, m, \mathbf{t}_{j, m}}: j<\omega\right\}$.

It is easy to see that \bar{y} is as required in Definition 3.12(2). $\quad \quad_{3.17}$
Conclusion 3.18: [DC] Assume $\left\langle\kappa_{n}: n\right\rangle$ is increasing and κ_{n} is measurable as witnessed by the ultrafilter D_{n} or just D_{n} is a uniform ${ }^{5} \Upsilon\left(\mathscr{P}\left(\kappa_{n-1}\right)\right)$-complete ultrafilter on κ_{n}.

Then for every ordinal ζ, for every large enough n we have o- $\operatorname{Depth}_{D_{n}}^{+}(\zeta) \leq \zeta$.
Proof. By 3.17 we know that $\operatorname{IND}\left(\left\langle D_{n}: n<\omega\right\rangle\right)$ and by $3.13(2)$ we get the desired conclusion. $\quad \mathbf{■}_{3.18}$

Claim 3.19: (ZFC for simplicity).
If (A), then (B), where
(A) (a) $\lambda_{n}=\operatorname{cf}\left(\lambda_{n}\right)$ and $\left(\lambda_{n}\right)^{<\lambda_{n}}<\lambda_{n+1}$ and $\mu=\Sigma\left\{\lambda_{n}: n<\omega\right\}$ and $\lambda=\mu^{+}$,
(b) \mathbb{P}_{n} is the natural λ_{n}-complete λ_{n}^{+}-c.c. forcing adding $\left\langle{\underset{\sim}{n}}_{n, \alpha}: \alpha<\lambda\right\rangle$ of members of $\lambda_{n}\left(\lambda_{n}\right),<_{J_{\lambda_{n}}^{\text {bd }}}$-increasing,
(c) \mathbb{P} is the product $\prod_{n} \mathbb{P}_{n}$ with full support;

[^5](B) in $\mathbf{V}^{\mathbb{P}}$ we have $\operatorname{NIND}\left(\left\langle\operatorname{dual}\left(J_{\lambda_{n}}^{\mathrm{bd}}\right): n<\omega\right\rangle\right)$ and a cardinal θ is not collapsed if $\theta \notin\left(\mu^{+}, \mu^{\aleph_{0}}\right]$.

Proof. So $p \in \mathbb{P}_{n}$ iff p is a function from some $u \in\left[\lambda^{+}\right]^{<\lambda_{n}}$ into $\cup\left\{{ }^{\zeta}\left(\lambda_{n}\right): \zeta<\lambda_{n}\right\}$, ordered by $\mathbb{P}_{n} \vDash " p \leq q "$ iff $\alpha \in \operatorname{Dom}(q) \Rightarrow \alpha \in \operatorname{Dom}(q) \wedge p(\alpha) \subseteq q(\alpha)$. Now use 3.13. $\mathbf{■}_{3.19}$
$3(\mathrm{C})$. Bounds on the depth. We continue 3.2 . We try to get a bound for singulars of uncountable cofinality, say for the depth, recalling that depth, rank and $\mathrm{ps}-T_{D}$ are closely related.

Hypothesis 3.20: D is an \aleph_{1}-complete filter on a set Y.
Remark 3.21: Some results do not need the \aleph_{1}-completeness.
Claim 3.22: Assume $\bar{\alpha} \in{ }^{Y}$ Ord.
(1) [DC] (No-hole Depth) If $\zeta+1 \leq \operatorname{ps-o}^{-D e p t h}{ }_{D}^{+}(\bar{\alpha})$ then, for some $\bar{\beta} \in{ }^{Y}$ Ord, we have $\bar{\beta} \leq \bar{\alpha} \bmod D$ and $\zeta+1=\operatorname{ps-o-Depth}{ }^{+}(\bar{\beta})$.
(2) In Definition 3.1 we may allow $\mathscr{F}_{\varepsilon} \subseteq^{Y}$ Ord such that $g \in \mathscr{F}_{\varepsilon} \Rightarrow g<f \bmod D$.
(3) If $\bar{\beta} \in{ }^{Y}$ Ord and $\bar{\alpha}=\bar{\beta} \bmod D$ then ps-o-Depth ${ }^{+}(\bar{\alpha})=\operatorname{ps-o-Depth}^{+}(\bar{\beta})$.
(4) If $\left\{y \in Y: \alpha_{y}=0\right\} \in D^{+}$then ps-o-Depth ${ }^{+}(\bar{\alpha})=1$.
(5) Similarly for the other versions of depth from Definition 3.10.

Proof. (1) By DC, without loss of generality, there is no $\bar{\beta}<_{D} \bar{\alpha}$ such that $\zeta+1 \leq$ ps-o-Depth ${ }^{+}(\bar{\beta})$. Without loss of generality, $\bar{\alpha}$ itself fails the desired conclusion hence $\zeta+1<\operatorname{ps-o}^{-D_{e p t h}}{ }^{+}(\beta)$. By parts (3), (4), without loss of generality, $s \in Y \Rightarrow \alpha_{s}>0$. As $\zeta+1<$ ps-o-Depth ${ }^{+}(\bar{\alpha})$ there is a $<_{D^{-}}$ increasing sequence $\left\langle\mathscr{F}_{\varepsilon}: \varepsilon<\zeta+1\right\rangle$ with $\mathscr{F}_{\varepsilon}$ a non-empty subset of $\Pi \bar{\alpha}$. Now any $\bar{\beta} \in \mathscr{F}_{\zeta}, \zeta+1 \leq$ ps-o-Depth ${ }^{+}(\bar{\beta})$ as witnessed by $\left\langle\mathscr{F}_{\varepsilon}: \varepsilon<\zeta\right\rangle$, recalling part (2), contradicting the extra assumption on $\bar{\alpha}$ (being $<_{D}$-minimal such that...).
(2) Let $\mathscr{F}_{\varepsilon}^{\prime}=\left\{f^{[\bar{\alpha}]}: f \in \mathscr{F}_{\varepsilon}\right\}$, where $f^{[\bar{\alpha}]}(s)$ is $f(s)$ if $f(s)<\alpha_{s}$ and is zero otherwise.
(3), (4) Obvious.
(5) Similarly. $\quad \mathbf{■}_{3.22}$

Claim 3.23: $\left[\mathrm{DC}+\mathrm{AC}_{Y}\right]$ If $\bar{\alpha}, \bar{\beta} \in{ }^{Y}$ Ord and D is a filter on Y and $s \in Y \Rightarrow$ $\left|\alpha_{s}\right|=\left|\beta_{s}\right|$ then $\mathrm{ps}-\mathbf{T}_{D}(\bar{\alpha})=\mathrm{ps}-\mathbf{T}_{D}(\bar{\beta})$.

Proof. Straightforward.

Assuming full choice the following is a relative of the Galvin-Hajnal theorem.
Theorem 3.24: [DC $\left.+\mathrm{AC}_{Y}\right]$ Assume $\alpha(1)<\alpha(2)<\lambda^{+}$, ps-o-Depth $^{+}(\lambda) \leq$ $\lambda^{+\alpha(1)}$ and $\xi=\operatorname{hrtg}\left({ }^{Y} \alpha(2) / D\right)$. Then ps-o-Depth ${ }_{D}^{+}\left(\lambda^{+\alpha(2)}\right)<\lambda^{+(\alpha(1)+\xi)}$.
Proof. Let $\Lambda=\left\{\mu: \lambda^{+\alpha(1)}<\mu \leq \lambda^{\alpha(1)+\xi}\right\}$, and for every $\mu \in \Lambda$
$(*)_{1}$ let $\mathscr{F}_{\mu}=\mathscr{F}(\mu)=\left\{f: f \in{ }^{Y}\left\{\lambda^{+\alpha}: \alpha<\alpha(2)\right\}\right.$ and $\left.\mu=\operatorname{ps}^{-D e p t h}{ }_{D}^{+}(f)\right\}$,
$(*)_{2}$ obviously $\left\langle\mathscr{F}_{\mu}: \mu \in \Lambda\right\rangle$ is a sequence of pairwise disjoint subsets of ${ }^{Y} \alpha(2)$ closed under equality modulo D.

By the no-hole-depth Claim 3.22(1) above we have
$(*)_{3}$ if $\mu_{1}<\mu_{2}$ are from Λ and $f_{2} \in \mathscr{F}_{\mu_{2}}$ then for some $f_{1} \in \mathscr{F}_{\mu_{1}}$ we have $f_{1}<f_{2} \bmod D$,
$(*)_{4} \xi>\sup \left\{\zeta+1: \mathscr{F}\left(\lambda^{+(\alpha+\zeta)}\right) \neq \emptyset\right\}$ implies the conclusion.
Lastly, as $\xi=\operatorname{hrtg}\left({ }^{Y} \alpha(2) / D\right)$ we are done. $\boldsymbol{■}_{3.24}$
Remark 3.25: (0) Compare this with Conclusion 1.10.
(1) We may like to lower ξ to ps- $\operatorname{Depth}_{D}^{+}(\alpha(2))$; toward this let
$(*)_{1} \mathscr{F}_{\mu}^{\prime}=\left\{f \in \mathscr{F}_{\mu}:\right.$ there is no $g \in \mathscr{F}_{\mu}$ such that $\left.g<f \bmod D\right\}$.
By DC
$(*)_{2}$ if $f \in \mathscr{F}_{\mu}$ then there is $g \in \mathscr{F}_{\mu}^{\prime}$ such that $g \leq_{D} f \bmod D$.
(2) Still the sequence of those $\mathscr{F}_{\mu}^{\prime}$ is not $<_{D}$-increasing.

Instead of counting cardinals we can count regular cardinals.
Theorem 3.26: $\left[\mathrm{DC}+\mathrm{AC}_{Y}\right]$ The number of regular cardinals in the interval $\left(\lambda^{+\alpha(1)}, \operatorname{ps}-\operatorname{depth}_{D}^{+}\left(\lambda^{+\alpha(2)}\right)\right.$ is at most $\operatorname{hrtg}\left({ }^{Y} \alpha(2) / D\right)$ when:
(a) $\alpha(1)<\alpha(2)<\lambda^{+}$,
(b) $\kappa>\aleph_{0}$,
(c) D is a κ-complete filter on Y,
(d) $\lambda^{+\alpha(1)}=\mathrm{ps}-\operatorname{Depth}_{D}(\lambda)$.

Proof. Straightforward, using the No-Hole Claim 1.12. $\quad \square_{3.26}$

References

[JMMP80] T. Jech, M. Magidor, W. Mitchell and K. Prikry, On precipitous ideals, Journal of Symbolic Logic 45 (1980), 1-8.
[Sh:b] S. Shelah, Proper forcing, Lecture Notes in Mathematics, Vol. 940, SpringerVerlag, Berlin-New York, 1982.
[Sh:g] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides, Vol. 29, Oxford University Press, 1994.
[Sh:460] S. Shelah, The generalized continuum hypothesis revisited, Israel Journal of Mathematics 116 (2000), 285-321.
[Sh:497] S. Shelah, Set theory without choice: not everything on cofinality is possible, Archive for Mathematical Logic 36 (1997), 81-125, A special volume dedicated to Prof. Azriel Levy.
[Sh:513] S. Shelah, PCF and infinite free subsets in an algebra, Archive for Mathematical Logic 41 (2002), 321-359.
[Sh:829] S. Shelah, More on the revised GCH and the black box, Annals of Pure and Applied Logic 140 (2006), 133-160.
[Sh:835] S. Shelah, PCF without choice, Archive for Mathematical Logic submitted, math.LO/0510229.
[Sh:938] S. Shelah, PCF arithmetic without and with choice, Israel Journal of Mathematics 191 (2012), 1-40.
[Sh:1005] S. Shelah, $P C F$ with narrow choice or $Z F+D C+A X_{4}$, preprint.

[^0]: * The author thanks Alice Leonhardt for the beautiful typing.

 Partially supported by the United States-Israel Binational Science Foundation (Grant No. 2006108).
 Part of this work was done during the author's visit to Mittag-Leffler Institute, Djursholm, Sweden. The author thanks the Institute for hospitality and support. Publication 955.

[^1]: ${ }^{1}$ Not used. Note that AC_{κ} holds in the non-trivial case as $\mathrm{AC}_{\mathscr{P}(Y)}$ holds; see 1.14.

[^2]: ${ }^{2}$ So we are assuming it is well defined, now if $\mathrm{AC}_{\mathscr{P}(Y)}$ such $\overline{\mathscr{F}}$ exists.

[^3]: ${ }^{3}$ Recall dual $\left(J\left[f, D_{1}\right]\right)=\left\{X \subseteq Y: X \in D_{1}\right.$ or $\left.\mathrm{rk}_{D_{1}+(X \backslash Y)}(f)>\mathrm{rk}_{D_{1}}(f)\right\}$.

[^4]: ${ }^{4}$ So the Y_{k} 's are not well ordered! If $\alpha<\operatorname{hrtg}\left(Y_{n}\right) \Rightarrow D_{n}$ is $|\alpha|^{+}$-complete, then $\alpha^{Y_{n}} / D_{n} \cong$ α. If α is a counterexample, D projects onto a uniform \aleph_{1}-complete filter on some $\mu \leq \alpha$.

[^5]: ${ }^{5}$ Recall $\Upsilon(A)=\min \{\theta$: there is no one-to-one function from θ into $A\}$.

