SUPERSTABLE FIELDS AND GROUPS

G. CHERLIN*

Rutucr linternty. New Brumwick. NI. U.S.A.
S. SHELAH ${ }^{* *}$

The Hebrew Lindervity, Jerusaidem. Israd
Recened 16 Ma 1079

Abstract

We prose an indecompuability theorem for connected stable groups. !sing this theorem we pose that all inhite apertable fold are agebracally coocd. and we extend known result ARots: the begeal metion of tability is umelated to the motion of stablity in finite goup :heors.,

1. Introduction

The main object of this paper is to give a proof of the following result:
Theorem 1. Any infinite superstable field F is algebraically closed.
A field is called superstable if its first-order theory is superstable. The nasic reference for the notions of stability theory and for all model-theoretic notions exploited in this paper is [12]. More accessible general introductions to the subject are in [11, 5].)

This exends the main result of [9]. which treats the case of ω-stable fields.
Theorem 1 can be combined with results in [3,6] to yeld:
Corollary 2. Any semisimple superstable ring R is the direct sum of a finite ring and fintely many full mutrix rings:

$$
M_{n_{1}}\left(F_{i}\right)
$$

ocer alsebraically closed fields $F_{:}$. (Hence in fact R will be ω-stable of finike Morley rank.)

[^0]The analysis of superstable division rings given in [3] can now be given significant notational simplification in view of Theorem 1 .

The proof of Theorem I is in outline identical with the argument in [9]. The difference lies in a systematic use of connected groups (see Section 2) to replace two ad hoe algebraic constructions in [9]. That part of our proot which most closely parallels the arguments in [9] is given in our Section 3. The modeltheoretic ingredients are supplied in Section 2, with the exception of the main technical result (the Indecomposability Theorem 34) which is discussed separately in Sections 4-6. The material in Section 4 completes the proof of Theorem 1: Sections 5 and 6 give variations on the same theme.

The remaining sections of the paper are devoted to the extension of the main results of $[4]$ to the class of superstable groups of x-rank at most 3. (For the definition see Section 2.2.). This is in principle simply a matter of combining the Indecomposability Theorem with the various algebraic arguments of [4]. hut as it is necessary to rearrange all of the arguments involved, we have given the details at length. (From a psychological point of view $[+]$ is a prerequisite for this material - and once our analysis arrives at a stage at which the remaining steps may be copied out of $[4]$. we terminate the discussion.)

The expository article [5] can be vewed as a lengthy introduction to the present paper. Poizat has worked out a mote systematic treatment of the model-theo etic aspects of stable groups connected with indecomposability theorems [15]. The conclusion appears to be that a mere enthusiastic use of Shelah's "forking" makes life substantially simpler.

I. SUPERSTABLE FIELDS

2. Connected groups

We use the word "group" to mean what is usually called an expansion of a group. namely an algebraic system equipped with a binary operation - - - together with possible additional operations and relations - such that the structure is a group with respect to the distinguished operation . The most important example of such a group is a field F. viewed as a group in two distinet ways, with the usual proviso that the underlying set of the multiplicative group F does not contain 0 . We will see that this niggling over terminology has a nontrivial effect on the content of the following definition.

Definition 3. A group G is comected iff G has no proper detinable subgroup of finite index.

Waming. When a field is viewed as a group as suggested above, the definable sels (that is the sets definable using the fied operations) need not be definable from
the single binary operation singled out for attention. Thus in Defintion 3 the word "definable" means "def nable in the structure G ", without special reference to the group operation on G.
Unfortunately, the definition of connectivit also involves the word "subgroup". which of course refers directly to the specific group operation singled out for attention. Thus connectivity is a property of groups rather than structures (compare Theorems 6,7 below).
The notion of connectivity has been studied in [2, 4, 13], and discussed at length in the expository [5]. To employ it one obviously needs existence theorems for connected groups.

Theorem 4. If the group G is either ω-stable or else stabie and \mathfrak{N}_{0}-categorical, then O contains a tuique contected group of finite index in G. denoted $G^{\prime \prime}$, and $G^{\prime \prime}$ is a normal subgroup of G.

For a proof see [2]. As it happens. Theorem + is not applicable in the situations considered in the present paper. Indeed we have:

Example 5. The superstable group Z has no connected subgroup of finite index.
The superstability follows most simply from Garavaglia's characterization of superstable modules in [7].)

Fortunately we will be able to prove:
Theorem 6. If D is an infinite stable division ring, then the additive group of D is connected.

Theorem 7. If D is an infinite stable dicision ring, then the multiplicative group of D is comected.

A proof of Theorem 6 is given in Section 2.3. We will devote Section 4 to the proof of Theorem 7. The application of these comectivity theorems is based on:

Theorem 8. (Surjectivity Theorem). Let G be a comected superstable group and let

$$
h: G \rightarrow G
$$

be a definable endomorphism of G whose kemel is finite. Then h is surjectice.
The proof of this theorem is essentially model-theoretic. In conjunction with Theorems 6 and 7 is provides the algebraic information necessary to carry out Macintyre's argument (see Section 3).

2.2. The surfecticity theorem

We will base the proof of the Surjectivity Theorem 8 on the properties of the x-rank, which is detincd below. Familiarity with the use of Morley rank in
connection with ω-stable theories as presented in [10] will be found helpful, but is not essential.

Definition 9. Let T be a theory and let λ be a cardinal.
(1) A rank function for T is a function f which assigns ordinals to certain definable subsets of models of T, and which is monotone in the following senss: if $A \vDash T, S \subseteq S^{\prime}$ are definable subsets of A, and $f\left(S^{\prime}\right)$ is defined, then $f(S)$ is also defined and $f(S) \leqslant f\left(S^{\prime}\right)$.
(2) A rank function f for T is elementary iff whenever A is a model of $T . A^{\prime}$ is an elementary extension of A, and S, S^{\prime} are definable subsets of A. A^{\prime} having the same defining formula (with parameters from A), then:

$$
f(S)=f\left(S^{\prime}\right)
$$

(and in particular $f(S)$ is defined iff $f\left(S^{\prime}\right)$ is defined.
(3) A rank function f for T satisfies the λ-splitting comdinon iff whenever S is a definable subset of a model A of T such that $f(S)$ is defined and $f=\left\{S_{a}\right\}$ is a class of at least λ mutually disjoint detimable subsets of S, then:

$$
f\left(S_{t z}\right)<f(S)
$$

for some S_{a}.
(4) A rank function f for T is total iff f is defined for all definable subsets S of all models of T.

Fact 10. [12. Theorem II 3.14]. If T is a superstable theory, then there is a totel elementary rank function for T which satisfies the λ-splittins condition for some cardinal λ.

Remark 11. Given a theory T and a cardinal λ. if one attempts to assign to each definable subset of a model of T the least ordinal compatible with the elementarity condition and the λ-splitting condition, then an inductive detinition of a rank function inevitably emerges -- in terms of an inductive defintion of the sets of rank a (for each a). This rank function is optimal in two respects: it is defined on the largest possible domain, and takes on the least possible values there. Of course in general it need not be total.

This "minimal" rank function will be denoted λ-rank. (In the notation of [12] we have: $\lambda-\operatorname{rank}(S)=R\left(\varphi, L . \lambda^{*}\right)$ where φ is a formula detining S.) Of course this function is defined relative to the given theory T.

Remark 12. The unspecified cardinal A can easily be climinated from the foregoing considerations. It can be shown that for all sufficiently large λ the ordinal λ-rank(S) is independent of λ (or undefined): see [12. Theorem 3.13].

Hence we may define:

$$
x-\operatorname{rank}(S)=\lim _{1} \lambda-\operatorname{rank}(S) .
$$

Then Fact 10 may be reformulated as follows:

```
if T is a superstable theory, then x-rank is a total elementary rank
function; and }x\mathrm{ -rank satisfies some }\lambda\mathrm{ -splitting condition.
```

The main connection with group theory lies in the following simple result:
Lemma 13. If H is a defmable subgroup of the superstable group G. then the following are equicalent:
(1) $x-\operatorname{rank}(H)<x-\operatorname{rank}(G):$
(2) The index of H in (is infimite.

Proof. (2) \rightarrow (1): Passing to a sufficiently saturated elementary extension of G. we may suppose that the index of H in G is arbitrarily large, and then apply the A-spliting condition to the H-coset decomposition of G for some λ, noting that all cosets of H have the same x-rank as H itself.
(1) \rightarrow (2): We need to see that if H is of finite index in G then $x-\operatorname{rank}(H)=$ x-rank (G). More generally, it is easy to see that if the definable set S is a finite union of definable sets $S_{\text {, }}$, then $x-\operatorname{rank}(S)=\sup , x-\operatorname{rank}\left(S_{1}\right)$. Cf. [12, Claim II 1.7].

Our proof of the Surjectivity Theorem will involse nother property of x-rank:
Fact 14. Let A be a superstable structure and let E be a definable equivalence relation on A haring finite equicalence classes of boanded size. Let A / E denote the quoticul stracture. squipped with all relations and fanctions which are induced by defimahle relations and functions on A. Then:

$$
x-\operatorname{rank}(A)=x-\operatorname{rank}(A / E) .
$$

For the proof see [12 Claim V 7.2(6) and Theorem II 3.11].
Preof of the Surjectivity Theorem. Let h be a definable endomorphism of the superstable group G. and let H be the image of h. If the kernel of h is finite, then by Fact 14:

$$
x-\operatorname{rank}(H)=x-\operatorname{rank}(G) .
$$

Then by Lemma $1: 3$ is of finite index in G, and so by the connectivity of G we have $H=G$ as desired.

2.3. Theorem 6

As a rule the proof of a connectivity theorem depends on the use of certain
chain conditions (see [5]). In the present case we will need the stable chain condition of Baldwin and SaxI.

Definition 15. Let G be a group, and let I be a collection of subgroups of G.
(1) The groups in g are said to be aniformly defmable in G iff there is a single formula $\varphi(x, \bar{y})$ such that each group lying in g is definable by a formula of the: form $\varphi(x, \bar{g})$ with \bar{g} in G.
(2) G satisfies the CC- \mathscr{F} (chain condition for \mathscr{F}) iff there is no infinite chain in F. where a chain is a collection of groups linearly ordered by inclusion.
(3) G satisfies the stable chain condition iff G satisfies the CC-9 for every family \mathscr{f} of groups which can be obtained by closing a family f_{3}, of uniformiy definable groups under arbitrary intersections.

Fact 16. If G is a stable group, then G satisfies the stable chain comdition.
The proof is implicit in [1. p. 274] and also in [5]. We will use this fact repeatedy in Section 7 and thereafter.

Example 17. Let g_{n} be the collection:

$$
\{C(g): g \in G\}
$$

of all centralizers in G of single elements of G. Then the groups in g_{n}, are uniformly definable. The closure of g_{0} under arbitrary intersection is the family of centralizers in G of arbitrary subsets of G.

The following, which is equivalent to Fact 16 . is what one in fact actually proves:

Fact 18. Let G be a stable group. \mathscr{H}_{1} a collection of uniformly definable subgroups of G. Then:
(1) G satisfies the CC- \mathscr{H}_{1}.
(2) There is an integer n such that an arbitrary intersection of groups in q. equals an intersection of at mow: 11 sroups in 9 .
(Fact 18(2) shows that the closure of y_{11} under arbitraty intersections is again a family of uniformly defmable subgroups of G. to which $18(1)$ applies.)

In the present connection we need only Fact 18(2).
Proof of Theorem 6. Let D be an infinite stable division ring. Let A be a definable sabgroup of the additive group of D, of finite index in D. We will show that $A=D$.

For any nonzero element x of D let $x A$ be the left scalar multiple of A by x. This is again an additive subgroup of D of finite index in D. A uniform definition
of the left scalar multiples of A may be obtained from a deffintion of A. Hence by Fact $18(2)$ the intersection A_{0} of all left scalar multiples of A can be reduced to a finite intersection, and henes the index of A_{11} in D is linite.

On the other hand A_{0} is closed under left multiplication by elemeats of D, i.e. A_{0}, is a left ideal of D. Since the index of A_{0} in D is finite, $A_{0} \neq(0)$, and hence $A_{0}=D$. so $A=D$, as desired.

3. Theorem 1

We wili use Theorems 6-8 of Section 2. The proof of Theorem 7 is in Section 4.) The algebraic information needed is standard [10]:

Fact 19. Let K be a Galois extension of prime degree a oter the field F. and suppose $x^{4}-1$ splits in F. If p is the characteristic of F, then K is as follows:
(1) If $p=$ q. then K is generated oce F by the solution of an equation $x^{p}-x=a$ for some $a \in F$.
(2) If $p \neq q$, then K is gencrated over F by the solution of an equation $x^{4}=a$ for some a $E R$.
K is said to be an Artin-Scherier extension of F in the first case, and a Kummer extension of F in the second case.

We will combine this with:

Lemma 20. Lee F be a superstable fiedd. Then F is perfect and F has no ArtinSchreter or Kummer extensions.

Proof. Let $h(x)$ be either of the following maps:
(1) $x \rightarrow x^{p}-x$ for x in F (if char. $F=p>0$).
(2) $x \rightarrow x^{12}$ for $x \neq 0$ in F
where $n \geqslant 1$ is an arbitrary integer. Then h is a definable endomorphism of the additive group of F in the first case, and of the multiplicative group of F in the second case. In both cases the kernel of h is tinite.

Since by Theorems 7. \& both of these groups are connected. therefore in both cases Theorem 6 implies that h is surjective. This casily yields Lemma 20.

Proof of Theorem 1. Assume toward a contradiction that F is an infinite superstable field and that F is not algebraically closed. By Lemma $20 F$ is perfect. so it has a Gabois extension of some finite degree n.

Consider all pairs of fields (F, K) satisfying:
(Gat) $\quad K$ is a Galois extension of finite degree over F and F is infinite and superstable.

Choose such a pair (F, K) in which the degree q of K over F is minimal (greater than one). A contradiction will be immediate from Fact 19. Lemma 20, and the following claim:
(Clm) $\quad q$ is prime and $x^{4}-1$ splits in F.
Thus we need only to verify (Clm). First let r be a prime factor of q and let r be the fixed field of an element of order r in $\operatorname{Gal}(K / F) . F_{1}$ is superstable: indeed F_{1} is a finite-dimensional extension of F. hence is interpretable over F. and as such F_{1} inherits the superstability of F (for more detail see [9]). Thus the pair (F_{1}, K) satisfies (Gal) above, and so the minimality of q yields $q=r, q$ is prime.
Now let K_{1} be the splitting extension of $x^{3}-1$ over F. Then the degree of K_{1} over F divides $q-1$. so by the mimmality of q we have $K_{1}=F$ as claimed.
Thus the claim holds. yielding the desired contradiction.

If. INDECOMPOSABHLITY THEOREMS

4. The indecomposability theorem for stable groups

In this section we will derive Theorem 7 from Theorem 6 and a general result concerning connected stable groups. Our basic tool will be the use of \rfloor-ranks for \perp finite as in [12. Chapter II], which we now review.

t.I. J-rank

Definition 21. Let 7 be a first-order theory and let λ be a set of formulas $\varphi(x$, i) in the language of T.
(1) For A a model of T let $\lrcorner(A)$ be the Boolean algebra generated by the subsets of A which can be defined by formulas of the form:

$$
\varphi(x, \bar{a}) \quad(\hat{\epsilon} \in \perp, \bar{a} \operatorname{in} A)
$$

(2) If S is a definable subset of a model A of T and $\mathscr{f}=\left\{S_{n}\right\}$ is an infinite family of subsets of S. then \mathscr{G} is a \triangle-spltting of S iff:
(i) The sets S_{a} are mutually disjoint subsets of S :
(ii) Each set S_{a} is the intersection of S with a set in $د(A)$.
(3) A rank function f for T satisfies the \rfloor-splinting condition iff whenever S is a definable subset of a model of T for which $f(S)$ is detined and $S=\left\{S_{a}\right\}$ is a λ-splitting of S, then for some α :

$$
f\left(S_{\mathrm{n}}\right)<f(S)
$$

(4) The least elementary rank function which satisfies the J-spliting condition
will be denoted:
د-rank.
(In the notation of [12] we have $\rfloor-\operatorname{rank}(S)=R^{\prime}\left(S . \perp . S_{0}\right)$.)
(5) If A is a model of T, S is a definable subset of A, and $\lambda-\operatorname{rank}(A)$ is defined we say that S is Δ-small iff

$$
1-\operatorname{rank}(S)<\lambda-\operatorname{rank}(A) .
$$

We will be interested in the case in which \perp is a finite set of formulas in which case we are dealing with the so-called local rank functions.

Fact 22. A theory T is stable iff for all fimite sets of fommas $\perp \perp$-rank is total [12. Section 11.2].

Fact 23. For S_{1}, S_{2} definable subsets of a structure A and \perp a set of formulas:
(sup) $\rfloor-\operatorname{rank}\left(S_{1} \cup S_{2}\right)=\sup \left(\perp-\operatorname{rank}\left(S_{1}\right), ~\right\rfloor-\operatorname{rank}\left(S_{2}\right)$
(ome sute is defined iff the other side is defined).
Corollary 24. If A is a structure and \triangle is a set of formulas such that \perp-rank (A) is defined. then the collection of \perp-small sets is an ideal of the Boolean algebra of all definable subsets of A.

The notion of \perp-rank is supplemented by the notion of Δ-multiplicity (which Morley would have called "J-degree"). This is hased on:

Fact 25. Le \perp be a sef of formulas and let Abe a structure for which \perp-rank (A) is defined. Let I be the collection of \triangle-small sets belonging $10 \perp(A)$. Then I is an ideal of $\Lambda(A)$ and the puotent $I(A) / I$ is a finite Boolean alsehra.

Definition 26. With the hyporthesis and notation of Fact 25. the - -multiplicity of A is defined to be the number of atoms in $\lrcorner(A) / I$.

Since we will be making extensite use of Fact 25. we will rephase it in a more explicit form.

Definition 27. Let A he a structure and let \perp be a set of formulas for whech Δ-rank (A) is defined. For definable subsets X, Y of A define:

$$
X \equiv Y \quad \text { (or: } X \equiv \perp \text { in } A)
$$

iff the symmetric difference of X and Y is 11 -smath.

Then Fact 25 becomes:
Fact 28. Let \triangle be a set of formulas: let A be a structure for which $\perp-\operatorname{rank}(A)$ is defined, and let m be the 1 -multiplicity of A. Then there is a decomposition:
(dec) $\quad A=A_{1} \dot{\cup} \cdots \dot{U} A_{m}$
of A into m disjoint sets $A_{1} \ldots \ldots A_{m}$ satisfying:
(i) $A_{i} \in د(A)$ for $i=1 \ldots \ldots m$.
(ii) $\Delta-\operatorname{rank}\left(A_{i}\right)=\Delta-\operatorname{rank}(A)$ for $i=1 \ldots .$. .

The Δ-multiplicity m is the largest integer for which such a decomposition exists. Furthermore the decomposition (dec) is unique - up to the order of the pieces-modulo J-small sets: in other words if:

$$
A=B_{1} \dot{\cup} \cdots \dot{U} B_{m}
$$

is a second such decomposition, then there is a (unique) permutation p of $1, \ldots, m$ such that

$$
A_{i} \equiv B_{w} \quad \text { for }{ }^{\prime} i=1 \ldots \ldots m .
$$

Finally, for any S in $\lrcorner(A)$ there is a mique subset I of $\{1 \ldots . . m\}$ for which

$$
S \equiv \bigcup_{1} A_{i} .
$$

Definition 29. With the above hypothesis and notation, a definable subset S of A is \rfloor-indecomposable iff
(1) $\rfloor-\operatorname{rank}(S)=\lambda-\operatorname{rank}(A)$.
(2) S has \perp-multiplicity 1 .
(For $S \in \perp(A)$ this just means that S is an atom mortulo the ideal of \rfloor-small sets.)

4.2. Incariant sets

We will be interested in studying the way in which a stable group G acts on the Boolean algebra of definable subsets of G under right or !eft translation by elements of G. Hence we introduce the following notions:

Definition 30. Let \rfloor be a set of formulas in a language L containing a binary operation \cdot. let T be a theory in this language, and let f be a rank function for T.
(1) Δ is T-right invariant iff for each formula $\varphi(x: y)$ in λ. for each model G of T, and for all \bar{a}, \underline{g} in G, the formula:

$$
\varphi(x \cdot g: \bar{a})
$$

is equivalent (in G) to an instance of a formula in \perp.
(2) : is right muariant iff for any definable subset S of a model G of T for which $f(S)$ is defined and any $g \in G$:

$$
f(S)=f(S g)
$$

Left invartance is defined similarly, and \perp (or f) is called invariant iff it is both left and right invariant.

Lemma 31. If Δ is right incariant and T contains the theory of groups then \mathcal{J}-rank is right inceriamt.

Proof. The proof is entirely straightforward. The main point is that if \rfloor is right invariant. then $J(G)$ is invariant under the action of G by right translation. It suthees to verify this assertion for a generator S of $J(A)$ detined by a formula:

$$
\varphi(x, \overline{0})
$$

with $\& \in J$ and $\ddot{0}$ in G. But then for any element $: \in G$ the set $S g$ is detined by:

$$
f(x \cdot g ', \bar{a})
$$

Which by the right invariance of J is again defmed by formula in 1.

Now we will discuss the construction of invariant sets of formulas.

Definition 32. (1) If $\psi(x: \bar{y})$ is a formula let $\hat{\varphi}\left(x: \bar{y}, z_{i}, z_{2}\right)$ be the formula

(2) If \perp is a set of formulas let $j=\rfloor \cup\{\dot{\varphi}: \uparrow \in J\}$.

Lemna 33. For any se of formulas \perp and any theory T contaming the theory of semigoups the set j is 7 -imetariant.

Proof. Each formula $\underset{\sim}{ }(x: \bar{y})$ of \mathcal{J} is equivalent to the formula $\hat{c}(x: \bar{V}, 1.11$, so it sulfices to show that for each formula \hat{f} the set $\{\hat{\phi}\}$ is invariant. Since 7 proves

$$
\hat{\psi}\left(u \cdot x \cdot \varepsilon: \bar{B} z_{1}, z_{1}\right)=\hat{4}\left(x: \bar{y}_{2} z_{1} \cdot u, r \cdot=\right.
$$

this is chear.

4.2. The indecomposability theorem

The main result of this section will be:

Theorem 34. (The Indecomposability Theorems. Let G be a stahle group. Then the following are equicalent:
(1) G is connected.
(2) G is 1 -indecomposable for any finite incariant set of formulas 1.
(3) For any finite set λ_{1}, of formulas there is a finite imeariont set of formulas \perp containing \perp_{0} such that G is \rfloor-indecomposable.

Using Theorem 34 it is possible to reduce Theorem 7 to Theorem 6. A fairly abstract version of this statement goes as follows:

Theorem 35. Let A be a stable structure and let X . Y be definable subsets of A. Suppose that A is equipped with wo binary operations + and \cdot such that:
(i) $\left\langle A-X_{.}+\right\rangle$and $\left\langle A-Y_{\cdot} \cdot\right\rangle$ are groups:
(ii) For every finite set of formulas \perp_{1} there is a finite set $\perp_{\text {containing }} \perp_{1}$ which s invariant relative to both + and \cdot (and $\mathrm{Th}(\mathrm{A})$. such that X and Y are \perp-small.

Then $\left\langle A-X^{+}+\right\rangle$is connected iff $\langle A-Y \cdot \cdot\rangle$ is comnected.
(Slogan: connectivity is a property of the struchue a rather than the group A: compare the comment after Definition 3.)

Proof. We claim in fact that under the above hypotheses the following are equivalent:
(1) $\langle A-X .+\rangle$ is cernected.
(2) $\langle A-Y \cdot \cdot\rangle$ is comected.
 which is invariant relative to both + and (and Th(A)), such that $A-X$ and $A-Y$ are \perp-indecomposable.

It suffices for example to prove that (1) is equivalent to (3). This follows directly from the corresponding equivalence in Theorem I in the direction (1) $\rightarrow(.3)$ we have the sets \perp given by (ii)).

The application to infinite stable division rings D is obtained by setting $A=D$. $X=0 . Y=\{0\}$. Then once we verify hypothesis (ii) of Theorem 35 we will have as the conclusion: Theorem 6 is equivalent to Theorem 7 (see Section 2). Since Theorem 6 was proved in Section 2. Theorem 7 follows, and then the proof of Theorem 1 is complete.

It remains therefore to verify hypothesis (ii). Since \mathcal{X}, Y are \mathcal{A}-small for any \perp containing " $x=y$ " it suffices to prove:

Lemma 36. Let T be an extension of the theory of rings. Then amy finite set \perp of formulas in the language of T is contaned in a finite set of fommules which is T-invariant with respect to both + and .

Proof. Associate to any formula $\varphi(x, y)$, he formula

$$
\hat{\varphi}\left(x ; \bar{y}, z_{1}, z_{2}, z_{3}\right)=\varphi\left(z_{1} x z_{2}+z_{3}, \bar{y}\right) .
$$

Then T proves:

$$
\dot{\varphi}\left(u x d+w: \bar{Y} z_{1}, z_{2}, z_{1}\right)=\dot{\varphi}\left(x: \bar{Y} z_{1} u, v z_{2}, z_{1} u z_{2}+z_{3}\right)
$$

and it follows that $\hat{\varphi}$ is invariant with respect to both + and . The rest of the argument goes as in the proof of Lemma 33.

Thus Theorem 35 applies to infinite stable division rings, as clamed.

In comection with Theorem 35 it is natural to ask:

Question 37. If a stable structure A car be viewed as a group with respect to two operations, + and \cdot does connectivity of $\langle A .+\rangle$ imply connectivity of $\langle A . \cdot\rangle$?

It is not clear what use such a result would have, but on the other hand we will see in Section 5 that we get such a resuh casily if A is superstable via a simpibied version of Theorem 34.

It remains to prove Theorem 34 . We prove $(1) \rightarrow(2) \rightarrow(3) \rightarrow(1)$. The implication (2) $\rightarrow(3)$ follows from Lemma 33 . The implication (3) $\rightarrow(1)$ is casy: suppose (3) holds and H is a subgroup of finite index in G defined by the formula $\varphi(x: \bar{a})$. Let J be a finite invariant set of formulas, containing φ. and such that G is \mathcal{J}-indecomposable. Then sinee \mathcal{J}-rank is invariant is follows that the cosets of H in G all have the same \perp-rank, and hence by Fact 23:

$$
\perp \text {-rank } H g)=\perp-\operatorname{rank}(G) \text { for all } s \in G .
$$

Since G is \mathcal{J}-indecomposable it follows that there is only one such coset so $G=H$. This proves that G is connected, as desired.

It remains to he seen that (1) \rightarrow (2).

4.4. Theorem 34: (1) $\rightarrow(2)$.

We consider a stable group G. which we will eventually take to be connected. and a finite imariant set \perp of formulas in the language of G. Lee the \perp multiplicity of G be m and fix a decomposition:
(dec) $G=A_{1} \dot{U} \cdots A_{m}$
of G into mutually disjoint indecomposable subsets of G lying in J (C).
For any element $g \in G$. since \mathcal{J} is right imariant, right multiplication by g carries the decomposition (dee) to another decomposition:

$$
G=A_{1} r \dot{U} \cdots \dot{U} A_{m} g
$$

of G into indecomposable subsets of G wheh lie in $J(G)$. By Fact 28 there is a mique permutation $\rho=\rho_{\mathrm{s}}$ characterized by:

$$
A, A_{3} A_{p_{e}} \text { for } i=1, \ldots m
$$

Furthermore $\rho_{\mathrm{sh}}=\rho_{\mathrm{s}} \rho_{\mathrm{h}}$ (this involves the right invariance of \rfloor-rank), or in othe: words the map:

$$
\rho: g \rightarrow \rho_{k}
$$

is a representation of G as a group of permutations of $1 \ldots \ldots m$.
Let K be the kernel of ρ. Since the image of ρ is finite. K has finite index in G. We will prove:

Lemma 38. If G is N_{1}-saturated, then K is a definable subsroup of G.
Assuming Lemma 38 we complete the proof of $(1) \rightarrow(2)$ (Theorem 3+) as follows. With the above hypotheses and notation (notably: G, J, K) dssume now that G is connected. We are to prove that $m=1$. Since the notions involved are invariant under elementary extenson, we may assume that G is N_{1}-saturated.

Since K is a definable subgroup of finite index in G we have $K=G$. Making this more explicit, we have for every $g \in G$:
(fix) $\quad A_{i} g \equiv A_{i}, \quad i=1, \ldots m$.
Now consider the first-order theory consisting of the complete theory of G (with names for all elements of G) together with the following sentences involving an additional constant a :

$$
\because u g \in A_{1}{ }^{*} \text { for cach } g \in G .
$$

This theory is consistent. since (fix) implies that for any finite set $F \leq G$:

$$
\lambda-\operatorname{rank}\left(\cap, A_{1}\right)=\lambda-\operatorname{rank}(A)
$$

and hence:

$$
\bigcap_{\because} A_{1} g \neq y .
$$

Let G^{\prime} be a model of this theory. Then in G ' we have:
(inc) $a G \subseteq A_{1}^{\prime}$
where A_{1}^{\prime} is the canonical extension of A_{1} to G^{\prime}.
It is easy to see that the inclusion (inc) implies $m=1$. Indeed if $m-1$ consider the inclusions:
(1) $a A_{1} \subseteq A_{1}^{\prime} \cap a A_{1}^{\prime}=X \quad$ (say).
(2) $a A_{2} \subseteq A_{1}^{\prime} \cap A_{3}^{t}=Y$ (ay).
X, Y are disjoimt subses of A_{1}^{\prime} and $X . Y$ are in $J_{(G)}$ because \perp is left invariant, so one of the two sets is \rfloor-smatl, since A_{1}^{\prime} is \rfloor-indecomposable. On the other hand neither $a A_{1}$ nor $a A_{2}$ is \rfloor-small, and so we appear to have the desired contradiction. There is. however, the techmical point that e.g. $a A_{1}$ and X are
defined in different groups. To conclude we therefore need the following:

Lemma 39. Let \perp be a set of formulas. let A be a structure and let A be an elementary extension of A. Suppose that $S \in\lrcorner(A), X$ is definable in A^{\prime}. and $S \subseteq X$. If $\lrcorner-\operatorname{rank}(X)$ is defined then:

$$
\Delta-\operatorname{rank}(S) \leqslant \perp-\operatorname{rank}(X) .
$$

Proof. Straightforward by induction on \perp-rank. The point is that any J-splitting of S in A can be canonically extended to A^{\prime} and will give a \rfloor-splitting of X if $S \in J(A)$.

Thus to complete the proof of Theorem + we need only to prove the definability Lemma 38 above.

4.5. A definability lemma

We recast Lemma 38 in a more general form:

Lemma 40. Let G be a group with a subgroup K of finite index. Suppose for some cardinal κ that K is the intersection of κ definable stobsets of G and that G is κ^{*}-saturated. Then K is definable in G .

Proof. Fix coset representatives $g_{1} \ldots \ldots g_{k}$ for K in G where k is the index of K in G. We may assume that $g_{1}=1$ and that $k>1$. For $l<i \leqslant k$ consider the following property of an unknown x :

$$
\left(P_{i}\right) \quad x \in K \cap K g_{i} .
$$

In terms of the definable sets $S_{\mathrm{a}}(\alpha<\kappa)$ whose intersection is K. we can construe $\left(P_{i}\right)$ as a type in at most is constants. Since this type is not realized in the \therefore-saturated group G. it is inconsistent. Thus if we make the harmess assumption that $\left\{S_{a}\right\}$ is closed under finite intersection we may conclude that there is a set S_{a}. which by abuse of notation we will call $S_{\text {, }}$ satisfying:

$$
S_{i} \cap S_{i} g_{i}=\emptyset \quad \text { for } \quad 1<i \leqslant k .
$$

Set $S=\cap_{i} S_{i}$, Then
(1) $K \subseteq S$:
(2) $S \cap \bigcup_{i-1} K_{g_{i}} \subseteq S \cap \bigcup_{1-1} S_{g_{1}}=\emptyset$.

Therefore $K=S$. so K is definable, as clamed.

Applying this with K. O chosen as in Section 4.4 shows that Lemma 38 follows if we can tind a definition of K which can be put into the form of a countable conjunction of first-order conditions. For this it suffices to define K as the set of
$g \in G$ such that
(def) $\quad \Delta-\operatorname{rank}\left(A_{i} g \cap A_{i}\right)=\lambda-\operatorname{rank}(G)$ for $i=1 \ldots \ldots m$.
(This works because $A_{1} \ldots, A_{m}$ are \mathcal{A}-indecomposable.)
To see that (def) has the right form we apply [12. Theorem 11 2.2: (1) \rightarrow (7)]. which implies that the 1 -rank of G is a finite integer r, and [12. Lemma 112.9131$]$. which implies that the condition:

$$
\lambda-\operatorname{rank}\left(A_{i} g \cap A_{t}\right)=r
$$

is equivalent to the consistency of the complete theory of G together with a certain countable first-order theory. Thus by the Compactness Theorem (def) can be put in the desired form.

This completes the proof of Lemma 38, and hence of Theorem 34.

5. More indecomposability theorems

5.1. Results

The main result of this section will be:

Theorem 41. Lei G be a superstable group. Then the following are equaden:
(1) G is connected.
(2) G is indecomposable, i.e. given wo disjoint definable subsets of G. a least one of them has smaller x-rank than G.

If G is o-stable another equicalent condition is:
(3) G has Morley degree 1.
(We will not discuss the ω-stable case since the equivalence of (1) and (3) was already proved in [4] by a very similar argument.)

Condition (2) of Theorem 41 is somewhat unexpected, because in general a superstable struciure does not even have finite multiplicity in the sense of x-rank (as an example take the additive group of the integers which has x-rank 1 .

Theorem 41 follows from:
Theorem 42. Let G be a stperstable group and let S be a definable subset of G. Then the following are equicalem:
(1) There is a finite set of formulas \perp_{1}, such tha for cues finite imearian set \perp of formulas containing $\perp_{1 \text {. }}$.

$$
\lrcorner \operatorname{rank}(S)<\perp-\operatorname{rank}(G) .
$$

(2) $x-\operatorname{rank}(S)<x-\operatorname{rank}(G)$.

If G is ω-stable another equivalent condition is:
(3) $\operatorname{rank}(S)<\operatorname{rank}(G)$.

Here rank means Morley rank. i.e. \rfloor-rank where \rfloor is the set of all formulas. We omit the proof that (1) is equivalent to (3), even though it was not given in (4). because it is a trivial variant of the proof that (1) is equivalent to (2).

Clearly Theorem 42 can be applied to reduce the Indecomposability Theorem 4 to the previous Indecomposability Theorem 34. (The indecomposability condition of Theorem 3.4 now elearly implies the indecomposability condition of Theorem +1 . and the latter easily implies connectedness.) It remains to prove Theorem 42 .

5.2. Large and small sets

We will make use of the following purely group-theoretic notions (which are probably useless in unstable groups):

Definition 43. Let S be a subset of the group G.
(1) S is large iff there are finitely many elements $g_{1} \ldots . . g_{k}$ such that

$$
G \subseteq \cup S
$$

(2) S is small iff for every finite subset F of S there are arbitratily many elements $g_{1}, g_{2} \ldots \ldots g_{k}$ such that:
(sml) $g_{1} F \cap \cap_{g,} S=0$ for $i<j$.

Lemma 44. If S is not small. then S is larse.
Proof. Suppose S is not small. Fix a finite rubset $F=\left\{s_{1} \ldots \ldots,\right\}$ of S and a maximal integer k such that there are clement: $a_{1} \ldots . \mathrm{g}_{\mathrm{k}}$ satisfying (smb). Fix such elements $\mathrm{g}_{1} \ldots \ldots \mathrm{~g}_{\mathrm{k}}$.

For any $g \in G$. F together with $g \ldots \ldots . . g_{k}, g$ ' does not satisfy (sm) whereas F together with $\mathrm{g}_{1} \ldots . . \mathrm{g}_{6}$ does satisfy (sml). Thus for any $\mathrm{g} \in \boldsymbol{G}$ there are s_{i}. $\mathrm{g}_{\text {, }}$ such that:

$$
\therefore s_{1} \in g^{1} S \text { so } g \in S s_{2}{ }^{1} g,{ }^{1} \text {. }
$$

In short:

$$
G \subseteq \bigcup_{1,1} S s,{ }^{\prime} p_{i}{ }^{\prime}
$$

and we have proved that S is large as clamed.
We are not claiming that a set cannot be both large and small. For stable groups this asscrtion is part of:

Theorem 45. Let G be a stable group and let S be a delinable subset of G. Then the following are equivalent:
(1) S is small.
(2) There is a finite set of formulas J_{0} steh that for ecery finite imeoriont set of formulas Δ containing $J_{0} . S$ is \perp-small.
(3) S is not large.

If G is super stable another equivalent condition is:
(4) $x-\operatorname{rank}(S)<x-\operatorname{rank}(G)$.

Clearly Theorem +5 contains Theorem 42 (with the obvious extension for ω-stable groups). Since we have proved (3) $\rightarrow(1)$ (Lemma $4+$) it will sutfice to prove $(1) \rightarrow(2) \rightarrow(3)$ and $(1) \rightarrow(4) \rightarrow(3)$. The implications $(2) \rightarrow(3), \quad(+1) \rightarrow(3)$ are entirely straightforward since the rank functions inwolved in (2), (4) are invariant (right invariance would be adequate) and satisfy
(sup) $\quad f\left(S_{1} \cup S_{2}\right)=\sup \left(f\left(S_{1}\right), f\left(S_{2}\right)\right)$.
Hence it suffices to prove $(1) \rightarrow(2)$ and $(1) \rightarrow(t)$. The proofs. which are almost identical, make use of the machinery of [12. Chapter 1Il|, which we wili now review.

5.3. Forking

Definition 46. Let S be a definable subset of a structure A. Let F be an infinite family of definable subsets of A.
(1) F is a family of equituifomly defmable subsets of A iff there is a single formula:

$$
\varphi(x, \bar{y})
$$

and an infinite indiscernible set I of sequences a from A sueh that the sets in I are exactly the sets defined by the formulas:

$$
\varphi(x: \bar{a}) \quad(\bar{a} \in I) .
$$

(2) S splits strongly whin A ifl there are sets $S_{i} . S_{2}$ belonging to an infinite family of equiuniformly detmable subsets of A such that:

$$
S \text { is contained in } S_{1} \text { and is disjont from } S_{2} .
$$

(3) S splits strongly iff A has an elementary extension A^{\prime} within which the canonical extencion S^{\prime} of S to A^{\prime} splits strongly.
(Note: the canonical extension S^{\prime} of S is defined in A^{\prime} by any formula which defines S in A. We will have oceasion to make substantial use of this notion.)
(4) S forks iff for some elementary extension A' of d. S is a linite union of sets which split strongly (cti. [12. Theorem 111 1.6]). This is called "Forking wer the empry set" in [12].

We will need the following facts:
Fact 47. If A is stable and S is a definable subser of A which forks then there is a
 Similarly, x-rank $(S)<x-\operatorname{rank}(G)$ if $x-\operatorname{rank}(G)$ exists [12. Lemma III 1.2].

Fact 48. If A is stable. A^{\prime} is an elementary extension of A, and S is a definable subset of A^{\prime} disjoint from A. then S forks [12. Corollary III 4.10].

Fact 49. If A is stable. S is a definable subset of A, and S^{\prime} is the comonical extension of S in an elementary extension of A_{1}. then S forks iff S^{\prime} forks (trivial).

We return now to the proof of Theorem 45 . Recall that it suffices to prove: (1) $\rightarrow(2) \&(t)$.

Lemma 50. If S is a small definable subset of the grow G. then there is an elementary extension G^{\prime} of G which contains an infinite sequence of elements

$$
s_{1}, g_{2} .
$$

such that

$$
g_{2} S^{\prime} \cap g_{1} S^{\prime} \subseteq g_{d}\left(G^{\prime}-G\right) \text { for } i<j
$$

Proof. Introduce constants g_{1}, g_{2}, \ldots and consider the theory T censisting of the complete theory of G (with names for all clements) together with sentences saying:

$$
" g s \in g_{i} S \text { " for } i<i \text { and } s \in S \text {. }
$$

By defintion S is small iff T is consistent. so we may take a model G^{\prime} of T. Then in G we have:

$$
g_{s} S \cap S_{g}=0 \text { for } i<i
$$

and hence:

$$
g_{1} S^{\prime} \cap{ }_{g_{1}} S^{\prime} \subseteq g_{1}\left(S^{\prime}-S\right) \subseteq g_{1}\left(G^{\prime}-G\right) \text { for } i<j \text {. }
$$

Proof of (1) \rightarrow (2) \& (4) (Theorem 45). We assume that S is a small definable subset of G and we adopt the notation of Lemma 50 . assuming $i n$ addition $8:$ ia Ramseys Theorem and the Compactness Theorem) that $g_{1}, g_{2} \ldots$ are indiscemible. We will prove
(i) $S \cap g_{1}^{\prime} g_{2} S^{\prime}$ forks:
(ii) $\mathrm{g}_{1} \mathrm{~S}^{\prime}-\mathrm{g}_{2} S^{\prime}$ forks.

This and Fact +7 will yield (2) and (+) because:

$$
S^{\prime}=\left(S^{\prime} \cap g_{1}{ }^{\prime} g_{2} S^{\prime}\right) \cup g_{1}^{\prime}\left(g_{1} S^{\prime}-g_{2} S^{\prime}\right)
$$

and the rank functions imwolved in (2), (4) are invariant.

Now we have:

$$
s^{\prime} \cap g_{1}^{\prime} g_{2} s^{\prime} \subseteq G^{\prime}-G
$$

by Lemma 50, so Fact $+\mathbb{N}$ proves (i). Finally, if $X=g_{1} S^{\prime}-g_{2} S^{\prime}$, then X is contained in $g_{1} S^{\prime}$ and is disjoint from $g_{2} S^{\prime}$ where g_{1}. k_{2} botong to an infinit. family of indiscernibles. so X splits strongly in G^{\prime} and hence forks within G^{\prime}. proving (ii). This completes the argument.

5.4. Question 37

We can now supply a partial answer to Question 37 of Section 4.3.

Proposition 51. Let A be a superstable structure. let X . Y be definable subvets of a stich that:

$$
x-\operatorname{rank}(Y), x-\operatorname{rank}(Y)<x-\operatorname{rank}(+1) .
$$

Suppose that A is equiped with wo binary opertations. and', stach that:

$$
\left\langle A-X^{+}+\right\rangle \text {and }\left\langle A-Y_{-}\right\rangle \text {are groups. }
$$

Then $\langle\mathrm{A}-\mathrm{X},+$) is comected iff $\langle\mathrm{A}-\mathrm{Y} \cdot\rangle$) is comected.
This follows at once from Theorem 41. which implies that the connectivity of $\langle x-X+\rangle$ or $\langle A-Y \cdot\rangle$ is equivalent to the indecomposability of A. Note that Proposition 51 is adequate for the proof of Theorem 7 in the superstable case. 1

6. Variations

We will embark on the project of extending the results in [4] to a larger chass of stable groups in Section 7. This involses a systematic use of "localization". i.e. getting along with a fixed finite set of first-order formulas in the course of a given argument, and an mosstematic use of detours around the spots where this is impossible.

In the present section we supply technical variants of the took of Sections 2. 4 used in this subsequent analysis.

6.1. A-」-comected groups

Definition 52. Let G be a group. \perp a finite set of formulas suth that \pm-rank G is defined. and A a subgroup of G.
(1) $A-J(G)$ is the subalgebra of $J(G)$ consisting of sets which are elosed under right multiplication by elements of A.
(2) G is A-1-connecied iff there is no definable subgroup H of finite index in
G such that:
(i) for some $S \in J(G) \quad H *{ }_{A} S$
(ii) $A \subseteq H$
(3) G is (right) $A-\perp$-indecomposable iff there is no decomposition $G=S_{1} \cup S_{2}$ of G such that:
(i) $S, \in A-\perp(G)$ for $i=1,2$
(ii) $\Delta-\operatorname{rank}\left(S_{i}\right)=\perp-\operatorname{rank}(G)$ for $i=1,2$.

Two special cases are important: if $A=(1)$ we speak of \rfloor-connected and \lrcorner-indecomposable groups, while if \lrcorner is the set of all formulas we speak of A-connected and of A-indecomposable groups. (When $A=(1)$ and \perp sentains all formulas then we are speaking of connected groups or of indecomposable groups. that is ω-stable groups of Morley degee 1.1

There will be an Indecomposability Theorem in the next subsection. It is convenient at this point to survey the methods for obtaining connected or indecomposable groups of various sorts, hecause the proof of our inst result provides information needed for the proof of the Indecomposability Theorem.

Theorem 53. Let G be a stable sroup and let \perp be a finite invariant set of formalas. Then G comains a unique maximal $\perp(G)$-indecomposable subgroup H of finite index. H is normal in G.

Proof. Let K be the kernel of the permutation representation of G induced by a decomposition:
(dec) $G=G_{1} \cup \cdots \cup G_{m}$
of G into \lrcorner-indecomposable pices. where m is the \rfloor-multiplicity of G. Since K is of finite index in G. we have:

$$
د(G)-\operatorname{rank}(K)=\lambda-\operatorname{rank}(G) .
$$

Now the argument in Section 4.4 yelds an chementary extension A^{1} of G and an element $g \in G_{1}^{1}$ such that:
(inc) $\mathrm{g} \boldsymbol{K} \subseteq \mathrm{O}_{1}$.
and then as in Section +4 it follows easily that K is $\mathcal{J}(G)$-indecomposable.
We will now show that any $\lrcorner(G)$-indecomposable subgroup of G is contained in K. which will complete the proof of the theorem. This proceds in several steps.

Step 1: The action of G on $G_{1} \ldots . G_{m}$ modulo ${ }_{3}$ is transitive:
Fix $1 \leqslant i \leqslant m$. For $1 \leqslant j \leqslant m$ let $G_{\|}$be the set of os such that:

$$
G_{i} g \neq{ }_{\perp} G_{r}
$$

Then in an elementary extension G^{\prime} of G there are clements $g \in G_{i}$ satisfying:

Then the sets G_{n} are \perp-indecomposable (see the end of Section 4.4) and since G has 1 -multiplicity m the decomposition:

$$
G=\bigcup_{1} G_{i i} .
$$

shows that $\lambda(G)-\operatorname{rank}\left(G_{i y}\right)=\lambda-\operatorname{rank}(G)$ for each j.
Hence no $G_{i j}$ is empty, and G acts transitively, as claimed.
Step 2: Define i by:
(i) $\quad \Delta(G)-\operatorname{rank}\left(K \cap G_{i}\right)=\perp-\operatorname{rank}(G)$.
(Since K is $d(G)$-indecomposable this makes sense.) Let $K_{\text {, }}$ be the isotropy group of G_{i}. Then: every $\boldsymbol{J}(G)$-indecomposable subgroup L of finite index in G is contained in κ_{i}.
First consider $H=L \cap K$. Then H is a $J(G)$-indecomposable subgroup of finite index in G. Hence there is a unique j such that:

$$
\begin{equation*}
\left.\Delta(G)-\operatorname{rank}\left(H \cap G_{i}\right)=\right\rfloor-\operatorname{rank}(G) \tag{j}
\end{equation*}
$$

Comparison of (i) and (j) shows $i=j$. Hence i can also be characterized by:
(i) $\quad J(G)-\operatorname{rank}\left(L \cap G_{i}\right)=\perp-\operatorname{rank}(G)$.

Then for $g \in L$ we define another j by:
(${ }^{1}$) $\quad G_{i} \equiv \equiv_{1} G_{1}$
and conclude:

$$
\left(L \cap G_{1}\right) g \equiv \perp \cap G_{r} .
$$

Thus

$$
\lrcorner(G)-\operatorname{rank}\left(L \cap G_{1}\right)=\perp-\operatorname{rank}(C) .
$$

so again $i=j$. Then (j^{\prime}) nas:

$$
g \in K
$$

as claimed.
Step 3: $K_{i}=K$. (Combined with Step 2, this completes the argument.)
Let $1 \leqslant j \leqslant m$ be arbitrary. Let $K_{\text {, }}$ be the isotropy group of $G_{\text {, }}$. It suffices to show that $K_{i}=K_{i}$.

Now K_{i} is $J(G)$-indecomposable by the argument given in Step I fsince $K_{i}=G_{i j}$ in that notation. Hence by Step 2
(*) $\quad K_{i} \leq k_{i}$.
On the other hand K_{i} and K_{i} are conjugate as a consequence of Step 1; it:

$$
G_{1} g \equiv{ }_{\lrcorner} G_{1}
$$

then:
(con) $g^{\prime} K_{i} g=K_{2}$.
Now from this we conclude easily that $K_{i}=K_{i}$ by a stability argument. Just let \lrcorner^{\prime} be any finite invariant set of formulas containing the definitions of K_{i} and K_{i}, and compute:

$$
\lrcorner^{1} \text {-multiplicity }\left(K_{i}\right)=\right\rfloor^{1} \text {-multiplicity }\left(K_{i}\right) \text {. }
$$

which together with ($*$) yields $K_{i}=K_{i}$.
This completes the proof of the theorem.

Lemma 54. Let Ge a group with a subgroup A. Suppose only finitely many definuble normal subgroups of G contain A. Then G contains a unique definable A-comected subgroup H of finite index. and H is nomal in G.

Proof. Let H be the intersection of all definable normal subgroups of finite index in G. Then H is a definable normal subgroup of finite index. Suppose H contains a definable subgroup K of finite index. Then by a standard argument K contains a smaller definable normal subgroup of G. also of finite index contradicting the choice of H.

The uniqueness assertion is straightforward.
Corollary 55. Let G be a group with a subgroup A. Suppose either:
(1) G-- A consists of finitely many G-compugacy classes. or
(2) G consists of finitely many double cosets modulo A. Then G contains a tmique definable A-comected subsroup H of finite index, and H is normal in (B.

6.2. An indecomposability theorem

Theorem 56. Let G be a stable group, A a subgroup. and \rfloor a finite invariant set of formulas. Then the following are equacalem:
(1) G is A - 1 -comected.
(2) G is $A-\perp$-indecomposable.

Corollary 57. Let G be a stable sroup. A a subgroup. Then the following are cquacalent:
(1) G is A-connected.
(2) G is A-1-comected for all finite imvariant 1.
(3) G is A-J-indecomposable for all finte incariant 1 .
(4) For any finite set of formulas \lrcorner_{0} there is a finte invoriant set $\perp_{\text {conaining }} \perp_{0}$ such that C is $\mathrm{A}-\mathrm{-}$-indecomposable.
it is clear that Theorm 56 proves Corollary 57.

Proof of Theorem 56. (2) \rightarrow (1). Let H be a definable subgroup of finite index in G such that H contains A, and suppose that for some $S \in \perp(G): H \equiv \perp S$. We claim that if G is $A-\perp$-indecomposable, then $H=G$.
Indeed, suppose $g \in G$ and $g H \neq H$. Then $g H={ }_{2} g S$. Set $X=S-g S$. The pair ($X, g S$) contradicts the $A-\perp$-indecomposability of G, the main point being that

$$
\perp-\operatorname{rank}(S-g S)=\perp-\operatorname{rank}(G)
$$

since $S-\mathrm{gS}=\boldsymbol{H} \boldsymbol{H}-\mathrm{gH}=\mathrm{H}$.
$(1) \rightarrow(2)$. We modify the argument in Sections $4.4-4.5$. Assume that (; is A- - -connected and fix a decomposition
(dec) $G=G_{1} \cup \cdots \cup G_{m}$
of G into \lrcorner-indecomposable sets in $J(G)$, where m is the \lrcorner-multiplicity of G.
Now suppose $S \in A-J(G)$. We claim that S or $G-S$ is \perp-small.
Fix $I \subseteq\{1 \ldots \ldots m\}$ such that:
($S-\mathrm{dec}) ~ S \equiv \bigcup_{i} G_{r}$.
Let $S G$ cenote the set of right translates $S g$ of S in G. and comsider the quotient set:

$$
X=S G / \equiv J
$$

of $S G$ modulo the equivalence relation \equiv. If the index set I in (S-dec) has k elements, then X has at most $\binom{m}{k}$ elements. as one sees by letting G act on (S-dec) by right multiplication and recalling that G acts (modulo $=1$, as a group of permutations of $G_{1} \ldots \ldots G_{m}$.

Thus G acts as a permutation group of the finite set X. Let K be the isotropy group of S in X, detined explicitly as the set of $g \in G$ for which:
$\left(S\right.$-fix) $\quad S_{S} \equiv \equiv_{\perp} S$.
Since the index of K in G is the order of the orbit of S in λ. this index is finite. We can use the argument of Section +.5 to show that K is definable in Gif fas we may assume) G is \mathbb{N}_{1}-saturated. For this purpose it suffices to rephrase the condition (S-fix) above for membership in K as follows:

$$
\perp-\operatorname{rank}\left(G_{i} \cap \cap S\right)=\perp-\operatorname{rank}(G) \text { for } i \in i \text {. }
$$

Notice also that $A \subseteq K$ since $S a=S$ for $a \in A$.
Now we will show that K differs from an element of $\lambda(G)$ by a \perp-small set. Let L be the kernel of the permutation representation of G acting on $G_{1} \ldots . G_{\text {. }}$, modulo $=\mathrm{s}$. Then L is a subgroup of finite index in K. so it suffices to prove that L differs from an element of $J(G)$ by a J-small set. In the proof of Theorem 53 we saw the following:
(1) There is a unique index i for which

$$
\perp-\operatorname{rank}\left(L \cap G_{1}\right)=\perp-\operatorname{rank}(G) .
$$

(2) L equals the isotropy group of G_{i}. From (1). (2) we may conclude;
(3) With i as in (1) and $g \in G-L$:

$$
\text { L. } \cap G_{i} \text { is } 1 \text {-small. }
$$

It follows that $L=, G_{1}$, since L is of finite index in G.
Now the rest is casy. K is a definable subgroup of finite index in G. containing A, and differing from an element of $J(G)$ by a J-small set. Since G is A-」-comnected we conclude:

$$
\mathrm{K}=\mathrm{G} .
$$

Then as in the last part of Section 4.4 one finds an elementary extension G^{\prime} of G in which there is an elements so that:
(inc) $\mathrm{sG} \subseteq \mathrm{S}^{1}$.
In particular this yields:
(1) $\operatorname{sS\subseteq } \boldsymbol{S}^{\prime} \cap, S^{\prime}=$ (say)
(2) $x(G \quad S) \subseteq S^{\prime} \cap x\left(G^{\prime}-S^{\prime}\right)=Y^{\prime}$ (say).
and one concludes as in Section +4 that cither S or $G-S$ is \perp-small. as clamed.
This completes the proof of Theorem 56 .

6.3. A few lemmas

We mention two useful properties of A-comnected groups.
Lemma 58. If K is a normal subgroup of the d-cometed group G. then G/K is AKK-connected.

Lemma 59. If N is a finite nomal stagroup of the A -comected groap G and N is contamed in the centratizer of A. then N is comaned in the center if G .

One looks at the kernel of the permatation repesentation given by the action of G on N via conjugation: of. $15, \$ 3]$ for $A=(11$.

III. SUPERSTABLE GROUPS

7. Generalities

We now enter upon the extension of the results of $[+1$ to broader classes of stable groups. Our basic idea is to replace o-stability by superstability and Morley
rank by x-rank in [4]; the main complication arising therefrom is the necessity for working with disconnected groups.
The main results of this part are as follows:
Theorem 62. (see Section 7.1). A stable group of x-rank 1 is abelian-byfinite.

Theorem 63. (see Section 8). A stable group of x-rank 2 is solvable-byfinite.

Theorem 64. (see Section 10). A stable group of x-rank 3 which contains a definable subgroup of x-rank 2 is cither soltable-by-finite or else contains a subgroup of finite index isomorphic to one of the greups:

$$
\operatorname{SL}(2, F) \text { or } \operatorname{PSL}(2, F)
$$

with F an algehraically closed field.

7.1. Abelian subgroups

The main result of this subsection will be:

Theorem 68. Let G be an infinite $\mathbf{N}_{\mathbf{i}}$-saturated group. If G is superstable, then G contains an infinite abelian subgroup.

The next three lemmas can be replaced by trivial argurients under the hypotheses of Theorem 68. but they cast some light on the general case.

Lemma 69. Let G be a stable group comaining a normal subgroup N such that at least one G-conjugacy class S contained in N is infinite. Then N contains an infinite G-definable subgroup K which is nomal in G.

Proof. Let Δ be a finite invariant set of formulas containing the definition of S . For any integer k let

$$
S^{k}=\left\{s_{1} \cdot \ldots \cdot s_{k}: s_{i} \in S\right\}
$$

Let k be chosen so that:

$$
\Delta-\operatorname{rank}\left(S^{\star}\right)=r
$$

is as large as possible. For $g, h \in G$ define an equivalence:
$g \sim h$ iff $S^{k} g$ and $S^{k} h$ differ by a set of J-rank less than r (with a slight
atteration of carlier notation we will write: $S^{h} g \neq S^{k} h$).
Since $S^{k} g \subseteq S^{2 h}$ for $g \in S^{k}$. it follows that S^{k} decomposes into finitely many equivalence classes ($S^{* k}$ has Δ-rank r and finite multiplicity). Let X be one of
these equivalence classes. It follows casily that X is definable, as in Section +.5 (this depents on the fact that $X \subseteq S^{k}$, and that S^{k} meets only finitely many equivalence classes in G.) We may take X to have \lrcorner-rank r. Fix $x \in X$.

Now let K be the equivalence class of 1 in G. i.e. the isotropy group o: S^{h} modulo sets of lower rank. Notice that $X x^{-1} \subseteq K$. We will now show that K is definable. The elementary extension argument at the end of Section 4.4 yields an elementary extension G^{\prime} of G and an element $g \in S^{k}$ for which:
(inc) $\mathrm{gK} \subseteq\left(S^{h}\right)^{1}$.
From this one derives casily that any definable subset of K has \perp-rank at most r and \perp-multiplicity at most the \perp-multiplicity of S^{h}. Hence there is a maximal tinite set

$$
g_{1} \ldots \ldots g_{k}
$$

of elements of k such that:

$$
X x{ }^{\prime} s_{1} \ldots . . X x x^{1} h_{k} \text { are mutually disjoint. }
$$

Then for any $\mathrm{g} \in \mathrm{X}$ there is an i such that

$$
X x^{\prime} g \cap x x^{\prime} g \neq \varphi .
$$

Thus:

$$
K=\bigcup x X^{\prime} X x^{\prime}{ }_{s} .
$$

and it follows that K is definable as claimed.
Clearly $K \subseteq N$ and since S^{2} is closed under conjugation K is nomal in G. This completes the argument.

Lemma 70. Let G be an infinite stable grotip with funite cereer in which the centralizer of an arbitrary elemem is finite of bounded orde. Then G contains an infinte definable stable subgroup H such that all proper nomal subgroups of H are contained in the center of G. In partiontar H is comected.

Proof. Let \perp be a finite invariant set of fomul s. We prove first:
The collection of normal infinite subger ups of G which are in $J(G)$ contains a unique minima' element.

Using $\rfloor-2$-rank [12. Chapter ii] ir is easy wo see tha: any normal intinite subgroup of G which is in $J(G)$ contains a minimal such subgr ${ }^{\circ}$ o. Suppose now that H_{1}, H_{2} are distinct minimal normal infinite $J(G)$-subgroups, so that the intersection:

$$
H=H_{1} \cap H_{2}
$$

must be finite. Then any element $h \in H_{1}$ centralizes an intinite subgroup of $H_{\text {s }}$, since commutation maps $H_{1} \times H_{2}$ into H. This contradicts our assumptions, and establishes claim (A).

Call the group defined by (1) G_{\perp}, and set:

$$
H=\bigcap_{\substack{\text { Anemar } \\ \text { insutiont }}} G_{د}
$$

(this is the intersection of a directed system). Taking G to be sufficiently saturated (and noting that the hypotheses are preserved by elenemtary extension). we may suppose that H is infinite. It is a normal subgroup of G. and every noncentral conjugacy class in H is infinite, since centralizers of noncentral elements are finite. Thus Lemma 69 shows that H comains an infinite definable normal subgroup K of G. By construction:

$$
K=H .
$$

Thus H is definable in G, and is the smallest infinite definable normal subgroup of G. Now apply the same construction to obtain the smallest G-detinable intinite sabgroup N of H which is normal in H. It is clear that N is also normal in (i, no $N=H$. Thus H has no proper definable intinite normal subgroup. and Lemma 69 shows easily that H has no infinite normal subgroup.

Finally. suppose F is a finite normal subgroup of H. Since H is clearly connected, F is contained in the eenter Z of H. But Z is a finite normal subgroup of G. and since noncentral elements have infinite conjugacy classes, Z is contained in the eenter of G. Thus F is central in G, and the proot of Lemma 70 is complete.

Lemma 71. Let G be an infinite \boldsymbol{K}_{1}-saturated stable group containing no infinite abelian definable subgrote. Then there is an infinite stable S_{0}-saturated simple group such that the centralizer of each elemem is finite of benoded oden. Such a group is a torsion group of odd finite exponent.

Proof. Applying the stable chain condition to infinite centralizers in G. we may assume that the hypotheses of Lemma 70 are satisfied. and take H as in the conclusion of Lemma 70. Then
(1) H is infinite, stable and $\mathrm{N}_{\text {- saturated: }}$
(2) H has no infinite abelian subgroup:
(3) H has no noncentral proper normal subgroup:
(4) All centralizers of noncentral elements of H are finite of bounded order.

Let Z be the center of H. Then H / Z is an infinte stabk N_{8}-saturated simple group. Let a / Z be a nontrivial element of H / Z and let C / Z be the centralizer of a/Z in H / Z. Since Z is finite, a commutes with a subgroup of tinite index in C.
and it follows that C is finite, so that C / Z is finite. Thus H / Z has all the desired properties.

As to the final remark, such a group has odd exponent by [8. Theorem 2.1].
Romark 72. The existence of such a group is highly unlikely, but this question may inoolve combinatorial group theory essentially.

Proof of Theorem 68. By Lemma 71, if there is a counterexample G. then we may suppose G is infinite, superstable, and comected, and that the centralizer of every nontrivial element of G is finite of odd order. For $g \in G-1$ the conjugacy class $g^{c i}$ of g in G may be identified with the coset space:

$$
C(g) \backslash G .
$$

and sine the centralizer of each element is finite. it follows from Lemma 65 that the x-rank of $g^{G i}$ coincides with that of G.

Now if G is superstable, the Indecomposability Theorem +1 implies that $G-1$ consists of a single comugaty class, and the desired contradiction follows by an elementary group theoretic result given in [1+]:

Fact 73. Let G be a torsion group comaining a single nontrivial conjugacy class. Then (is finite of order at most 2 .

Corollary 74. Let G be a stable group of x-rank 1. Then G is abelian-by-finite.
Proof. By Theorem 68, G contains an infinite abelian definable subgroup A. If the index of A in G were not finite. it would follow easily that the x-rank of G would be at least 2 (as usual. consider cosets of A in G.

7.2. Stable nilpotent srotps

Definition 75. The group G is centralizer-comected iff no concentral element has a centralizer of finite index in G (equivalently every conjugacy oliss with more than one clement is infinites.

Lemma 76. Any stable group has a centralizer-comected subgroup of finite index.
Proof. Apply the stable chain condition to centralizers.
Lemma 77. Let Ge a centralizer-comected infinite milpotent group. Then the center Z of G is infinite.

Proof. If Z is finite. fet a / Z be a nentrivial element of the center of G / Z. The conjugates of a all lie in the set $a Z$, which is fintes, so a is central by Definition 75 . which contradicts the choice of a.

Corollary 78. Any infinite stable nilpotem group has a subgroup of finite index whose center is infinite.

7.3. Stable solvable groups

Remark 79. Let G he a stable group. Let A be a maximal abelian subgroup or a maximal normal abelian subgooup. Then A is definable.
(ln either case A is the center of its own centralizer, and the stable chaia condition implies that this is a definable set.)

Lemma 80. Let G be an infunte stable solvable centralizer-connected group. Then G contains an infinite normal abelian definable subgroup.

Proof. Note that any finite normal subgroup F of G is central in G (since its centralizer in G has finite index).

Let Z be the center of G. which we may assume to be finite. I.et B be the inverse image in G of a nontrivial normal abelian definable subgroup B / Z of $(Z / Z$. Then B is not central in G, so B is infinite. Furthermose B is nilpotent of class two. If B^{6} is the intersection of all centratizers of tinite index in B. then $B^{\prime \prime}$ is normal in G. and by Lemma 77 its center is an intinite normal abelian subgroup of G.

Corollary 81. If G is an infinite stable soltable sroup, then G contains an infinte abelian definable subgroup whose normalizer has finite index in G.

8. Theorem 63

Recall Theorem 63: A stperstable group of x-rank 2 is soleable-by-finite. The proof of this theorem sill be divided into three subsections.

8.1. Preliminary malysis

We begin the analysis of a superstable group of x-rank 2. If G is not solvable-by-finite a contradiction will emerge. For the present we assume only:
(hyp 1) G is not abelian-by-finite.
Let A be an infinite abelian definable subgroup of G (Theorem $6 \$$. By (hyp I) the index of A in G is infinite. It follows that A has x-rank 1 .

Definition 82. Let G be a group with a subgroup A.
(1) The element $g \in G$ quasinemmalies A iff A and A^{x} are commensurable (i.e. $A \cap A^{\circ}$ is of timite index in both A and A°). For G superstable an equivalent
condition is
$x-\operatorname{rank}(A \cap A>)=x-\operatorname{mank}(A)$.
(2) The guasinormalizer of A is the group of all elements of G which quasinormalize A. ll will be denoted $O(A)$.

Lemma 83. Let G be a stable group ant let A be a definable subgroup of G. Then t tere is a definable subgroup A_{6} of finite index in A such that:

$$
N\left(A_{1}\right)=Q(A)
$$

Note that if A has at connected subgroup A_{0} of finite index, then this is obvious.)

Proof. Apply the stable chain condition to the family of groups of the form A^{*} where g Q(A). Iet A_{0} be the intersection of all such groups. Since this can be rediced to a finite intersection. the index of A_{1} in A is finite and in particular:

$$
Q\left(A_{0}\right)=Q(A)
$$

By construction:

$$
O(\therefore) \subseteq N\left(A_{1}\right) .
$$

hence:

$$
Q\left(A_{0}\right) \subseteq N\left(A_{13}\right)
$$

and the reserse inclusion is trivial. This completes the argument.

By a change in our notation we may assume the group A has been chosen in accordance with the above lemma:
$(h y p 2) \quad Q(A)=N(A)$.
We now set $N=N(A)$.
The analysis now disides into an easy and a ditticult case, acoording as the x-rank of N is 1 or 2 .

Lemma 84. If N has x-rank 2. then G is solcable-by-finite.

Proof. It suffices to show that N is solvable-by-finite. Clearly N / d has x-rank 1 and hence is abelian-by-finite by Corollary 74. The result follows.

Accordingly we may now assume:
(hyp 3) $[x-\operatorname{rank}(N)=1$.]

Lemma 85. G confains an A-comected subgroup G_{a} of finite index.

Proof. For $g \in G-N$ the intersection $A P^{\prime} A^{\prime \prime}$ is finite. It follows that for such g : AgA has x-rank 2. (To see this, consider the unformly defimable intinite sets

Age

where c varies over cosets of $A \cap A^{s}$ in $\left.A.\right)$
Since the double cosets $A g A$ are uniformly defnable, it follows that $G-N$ is a finite union of double cosets of A. On the other hand the index of A in N is finite. so N is also a finite union of double cosets ($=$ simple cosets) of A.

Thus G breaks up into finitely many double cosets of A, and Corollary 55 applies.

Now by a change of notation we may assame:
(hyp 4) [G is A-comected.]

Notation 86. Z is the center of G.
From now on we assume:
(hyp 5) [G is not nipotent-by-finite.]

Lemma 87. Z is finite.

This is proved like Lemma 84.
Now consider the group $H=G / Z$ and the subgroup $B=A Z / Z$. We cham that if the pair ($G . A$) is replaced by the pair (H, B) (so that N is replaced by $V(B)$ then the hypotheses (hyp $1-5$) remain valid. This is clear for thyp 5) (and smitarl if 6 is not solvable-by-finite. then the same apples to H). For (hyp 4) se lemma 58. For (hyp 2-3) it is sutficient to prove:
$(1) Q(A Z / Z)=O(A) / Z:$
(2) $N(A Z / Z)=N(A) / Z$.

Now we dearly have:

$$
[O(A) / Z=N(A) / Z \subseteq N(A Z / Z) \subseteq O(\sim Z / Z)]
$$

Thus if sulfices to prove:

$$
[Q(A Z / Z) \subseteq O(A) / Z]
$$

and since Z is finite this is straightforward.

Lemma 88. For $\mathfrak{g} \in \boldsymbol{H}-N(B), B \cap B^{2}=(1)$.

Proof. Let $a \in A$ represent be $B \cap B$. Then:

$$
a \in A^{2} Z
$$

It follows that A and A^{*} are comtaned in the centralizer C(a) of a in G. Since $A \cap A^{*}$ is finite the set:

$$
A \cdot A^{x}
$$

has x-rank 2, and hence $C(a)$ has x-rank 2, and is therefore of finite index in G. Since G is A-connected we get

$$
G=C(a) .
$$

so $a \in Z$. and $b=1 \mathrm{in} \mathrm{H}$. as claimed.
Notation 89. We change our notation. writing G for H. A for $B . N$ for $N(B)$, and Z for $Z(H)$. Then we have in addition to (hyp 1-5):
(hypor) For $g \in G-N$ $A \cap A^{*}=(1)$.

S.2. The Bruhar Decompostion

Now we can get detailed structural information concerning G. (Cf. [t. Lemma 4. \$4.11.

Theorem 90. If we G - A. then $G=A \cup$ AwA. The element way be chosen to be an incoluion (i.e. of order 2). Furthermore $A=N(A)$.

Proof. We proceed in four steps.
Sep 1: Fix s in $(-N$. Then $G=N \cup A g A$: As neted in the proof of Lemma 85 . for g in $G-N$ the double coset $A g A$ has x rank 2. Now since G is Acomnected. condition + of the relativaed Indecomposability Theorem Theorem sol shows that there can be only one such double esset, as claimed.

Step 2: $G-N$ contains an molution. Fix $g \in G-N$. By Step 1 we can write:

$$
s^{:}=a_{1}, a_{0}
$$

with a_{1}, a_{1}, d. Let $w=g a_{1}$. Then $w^{*}=a_{1} a_{2}^{\prime} \in A$. Setting $a=w^{2}$ we get:

$$
a=a^{\prime \prime} \in A \cap A^{\prime \prime}=1 .
$$

and thus w is an involution. Now fix such an involution.
Step 3: Let $K=N \cap A^{w}$. Then $N=A \dot{x} K$ (semidirect product): Evidently $K \subseteq N$ normalizes A andin $A=(1)$. It suffices theretore to show that $N=A K$.
For any of in N since m m $\notin N$ we may write:

$$
n \omega=a_{1} w a_{2}
$$

with $a_{1}, a_{2} \in A$. Then $a_{1}^{\prime} n=a^{\prime \prime} \in A^{\prime \prime} \cap N=K$. Thus $n \in a, K$ and $N=A K$.
Sep $+K^{*}=(1)$ (and hence $N=A$): Consider $a \in K^{w}$. Then $a \in A$ and $a^{\prime \prime} \in N$, We dam that a"e N for all $g \in\left(G\right.$. This is clear il $p \in N$ while if $g=a, a_{1}$ waz with
$a_{1}, a_{2} \in A$, then:

$$
a^{x}=\left(a^{\prime \prime}\right)^{\text {a }}
$$

is also in N. Thus a ${ }^{\text {" }}$ is contained in N as clamed.
Now set $B=\left\langle a^{\prime \prime}: g \in G\right\rangle$. Then $B \triangleleft G$ and B is contained in N. If $a \neq 1$ we will now obtain a contradiction.
By (hyp 6) since $a \in A$ therefore a is noncentral, and hence $C(a)$ has infinite index. This implies that B is infinite. Since $[N: A \cap B]$ is finite, therefore $[B: A \cap$ $B]<\infty$. Conjugating by w.

$$
\left[B: A^{\prime \prime} \cap B\right]<x \text {, so }\left[B: A \cap A^{\prime \prime} \cap B\right]<x \text {. }
$$

contradicting (hyp 6).
Thus $a=1 . K=(1)$, and $N=A$. completing the proof.
The double cosei decomposition deseribed in Theorem 90 is caled the Brwhat decomposition of G. The motivation for thes is deseribed in $\mid+$. Scetion 4.4].

Lemma 91. If $g \in G$ and the index of the centralizer $C(g)$ of g in G is finite. then $\mathrm{g}=1$. (In particular $Z=(1)$).

Proof. Let F be the subgroup of G consisting of elements whose centralizer in G has finite index. Let H be the centralizer of F. Then H is of finite index in G (Lemma 76). hence is not nilpotent-by finite. It follows as in the proof of Lemma 87 that $F \cap H$ is finite, and hence F is a finite normal subgroup of G.

We will now show that any finite normal subgroup N_{n} of C is trivial. Since $A^{*} \subseteq A \cdot N_{0}$, for $g \in N_{0}$, it follows that:

$$
N, \subseteq O(A)=A
$$

by (hyp 2) and Theorem 66. Then since A is abelian N_{11} centralizes A, so $N_{n} \subseteq Z$. by Lemma 59. Howerer.

$$
Z \cap A=111
$$

by (hyp 6). This proves that N_{4}, \cdots and a particular F-is triviat.

8.3. Conjugaty classes

In addition to the double coset decomposition of bection 2.2 we will have to acquire information concerning conjugacy classes in G.

Lemma 92. With the hypotheses and notations of Section 8.2. (a contains a definable subgrotp K of finite index swh that no conjugacy class of K hes x-rank 2 .

Proof. Sct:

$$
x=\bigcup_{z \cdot i} A
$$

Then clearly the x-rank of X is 2 (using (hyp 6)). Furthermore, for $a \in A$ the centralizer $C(a)$ of a in G contains A. hence has x-rank at least one, and it follows that the conjugacy class of a has x-rank at most one.

The problem then is to study the conjugacy classes of elements outside x. Since conjugacy classes are uniformly definable, there can be at most finitely many of x-rank 2 in G, say $C_{1} \ldots \ldots, C_{h}$.

Suppose we are able to find definable subgroups K_{i} of finite index in G such that:

$$
k \cap C=\emptyset \quad(i=1 \ldots \ldots k) .
$$

Then we may sot $k=\cap K$, and we will be done.
It therefore suffices to consider a single conjugacy class C of x-rank 2 . and to find a definable subgroun of finite indes in G which is disjoint from C.

Now given any definable set $S \subseteq G$. we will have the equivalent:

$$
\Delta-\operatorname{rank}(S)=x-\operatorname{rank}(S)
$$

for all sufficiently large finite sets \triangle of formulas. (Cf. [12, Chapter II Example $1.10(\lambda=x)$ and Theorem $\left.3.13\left(\lambda=\kappa_{0}\right)\right]$.) Fix a finite invariant set Δ of formulas satisfying:
(1) $\triangle \operatorname{rank}(C)=2$:
(2) The formulas " $x=y^{"}, x \in y^{i+\cdots}, " x \in A " \cdots, " x \in X^{"}$ belong to Δ (any additional parameters occurring in the last two formulas should be replaced by free variables).

By Theorem 53 we may fix a \triangle-indecomposable normal definatle subgroup K of finite index i. G. We clam:

$$
k \cap C=\theta .
$$

I: on the contrary the intersection is nonempty, then:

$$
C=K
$$

siace K is normal in G. Since K is \triangle-indecomposable and the sets X and C are in $\triangle G$, therefore:

$$
\triangle-\operatorname{rank}(K \cap X)<2 .
$$

This. however, yiclds an immediate contradiction. since the family:

$$
\left\{K-(1) \cap A^{*}: g \in G\right\}
$$

gives a Δ-splitting of K-(1) into infinite picees (as $K \cap A^{\prime \prime}$ is of finite index in $A^{\prime \prime}$). This contradistion completes the argument.

We will have further use for this particular subgrous K in the next lemma. In particular note that by Lemma 91.

$$
A=C(a)
$$

for any nontrivial $a \in A$, so we may assume that the formulas defining A and X in Δ are formalizations of:

$$
\begin{aligned}
& " x \in C(y)^{"} \\
& \quad " x \in \bigcup_{\zeta ;} C\left(y^{2}\right)^{\prime} .
\end{aligned}
$$

Assume now:
(hyp 7) [G is not solvable-by-finite.]

Lemma 93. The group K constructed in the proof or Lemma 92 is contained in X .
Proof. Suppose $b \in K-X$ and let $Y=\bigcup_{\text {wi }} C(\nmid *)$ We clam
(1) $X \cap Y=(1)$:
(2) $\Delta-\operatorname{rank}(K \cap X)=\Delta \operatorname{rank}(K \cap Y)=2$ for large Δ. This will contadict the \triangle-indecomposability of K.
As far as (1) is concerned, if the intersection of X and Y is nontrivial, then we can assume there is a nontrivial element a in:

$$
A \cap C(b) .
$$

Then we get $a=a^{\prime \prime} \in \because \cap A^{\prime}$. so by (hyp 6):

$$
b \in N(A)=A \quad \text { Lemma } R S \text {. }
$$

contradicting $b \in K-X$.
As for (2) we showed above:

$$
\perp \operatorname{rank}(K \cap X)=2
$$

We consider $K \cap Y$.
Now $C(b)$ is infinte since $x-\operatorname{rank}\left(b^{i}\right)$, Hence $C\left(b^{b} \cap \cap K\right.$ is imbite for all $\mathfrak{n} \in$ G. If $\lrcorner \operatorname{rank}(C)=2$, then (2) is trivial. so assume:

$$
\perp \operatorname{rank} C(b)=1 .
$$

Then with the help of Lemma 83 and the hypothesis (hyp 7) it is easy to see that the index of the quasinomalizer

$$
Q(C(b))
$$

in G is infinite. Letting g run over coset representatives in G modulo $O(C(b)$. we claim:

$$
\left.\left\{K \cap C\left(b^{\circ}\right)\right)-(1)\right\}
$$

is a $د$-splitting of $K \cap Y$ into infinite pieces. This will complete the proof of (2).
All that needs to be proved then is that the intersections

$$
C(b) \cap\left(b^{\prime \prime}\right)
$$

are trivial if e $e(-Q(C(b)$. This is an easy variation of the proof of 1 cmma 88 .
Thus the proof of Lemma 70 is complete.

Corollary 94. A contains an involation.
Proof. It is chear that the group G we considered originally (before the changes in notation) comained an involution. Hence the same argument proves that K contains an imolution, and then Lemma 93 implies that A contains an involution.

Proof of Theorem 63. We derive a contradiction from the above analysis of a counterexample.

Let i. $i \in \mathcal{K}$ be imolutions in distinct conjugates of A. Let $a=i j$. By Lemma 93 we may assume $a \in A$. Note $a \neq 1$.

By a trivial computation:

$$
a^{\prime}=a \in \cap \cap A^{\prime} .
$$

Hence by (hyp of and Lemma $s \in i \in N(A)=A$. Similarly $i \in A$ contradicting the choice of i and i.

9. Solvable groups of x-rank

We need a more precise analysis of groups of x-rank 2 for use in the analysis of groups of x-rank 3. We will study the solvable nonnilpoten groups of $x_{\text {-rank } 2}$. The main example of such a group is the semidirect product:

$$
F . \times F
$$

of the additive and matiplicative groups of an algebraically closed field I, where F acts on F. by mutiplication. The general case will turn out to be not too far from this example.

Our main result will be:

Theorem 95. Let G te a superstable group of x-rank 2 which is not nilpotem-byfinike. Then G contains a subgroup H of finite index such that:
(1) the cemter Z of H is finite:
(2) the quotien HZZ is isomorphic to a semidirect product:

$$
F \times F^{\prime}
$$

of the additive and multiplicative groups of an algebraically closed field F, F^{\prime} acting on $F_{\text {. }}$ by multiplication.

Lemma 96. With the hypotheses of Theorm 95. G contains a connected abclian subgroup of x-rank 1 whose normalizer is of finite imdex in G

Proof. We may assume that G is solvable and centralizer connected (Definition 75). Let A be an infinite normal abelian definable subgroup of G (Lemma 80). Then the index of A in G is infinite, so x - $\operatorname{rank}(A)=1$. The center Z of G is finite since G is not nilpotent-by-finite.

Fix $a \in A-Z$. The conjugacy class of a in G is infinite, since otherwise the centralizer of a would disconnect G. Since A has x-rank 1 , there can be only finitely many such conjugacy classes. If follows that A contains only tinitely many normal subgroups of G.

Now any definable subgroup B of G which is a subgroup of A of finite index in A must contain a normal definable subgoou of G which is again of finite index in A (apply the stable chain condition to the conjugates of B). It follows that if A " is the smallest definable subgroup of A which is normal in G and of finite index in A. then $A^{\prime \prime}$ is connected. This proves the lemma.

Lemma 97. Let G be a superstable group of x-rank 2 which is not milpotent-byfimite. Then G contains a connected subgroup of finite index.

Proof. We may take G to be solvable, centralizer-connected. Then the conjugacy class of any noncentral cler nt is infinite. Since G is not nipotent-by-finite, the center Z_{0} of G is finite.

By Lemma 80, we can fix an infinite normal abelian subgroup iof G, and by the proof of Lemma 96 A will contain a comected subgroup U of finite index. U is again a nomal abelian subgroup of G. Let $Z=U \cap Z$, and fix $u \in U-Z$. Let C be the centralizer of u in G.

Now C contains U and $x-r a n k(U)=1$, so U has finite index in C. Let this index be called k. Our main claim is:
(ind) for any definable subgrop H of finite index in G. the index of H in C is bounded by k.

This will yicld the conclusion of the emma at once, so it suffices to verify (ind).
Fix H a definable subgroup of finite index in G, and consider the conjugacy class $u^{t \prime}$ of u in H . Applying Corolary 57 and noting that u^{H} is an infinite subset of $U-Z$. we conclude easily that $U-Z$ reduces to the single compugacy class $u^{"}$. In particular $u^{\text {th }}$ is invariant under conjugation by G. so for 8 g G we can solve the equation:

$$
u^{h}=u^{z}
$$

with $h \in H$. so $h^{\prime} \in C . g \in C H$. and thus $G \subseteq C H$.

On the other hand $U \subseteq C \cap H$ (since U is abelian and connected), so the index of H in O is at most k.

Lemma 98. Let G be a comected nomilpotent centerless group with x-rank $(U)=$ 1. Then for some algebraically closed jield F, G is isomorphic to the semidireci product:

$$
F . \times F^{\prime}
$$

of the additite and multiplicative groms of F, where F° acts on F. by multiplication.

Proof. By Lemma 96 we may fis a connected abetian normal subgroup U of G having x-rank 1. (This will turn out to be a copy of F..) Fix $u \in U-(1)$. As in the proof of lemma 97 it follows that $U-(1)=u^{i}$.

Now fix $b \in G-C(U)$ and set $I=C(b)$. Form the set of commutators:

$$
X=\{[b, u]: u \in U\}
$$

Clarly $T \cap U$ is finite and hence X is infinite. Furthermore since G / U is ahelian. $X \subseteq U, B u t U$ is comected of x-rank 1 , and it follows that $U-X$ is finite.

We clam now that $U T=G$. It suffices to prove that $U T$ has finite index in G. Fix $g \in G-U T$ and consider [b. g]. If $[b, g] \in X$ i: follows easily that $g \in U T$. Hence $[b, g] \in U-X$. However, $U-X$ is finite. and if $\left[b, g_{1}\right]=\left[b, g_{2}\right]$ then $g_{1} \in \operatorname{Tg}_{2}$. so it follows that G-UTT contains only finitely many right T-cosets. Hence a fortion $U T$ is of finite index in G. and we conclude that $G=U T$, as claimed.

Since $G=U T$ and $U \cap T$ is finite, it follows that Γ is infinite and x-rank $(T)=$ 1. Let T_{0} be an infimite abelian definable subgroup of T. Then $G=U T_{0}$ isince G is connected and $U \cap T_{1}=(1)$. since G is centerless. Make a small change of notation. writing T for T_{3}. So far we have ehtained a semidirect product decomposition

$$
G=U \dot{\times} T .
$$

For $t \in T$ define:

$$
i=t a t^{\prime} .
$$

We clam the map:

$$
\because T \rightarrow U-(1)
$$

is a $1-1$ onto map. It is onto since $U-1 \mid=u^{i+}=u^{2,1}=u^{\prime}$. and $1-1$ since from $\hat{s}=f$ we conclude casily that the centratiger of $s t^{\prime}$ contains
$T \cup\{u\}$.
and this is a set of generators for G. so st ${ }^{i} \in Z(G)=(1)$.
Now we can comert T into the multipleatice group of a fedd. Adjoin to 7 a
formal symbol 0, and extend the multiplication on T to $T \cup\{0\}$ by the rule:

$$
x \cdot 0=0 \cdot x=0
$$

L. fine also $\hat{0}=1$ (the identity element of U). Let $F=T \cup\{0\}$, and define addition on F by:

$$
(x+y)^{\wedge}=\hat{x}+\hat{y}
$$

(on the right + denotes the group operation restricted to U).
It is easy to verify that F is a field. cf. [4. Theorem 1 of Section +.2]. Furthermore F is superstable, hence algebraically closed. Thus the proof of the lemma is complete.

Lemma 99. Let G be a connected nomilpotent group of x-rank 2. Then for some algebraically closed fied f, G is isomorphic to a semidirect prothes:

$$
F_{+} \times T
$$

where T is a connected abelian diwishle subgroup of G containing the center Z of G and such that

$$
T / Z=F
$$

via an isomorphism which transforms the action of T / Z or: F. via conjugation into the action of F by multiplication.

Proof. By an argument that we have used repeatedly, the center Z of G is finite and G / Z is centerless (since the center of G / Z is finite and pulls back to a finite normal subgroup of G, which is necessarily central. The previous lemma yields a factorization:

$$
G / Z=F \times F
$$

for some atgebrainally closed tietd F. Let U_{1}, T_{1} be the inverse images of F. . F " in G.

Both U_{1} and T_{i} contain abehan subgroups U. T of finite index, and we may take of to be nomat in G. Then by the proof of Lemma 96 we may even take \& to be connected.

Now UT has x-rank 2, so UT: $: G$. Nevt we will show:
(int) $U \cap Z=(1)$:
then since clearly $U \cap T \subseteq Z$ it follows that:
(spl) $\quad U \cap T=(1), \quad G=\boldsymbol{U} \times T$.
Our chaim (int) is proved as follows. Fix $w \in U-Z$ and define:

$$
\hat{i}=t z t
$$

for $t \in T$. Since U is connected Corollary 57 shows that \hat{T} is cofinite in $U\left(\hat{T}=u^{(i)}\right.$, so i is intinite). If $U \cap Z$ is nontrivial it follows that for some $t_{1} \neq t_{2}$ in T we get an equation:

$$
i_{1}=z i_{2} \text { with } z \subset \cup \cap Z . \quad Z \neq 1
$$

Then modulo Z we have $i_{1}=i_{2}$, so in F^{*} (viewed as a sub-group of G / Z) we get $t_{1} / Z=t_{2} / Z$. However, this yields:

$$
i_{1}=i_{2} . \quad \text { so } \quad==1
$$

a contradiction.
Thus (int) is proved, and (spl) follows. In particular it now follows that T is connected. Now T is of x-rank 1 and connected, so it follows casily that T is either of prime expenent or divisible. Since $T / Z \cap T$ is an algebraically closed field. we must have T divisible.

Finally we show that $Z \subseteq T$. If $z=u \in Z$. where $u \in U$. $t \in T$, then

$$
a=a^{*}=a^{\prime} \text { for } u \in U
$$

and hence t centralizes both U and T. Then $t \in Z$ and $u \in Z \cap U=(1)$, so that $z=t \in T$, as claimed.

Proof of Theorem 95. Combine Lemmas 97 mad 99.

At this point we can get extra information simply by repeating arguments in $[4]$. The following result occurs in [$4, \$ 4.2$ as Theorem. 3 and 4$]$.

Theorem 100. Let G. Z. T. F. be as in the statement of Lemma 99 and write 1 for F. ciewed as a normal subgroup of G. Then:
(1) If H is a subgroup of G such that the structure

$$
G_{11}=\langle G: H \text { distinguished }\rangle
$$

has x-rank 2 and so that U. T are connected in G_{6}, then H is definable in G. If H is infinite and unequal to G. then H has one of the following two forms:
(i) $U \times L$ with $I \subseteq T$ finite:
(ii) T^{w} with $u \in U$.
(2) Let a be an autonophism of G such that the structure

$$
G_{n}=\langle G ; \alpha\rangle
$$

has $=$-rank 2 and so that U.T are comected in G_{a}. Suppose that for some n>0

$$
a^{n}=1
$$

as an anomorphism of G. Then α is an inner antomorphism.

10. Groups of x-rank 3.

Definition 101. A superstable group G of x-rank 3 is good if it contains a definable subgroup of x-rank 2, and is bod otherwise.

This section is devoted to a proof of Theorem 64, which reads as follows: A yood zroup of x-rank 3 is cither solvable-by-finte or contain a subgroup of fimte index isomorphic to one of the groups:

$$
\operatorname{SL}(2, F) \text { or } \operatorname{PSL}(2, F)
$$

with F an algebraically closed field.
To avoid unnecessary repetition of argunents given in detail in [4] we will restrict ourselves to the proof of the following. which is all that is needed to carry out the arguments in $[+]$ using x-rank rather than Morley rank.

Lemma 102. Let G be a stable group of x-rank 3 and let B be a definable subgroup of x-rank 2. Assume that G is not solvable-by-finite. Then:
(1) B contains a contected nomilpotent definable subgrowp of finite index:
(2) G contains a comected subgroup of finite index.
(One also needs all the information in Section ". which is why we wemt through it in detail.)

We ireak the proof of this lemma up into se eral pieces
Lemma 103. Let G be a superstable group of x-rank 3. and suppose that G is not soltable-by-finite. Let B be a definable subgroup of G haring x-rank 2. Then B is not aityotem.

Proof. Since we may replace B by any defmable subgroup of fimite index in B, we may take B to be solvable and centralizer-connected theorem 6.3. Lemma 70 . and so that $Q(B)=N(B)$ (Lemma 83). Furthermore we may take (i to be centralizer-connected.

If B is normal in G. then easily (; is solable-hy-finite. Therefore we may fix $x \in G$ so that the group:

$$
A_{0}=B \cap B
$$

has infinite inces in B, and hemee x-rank $\left(A_{0}\right)$ is at most 1 . In faet A_{4} has x-rank exactly 1, since otherwise A_{0} would be finite and it would follow easily that the set:

$$
B \cdot B^{x}
$$

has x-rank 4 .
Hence A_{0} contains an infinite abelian definable sulgroup A. Let (be the centratizer in G of A. If $C=G$. then A is nomal in G and x-rank (B / A) is at
most 2. It then follows that x-rank (C) is at most 2. contradicting our assumptions.
Thus $C \neq G$ and since G is centralizer-connected it follows that C has x-rank at most 2. This implies easily that cither $C \cap B$ or $C \cap B$ has frank 1 . Without loss of generality. $C \cap B$ has x-rank 1 .

Now the center Z of A is intmite by lemma 77. Then $A \cdot Z \subseteq C \cap B$, and it follows that $A \cap Z$ is minite. Repeat the foregoing analysis with $A \cap Z$ in place of A : then $B \subseteq C$, and we conclude $C \cap B^{2}$ has x-rank 1 , so

$$
A \cap Z(B) \cap Z\left(B^{\prime}\right)
$$

is infinite. But the centralizer of this last group contains both B and B. contradicting the foregoing analysis. Thus we have arrived at a contradiction.

The first part of lemma 102 is now easily obtained.

Proof of Lemma 102(1). By Lemma 103. B is not nilpotent-by-finite. Then the analysis of such group in Scction 9 yields the result.

Vow using Theorem 100 and more or less direct calculations it is possible to prove:

Lemma 104. Iat G be a stperstable group of x-rank 3. Assume that G is not sokoble-by-finte and that B is a conmected definable subsroup, x-rank $(B)=2$. Let U. The as in Lemma g9 (we know that B is no nilpoten by Lemma 103). Then of copuals the set:

$$
U \cdot N T \cdot U
$$

The detale will be found in the statement and proof of $1+$. Section 5 . 1 . Lemma 31.1

Lemma 105. Wibh the notations and hypotheses of Lemama lot. © is a finite wion of double coseds of B.

Proof. Since B is clearly of tinite index in N B, there are only finitely mans double coscts $(*$ simple coscts) of the form:

$$
B \times B=B x \quad(x \in N B) .
$$

On the other hand by Lemma 104 any double coset of B may be written

$$
B x B \quad\{x \in N i T H
$$

so it anfices to consider the double cosets corresponding to elements $x \in$ NTHO $N(B)$. It will suffice to show that such woble cosets have x rank 3 .

His $x \in N(T)-N(B)$. Notice then that:

$$
T=B \cap B^{2}
$$

(Clearly T is contained in the intersection, and Theorem $100(1)$ yields the reverse inclusion.)
Now to complete the proof it will suftice to show that:

BaCl

has x-rank 3. and for this it suffices te show that

$$
b x u=x \text { implies } u=1 \text { for } b \in B . u \in U .
$$

Assume the refore that $b x u=x$. Then:

$$
T=T^{\prime}=T^{1 \times \times \prime \prime}
$$

so

$$
T^{b x}=T^{u}{ }^{\prime} \subseteq B^{\prime} \cap B=T .
$$

Thus $T=T^{\prime \prime}$ and a trivial computation shows $u \in T \cap U=(1)$. This completes the argument.

Proof of Lemana 102(2). Let B be a connected detimable subgroup of $x \cdot a m k 2$. Then G breaks up into finitely many double cosets of B. hence contains a B-connected subgroup H of finite index by Corollary 55. Since B is connected it follows that H is connected, and the Lemma is proved.

Thus we have obtained the starting point for a proof of Theorem 6t. and the rest of the proof goes as in [4. Section 5.1].

References

 5^{-}(1970) $107-411$.
 Wr melan. Poland.
It G Cher'in. Group of sman Mones rank. Amal, Math. Logic. 17 (1979) 1-2x.

[o] U. Felgner. N_{1}-Kategorische Theorien nicht-kommutatior Ringe. Fund. Math. \mathbb{R} (1075) 33:-3.46.
 (197977-8

|121 §. Shelah. Clessificuiom Theory uth the Number of Nom-homarphic Modeds North-Hollind. Amserdam. 19781.
[13] B. Zilther, Groups and rings with categorical theories (in Russian). Fund. Muh, 95 (1977) 173-18*.

 J. Sumb. Lagic (lanal.
 Chapter III. S. 3.5.

[^0]: Tubingen for extended hoppitaty and the Nexander von Humbold Foundation for their support.
 *s 1 thank the United State--lsrael Binational Scicnce Foandation for supporting thes researeh in part by Grant 1110.

