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We prove an indecomposability theorem for connected stable yroups. Using this theorem we
prose that all infinite superstable fickds are algebradcally closed, and we extend known resalts
for w-stoble groups of Morlev rank at most 3 to the corresponding class of superstable groups
(Note: The logical notion of stability is unrelated to the notion of stability in finite geoup
theorva

1. Introduction
The main object of this paper is to give a proof of the following result:
Theorem 1. Anv infinite superstable field F is algebraically closed.

(A field is called superstable if its first-order theory is superstable. The pasic
reference for the notions of stability theory and for all model-theoretic notions
exploited in this paper is [12]. More accessible general introductions to the
subjeet are in [11. 5]

This extends the main result of [9]. which treats the case of w-stable fields.

Theorem 1 can be combined with results in [3.6] to vield:
Corvollary 2. Any semisimple superstable ring R is the direct sum of a finite ring and
finitely many fudl mawix rings:
M, (F)
over algebraically closed fields F,. (Hence in fact R will be w-xstable of finite Morley

rank.)
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The analysis of superstable division rings given in [3] can now be given
significant notatiovnal simplification in view of Theorem 1.

The proof of Theorem 1 is in outline ideatical with the argument in [9]. The
difference lies in a systematic use of connected groups (see Section 2) to replace
two ad hoc algebraic constructions in [9]. That part of our proof which must
closely parallels the arguments in [9] is given in our Section 3. The model-
theoretic ingredients are supplied in Scction 2, with the exception of the main
technical result {the Indecomposability Theorem 34) which is discussed separately
in Sections 4-6. The material in Section 4 completes the proof of Theorem 1
Sections 5 and 6 give variations on the same theme.

The remaining sections of the paper are devoted to the extension of the main
results of {4] 10 the class of superstable groups of x-rank at most 3. (For the
definition see Section 2.2.). This is in principle simply a matter of combining the
Indecomposability Theorem with the various algebraic arguments of [4], but ax it
is necessary to rearrange all of the arguments involved, we have given the details
at length. (From a psychological point of view [4] is a prerequisite for this
material -—— and once our analvsis arrives at a stage at which the remaining steps
may be copied out of [4] we terminate the discussion.)

The expository article |S] can be viewed as a lengthy introduction to the present
paper. Poizat has worked out a more systematic treatment of the model-theoretic
aspects of stable groups connected with indecomposability theorems [15] The
conclusion appears to be that a maor: enthusiastic use of Shelah’s “forking™ makes
life substantially simpler.

I. SUPERSTABLE FIELDS

2. Connected groups

We use the word “group™ to mean what is usually called an expansion of a
group. namely an algebraic svstem cquipped with a binary operation - — together
with possible additional operations and relations — such that the structure is a
group with respect to the distinguished operation ». The most important example
of such a group is a field F. viewed as a group in two distinet wavs, with the usual
proviso that the underlying set of the multiplicative group F does not contain 4,
We will see that this niggling over terminology has a nontrivial ctfect on the
content of the following definition.

Definition 3. A group G is connceted i G has no proper detinabie subgroup of
finite index.

Warning. When a ficid is viewed as a group as suggested above. the definable sets
(that is the scts definable using the field operations) need not be definable from
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the single binary operation singled out for attention. Thus in Definition 3 the
word “definable™ means “detnable in the structire G0 without special reference
to the group operation on G.

Unfortunately. the definition of connectivitt  also involves the word “sub-
group”. which of course refers directly to the specific group operation singled out
for attention. Thus connectivity is a property of groups rather than structures
(compare Theorems 6. 7 below),

The notion of connectivity has been studied i [2. 4. 13] and discussed at
length in the expository {5]. To employ it one obviously needs existence theorems
for connected groups.

Theorem 4. If the group G ix either w-stable or else stable and N,-categorical, then
G contains a unique connected group of finite index in G. denoted G". and G" is u
normal subgroup of G.

For a proof sce [2]. As it happens, Theorem 4 is not applicable in the situations
considered in the present paper. Indeed we have:

Example 5. The superstable group Z has no connected subgroup of finite index.

(The superstability follows most simply from Garavaglia’s characterization of
superstable modules in [7])
Fortunately we will be able to prove:

Theorem 6. If D ix an infinite stable division ring. then the additive group of D is

connected.

Theorem 7. If D is an infinite stable division ring. then the mdtiplicative group of
D is connected.

-

A proof of Theorem 6 is given in Section 2.3, We will devote Section 4 to the
proof of Theorem 7. The application of these connectivity theorems is based on:
Theorem 8. (Surjectivity Theorem). Let G be a connected superstable group and let

h:G—G
be u definable endomorphism of G whose kernel is finite. Then h is surjective.

The proof of this theorem is essentially model-theoretic. In conjunction with
Theorems 6 and 7 is provides the algebraic information necessary to carry out
Macintyre’s argument {see Section 3).

2.2, The surjectivity theorem

We will base the proof of the Surjectivity Theorem 8 on the properties of the
w-rank, which is detined below. Familiarity with the use of Morley rank in
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connection with «w-stable theories as presented in [ 10] will be found helpful, but is
not essential.

Definition 9. Let T be a theory and let A be a cardinal.

(1) A rank function for T is a function | which assigns ordinals 1o certain
definable subsets of models of 7. and which is monotone in the following scoscr if
AET. S § are definable subscts of A, and f(8") is defined. then f{8) 15 also
defined and f(S)= f(S".

(2) A rank function f for T is elementary iff whenever A is a model of T, A'is
an elementary extension of A, and S, S’ are definable subsets of A, A’ having the
same defining formula (with parameters from A) then:

f(S)=f(S"

(and in particular f(S) is defined iff f(S" is defined),

(3) A rank function f for T satisfies the A-splitting condirion il whenever S is @
definable subsct of a model A of T such that f(S) is defined and ¢ = {8, is a class
of at least A mutually disjoint definable subsets of 8. then:

NS I<HS)
for some S,.

by A rank function { for T is total iff { is defined for all definable subsets § of
all models of T,

Fact 10. [12. Theorem 11 3.14}. If T is a superstable theory. then there is « totl
elementary rank funciion for T which saiisfies the A-splitting condition for some
cardinal A.

Remark 11. Given a theory T and a cardinal A, if one attempts to assign to cach
definable subset of a model of T the least ordinal compatible with the clementar-
ity condition and the A-splitting condition, then an inductive definition of a rank
function inevitably emerges = in terms of an inductive definition of the sets of
rank a (for cach «). This rank function is optimal in two respects: it is defined on
the fargest possible domain. and takes on the least possible values there. Of
course in general it need not be total

This “minimal™ rank function will be denoted A-rank. {In the notation of {12}
we have: A-rank(8) = R{¢. L. A7) where ¢ is a formula defining 8. Of course this
function is defined relative to the given theory T,

Remark 12. The uaspecified cardinal A can easily be climinated from the
foregoing considerations, 1t can be shown that for all sufficiently large A the
ordinal A-rank($) is independent of A (or undefined): see [12. Theorem 3.13].
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Hence we may define:

x-rank(S) = im A~rank{S).

A

Then Fact 10 may be reformulated as follows:

it T is a superstable theory, then =-rank is a total clementary rank
function: and *-rank satisfies some A-splitting condition.

The main connection with group theory lies in the following simple result:

Lemma 13. If H is a definable subgroup of the superstable group G. then ithe
following are equivalent:

(1) =-rank(H) << =-ranki G):

() The index of Hin G iy infinite.

Proof. (2)-— (1): Passing to a sufficiently saturated clementary extension of G, we
may supposc that the index of H in G is arbitrarily large. and then apply the
A-splitting condition to the H-coset decomposition of G for some A, noting that
all cosets of H have the same x-rank as H iwsclf.

{(h=—1{2): W need to see that if H is of finite index in G then x-rank(H) =
x-rank(G). More generally. it is easy to see that if the definable set S is a finite
union of definable sets S, then x-rank($) = sup, *-rank(S,). Ct. [12, Claim 11 1.7].

Qur proof of the Surjectivity Thcorem will involve another property of *-rank:

Fact 14, Let A be a superstable structure and let E be a definable equivalence
relation on A having finite equivalence classes of bounded size. Let A/E denote the
quatient structure. equipped with all relations and functions which are induced by
definable relations and functions on A, Then:

x-pank{A) = x-rank{A/E).
For the proof see {12 Claim V 7.2(6) and Theorem H 3111

Proof of the Surjectivity Theorem. Let It be a definable endomorphism of the
superstable group G. and let H be the image of I If the kernel of h is finite. then
by Fact 14

x~rank{H) = x-rank(GY.
Then by Lemma 13 H is of finite index in G and so by the connectivity of G we
have H= G as desired.
2.3, Theorem 6

As 2 tule the proof of a connectivity theorem depends on the use of certain
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chain conditions (see [S]). In the present case we will need the stable chain
condition of Baldwin and Saxl.

Definition 15. Let G be a group. and let ¢ be a collection of subgroups of G,

(1) The groups in § are said to be wniformiy definable in G iff there is a single
formula ¢(x, ¥) such that each group lying in § is definable by a formula of the
form ¢(x. g) with g in G.

(2) G satisfies the CC-¢ (chain condition for §) iff there is no infinite chain in
#. where a chain is a collection of groups linearly ordered by inclusion.

(3) G satisfies the stable chain condition iff G satisfies the CC-¥ for cvery
tamily § of groups which can be obtained by closing a family ¢, of uniformly
definable groups under arbitrary intersections.

Fact 16. If G is a stable group. then G satisfies the stable chain condition,

The proof is implicit in [1. p. 274] and also in [5]. We will use this fact

repeatedly in Section 7 and thereafter,

Example 17. Let §, be the collection:

1C(g): 2 G}

of all centralizers in G of single clements of G. Then the groups in ¢, are
uniformly definable. The closure of ¢, under arbitrary intersection is the family of
centralizers in G of arbitrary subsets of G.

The following. which is equivalent to Fact 16, is what one in fact actually
proves:

Fact 18. Let G be a siablc group. §, a collection of uniformly definable subgroups
of G. Then:

(1) G satisfies the CC-4,,.

(2) There is aunt integer n such that an arbirary puersection of groups in ¥, equals
an intersection of at maost 1 groups in ¥,

(Fact 18(2) shows that the closure of ¥, under arbitrary intersections is again a
family of uniformly definable subgroups of G. to which 18(1} applies.)
In the present connection we need only Fact 18(2).

Proof of Theorem 6. Lct D be an infinite stable division ring. Let A be a
definable subgroup of the additive group of D, of finite index in 2. We will show
that A = D.

For any nonzero element x of D let xA be the left scalar multiple of A by x
This is again an additive subgroup of D of finite index in D. A uniform definition
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of the left scalar multiples of A may be obtained from a definition of A. Hence by
Fact 18(2) the intersection A, of all left scalar multiples of A can be reduced to a
finite intersection. and henee the index of A, in D 15 finite.

On the other band A, is closed under left multiplication by elements of D, i.c.
Ay iy a left ideal of D, Since the index of A, in D is finite. A, % (). and hence
Ap= D, so A =D, as desired.

3. Theorem 1

We wili use Theorems 6-8 of Section 2. (The proof of Theorem 7 is in Section
+4.) The algebraic information needed is standard [16]:

Fact 19, Let K be a Galois extension of prime degree g over the field F. and suppose
s 1 splits in FUIf pis the characteristic of F. then K is as follows:

(1 If p=gq. then Kis generated over F by the solution of an equation x¥ - x = a
for some aeF.

(0 If p# g then Kois generated over F by the solution of an equation x = a for

sone ae k.

K is said to be an Artin-Schreier extension of F in the first case. and a Kwmmer
extension of F in the second case.
We will combine this with:

Lemma 20. Let F be a superstable field. Then F is perfect and F has no Artin-
Schreier or Kumer extensions.

Proof. Let hiix) be either of the following maps:

{1y x— x"—x for x in F (if char. F=p>0),

(Y x—x"forx#0in F
where n = 1 is an arbitrary integer. Then h is a definable endomorphism of the
additive group of F in the first case. and of the multiplicative group of F in the
second case. In both cases the kernel of It is finite.

Since by Theorems 7. 8 both of these groups are connected. therefore in both
cases Theorem & implies that i is surjective. This casily vields Lemma 20.

Proof of Theorem 1. Assume toward a contradiction that F is an infinite
superstable field and that F is not algebraically closed. By Lemma 20 F is perfect.
~0 it has a Galois extension of some finite degree n.

Consider all pairs of fields (F. K) satisfying:

(Gal) K is a Galois extension of finite degree over F and F
is infinite and superstable.
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Choose such a pair (F, K) in which the degree g of K over F is minimal (greater
than one). A contradiction will be immediate from Fact 19. Lemima 20, and the
following claim:

(Clm) ¢ is prime and x¥ -1 splits in F,

Thus we need only to verify (Clm). First let r be a prime factor of g and let F,
be the fixed field of an clement of order r in Gal{K/F). F, is superstable: indeed
F, is a finite-dimensional extension of F. hence is interpretable over F. and as
such F, inherits the superstability of F (for more detail see [9]). Thus the pair
(F;. K) satisfies (Gal) above. and so the minimality of g viclds g = r. g is pririe.

Now let K, be the splitting extension of x?—1 over F. Then the degree of K,
over F divides g — 1. so by the mimmality of q we have K, =F as claimed.

Thus the claim holds. vielding the desired contradiction.

. INDECOMPOSABILITY THEOREMS

4. The indecomposability theorem for stable groups

In this section we will derive Theorem 7 fron Theorem 6 and a general result
concerning connected stable groups. Our basic tool will be the use of A-ranks for
A finite as in {12, Chapter 11}, which we now review.

J.40 A-rank

Definition 21. Let 7 be a first-order theory and let A be a set of formulas ¢ix. ¥
in the language of T.

(1) For A a modcl of T let A(A) be the Boolean algebra gencrated by the
subsets of A which can be defined by formulas of the form:

elx, d) teed.din A

(2) I S is a definable subset of a model A of T and ¥ ={§,} is an infinite {family
of subsets of S. then ¥ is a A-spliting of S iff:

(1) The sets S, are mutually disjoint subsets of S:

(i1} Each sct §, is the intersection of § with a set in A(A).

(3) A rank function f for T satisfies the A-splitting condition iff whenever S s
definable subset of a model of T for which f(S: is defined and S ={8,} is a
A-splitting of S. then for some «:

FS)< f(S),

() The least elementary rank function which satisfies the A-splitting condition
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will be denoted:
J-rank,
(In the notation of [12] we have A-rank(S)= RS A.N).)

(3 If A isa model of T, § is a definable subset of A, and A-rank(A) is defined
we say that §is A-small iff

A-rank(S)<< A-rank(A).

We will be interested in the case in which A is a finite sct of formulas in which
case we are dealing with the so-called {ocal rank functions.

Fact 22. A theory T is stable iff for all finite sets of formulas A A-rank is total {12,
Seetion 11,2

Fact 23. For S,. S, definable subsers of a structure A and A a set of formulas:
{sup) A-rankeS, U S, = sup(d-ranki{§ ). d-rank(S.n

(one side is defined iff the other side is defined).

Corollary 24, If A is a structure and A is a set of formulas such that A-rank(A) is

defined. then the collection of A-small sets is an ideal of the Booleun algebra of all
definable subsers of A,

The notion of A-rank is supplemented by the notion of A-multiplicity (which

Morley would have called “A-degree™. This is based on:

Fact 28. Ler A be o set of formulas and let A be a structure for which A-rank(A) iy
defined. Let 1 be the collection of A-small sets belonging to ACA)Y. Then Lis an ideal
of AA)Y and the quotient A{AVT ix a finite Boolean algebra.

Definition 26. With the hypothesis and notation of Fact 25, the A-nuddtipliciry of
A is defined to be the number of atoms in A(A)/L

Since we will be making extensive use of Fact 25, we will rephrase it in a morc
explicit form.

Definition 27. Lot A be a structure and let A be a set of formulas for which
A-rank(A) is defined. For definable subsets X, Y of A define:
X=Y (o N=,Yin A)

Y the symmetric ditference of N and Y is dsnall
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Then Fact 25 becomes:
Fact 28. Let A be a set of formudas: let A be a structure for which A-rank{A) is
defined, and let m be the A-multiplicity of A. Then there is a decomposition:
(dee) A=A U---UA,

of A into m disjoint sets A, . ... A,, salisfving:
iy AjedMAY fori=1... ., m.
(ii) A-rank(A;)=A-rank(A) fori=1..... m.

The A-multiplicity m is the largest integer for which such a decomposition
exists. Furthermore the decomposition (dec) is unique — up to the order of the
pieces—moduio d-small sets: in other words if:

A=BU---UB,

is a second such decomposition. then there is a (unique} permutation p of
| PR m such that

A=RB, for i=1,.... m.
Finally. for any § in A(A) there is a unique subset T of {1... .. m} for which
S=J A.
I

Definition 29. With the above hypothesis and notation, a definable subset S of A
is A-indecomposable iff

{1 d-rank(S)= A-rank(A).

(2) § has A-multiplicity 1.

(For Se A{A) this just means that § 18 an atom modulo the ideal of A-small
sets.)

4.2, Invariant sets

We will be interested in studying the way in which a stable group G acts on
the Boolean algebra of definable subsets of G under right or left translation by
elements of G. Hence we introduce the following notions:

Definition 30. Let A be a set of formulas in a language L containing a binary
operation -, let T be a theory in this language. and let f be a rank function for T.
(1Y A is T-right invariant iff for cach formula ¢{x: §) in A for each model G of
T, and for all a. g in G. the formula:
¢lx g d)

is equivalent (in G) to an instance of a formula in A.
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{2) 7 is right invariant iff for any definable subset S of a model G of T for which
fi8) is defined and any ge G:
f18) = f(Se).

Left imvariance is defined similarly, and A (or £ is called invariant ifl it is both
left and right invariant.

Lemma 31, If A is right invariant and T contains the theory of groups then A-rank
is right invariant.

Proof. The proof is entirely straightforward. The main point is that if A is right
invariant. then A(G)Y is invarviant under the action of G by right translation. It
suffices to verify this assertion for a generator § of A(A) detined by a formula:

clx d)

with ¢ < A and @ in G. But then for any element ¢ € G the set Sg is defined by:

which by the right invariance of A is again defined by formula in A,
Now we will discuss the construction of invariant sets of formulas.

Definition 32. (1) If ¢(x:¥) is a formula et ¢(x:¥.z,. 25 be the formula
[ N TR
(23 1f 4 is a set of formulas et A = AU{¢:¢cal

Lemmia 33. For any set of formulas A and any theory T containing the theory of
semigioaps the set A is T-invariant.

Proof. Each formula ¢(x: ¥) of A is equivalent 10 the formula Gox: ¥ H 1 so it
suffices to show that for cach formula ¢ the set {¢} is invariant. Since T proves

Slux v s =i e

this is clear.

1.2, The indecomposabilite theorem

Tire main result of this section will be:

Theorem 34. (The Indecomposability Theorem). Let G be a stable group. Then
the following are equivalens:

t1) G is connected.

(2) G is A-indecomposable for any finite invariant set of formudas A.
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(3) For any finite set 3, of formulas there is a finite invariant set of formudus A
containing A, such that G is d-indecomposable.

Using Theorem 34 it is possible to reduce Theorem 7 to Theorem 6. A fairly
abstract version of this statement goes as follows:

Theoram 35. Let A be a stable structure and let X, Y be defingble subsets of A.
Suppose that A is equipped with twe binary operations + and - such that:

i) (A-X. +) and (A—Y.) are groups:

(ii) For cvery finite set of formulas A, there is a finite set A containing 4, which ‘s
incariant relative 1o both + and + tand Th{AW. such that X and Y are A-small.

Then (A— X, +) is connected iff {A—Y.-) is conected.

(Slogan: counectivity is a property of the struciure A rather than the group A
compare the comment after Definition 30

Proof. We claim in fact that under the above hypotheses the following are
equivalent:

(D {A - X, +) is cennected.

(2) (A= Y. ) is coancected.

(3) For every finite set 4, of formulas there is a finite set A containing A,
which is invariant relative to both + and - {and Th{A), such that A - X and
A-Y arc A-indecomposable.

It sutfices for examnple to prove that (1} is equivalent to (3). This follows directly
from the corresponding cquivalence in Theorem 1 tin the direction (1) — (3) we
have the sets A given by (ih.

The application to infinite stable division rings 12 is obtained by setting A =D,
X =@ Y ={0}. Then once we verify hypothesis {ii) of Theorem 35 we will have as
the conclusion: Theorem 6 is cquivalent to Theorem 7 {see Section ). Since
Theorem 6 wax proved in Section 2, Theorem 7 follows, and then the proof of
Theorem | is complete.

It remains therefore to verify hypothesis (i), Since X, Y are d-small for any 4
containing “x =y it suffices to prove:

Lemma 36. Let T be an extension of the theory of rings. Then anv finite set A of
formudas in the language of T is contained in a finite set of formulas whicl is
T-invariant with respect to both + and -.

Proof. Associate to any formula ¢{x. ¥) the formula

Qn: ¥z zoz) = elz vz o ¥
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Then T proves:
\

gluxe+wi oz, oz e G oo vz, w2y

and it follows that ¢ is invariant with respect to both + and -. The rest of the
argument goes as in the proof of Lemma 33,

Thus Theorem 335 applies to infinite stable division rings, as claimed.
In connection with Theorem 35 it is natural to ask:

Question 37, If a stable structure A car be viewed as a group with respect to two
operations, -+ and -, does connectivity of (A, +) imply connectivity of (A.-)?

It is not clear what use such a result would have. but on the other hand we will
see in Section S that we get such a result casily if A s superstable via a simpiitied
version of Theorem 34,

It remains to prove Theorem 34, We prove (1) — (21— (3) — (1), The implica-
tion (2) — (3) follows from Lemma 33. The implication (3} — (1) is casy: suppose
(3} holds and H is a subgroup of finite index in G defined by the formula ¢(x: a).
Let A be a finite invariant set of formulas. containing ¢. and such that G is
A-indecomposable. Then since A-rank is invariant it follows that the cosets of H
in G all have the same A-rank. and hence by Fact 23:

A-rankiHg) = A-ranki Gy forall ge G,
Since G is d-indecomposable it follows that there is only one such cosct, so

G = H. This proves that G is connected. as desired.
It remains to be seen that (1)— (2

4.4 Theorem 34: (1 — (2).

We consider a stable group GL which we will eventually take to be connceted.
and a finite variant set A of formulas in the language of G, Let the A-
multiplicity of GG be m and fix a decomposition:
dee G=A,U- - UA,
of G into mutuaily disjoint indecomposable subsets of G lving in (0.

For any clement ge G. since A is right invariant, right multiplication by ¢
carries the decomposition {dee) to another decomposition:

G=AgU- - UA,¢

of G into indecomposable subsets of G which tie in A(G). By Fact 28 there is a
wnigne permutation p = p, characterized by:
A

for i=1..... m.

"\a =

b,
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Furthermore pg, = py, (this involves the right tnvariance of d-rank), or in other
words the map:

pPig—=p,
is a representation of G as a group of permutations of 1..... m.

Let K be the kernel of p. Since the image of p is finite. K has finite index in G.
We will prove:

Lerma 38. If G is N,-sawrated, then K is a definable subgroup of G.

Assuming Lemma 38 we complete the proof of (1)-—={2) (Theorem 34) as
follows. With the above hypotheses and notation {(notably: G, A, K) assume now
that G is connected. We are to prove that m = 1, Since the notions involved are
invariant under clementary extension, we may assume that G is Ny-saturated.

Since K is a definable subgroup of finite index in G we have K= G. Making
this more explicit. we have for every g G
(fix) Ag=A, i=l....om

Now consider the first-order theory consisting of the complete theory of G
(with names for all elements of G) together with the following sentences involving
an additional constant a:

“age A" forcach ged.

This theory is consistent. since (fix) implies that for any finite set Fg Gt
A-rzmk( N Alg) = A-rank{ A}
wot
and hence:

N Ag#n

we b
Let G be a model of this theory, Then in 67 we have:
tinc) aGc A

where A/ is the canonical extension of A, to G,

It is easy to sce that the inclusion (inc) implics m = 1. Indced if #1>1 consider
the inclusions:

(h aA, € A\NaA, = N (sav),

() aAse AYNaAY = Y (savh.

X, Y are disjoint subseis of A} and X, Y are in A(G) because A s left
invariant, so one of the two sets is A-small, since A} is d-indecomposable. On the
other hand neither aA| nor aA, is Ad-small. and s0 we appear to have the desired
contradiction. There 15, however, the technical point that c.g. aA, and X are
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defined in different groups, To conclude we thercfore need the following:

Lemma 39. Let A be a set of formulas, let A be a structure. and let A" be an
elementary extension of A. Suppose that S€ A(A). X is definable in A'. and
Se X If A-rank(X) is defined then:

A-rank{(S) =< A-rank(X).

Proof. Straightforward by induction on A-rank. The point is that any A-gplitting
of S in A can be canonically extended to A’ and will give a A-splitting of X if
SediA)n

Thus to complete the proof of Theorem 4 we need only to prove the definabil-
itv Lemma 38 above.

4.5, A definability lemma

We recast Lemma 38 in a more general form:

Lemma 40. Ler G be a group with a subgroup K of finite index. Suppose for some
cardinal & that K is the intersection of x definable subsets of G and that G is
& -saturated. Then K is definable in G.

Proof. Fix cosct representatives g,..... g for K in G where & is the index of K
in G. We may assume that g, =1 and that k>1. For 1<i=k consider the
following property of an unknown x:

Py xe KN Kg,.

In terms of the definable sets §, (o< k) whose intersection is K. we can construe
(P as a type in at most x constants. Since this type is not realized in the
« -saturated group G. it is inconsistent. Thus it we make the harmless assumption
that {8, } is closed under finite intersection we may conclude that there is aset S,
which by abuse of notation we will call §,. satisfying:
SNSg=9 for I<isk

Set §=[; §. Then

(h Ke$:

Q) SN KgesSnl, . Sg =0
Thercfore K= 8. so K is definable, as claimed.

Applying this with K. G chosen as in Scction 4.4 shows that Lemma 38 follows
il we can tind a definition of K which can be put into the form of a countable
conjunction of first-order conditions. For this it suffices to define K as the set of
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g€ G such that
(deh) A-rank(A,gNA) = A-rank{(G) for i=1,....n.

(This works because A,..... A, are d-indecomposabic.)

To see that (def) has the right form we apply {12, Theorem 1 2.2: (h— (7],
which implies that the A-rank of G is a Anite integer roand {12, Lemma 1T 29131
which implies that the condition:

d-rank(A,gN A =r

is equivalent to the consistency of the complete theory of G together with a
certain countable first-order theory. Thus by the Compactness Theorem (def) can
be put in the desired form.

This completes the proof of Lemma 38, and hence of Theorem 34,

5. More indecomposability theorems

5.1. Results

The main result of this section will be:

Theorem 41. Le: G be a superstable group. Then the following are equivalent:
(1} G is connected.
(2) G is indecomposable. i.e. given two disjoint definable subsets of G. at least one
of them has smaller »-rank than G.
If G is w-stable another equivalem condition is:
(3) G has Morley degree 1.

(We will not discuss the w-stable case. since the equivalence of (1) and (3) was
already proved in [4] by a very similar argument.)

Condition (2) of Theorem 41 is somewhat unexpected. because in general a
superstable structure does not even have finite multiplicity in the sense of *-rank
(as an cxample take the additive group of the integers which has x-rank 1),

Theorem 41 foliows from:

Theorem 42. Let (G be a superstable group and let S be a definable subser of G.
Then the following are equivalent:

(D) There is a finite set of formudas A, such that for cvery finite invatiant set A of
formulas containing A,

A-rank($) < A-rank(G).

(2) =<-rank(S) < x-rank{ G).
If G is w-stable another equivalent condition is:
(3) rank(8) <rank(G).
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Here rank means Morley rank. f.e. A-rank where A is the set of all formulas.
We omit the proof that (1) is equivaient to (3), even though it was not given in (4).
because it is a trivial variant of the proof that (1) is equivalent to 2).

Clearly Theorem 42 can be applicd to reduce the Indecomposability Theorem
41 to the previous Indecomposability Theorem 34 (The indecomposability condi-
tion of Theorem 34 now clearly implics the indecomposability condition of
Theovem 41, and the latter casily implies connectednessy It remains to prove
Theorem 42,

5.2. Large and small sets

We will make use of the following purely group-theoretic notions (which are
probably useless in unstable groups):

Definition 43. Lct § be a subset of the group G.
(1} S is large iff there are finitely many clements g, .. .. < such that

Gea ) Sg

(21 S is small Y for every finite subset F of § there are arbitrarily many
clements g0 e ¢ such that:

tsmb gFNgS =8 for i-<j

Lemma 44, I S is not small. then S is large.

Proof. Suppose § is not small. Fix a finitc subset F={s;.....s} of § and a
maximal integer & such that there are clements ¢ L. g, satisfying (smb). Fix
such clements g,.. ... &

Forany ge G Ftogether with g,.. ... g. ¢ ' Jdoes not satisfv (sml) whereas F
together with ¢.. ... @ doces satisty (smb. Thus for any g € G there are s. g, such
that:

! g« - Qe
25%€¢ 'S, so geSs, g,

In short:

Ty

N N i
Gel sy, 'g,
LN
and we have proved that § is large. as claimed.

We are not claiming that a set cannot be both large and small. For stable groups
this assertion is part of:
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Theorem 45, Let G be a stable group and let S be a definable subset of G. Then the
following are equivalent:

(h S is small.

(2) There is a finite set of foroudas A, such that for every finite invariant sei of
formudas A containing 3,. § is A-small.

(3) S is not large.

If G is super stable another equivalent condition is:

(4) x-rank($)< x-rank(G).

Clearly Theorem 45 contains Theorem 42 (with the obvious extension for
w-stable groups). Since we have proved (3)— (1) (Lemma 44 it wili suflice to
prove (1)—(2)—(3) and (1) — () — (3). The implications (2)—(3). (H— (3
arc entirely straightforward since the rank tunctions involved in (23, (4 arc
invariant (right invariance would be adequate) and satisfy

(supy IS, U S:) =sup(f(S,) fIS.
Hence it suffices 1o prove {1 — {2} and {1 = (4). The proofs. which are almost
identical, make use of the machinery of [12. Chapter U1} which we wili now

review,
5.3. Forking

Definition 46. Lct § be a definable subset of a structure A, Let F be an infinite
tamily of definable subsets of A,

(O Fis a family of equinniformly definable subsets of A il there is a single
formula:

¢lx, ¥

and an infinite indiscernible set I of sequences @ from A such that the sets in F
are exactly the sets defined by the formulas:

elxiar taelhn

(2) 8 splits strongly within A AT there are sets §,0 8, belonging to an infinite
family of cquiuniformiy detinable subsers of A such that

S is contained in §, and i disjoint from §,.

(3) S splies srongly il A has an elementary extension A’ within which the
canonical extension §' of § to A’ splits strongly.

(Note: the canonical extension §' of § is defined in A’ by any formula which
defines S in A, We will have occasion to make substantial use of this notion.)

(4) S forks iff for some clementary extension A" of A, § is a finite union of sets
which split strongly {(of. [12, Theorem T 161 This is called “Forking over she
crmpty set™ in [12],
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We will need the following facts:

Fact 47, If A is siable and 8 is a definable subset of A which forks then there is
finite set of formulas A,y such that S iy A-small for any finite set A containing A,
Similarly, x-rank{S) < x-rank(G) if ®-rank(G) exists {12, Lemma 111 1.2].

Fact 48, If A is stable. A’ is an elementary extension of A, and S is « definable
subset of A’ disjoint from A. then S forks [12. Corollary 11T 4.10].

Fact 49. If A is stable. S is a definable subset of A, and S’ is the canonical
extension of S in an elementary extension of A,. then S forks iff S’ forks (wrivial).

We return now to the proof of Theorem 45, Recall that it suffices to prove:
(= 12r & h,

Lemma 80. If S iv a small definable subser of the group G. then there is an
elementary extension G' of G which contains an infinite sequence of elements

St Koo
such thar
¢S NegS'cglG -Gy for i<y

Proof. Introduce constants g;. g..... and consider the theory T censisting of the
complete theory of G (with names for all clements) together with sentences
saving:

gSE LS

A

for i<j and se8§.
By definition § is smail ift T is consistent. so we may take a model G of T. Then
in G’ we have:
a8SNgS =0 for i<
and hence:
g8 NS (S-S (G -Gy for i<

Proof of (1) — (2) & {4) (Theorem 45). We assume that S is a small definable
subset of G and we adopt the notation of Lemma S0, assuming ia addition (ia
Ramsey’s Theorem and the Compactness Theorem) that gy, ... .. are indiscerni-
ble. We will prove

(i) 8'Ng; eS8 forks:

(ii) 2,8 ~ .8 torks.

This and Fact 47 will yicld (2) and 3 because:

Y fs

§=(8'"Ng ' &SIV g (g, § —¢.8)

and the rnk functions invobved in {2). (4) are invariant.
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Now we have:
SNg'e.SeG -G

by Lemma 30, so Fact 48 proves (i) Finally, if XN =g, 8"~ 2.8, then N is
contained in g, 8" and is disjoint from g8 where g, g. belong 1o an infinite
family of indiscernibles. so X splits strongly in G' and hence forks within G
proving (ii). This completes the argument.

5.4. Question 37

We can now supply a partial answer to Question 37 of Scetion 4.3,

Proposition 51. Let A be a supersiable structure. let X, Y be definable subsets of A
such that:

x-rank(X). %-rank(Y) < x-rank(A).
Suppase that A is equipped with nwo binary operations. = and - such thar:
(A=X.+) and (A= Y. 2) are groups.

Then (A— X, +) is connected Iff (A= Y.} is connected.

This follows at once from Theorem 410 which implies that the connectivity of
(ri= X ) or (A = Y. ) is equivalent 10 the indecomposabitity of A, {Note that
Proposition 51 is adequate for the proof of Theorem 7 in the superstable case.)

6. Variations

We will embark on the project of extending the results in [4] to a larger class of
stable groups in Scction 7. This involves a systenatic use of “localization™. .
getting along with a fixed tinite set of first-order tormulas in the course of a given
argument, and an unsystematic use of detours around the spots where this is
impossible.

In the present section we supply technical variants of the tools of Sections 204
used in this subsequent analysis.

6.1. A —JA-connected groups

Definition 52. Let G be a group. A a finite set of formulas xuch that d-rank G is
defined. and A a subgroup of G.

(1) A=2(G) is the sabalgebra of A{G) consisting of sets which are closed
under right wmultiplication by clements of A,

(2) G is A~ A-connecied iff there is no definable subgroup H of finite index in
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G such that
(1) for some S<MG)Y F
iy AgH.
{3) Gis {righty A ~ A-indecomposable il there is no decomposition G = 8§, U S,
ot G such that:
M 5eA-AMGY for i=1.2
(i A-rank(S,)= A-rank(G) for i=1.2.

aS

Two special cases are important: it A =(1) we speak of A-connected and
A-indecomposable groups, while if A is the set of all formulas we speak of
A-connected and of A-indecomposable groups. (When A = (1) and A centains all
formulas then we are speaking of connected groups or of indecomposable groups.
that is w-stable groups of Morley degree 1)

There will be an Indecomposability Theorem in the next subsection. It is
convenicnt at this point to survey the methods for obtaining connccted or
indecomposable groups of various sorts, because the proof of our first result
provides information needed for the proof of the Indecomposability Theorem.

Theorem 53. Let G be a stuble group and let A be a finite invariant sei of formulas.
Then G contdins a wnique maximal A(Gh-indecomposable subgroup H of finite
index. H is normal in G.

Proof. Let K be the kernel of the permutation representation of G induced by a
decomposition:

ey  G=GU - UG

ot G into d-indecomposable pieces. where m is the A-multiplicity of G. Since K
is of finite index in Gowe have:
MG -rank(K)y = A-rank{ G

Now the argument in Section 4.4 vields an elementary extension G of G and an
clement g€ G such that

{inc) K e Gl

and then as in Section 4.4 it follows casily that K 15 A(Gr-indecomposable.
We will now show that any M G-indecomposable subgroup of G is contained

i K, which will complete the proof of the theorem. This proceeds in several steps.
Step 11 The action of G on G,... .. G
Fix I=si=sm For 1

modulo =7 is transitive:

"

=m let G, be the set of g such that

Ge=,G,
Then in an clementary extension G' of G there are clements g € G, satisfying:

(ne-p g G, s G
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Then the sets G, are d-indecomposable (see the end of Section 4.4 and since G
has A-multiplicity m the decomposition:

G=U G,
i

shows that A(G)-rank(G,) = A-rank(G) for each |.
Hence no G is empty. and G acts transitively, as claimed.
Step 2: Define i by:
(i) A(G)-rank(K N G)) = A-rank(G).
(Since K is A(G)-indecomposable this makes sense.) Let K, be the isotropy group
of G. Then: every A(G)-indecomposable subgroup L of finite index in G is
contained in K.
First consider H= LN K. Then H s a A(Gh-indecomposable subgroup of finite
index in G. Hence there is a unique | such that:
(4 A(GY-rank(HN G)) = A-rank(G).
Comparison of (i} and (j) shows i=j. Hence i can also be characterized by:
(" AGl-rank(L N G,) = A-rank(G).
Then for ge L we define another j by:
(" G =,G,
and conclude:
(LNGHg=,LNG,
Thus
AGr-rank{L. NG = A-rank{G),
so again i = j. Then (1) says:
gek,

as claimed.

Step 3: K, = K. {(Combined with Step 2. this completes the argument.)

Let I<<j=<m be arbitrary. Let K, be the isotropy group of G, It suffices to
show that K; = K.

Now K; is A(G)-indecomposable by the argument given in Step 1 tsinee
K; = G, in that notation). Hence by Step 2

(x) K, & K.
On the other hand K; and K; arc conjugate as a consequence of Step 11 if:

Gg=,G,
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then:
{comd ¢ 'Kg=K.

Now from this we conclude casily that K, = K; by a stability argument. Just let A"
be any finite invariant set of formulas containing the definitions of K, and K,. and
compute:

Alomultiplicity(K,) = A T-multiplicity( K, ).

which together with (#) yields K, = K.
This completes the proof of the theorem.

Lemma 84, Let G obe a group with « subgroup A. Suppose only finitely many
definable normal subgroups of G conain A. Then G contains a4 unique definable
A-connected subgroup H of finite index. and H is normal in G.

Proof. Lot H be the intersection of all definable normal subgroups of finite index
in G. Then H is a definable normal subgroup of finite irdex. Suppose H contains
a definable subgroup K of finite index. Then by a standard argument K contains a
smaller definable normal subgroup of G. also of finite index contradicting the
choice of H.

The uniqueness assertion is straightforward.

Corollary 85. Let G be a group with a subgroup A. Suppose either:

(1 G~ A consists of finitely many G-conjugacy cluasses. or

(2) G consists of finitely many double cosets module A. Then G contains a unique
definable A-connected subgroup H of finite index. and H is normal in G.

6.2, An indecomposability theorem

Theorem 56, Lot G be a stable group. A a subgroup. and A «a finite invariant set of
fornudas. Then the following are equivalent:

(1 G s A= A-connected.

{(2) G is A - A-indecomposable.

Corollary §7. Let G be a stable group. A a subgroup. Then the followig are
equivalent:

(1Y G is A-connected.

(2) G is A —QA-connected for all finite invariant A,

(3) G is A - A-indecomposable for all finite invariant A.

(4) For any finite set of formulas Ay, there is a finite invariant set A containing 3,
such that G is A = A-indecomposable.

it is clear that Theorem 56 proves Corollary 57.
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Proof of Theorem 56. (2)— (1). Let H be a definable subgroup of finite index in
G such that H contains A. and suppose that for some S¢ A(G): H=, S We claim
that if G is A — A-indecomposable. then H = G.

Indeed. suppose g€ G and gH# H. Then gH=,gS. Set X =8~ gS. The pair
(X. g8) contradicts the A ~ A-indecomposability of G. the main point being that

A-rank(S - 25 = A-rank{G)

since §$~¢S=,H-¢gH=H.
() —(2). We modify the argument in Scctions 44-4.5. Assume that G is
A — A-connected and fix a decomposition

(dec) G=G,U--- UG,

of G into A-indecomposable sets in A(G). where m is the A-multiplicity of G,

Now suppose S€ A ~A(G). We claim that § or G- 8 is d-small.

Fix Ic{l..... m} such that:
(S-decy S=,U G.

Let SG wenote the set of right translates Sg of § i G oand consider the
quoticent set:

X =8G/=,

of SG modulo the equivalence relation =,. If the index set I in (§-dec) has k
clements. then X has at most (7} elements. as one sees by letting G act on (S-deo)
by right multiplication and recalling that G acts (modulo =) as a group of

permutations of Gy, G,
Thus G acts as a permutation group of the finite set X, Let K be the isotropy

group of 8 in X, defined explicitly as the set of g¢e G for which:
(S-fix} Sg=.,S

Since the index of K in G is the order of the orbit of § in X. this index is finite.
We can usc the argument of Section 4.5 to show that K is definable in G if tas we
may assume) G is Np-saturated. For this purpose it suffices to rephrase the
condition (S-fix) above for membership in K as follows:

A-rank{ Gie NS = A-ranki() for iel

Notice also that A g K. since Sa =8 for ae A,

Now we will show that & differs from an clement of MG by a d-small set. Let
L be the kernel of the permutation representation of G acting on Gyo.o. .. G,
modulo =4, Then L is a subgroup of finite index in K. so it suffices to prove that
L differs from an element of A(G) by a A-small set. In the proof of Theorem 33
we saw the following:

(1) There is a unique index ¥ for which

A-rank(L N Gy = A-rank( G).



Sh:115

Superstable fields and groups 251

(2) L equals the isotropy group of G,
From (1). (2) we may conclude:
(Y Withiasin(h)and ge G-L:

LeN G, is A-small.

It follows that L = G since L is of finite index in G

Now the rest is casy., K is a definable subgroup of finite index in G. containing
A, and differing from an clement of MG by a d-small set. Since G s
A -~ A-connected we conclude:

K=G.

Then as in the last part of Section 4.4 one finds an clementary extension G' of G
in which there is an element s so that:

{inch sGgS'.

In particular this viclds:
(D ASES'NAS =N (sav
(256G SHiesS' NG -8 =Y pavy,

and one concludes as in Scction 4.4 that cither § or G- S s d-small. as claimed.
This completes the proof of Theorem 56,

6.3 A few lemmas

We mention two useful properties of A-connected groups.

Lemma 58. If K ix u normal subgroup of the A-connected croup G. then G/K s
AR/ K-connected.

Lemma 39, [ N iv a finite normal subgroup of the A-comnected groap G agd Ny
contained in the cenralizer of Ao then Nois contained in the center f G.

(One fooks at the kernel of the permutation representation given by the action
of G on N via conjugation: of. {3, § 3] for A = (1)

I'l. SUPERSTABLE GROUPS

7. Generalities

We now enter gpon the extension of the results of [4] to broader classes of
stable groups. Qur basic idea is to replace w-stability by superstability and Morley
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rank by x-rank in {4]; the main complication arising thercfrom is the necessity for
working with disconnected groups.
The main results of this part are as follows:

Theorem 62. (sce Section 7.1). A stable group of x-rank 1 is abelian-by-
finite.

Theorem 63. (see Section 8). A stable group of x-rank 2 is solvable-by-
finite.

Theorem 64. (scc Section 10). A stable group of =-rank 3 which contains «
definable subgroup of x-rank 2 is either solvable-by-finite or clse comtains a
subgroup of finite index isomorphic 1o one of the greups:

SL(2.Fy or PSL(2.F)

with F an algebraically closed field.

7.1. Abelian subgroups

The main result of this subsection will be:

Theorem 68. Ler G be an infinite Ny-saturated group. If G is superstable. then G
contains an infinite abelian subgroup.

The next three lemmas can be replaced by trivial argn-acnts under the hypoth-
eses of Theorem 680 but they cast some light on the general case.

Lemma 69. Let G be a stable group containing a normal subgroup N such that
least ane G-conjugacy class S contained in N ix infinite. Then N contains an infinite
G-definable subgroup K which is normal in G.

Proof. Let A be a finite invariant set of formulas containing the definition of 8.
For any integer k let
St={s; .. s s e Sh
Let k be chosen so that:
A-rank(S*)=r
is as large as possible. For g e G define an equivalence:
g~ h iff S*g and S*h differ by a sct of A-rank less than r (with a slight
alteration of carlicr notation we will write: Shg= SN},
Since $*ge$™ for ge S it follows that $* decomposes into finitely many
cquivalence classes (§7% has A-rank r and finite multiplicity). Let X be one of
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[8e]
I
(7]

these equivalence classes, Tt follows casily that X is definable, as in Scction 4.5
{this depends on the fact that X S8' and that $* meets only finitcly many
cquivalence classes in G We may take X to have d-rank r. Fix xe X.

Now let K be the equivalence class of 1 in G, i.c. the isotropy group o! $*
modulo sets of lower rank. Notice that Xx g K. We will now show that X is
definable. The clementary extension argument at the end of Section 4.4 viclds an
clementary extension G' of G and an element ge S* for which:

(inc) sKa(ShY,
From this onge derives easily that any definable subset of K has A-rank at most r

and JA-multiplicity at most the A-multiplicity of $*, Henee there is a maximal
finite sct

of elements of K such that:

Xx ‘g Ny th are mutually disjoint.
Then for any ge N there is an i such that

Xx ‘g Xy g #F0

Thus:
K={JxX "Xx 'g.

and it follows that K is definable. as claimed.
Clearly K€ N, and since §* is closed under conjugation K is normal in G. This
completes the argument.

Lemma 70. Let G be an infinite stable growp with finite cer.er in which the
centralizer of an arbitrary clement is finite of bounded order then G contains an
infinite definable stable subgreup H sucl thar all proper normal subgroups of H are
comtained in the cemter of G. In particwlar H is connected.

Proof. Lot A be a finite invariant set of formul s We prove first:

The collection of normal infinite subger ups of G which are in

(A . . e
A(G) contains a unique minima’ clement.

Using A =~ 2-rank [12. Chapter ii} it is easy o see thal any normal infinite
subgroup of G which is in A{{3) contains a mmimal such subgr. 0. Suppose now
that H,. H, are distinct minimal normal infinite A(G)-subgroups. so that the
intersection:

H=HNH;
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must be finite. Then any element I € H, centralizes an infinite subgroup of H,.
since commutation maps H, X H, into H. This contradicts our assumptions, and
establishes claim (A).

Call the group defined by (1) G, and set:

"
H= [ G,
A dite
invariant

(this is the intersection of a directed system). Taking G to he sufficiently saturated
(and noting that the hypotheses are preserved by elen:entary extension). we may
suppose that H is infinite. It is a normal subgroup of G. and every noncentral
conjugacy class in H is infinite, since centralizers of noncentral elements are finite.
Thus Lemma 69 shows that H contains an infinite definable normal subgroup K
of G. By construction:

K=H.

Thus H is definable in G. and is the smallest infinite definable normal subgroup
of G. Now apply the same construction to obtain the smallest G-detinable intinite
subgroup N of H which is normal in H. It is clear that N is also normal in G so
N = H. Thus H has no proper definable infinite normal subgroup. and Lemma 69
shows easily that H has no infinite normal subgroup.

Finally. suppose F is a finitc normal subgroup of H. Since H is clearly
connected. F is contained in the center Z of H. But Z is a finite normat subgroup
of G. and since noncentral clements have infinite conjugacy classes. Z is con-
tained in the center of G, Thus F is central in G, and the proof of Lemma 70 is
complete.

Lemma 71, Let G be an infinite N,-saturated stable group containing no infinite
abelian definable subgroup. Then there is an infinite stable N-sawwated simple
group such that the centralizer of each element is finite of bounded order. Such a
group is a torsion group of odd finite exponent.

Proof. Applying the stable chain condition to infinite centralizers in G, we may
assume that the hypotheses of Lemma 70 are satistied. and take H as in the
conclusion of Lemma 70, Then

(1) H is infinite, stable and N -saturated:

(2) H has no infinite abelian subgroup:

(3) H has no noncentral propar narmal subgroup:

(4} All centralizers of nonceniral elements of H are finite of bounded order.

Let Z be the center of H. Then H/Z is an infinite =table N-saturated simple
group. Let ¢/Z be a nontrivial clement of H/Z, and let {77 be the contralizer of

~

a/Z in HIZ. Since Z is finite, & commutes with a subgroup of finite index in C
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and it follows that C is finite. so that (7Z is finite. Thus H/Z has all the desired
properties.
As to the final remark. such a group has odd exponent by [8. Theorem 2.1,

Remark 72, The existence of such a group is highly unlikely, but this question
may involve combinatorial group theory essentially.

Proof of Theorem 68. By Lemma 71, if there is a counterexample G. then we may
suppose G is infinite. superstable, and connected, and that the centralizer of every
nontrivial element of G is finite of odd order. For g G—1 the conjugacy class

g% of g in G may be identified with the coset space:

Cig)\\G.

and since the centralizer of cach clement is finite. it follows from Lemma 63 that
the =-rank of ¢% coincides with that of G.

Now if (7 is superstable, the Indecomposability Theorem 41 implies that G~ |
consiats of a single conjugacy class, and the desired contradiction follows by an
elementary group theoretic result given in [14]:

Fact 73. Let GG be a 1orsion group comaining a single nonwrivial conjugacy cluss.
Then Gois hindte, of order at most 2.

Corollary 74. Let G be a stable group of =-rank 1. Then G is abelian-by-finite.

Preof. By Theorem 68. G contains an infinite abelian definable subgroup A. If the
index of A in G were not finite. it would follow casily that the x-rank of G would
he at least 2 (as usual. consider cosets of A in G

3

7.2, Stable nilpotent groups

Definition 78, The group G is centralizer-connected il no concentral clement has
a centralizer of finite index in G (cquivalently every conjugacy class with more
than one clement is infinite).

Lemma 76. Auny stable group has a centralizer-connected subgroup of finite index.
Proof. Apply the stable chain condition to ceatralizers.

Lemma 77. Let G be a centralizer-connected infinite nilpotent group. Then the
conter Z of G iy infinite.

Proof. If Z is finite. let @/Z be a nontrivial clement of the center of G/Z. The
conjugates of a all hie in the set aZ, which is finite. so a is central by Definition
75. which contradicts the choice of a.
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Corollary 78. Any infinite stable nilpotent group has a subgroup of finite index
whose center is infinite.

7.3. Stable solvable groups

Remark 79. Lot O be a stable group, Let A be a maximal abelian subgroup or a
maximal normal abelian subgroup. Then A is definable.

(In cither case A is the conter of its own centralizer. and the stable chaia
condition implies that this is a definable set.)

Lemma 80. Let G be an infinite stable solvable centralizer-connected group. Then
G contains an infinite normal abelian definable subgroup.

Proof. Notc that any finite normal subgroup F of G is central in G (since its
centralizer in G has finite index).

Let Z be the center of G. which we may assume to be finite. Lot B be the
inverse image in G of a nontrivial normal abelian definable subgroup B/ Z of GiZ.
Then B is not central in Gl so B is infinite, Furthermote B is nilpotent of class
two. If B" is the intersection of all centralizers of finite index in B. then B" is
normal in G. and by Lemma 77 its center is an infinite normal abelian subgroup
of G

Corollary 81. If G is an infinite stable selvable group. thon G contains an infinite
abelian definable subgroup whose normalizer has finite index in G.

8. Theorem 63

Recall Theorem 63: A superstable group of =-vank 2 is solvable-by-finite.
The proof of this theorem will be divided into three subsections.

8.1, Preliminary analysis

We begin the analysis of a superstable group of <-rank 2. If G is not solvable-
by-finite a contradiction will cmerge. For the present we assume only:
thyp 1) G is not abelian-by-tinite.

Let A be aninfinite abelian definable subgroup of G (Theorem 681, By (hyp 1)
the index of A in G is infinite. It follows that A has =-rank 1.

Definition 82. Lot G be a group with 2 subgroup A.
(D) The element ¢ € G quasinermali.es A T A and A® are commensurable (i.c.
ANA® is of finite index in both A and A¥). For G superstable an equivalent
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condition is
%-rank{A N A®) = e-rankiA )
(N The guasinormalizer of A s the group of all clements of G which
quasinormalize A, 1t will be denoted QAL
Lemma 83. Let G be a stable group and lei A be a definable subgroup of G. Then
trwere is a definable subgroup A, of finite index in A such that:
N(A) = O(A).
(Note that if A has a connected subgroup A, of finite index, then this is

obvious.)

Proof. Apply the stable chain condition to the family of groups of the form A~
where ge QAN Lot A, be the intersection of all such groups. Since this can be
reduced to a finite intersection. the index of A, in A is finite. and 11 particular:

QLA = QAL
By construction:
Quare N(A.
henee:
QiADE N(AY
and the reverse inclusion is trivial. This completes the argument.
By a change in our notation we may assume the group A has been chosen in
accordance with the above lemma:
thyp 2) QA= N(A).
Woe now set N = N{A )
The analvsis now divides into an casy and a difficult case. according as the
x-rank of Nis 1 or 2

Lemuna 84, If N has =-rank 2. then G iy solvable-by-finite.

Proof. It suffices to show that N is solvable-by-finite. Clearly NfA has =-rank |
and hence is abelian-by-finite by Corollary 7-. The resalt {follows,

Accordingly we may now assume:

thyp 3t [=-rankiN)=1.]

Lemma 85. G contains an A-connecied subgroup Gy, of finite index,
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Proof. For ge G~ N the intersection A M A¥ is finite, Tt follows that for such g
AgA has x-rank 2. (To see this, consider the uniformly definable infinite scets
Age

where ¢ varies over cosets of ANA® in A

Since the double coscts AgA are uniforn:ly definable. it follows that G- Nisa
finite union of double cosets of A. On the other hand the index of A in N is finite.,
so N is also a finite union of double cosets (=simple cosets) of A,

Thus G breaks up into finitely many deuble cosets of A, and Corollary 53
applies.

Now by a change of notation we may assume:
(thypd) [G is A-connected.}
Notation 86. Z is the center of G

From now on we assume:

(hyp 3) [G is not nilpotent-by-finite.]
Lemuma 87. Z is finite.

This is proved like Lemma 84.

Now consider the group H = G/Z and the subgroup B = AZ/Z. We claim that if
the pair (G. A) is replaced by the pair (H. B) (so that N is replaced by V(B then
the hypotheses (hyp 1-5) remain valid. This ix clear for (hyp 3) (and similarh i G
is not solvable-by-finite. then the same applies to HY. For thyp ) see Lemma 58,
For thyp 2-3) it is sufficient to prove:

(I QAZIZ) = Qi)Y Z:
() NLAZIZ) = N Z
Now we clearly have:
[QAYZ = NLAYVZ € NIAZIZ e QUAZIZ).)
Thus if suffices to prove:
[QAZIZ) e XA Z]

and since Z is finite this is straightforward.
Lemma 88. For ge H~ N(B). BN B* = (1)

Proof, Let ¢ < A represent be BN B®. Then:
ae AYZ.
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It foltows that A and AY are contained in the centratizer Cla) of a in G. Since
AN AY G finite the set:

A Al
has <-rank 2. and hence Cla) has x-rank 2. and is therefore of finite index in G.
Since G is A-connected we get

G = Cla).

soaeZoand b= 1 in H. as claimed.

Notation 89. We change our notation. writing G for H. A for B. N for N{B). and
Z for Z{H)y. Then we have in addition to thyp 1-5»

thypo For ge G-N ANA*=(1).

N2, The Bruhat Decompostion

Now we can get detailed structural information concerning G, (CE. {4, Lemma
RRNSNER

Theorem 90. If we G - AL then G= AU AwA. The element w may be chosen to
be an involwion ti.c. of order 2). Furthernmore A = N(A).

Proof. We proceed in four steps,

Step 1: Fix ¢ in G~ N Then G = NUAgA: As noted in the proof of Lemma
85, for g in G~ N the double coset AgA has x-rank 2. Now since G is
Arconnected. condition 4 of the  relativized  Indecomposability  Theorem
{Theorem 361 shows that there can be only one such double coset. as claimed.

Step 20 G~ N contains an involation. Fix ge G- N, By Step 1 we can write:

)

¢ '=a,ga.
with dy. dav A Let w = gay Then wo = aas ' ¢ Al Setting ¢ = w™ we get:
a=a" < ANA" =1,
and thus w is an involution. Now fix such an involution.
Step 3: Let K=NOA™ Then N=AXK (semidirect product): Evidently
K< N normalizes A and KA = (It satfices therefore to show that N = AR
For any # in N since awg N we may write:
nw = d,wd-
with ay s A Then gy 'm=aYe AN N =K. Thus nea, K and N = AK,

Step 4. K= (D {and hence N = A): Consider ae K7 Then e A and aVe N
We clatm that @¥ ¢ N for all ge G This is clear i g ¢ N while if ¢ = a,wa, with
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a,.a,€ A, then:
at={a"y"

is also in N. Thus «“ is contained in N, as claimed.

Now set B={(a":¢ge G). Then B G and B is contained in N, I a# | we will
now obtain a contradiction.

By thyp 6) since ac A therefore a is noncentral. and hence Cia) has infinite
index. This implies that B is infinite. Since {N: A N B is finite. therefore [B: AN
B]< . Conjugating by w,

[B:A"NBl<= so [B:ANAYNB]<x,

contradicting (hyp 6).
Thus a=1. K=(1). and N= A, completing the proof,

The double coset decomposition deseribed in Theorem 90 is calied the Bruhat
decomposition of G. The motivation for th.s is deseribed in |4, Section .41,

Lemma 91. If ge G and the index of the cenmralizer Ctg) of ¢ in G is finite, then
g=1. (In particular Z = (1)),

Proof. Let F be the subgroup of G consisting of clements whose centralizer in G
has finite index. Let H be the centralizer of F. Then H is of finite index in
G {Lemma 76). hence is not nilpotent-by finite. It follows as in the proof of
Lemma 87 that FN H is finite. and hence F is a finite normal subgroup of G.

We will now show that any finite normal subgroup N, of € is trivial. Since
A*< A - N, for ge N, it follows that:

M20OtAY = A

by (hyp 2) and Theorem 66. Then since A is abelian N, centratizes A, so N, ¢ 7
by Lemma 59, However,

ZNA=(h

by (hyp 6). This proves that N—and ‘n particular F—is trivial,

8.3. Conjugacy classes

In addition to the double coset decomposition of Section 3.2 we will have to
acquire information concerning conjugacy classes in G,

Lemma 92. With the hypotheses and notations of Section 8.2, G contains a
definable subgroup K of finite index such that no conjugucy class of K has
x-rank 2.
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Proof. Sct:

Xo= ) At
w G
Then clearly the »-rank of X is 2 (using (hyp 6)). Furthermore. for ae A the
centralizer Cla) of a in G contains A, hence has *-rank at least one, and it
follows that the conjugacy class of a has *-rank at most onc.

The problem then is to study the conjugacy classes of elements outside x. Since
conjugacy classes are uniformly definable. there can be at most finitely many of
x-rank 2 in G, say C.....G.

Suppose we are able to find definable subgroups K; of finite index in G such
that:

KNGC=¢ (=1.....k.
Then we may set K= K, and we will be done.

It therefore suffices to consider a single conjugacy class C of z-rank 2. and to
find a definable subgroun of finite index in G which is disjoint from C.

Now given any definable set § < G, we will have the equivalent:

A-rank(8) = %-rank(8§)
for al! sufficiently large finite sets A of formulas. (Cf. [12. Chapter 1l Example
110 (A = =) and Theorem 3.13 {A =N} Fix a finite invariant set A of formulas
satisfyving:

(1 Arank(Or =2

{2) The formulas “x =y, xev" ", “xe A¥", "xe X" belong to A (any addi-
tional paramcters occurring in the last two formulas should be replaced by free
vartables).

By Theorem 33 we may fix a A-indecomposable normal definable subgroup K
of finite index v G We claim:

KNC=4.
I' on the contrary the intersection is nonempty, then:
Ce K
since K is normal in G. Since K is A-indecomposable and the sets X and Care in
ArGY, therefore:
A-rank(K NN 2,
This. however, yields an immediate contradiction, since the family:
UK-(INNA%:ge G}

gives a A-splitting of K-(1} into infinite picces (as KM A is of {inite index in A%,
This contradiction completes the argument.
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We will have further use for this particular subgroup K in the next lemma, In
particular note that by Lemma 91,
A =Cla)

for any nontrivial @ € A, s0 we may assume that the formulas defining A and N in
A are formalizations of:

“xe C{y)”

“xe O,
G

Assume now:

(hyp7) [G is not solvable-by-finite.]
Lemma 93. The group K constructed in the proof o- Lemma 92 is contained in X,

Proof. Suppose be K- X and let Y=UJ,  C{I¥). We claim
(h XNY=(n
(2) A-rank(KN X)) = A-rank(K N Yy =2 for farge AL This will contradict the
A-indecomposability of K.
As far as (1) is concerned. if the mtersection of X and Y is nontrivial, then we
can assume there is a nontrivial clement ¢ in:
ANCh).
Then we get a=a"e AN A" so by (hyp 6k
beN(A)=A (Lemma 881,
contradicting be K- X,
As for (23, we showed above:
A-rank(K M X)) == 2,
We consider KNY.
Now C(b) is infinite since *-rank(d' V< 2. Henee ChIN K is infinite for all
ge G If A-rank(Ciiny = 20 then (2} is trivial, so assume:
A-rank Cihy =1,
Then with the help of Lemma 83 and the hypothesis thyp 7) it is casy 1o see that
the index of the quasinormalizer
QiChY
in G is infinite. Letting g run over coset representatives in € modulo Q(C(h),
we claim:

UKNCH™) - ()
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is a A-splitting of KN Y into infinite pieces. This will complete the proot of (2).
All that needs to be proved then is that the intersections

CO O™

are trivial it ¢ ¢ G-~ QUCM)). This is an casy variation of the proof of Lemma 88,
Thus the proof of Lemma 70 is complete.

Corollary 94. A contains an involution.

Proof. It is clear that the group G we considered originally (before the changes in
notation) contained an involation. Hence the same argument proves that K
contains an imvolution, and then Lemma 93 implies that A contains an involution.

Proof of Theorem 63. We derive s contradiction from the above analysis of a
counterexample,

Let i f€ K be involutions in distinet conjugates of AL Let a = ij. By Lemma 93
we may assume g€ A Note az 1.

By a trivial computation:

i

a' =da 2 AMAL

Hence by thyp 60 and Lemma 88 i€ N(A)Y= A, Similarly j€ A contradicting the
choice of § and .

9. Selvable groups of x-rank

We need @ more precise analysis of groups of x-rank 2 for use in the analysis of
groups of *-rank 3. We will study the solvable nonnilpotent groups of =-rank.2.
The main example of such a group is the semidirect product:

F.oxF

of the additive and maliiplicative groups of an algebraically closed ficld Fuwhere
F* acts on F. by multiplication, The general case will turn out to be not too far
irom this example.

Our main result will be:

Theorem 95. Lot G be a superstable group of x-rank 2 which is not nilpoteni-by-
finite. Then G containy a subgroup H of finite index such thai:

(1Y the center Z of H is hnite:

(2) the quotient HYZ is isomerphic to a semidirect product:

F.xF
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of the additive and mudtiplicative groups of an algebraically closed field F, F* acting
on F. by multiplication.

Lemma 96. With the hypotheses of Theorem Y3, G contains a connected abelian
subgroup of =-rank | whose normalizer is of finite index in G

Proof. We may assume that G is solvable and centralizer connected (Definition
75). Let A be an infinite normal abelian definable subgroup of G (Lemma 8i)).
Then the index of A in G is infinite. so x-rank(A)= 1. The center Z of G is finite
since G is not nilpotent-by-finite.

Fix a€ A—Z. The conjugacy class of a in G is infinite. since otherwise the
centralizer of a would disconnect G. Since A has »-rank 1, there can be only
finitely many such conjugacy classes. If follows that A contains only tinitely many
normal subgroups of G.

Now any definable subgroup B of G which is a subgroup of .\ of finite indey in
A must contain a normal definable subgroup of GG which is again of finite index in
A (apply the stable chain condition to the conjugates of BY. 1t follows that if AYis
the smallest definable subgroup of A which is normal in G and of finite index in
A. then A" is connected. This proves the lemma.

Lemma 97. Let G be a superstable group of »-rank 2 which is not nilpoteni-by-
finite. Then G contains a connected subgroup of finite index,

Proof. We may take G to be solvable. centralizer-connected. Then the conjugacy
class of any noncentral cler-nt is infinite. Since G is not nilpotent-by-finite. the
center Z, of G is finite.

By Lemma 80, we can fix an infinite normal abelian subgroup A of G. and by
the proof of Lemma 96 A will contain a connected subgroup U of finite index, U
is again a normal abelian subgroup of G. Let Z=UNZ, and ix ucs U~ Z Lot C
be the centralizer of uw in G.

Now C coutains U and =z-rank(U) = 1, so U has finite index in €. Let this index
be called k. Our main claim is:

(ind) for any definable subgroup H of inite index in Gl the index of H in G is
bounded by k.

This will yield the conclusion of the temima at once, so it suffices to verify (ind).
Fix H a definable subgroup of finite index in G, and consider the conjugacy

Y of win H. Applying Coroliary 37 and noting that u' is an infinite subsct

of U~ Z. we conclude easily that U~ Z reduces to the single conjugacy class u''

class u
In particular u'' is invariant under conjugation by G. so for g< (i we can solve
the equation:

uh =t

with he H. so gh 'e (. gc CH. and thus G CH.
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On the other hand Ug CNH (since U s abelian and connected). so the index
of H in (i is at most k.

Lemma 98. Let G be a connected nonnilpotent centerless group with x-rank (U) =
Lo Then for some algebraically closed field F. G is isomorphic 10 the semidireci
product:

F xXF

4

of the additive and mudtiplicative groups of F. where I acts on F, by multiplica-
tion.

Proof. By Lemma 96 we may fix a connected abelian normal subgroup U of G
having x-rank 1. (This will turn out to be a copy of FL0 Fix ue U~ (). As in the
proof of Lemma 97 it follows that U~ (1) = n*.

Now fix be G~ Ctl)y and set I'= Cih). Form the set of commutators:

N ={[b ulue UL

Clearly TN U is finite and henee X is infinite. Furthermore since G/ U is abelian,
Ng UL But U is connected of =-rank 1. and it follows that U~ X is finite.

We claim now that UT = G. 1t suffices to prove that UT has finite index in G.
Fix ¢e G-UT and consider {b. g). I [b gle X it follows casily that g¢e UT.
Hence [b. g]le U - X. However, U - X is finite. and if [h. g,]=[b. g.] then g, € Tg..
so it follows that G-UT, contains only finitely many right T-cosets. Henee a
fortiort UT is of finite index in G. and we conclude that G = UT. as claimed.

Since G = UT and UNT is finite, it follows that T is infinite and x-rank{T) =
I. Let T, be an infinite abelian definable subgroup of T. Then G = UT, tsince G
is connected) and UN T, = (1. since G is centerless, Make a small change of
notation. writing T for T, So far we have obtained a semidirect product
decomposition

G=UXT.
For e T define:
PR ¥
f=tur .
We claim the map:
T—U-(h
is a 1-1 onto map. It is onto since U-1hy=n" =u""=u' and 1-1 since from
§=1 we conclude casily that the centralizer of st ' contains
TU{ud,
and this is a set of generators for G, so st 'e Z(GY = (1),
Now we can convert T into the multiplicative group of a field. Adjoinw T a
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formal symbol 0, and extend the multiplication on T to TU{0} by the ruie:
x0=0-x=0,
Cwfine also 0= 1 (the identity clement of U Let F= TU{0} and define addition
on F by:
(x+y)"=x+y
(on the right + denotes the group operation restricted to U).
It is easy to verify that F is a field. cf. [4. Theorem 1 of Section 4.2].
Furthermore F is superstable, hence algebraically closed. Thus the proof of the
lemma is complete.

Lemma 99. Let G be ¢ connected nonnilpotert group of =-rank 2. Then for some
algebraically closed field f. G is isomorphic to a semidirect product:

F.xT
where T is a connected abelian divisible subgreup of G containing the center Z of G
and such that

TZ=F

via an isomorphism which transforms the action of T/Z o, F. via conjugation into
the action of F* by multiplication.

Proof. By an argument taat we have used repeatedly. the center Z of G is finite
and G/Z is centerless (since the center of G/Z is finite and pulls back to a finite
normal subgroup of G, which is necessarily central). The previous femma vields a
factorization:

G/|Z~F xXF

for some algebraically closed ficld F. Let U, T, be the inverse images of FoOF in
G.

Both U, and T, contain abelian subgroups UL T of finite index. and we may
take U to be normal in G Then by the proof of Lemma 96 we may even take U
to be connected.

Now UT has x-rank 2. so UT = GG. Next we will show:

(int) unzs=(1u
then since clearly UNTg Z it follows that:
(spl) unT=(h. G=UxT.

Our claim int) is proved as follows. Fix we U~ Z and define:

P=tut!
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for 1€ T. Since U is connected Corollary 37 shows that T is cofinite in U (T = ¢
so T is infinite). It UN Z is nontrivial it follows that for some 1, # 15 in T we get
an equation:

fi=z1 with zeUNZ Z#1,

Then modulo Z we have ) = f,. so in F’ (viewed as a sub-group of G/Z) we
1,/Z = t-/Z. However. this vields:

1]
[¢]
~

fy=1. so z=1

a contradiction.

Thus {int) is proved. and (sph) follows. [n particular it now follows that T is
connected. Now T is of x-rank | and connected, so it follows casily that T is
cither of prime exponent or divisible. Since T/ZN T is an algebraically closed
ticld. we must have T divisible.

Finally we show that Ze T If z=weZ where ue . re 1L then

a=q =g for ael

and hence 1 centralizes both U and T. Then 1€ Z and ue ZN U= (1% so that
x=r1e T. as claimed.

Proof of Theorem 95. Combine Lemmas 97 sind 99,

At this point we can gor extra information simply by repeating arguments in [4].
The following result occurs in {4.§4.2 as Theerems 3 and 4].

Theorem 100. Let G. Z. T. F. be as in the statement of Lenuna 99 and write U for
F. viewed as a normal subgroup of G. Then:
(1) If H is a subgroup of G such that the structure

Gy, = (G H distinguished)

fras e-rank 2 and so that U, T are cennected in Gy, then H is definable in G. If H
is imfinite and unequal to G, then H has one of the following two forms:

1y UxXL with LT finite:

iy T with ue UL

{2V Let o be an awtomorphisnt of G such that the structure

G, ={Gra)
has =-rank 2 and so thar UL T are connected in G,,. Suppose that for some n >0
a =1

as «an awtemerphism of G, Then o iy an inmner automorphism,



Sh:115

268 G Cherlin and 8. Shelah

10. Groups of x-rank 3.

Definition 101. A superstable group G of =-rank 3 is geod if it contains a
definable subgroup of =-rank 2. and is bad otherwise,

This section is devoted to a proof of Theorem 64, which reads as follows: A
good group of =-rank 3 is cither solvable-by-finite or containy a subgroup of finte
index isomorphic to one of the groups:

SL2.Fy or PSL(2. F)

with F an algebraically closed field.

To avoid unnccessary repetition of argun.ents given in detail in {4] we will
restrict ourselves to the proof of the following. which is all that is needed to carry
out the arguments in [4] using x-rank rather than Morley rank.

Lemma 102. Let G be a stable group of x-rank 3 and let B be ¢ definable subgroup
of x-rank 2. Asswme that G is not solvable-by-finite. Then:

(1) B comains a connected nonnilpotent definable subgroup of finite index:

(2) G conwins a connected subgroup of finite index.

{One also needs all the information in Section @, which is why we went through
it in detail.)
We break the proof of this lemma up into se eral picees

Lemma 103. Let G be a superstuble group of <-rank 3. and suppose that G is not
solvable-by-finite. Let B be a definable subgroup of G having =<-rank 2. Then B ix
not nilnotent,

Proof. Since we may replace B by any definable subgroup of finite index i B, we
may take B to be solvable and centralizer-connected (Theorem 63, Lemma 761,
and so that Q(B)= N(B) {Lemma 83). Furthermore we may take G oo be
centralizer-connected.
If B is normal in G, then ecasily G s solvable-by-finite. Therefore we may fix
x e (G so that the group:
Ay=BNB*
has infinite saex 1 B, and hence =-ranki A is at most 1. In fact A, has =-rank
exactly 1 since otherwise A, would be finite and it would follow casily that the
set:
B-B*
has =-rank 4.
Henee A, contains an infinite abelian definable subgroup AL Lot C be the
centralizer in G of AL C= G then A ds normal in G and =-rank(GiA) is at
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most 2. It then follows that »-rank(C) is at most 2, contradicting our assumptions.
Thus C# G and since G is centralizer-connected it follows that € has x-rank
at most 2. This implics casily that cither CN B or CNB® has #-rank {1, Without
loss of generalitv, COB has <-rank 1.
Now the center Z of B s infinite by Lemma 77, Then A-Z< CN B and it
follows that AN Z is infinite. Repeat the foregoing analysis with AN Z in place
of Authen Ba Cand we conclude CNBY has %-rank L. so

ANZIBINZ(B")

is infinite. But the centralizer of this last group contains both B and B,
contradicting the foregoing analysis. Thus we have arrived at a contradiction.
The first part of Lemma 102 is now casily obtained.

Proof of Lemma 102(1). By Lemma 1030 B is not nilpotent-by-tinite. Then the
analysis of such groups in Section 9 yields the result.

Now using Theorem 100 and more or less divect caleulations it is possible to
prove:

Lemma 104, Lot (G be a superstable group of *-rank 3. Assume that G is not
solvable-by-finite and that B is @ connected definable subgroup. =-rank(B1=2. Let
U, T be as in Lenmuma 99 (we know that B is not nilpotent by Lemma 103). Then G
equals the set:

U-Nt- U
CThe details will be found in the statement and proof of {4, Scetion 5.1, Lemma

IR

Lemma 108, With the notations and hypotlieses of Lenima 104, Gy a finite wiion
of double cosets of B.

Proof. Since B is clearhy of finite index wm NEB). there are only finiteh many
double cosets { = stmple ’cn.\‘cm of the form:

BaB = By txe NiBiw
On the other hand by Lemma 104 any double coset of B may be written

BxB  ixe N{Tn,

so it suffices to consider the double cosets corresponding to clements x e N(Th -
NiB). 1t will sutfice to show that such double cosets have =-rank 3.
Fix x & N{T) = N{8). Notice then thats

T=BNB.
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(Clearly T is contained in the intersection. and Theorem 100(1) vields the reverse
inclusion.)
Now to complete the proof it will suflice to show that:

Bxli
has =-rank 3. and for this it suffices te show that
bxu=x implies u=1 for beB. uell

Assume therefore that bxu = x. Then:
T:: T\ — TM“\
Tb\:Tu ‘gB‘ﬁB=T.

SO

Thus T=T" and a trivial computation shows ue TN U = (1. This completes the
argument.

€roof of Lemma 102(2). Lot B be a connected detinable subgroup of x-rank 2.
Then G breaks up into finitely many double cosets of B. hence contains a
B-connected subgroup H of finite index by Corollary 55, Since B is connected 1t
follows that H is connected, and the Lemma is proved.

Thus we have obtained the starting point for a proof of Theorem 64, and the
rest of the proof goes as in [4. Section 5.1).
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