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\Vc pro',~." gill indcomlpo4abili t} t l lcorcm for ct'qltlc¢lt.'d ~,l~ablc grotlps. Using this thcolcm ~c  
pro~c Ih.lt all illlillilc' ~llpcl",lablc fictdx arc algcbl'aic:.lll} dosed ,  and ~',c extend kllo\t, i1 rc>,tllts 
for e~-sll.bl¢ group', c,[ ,XtOI'Ic'~ l';Ink kit nlo~,t 3 It} tile COl'rt.'4polldiilg c]:p, ~, ol ,,tlpt?l'Sl~tble groups 
IN~qe: The logical iwqioll o1" 4tabilit 3 i', lUllelated to the nolioll of qabllit ' ,  in linilc g ,oup 
:hcol },1 

I. Introduction 

[ 'he  main object of this paper is to hive a proof of the following result: 

Theorem 1. ,4my in]inite superstabh, ,Odd F ix algebraically closed. 

(A field is called supcrstablc if its first-order theory ix superstable. The nasic 
reference for the notions of stability theory and for all model- theoret ic  notions 
exploited in this paper  ix [12]. More accessible general introductions to the 

subject are in 111, 5],} 
This cxlends the main result of It)I, which treats the case of (o-stable lietds. 

Theorem 1 can be co1~fl~ined with results in [3, 6] to yield: 

Coro i l a~  -% Any semisimple stff~erstable ring R is the direct s~ml of o .finite ring and 
,finitely many full matrix rings 

A l . t l .  

ot'er algebraically closed lields F,. (Hence in fact R will be ~o-stable of finite Morley 
ra n k. I 

s Research suppor.~cd in part by NSF Grant  NICS 7t~-00484 A01, 1 thank the Uni\cr:,ltx of 
Tfibingcn for cxlcndcd ht~spitalit 3, and the Ak-xandcr ~tm Humboldt  Foundation for their ~upport. 

** I thank tile Uuiled Statc,;-lsrael Binational Science Foundation for supporting this research in 

parl by Grant  1110. 
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228 C;. Chcrlh~ ~md S. Shclah 

q~he analysis of superstable division rings given in [3] can now bc given 
signilicant notational simplilication in view of Theorem I. 

The proof of Theorem I is in outlinc identical with the argumen! in [9], The 
dittercncc lies in a systematic use of connected groups (see Scction 2) to replace 
two ad hoc algebraic constructions in [9], That  part  of our  proof which most 
closely parallels the arguments  in [9] is given in our  Section 3. The model- 
theoretic ingredients are supplied in Section 2, with the exception of the main 
technical rcsult (the lndecomposabil i ty Theorem 34t which is discussed separately 
in Sections 4-6.  The material in Section 4 completes the proof of Theorem I; 
Sections 5 and 6 give variations on the same theme. 

The remaining sections of the paper  arc devoted to the extension of lhe main 
results of [4] to the class of superstable groups of x - rank  at most 3, (For the 
definition see Section 2.2.). This is in principle simply a matter  of combining lhe 
lndecomposabili ty Theorem with tl~c varioas algebraic arguments  of 14], but as i! 
i,,, necessary lo rearrange all of the arguments  involved, we have given llte details 
at length. (From a psychological point of view 14] is a prerequisite for this 
m a t e r i a l - - a n d  once our analysis arrives at a stage at which t l e  remaining steps 
may bc copied out of [4], we terminate the diseussion.l 

The expositor 3' article [5] can bcx  iewed as a lengthy introduction to the pro~'nl  
paper. Poizat has worked out a moxc systematic t reatment  of the model - theo 'e l ic  
aspccls of stable groups connected with indcctmlposability theorems [15], 1-he 
conclusion appears to be that a mor,-' enthusiastic use of Shelah's  " 'forking" makes 
life substantially simpler. 

!. SUPERSTABLE FIELDS 

2. Connected groups 

We use the \xord "'groutV' to mean what is usually called an cxpatLsion of  a 

group, namely an ,algebraic system equipped with a bim~,ry operat ion ..... together 
with possible additional operat ions and r e l a l i o n s - - s u c h  that the struclure is a 
group with respect to the distinguished operat ion .. qhc  most important  example 
of such a group is a ~eld F, viewed as a group in txv~ distinct ways, with lhe usual 
proviso that the underlying set of the multiplieative group F does not contain It, 
We will see that this niggling over terminology has a nonlrivial eftco! on the 
content of the following definition, 

Definition 3. A group G is comwcted  ilt G has no prope,' dcti~lafqc subgroup of 
linite index. 

Warning. When af ic id  is xicwcd as a group as suggested above, the definable sets 
(that is the set.', definable using the lield operationsi  need nol be delh~ablc from 
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Szqwr~tabtc (iclds and groups 229 

the single binary op+:lation singled otlt for attention. Thus in I)el ini t ion 3 tile 
word "delhutblc" nlc,;tltS " 'dcfnablc in tile y, trlictllre G",  without special reference 
to lhc grolip operation on (7. 

Unfortunately, the definition of connectivit' also involves the word "sub- 
group", which of course refers directly to the specific group operation singled out 
for attention. Thus connectivity is a property of groups rather than structures 
(compare Theorems 6. 7 belowL 

Tile notion of connectivity has been sttldied ii~ [2, 4, 13], and discussed at 
lcrlgth in the expository [5]. To employ it one obviously needs cxistcncc theorems 
for connected groups. 

Theorem 4. If the group G ix either m-xtabh, or else ,~tabJe and R~,-categoricaI, then 
G contoillx a It/I/qnc comlccted groiq~ o(Jinite index in G, denoted G", and (7" is a 
normal subgroup of (;. 

For a proof see [2], .,xs it happens, Thcorcnl 4 is ilt>{ applicable in the situations 
considered in the present paper, hltlced wc have: 

Example 5. The superstablc group Z has no ¢onnectecl subgroup of finite index. 

(The superstability follows most simply from Garavaglia's characterization of 
superstable modules in [7]3 

Fortunately we will be able to prove: 

Theorem 6. If D ix an in.¢inite stable division ring, then the ~ulditit'e group of D is 
Cotut('cted. 

Theorem 7. If D is atl infhzitc stable dici~ion ring, then tlle multiplicatice group o]' 
I)  ix connected. 

A proof of Theorem 6 is given in Section 2.3. We will dcxote Section 4 to the 
proof of Theorem 7. The application of these com~cctivitv theorems is based on: 

Theorem 8. (Surjcctix ity 'Yheorem), Let G be tt comwcted superstable group and let 

h : G - - , G  

bc tl dt,fitldbh, t'tldomorphi,~m of G whose kernel is finite, °lTletz h i5 ?;llriecliue. 

The proof of this theorem is essentially model-theoretic. In conjunction with 
Theorems 6 and 7 ix provides tile algebraic information necessary to carry out 
Macintyre's argument (see Section 3). 

2.2. The suriecticity theorem 

Wc will base the proof of the Surjeclivity Theorem 8 on the properties of the 
x~rank, which ix dclincd below, Familiarity with the use of Morley rank in 
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connection with w-stable theories as presented in [ 10] will bc found helpful, but is 

not essential.  

Definition 9. Let T be a theory and Icl A be a cardinal, 
(I) A rank functiot~ for 7" is a function f which assigns ortlinals to certain 

definable subsets of models of T. and which is monolonc  in the following s¢ nst : if 
A I:T, S c S' are dcfinablc subsets of A, and f(S') is delincd, then ]'IS! ~:~ also 

defined and f(S)<-f(S't. 
(2) A rank function [ for T is elementary iff whenever  A is a model of 7-. A '  is 

an elementary extension of A, and S, S' are definable subsets of A, .4'  having the 

sanre delining formula (with parameters  from A), then: 

f(s) :fts'~ 

(and in particular f[S) is defined iff ]'(S'I is defined!. 
(3} A rank function ( fur T satisfies the A-splitting condilion ifi whcnexer  S is a 

dcfinaMc subsct of a model A of T such 111:.11 f(S} is defined and :1 : {S,, } is a class 
of at least A mutually disjoint definable subsets of S. then: 

f~S,,l<f(S) 

for some S~,. 

(4t A rank function f for T is total iff t is defined for all definable subsets S of 
all models of T 

Fact 10. [12, Theorem I1 3.14], H T is a ,supersmble theory, 6wn there is c: total 
elementary rank function for T which satisfies the A-spliuing condition fi~r some 
cardinal A. 

Remark 11. Given a theory T and a cardinal A. if one at tempts  to assign to each 
definable subset of a model of T t h c  least ordinal compatible with the clementar-  
ity condition and lhe A-splitting condition, then an inductive definition of a rank 
function inexitablv emer~ ,es - - in  terms of an inductivc detinition of the sets of 
rank t~ [for each ~t. h This rank function is optimal in two respects: it is delincd on 
the largest possible domain, and takes on the least possible values there. Of 

course in general it need not bc Iotal. 
This " 'minimal" rank function will be denoted A-rank. On thc notat ion of 1i2] 

we have: A-rank(S) = Rt¢  L. ~." ) where ¢ is a formula dclining $3 Of course this 
function is defined relative to the given theor', 7. 

Remark 12. Tile unspecified cardinal A call easily be c lhninated from tile 
foregoing considerations. It can be shown 1hat for all sutiicicntly large A the 
ordinal Aq'ank(S) is independent  of A (or undefined!: see [12, Theorem 3.13]. 
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Hence  wc may define:  

x - r ank (S)  = lira A-rank(Sh  
a 

Then  Fact I0 may be re formula ted  as follows: 

if T is a supers table  theory,  then  * - r ank  is a total e lementary  rank 
funct ion-  anti ~c-rank satisfies some A-splitt ing condi t ion,  

The main connection with group theory lies in the following simple result: 

Lemma 13. If H is (t (h'tbud@ std)group of the stq)crstable group G, then the 
following are cquit~ah'nt: 

1 t :~-rank(H) < :~-rank{ G): 
12'~ Thc indcx of  H itz (] is in,tinite. 

Proof. (2) -+ ( 1 ): Passing to a sulficicntly sa tura ted  e lementary  extension of (3, we 
may suppose  that the index of H in G is arbitrarily large, and then apply the 

A-split t ing eopdi t ion  to the l-l-coset decompos i t ion  of G for some A, noting that 
all cosets  of  H have the same ~- rank  as H itsclf. 

{ l ) - . , { 2 k  Wc need  to see that if H is of  finite index in G then ~:-rank(/-f)= 
~ - r a n k t G ! .  More  generally,  it is easy to see that if the del inable  set S is a finite 
union of def inable  sets &, then :~- rank(S)= sup+ :,c-rank(& }. Cf, [12, Claim 11 1.7]. 

Our  proof  of the Surjectivity T h e o r e m  will involve .mother proper ty  of r--rank: 

Fact 14. Let A b c a  supcrstable xtnwturc and h't E be a de linabh, equicalettcc 
rclatiott ¢m A hat'it~g finite e(it~ieatence classes o.f bo+mth, d ,~ize. l_ct A / E  denote the 
qumienl strtwturc, eqttipl)ed with all relations am/ t .mc t i (ms  which are imtuce(t by 

dc.~inal@ wtalions and .fuuctions ¢m A, -/lu'tt: 

x - r a n k ( A  ~ = :~ - rank(A/Eh  

For the proof  s e e [ 1 2  Claim V 7.2((~} and T h e o r e m  li 3.11]. 

Proof of the Sur]ectivity Theorem. Let h I,e a definable cndomorph i sn l  of the 
supers lable  group  G. and let H be the image of h. If tile kernel of h is finitc, then 

by Fact 14: 

.~-rauk/HI = ~:-rankI G~, 

] h e n  by t . em m a  13 H is of finite index in G, and so by the connectivi ty o+: G we 

have H = G as des i red ,  

2.3. Theoren~ 6 

As a rule the proof  of  a connect ivi ty  t heo rem depends  on the use of certain 
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chain conditions (see [5]). In the present case we will need tile stable chain 
condition of Baldwin and Saxl. 

Definition 15. i,ct G b c a  group, and let ,~ be a collection of subgroups of G, 
(1) The groups in ~ are said to be uni formly  de]burble in G it[ there is a sing!c 

formula q~(x, ~) such that each group lying ira .~ is definable by a formula of th,: 
form q~(x, ~) with ,q in G. 

(2) G satisfies the CC-~  (chain condition for ~¢) iff there is no infinite chain in 
:~, where a chain is a collection of groups linearly ordered by inclusion. 

(3) G satisfies the stable chain condition ilt G satisfies tile CC-~ for every 
family :]' of groups which can be obtained by closing a family ,!~, of uniform!~, 
definable groups under arbitrary intersections. 

Fact 16. ( f  G is a stable group, then G satis]ies tire stahh' chai~ conditio~r 

The proof is implicit in [1, p. 274] and also in [5]. We will use this fact 
repeatedly in Section 7 and thereafter. 

Example 17. Let ~',, be tile collection: 

{C(g ) :g~G}  

of all centralizers in G of single elements of G. Then the grot, ps in .~', arc 
uniformly definable. Tile closure of flo under arbitrary intersection is tile family of 
centralizers in G of arbitrary subsets of G. 

The following, which is equivalent to Fact 16. is what one in fact actually 

proves: 

Fact 18. Let G be a s tabh group. J .  a collection o t untf i ,rmly &qinable suh,:znmps 

of  G. T h e . :  
(I) G satisJies the CC-fl. ,  
(21 There is an ir~teger ~l such thor an arbitrary iqtersection o f  groups in ~,, equals 

an intersection o.( (11 moxt n groups in ],~, 

(Fact 18{2) shows that the closure of J .  under arbitrary intersections is again a 
family of uniformly definable subgroups of G. to which 18(1} applies,} 

In the present connection we need only Fact lSl2). 

Proo|  oI "Theorem 6. Ltt  D be an infinite stable division ring. Let A be a 
definable s~abgroup of tile additive group of D, of linitc index in D. We will show 
that A = D. 

For any nonzero Cl¢lne~lt x of D let x A  be tile left scalar multiple of A by x, 
This is again an additive subgroup of D of finite index ill D. A tmiform definition 
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of the left scalar mult iples  of A may he ob ta ined  from a definition of A. Hencc  by 
Fact 18(2t the intersect ion A,,  of  all left scalar mult iples of A can bc reduced to a 
finite iflterseelion, and hence  the index of  A~, in O is Iinite. 

On  the o the r  hand A,, is c losed under  left mult ipl icat ion by e lement s  of D, i.e. 
Ao is a ]efl ideal of D. Since the index of A,, in D is finite. A,,ve(0L and hence 
A.--= D, so A = D. as desired.  

3. Theorem 1 

We wili use l h e o r c m s  t~-8 of Section 2. (The proof  of T h e o r e m  7 is in Section 
4.) The  algebraic informat ion needed  is s t andard  [l~q: 

Fact 19, I.ct K be a ( ;a lo i s  ex tens ion  o (  p r ime  degree q over  the f ie ld F a n d  suppose  

x '~ - I splits in F. i f  p is thc character is t ic  o1 tq then K ix a.s t~)llows: 

I ~ I(  p = q. then  K ix genera ted  ocer  U by tile st~lution tq  an  eq t ,U i tm  x ~' - - x  -: a 

(or  some a c. lq 

(2) It" p 7  ~ q. l/ICtl K iS gcalt'r~gttcd ot't'r F hv  the soh~tion o f  an  cq t , t l i on  x '~ = ~t .l~)r 

some o ,.z t*" 

K is said to be an A r l i n - S c h r e i e r  extens ion  of  F in the first case. and a Kummer  
extens ion  of F in the second  case. 

We  will cornbine this with: 

Lemma 20. l.et F bc a s~q~erstable fiehL T h e n  F ix pert~,ct a n d  F has no A r t i n -  

& 'hre ic r  or  /</ml, lcr  e.',wns/ons. 

P roof .  Let h (x }  he e i ther  of  the following maps:  
( l )  x - - ~ x e - x  for x in F (if char.  l : = p > O } ,  

(2) x - -~  x '' for x q : t )  in F 

where  n > I is an arbitrary, inte,,ere . Then  h is a definable c n d o m o r p h i s m  of the 
addi t ive  g roup  of F ill the first case,  and  of the multiplicative group of F in the 

s econd  case. In both  cases the kernel  of h is linite. 
Since I~y T h e o r e m s  7. 8 both  of these  groups  are connected ,  the re fore  in both  

cases T h e o r e m  {~ implies that h is surjcctive.  This easily yields L e m m a  20. 

Proof o[ l 'heorem 1, Assume  toward  a contradic t ion tha~ F is an infinite 
suI~rs tab le  field and that F is not algebraically closed,  By Lcmma 20 F is perfect .  

.,,o it has  a Galois  extens ion of some finite degree  n. 
Cons ide r  all pairs or' fields (F. K) satisfy rag: 

(GaD K is a Galois  extens ion of  finite degree  over  F and F 

is infinite and supcrs tablc .  
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Choose such a pair (F, K) in which the degree q of K over F is minimal (greater 

than one). A contradiction will be immediate from Fact 19, Lemma 20, and file 
following claim: 

(Chn) q is prime and x" - -  I splits in t~ 

Thus we need only to verify (CIm). First let r be a prime factor of q and le! t-, 
be the fixed field of an element of order r in GaI(K/F). F~ is superstablc: indeed 
F~ is a finite-dimensional extension of F. hence is interpretable over F. and as 
such F t inherits the superstability of F (for more detail sec [9]k Thus the pair 

(G,  K) satisfies (Gal) above, and so the minimality of q yields q = t. q is privw. 
Now let K~ be the ~,9;,*;,,o extension of x '~ - I over f': Then the de~ree of K~ 

over F divides q -  1. so by the mimmality of q we fiavc K~ = F as claimed. 
Thus the claim holds, yielding the desired contradiction, 

IE. I N D E C O M P O S A B I L | T Y  T H E O R E M S  

4. The indecomposability theorem for stable groups 

In this section we will derive Theorem 7 fron Theorem 6 and a general result 
concerning connected stable groups. Our basic tool will be the use of ~-ranks for 
_X finite as in [12. Chapter 11], which we now review. 

4. t. J - r a n k  

Definition 21. Let T b c a  first-order theory and let ~ be a set of formulas ¢~x..~t 
in tile language of T. 

11) For A a model of T let J ( A )  be the Boolean algebra generated by the 

subsets of A which can be defined lw formulas of the form: 

,#(x, fi) ~ ¢ ~ 3 . 0  in A). 

(2) If S is a delinable subset of a model A of T and Y- = {S.} is an infinite famil\  
of subsets of S. then J '  is a a-splitting of S ill': 

(i) Tfic sets S. are mutually disjoint subsets of S: 
(ii) Each set S,~ is the intersection of S with a set in ...$(AI. 
(3) A rank function f ft.r T satisfies the A-spliuit~g comlition ilt whenever  S is a 

definable subset of a model of T for which f (S;  is defined m~d S =I~,} is a 
2,-splitting of S, then for some ~: 

f(S,,~ </'(S~. 

(4~ °rile least elementary rank function which satisfies the g-split t ing condition 
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will bc denoted: 

. l - r ank ,  

(In the nota t ion of [121 wc have . . l - ranklSl  = Rt(S .  5. ,~,d.) 
(5) If A ix a model  of "1. S is a def inable  suhsct  of A. and .3- rank(A)  is def ined 

wc say that  S ix . I -small  lit 

_l-rank(S) < ..l-rank( A L 

Wc will be in teres ted  in the case in which A is a finite set of fortnulas in which 
case wc arc deal ing with tttc so-cal led local rank functions.  

Fact 22. A theory T is stal~le ill ]~r all finite sets of tbrnmlas A . l - r ank  is total [ 12. 

Section 11,2]. 

Fact 23. For S~, $2 de]inabh' subsets of a stnwmre A and .l a set of .t~mmdas: 

(sup) ~-rank(S~ U S 2) =. sup(. l -rauk(S~ ). A-rank(S2t) 

(ore' side is dc]incd i ff the other side i s  de]bwdL 

Corollary 24. {f A ix a structz~re and A is a set o]" hmmdas  st~ch th¢lt . l - r ank (A)  is 
de.tined, tilt'l! the collection ~ff . l - smal l  sets is an idea! of  the Boolean algebra of tdt 
dcjinablc sld)sets of  ,4,. 

The  not ion of  . l - rank  is s u p p l e m e n t e d  by the not ion of . l -mult ipl ici ty (which 

Morle~ would have called " ' ~ - d e g r c e " L  This is bascd on: 

Fact 25. Let .l be ~.~ set of formidas and h't A be a structltre for which . l-rankl A) is 
defined. Let 1 he the c,~lle('tion of . l - smal l  sets Iwhmging to . I (A 1. Then I is a~ ideal 
of . I(A~ and the q,ot;cnt ,5(A)I I  ix a .finite Boolean tll,,.,elv'a. 

Definition 26, With the hypothes is  and nota t ion of Fact 25. the J-mzdtipli¢Cey of 
A is dc l incd to be the number  of a toms  in . l (A ) / l .  

Since we will be  making  extcnsixe  use of Fact 25, wc wilt rcphrusc it in a mor~ 

explicit  form. 

Definition 27. Let . A b c  a structure  and let J be a sol of  formulas for wh:ch 

. l - r a n k ( A t  is def ined.  For  def inable  subsets  .X. Y of A define:  

X - = Y  (or: X ~ a Y i n  A t  

ill' lhe symn~elric dill'ercncc of X and Y ix .1~small. 
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Theq Fact 25 becomes: 

F a c t  2 8 .  L e t  A be a set  o f  formtdas: let A be a strm'tt~re for which ' t -rank(Al is 

defined, and let m be the A-multipl ici ty of  A.  Then there is a decoml~sition: 

(dec) A = A i 0  • • • 0 A,, ,  

of  A into m disjoint sets A~ . . . . .  A . ,  satisfying: 

(i) A ~ A ( A ~  for i=  I . . . . .  m. 
(ii) A-rank(A,) = J - r ank (A)  for i = 1 . . . . .  m. 

The A-multiplicity m is the largest integer for wlfich such a decomposition 
exists. Furthermore the decomposition (dec) is u n i q u t : -  up to tile order of the 

p ieces - -modulo  A-small sets: in other words if: 

A = B I ( - J  " "  UB,,, 

is a second such decomposition, then there is a (uniqueJ permutation t, of 
1 . . . . .  m s u c h  that 

p 

A , ~ B , ,  for i=  1 . . . . .  m. 

Finally. for any S in A(At there is a unique subset 1 of {I . . . . .  m} for which 

S=--U A,. 
I 

Definition 29. With the above hypothesis and notation, a delinablc subset S of A 
is A-indecomposable iff 

(1) A-rank(S)= A-rank(AI.  
(2) S has A-multiplicity 1. 

(For S~ A{A) tiff:+ just means that S is an atom mo,iulo the ideal of A-small 
sets.) 

4.2. lntr~riant sets 

We will be interested in studying the way in which a stable group G acts on 

the Boolean algebra of definable subsets ot' G under right o.r !eft translation by 
elements of G. Hence we introduce tile following notions: 

D e f i n i t i o n  30. Let A b c  a set of formulas in a language L containing a binary 

operation .. let 7" be a theory in this language, and let f be a rank function for T. 
( 1 ) A is T-right incariant iff for each formula ~Hx : ~) in J .  for each model G of 

7. and for all ti. g in G. the formula: 

¢(x • g; 6) 

is equivalent (ill G) tO an inslance of a formula in A. 
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(2) [ is right invariam iff for any def inable  subset  S of a model  G of T for which 
f lS} i.,. def ined and  any g < G:  

.ftS) = / ( S g L  

Left in ' ,a r iance  is def ined simihu'ly, and  A (or I') is called i,,lvariant ifl' it is bo th  
left al'ld r ight  invar iant ,  

Lemma 31.  f f  .l is right incariam and T contains the theory of groups then A-rank  
is right inreriant. 

Proof. The  proof  is en t i re ly  s t ra igh t forward .  The  main  point  is tha t  if A is right 
in~ariant ,  t hen  A((-;} is invar ian t  unde r  the  act ion of G by right t ransla t ion.  It 
suffices to verify this asser t ion  for a g e n e r a t o r  S of J(. ,~) de l ined  bv a formula :  

with ,;' ~ .1 and 0 in G. But  then  for a n \  e l emen t  g ~  G the set Sg is det ined by: 

,¢{x ' g ' , f }  

which b 3 the right invar iancc  of A is again dc t incd by formula  in A. 

Now ~ c  will discuss the coi ls t ruct iou of invar ian t  sets of formulas .  

Definition 32. (]} If ¢ t x : ~ )  is a formula let ~.(x:f.'.z,.z.) 

(2) if .,1 i s a  set of fo rmulas  let { = . A O { ~ : ¢ c A } .  

be the formula  

Lemma 33,  For any sel ol formulas ..X and any du,orx 7 containiwg the thcmv of 
scmiglotq~s the set ~ is "1-int'ariant. 

Proof. Each  fo rmula  ¢ ( x :  ~1 of 't is equ iva len t  to the formula  ~{x:  ~, 1, 1t, so it 
suffices to .,,how that  for  each formula  ~? the set {,~} is invar iant .  Since T proves  

this is ctcar,  

4.2, The imh,composability theorem 

T h e  main  result  of this sect ion will be:  

Theorem 34.  (The lndecomposabi l i t . \  Theo rem! .  Ixt (7 l,c o ~tabh" gro,p, l'hen 
the fl)llowing me equir~dcnt: 

~1} G is comwc[ed, 
(2) G is J-imlecompo~able ]or any finite hwariant ,set of form,las .A. 
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(3) For any  ]i,ite sel A~, o]" ]'orntldas there is a ,¢i.ite ilwaria~tt s,,t o.t" formtd~ts .1 
contai~ting .1~, mwh that G is .~-illdeconll)O;'c(tl~h'. 

Using T heo r e m 34 it is possible  to reduce  "i 'hcorcm 7 to T h e o r e m  (~. A fairly 

abstract  version of this s t a t emen t  goes  as follows: 

Theorem 35. Let A be a stable strl,ct.re and  let X.  Y b(' declinable s . l ,sets  o f  A.  

Suppose that A is eqldpped witi~ two binary oper(Itions 4- aml  • s~wh thai: 

(i) ( A - X .  +) aml  ( A - Y . ' )  ate grcml)S: 
(ii) b~)r every .finite set o f  formalas Jo there is a ]iniw set A containing A,, which s 

i lwar ia . t  relative to both -~- and  • (aml  Th(A)L  s . c h  that X amt  Y arc . l - smal l .  
Then ( A - X ,  +) is connected i,i~ ( A -  Y, ") ix connected, 

(Slogan: connectivi ty is a i~,'operty ('f the strm't~.'e A r:.lthcr than the gro~q~ ,A: 
compare  the comment  af ter  Dclini t ion 3.t 

Proof .  We claim in fact that under  the above  hypo theses  the  following arc 

equivalent :  
(1) ( A - X .  +)  is cennec tcd .  

(2) ( A -  Y. "~ is c r :mcc tcd .  
(3) For every lini~e set .1,, of  formulas  there  is a finite set A conta ining .1,~. 

which is invariant r~:lativc to both  + and " ~and Th(A)I .  such that A - X  and 

A -  Y arc .k - indecomposable .  
it suffices for exa"nple to prove that ( 11 is equivalent  to ~3). This  follows directly 

from the cor responding  equiva lence  in T h e o r e m  I ~in lhc direct ion I I .... (3t wc 
have the sets .A given by (ii)). 

The  application to infinite s table division rings D is ob ta ined  b v set t ing A = I). 

X = ~. Y =  {0}. l h c n  once we verify hypothes is  tii) of  T h e o r e m  35 wc will have as 

the conclusion:  T h e o r e m  6 is equivalent  It) T h e o r e m  7 (see Section 2~. Since 
qhcorcn~ 6 was proved  in Section 2. q h e o r e m  7 follows, and then the p roof  of  

T heo r e m  1 is complete .  
It remains  there fore  to verify hypothes is  (ii). Since N. Y arc 2,-small for any ..1 

containing "x  = v"  it suffices to prove:  

Lemma 36. Let T be an extension o f  tlw theory o(  ri~lgs, "l~w¢~ ,o~y t[~]ize set .A of  

formld(~s itl the laagaage o[ T is ('(mtairwd b! a tinile set o] for~l~d(~.~ which is 
T-im:ari¢mt with respect to both + cmd ". 

Proof .  Associate to any formula  ¢(x.  y) the formula  
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Then  g prm.'¢s: 

~( l lx t '  + w;  ~, ~. .72,  = ~ t ~  ,.~(.~.-: ~, :1i~" ,;z2" : t w z 2  + z.~) 

and it follows that ~ is invariant  vdlh respect  to both + and .. The  rest of the 
a rgument  goes  as in the proof  of L e m m a  33. 

Thus  T h e o r e m  35 appl ies  to infinite s table division rings, as claimed. 

In connec t ion  with T h e o r e m  35 it is natural  to ask: 

Q u e s t i o n  37, If a stable s t ructure  A car' be  viewed as a group with respect  to two 
opera t ions ,  + a n d . ,  does  connectivit.,, of  (A. + ) imply connect ivi ty  of ( A . . ) ?  

11 is not clear  what  use such a rest, It would have,  but  on the o the r  hand we will 

see  in Section 5 that  we get such a rcsuh easily if A is supers ,able  via a simp]itied 
version of  T h e o r e m  34. 

It remains  to prove T h e o r e m  34. We prove ( 1 ) ~ (2~ --~ (31 --,  ( 1 I. The implica- 
tion (2l ~ (3't follows f rom L e m m a  33. The  implication (3)---, (1) is easy: st, pposc 

(3) holds and H is a subgroup  of finite index in G def ined bx the formula  ,#L~: d ). 
Let J be a finite invariant  set of formtflas,  containing ,#. and such that G is 
. . l - indecomposable .  Then  since ..l-rank is invariant  it follows that the cosets  of H 
in G all have the same ' , -rank.  and hence  by Faro 23: 

3 - r a n k { H g l = - l - r a n k ( G i  fo r a l l  g e G .  

Since (~ is . . l - indccomposablc  it follows tbat  there  is only one  such cosct,  so 

(~ = H. This proves  that G is connec ted ,  as desired.  
It remains  to be seen that  ( I ) ~  (21. 

4.4. Theorem 34: (1t--~ (2t. 

We consider  a s table group  (~, which we wilt eventually lake to be tol~m.-ctcd. 
and a finite invariant  set .~ of  formulas  in the language of (3. Let the .3.- 

multiplicity of G be m and fix a decompos i t ion :  

(dec '  (-; = A ~ 0 - • • 0 A,,, 

of G into mutually dis joint  i ndccomposab lc  subsets  of G lying in 3(G'~. 
For  any e l emen t  g~(- ; ,  since ..~ is right invariant, right multiplication1 by' ,v 

carries the decompos i t i on  (deet ~.o ano the r  decompos i t ion :  

(; = A ~ g 0  - . -  0 ,-~,,~,v 

of  G into indecomposab lc  subsets  of  G which lie in 3{(3}. By Fact 28 thcrc is a 

mtique p e m m l a l i o n  i~ ~: ~)~ character ized by: 

A , g ~ a A , ~ , ~  f o r  i ~ = l  . . . . .  m. 
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Furthermore #,~s, = P.,P~, (this involves the right invariance of _l-rank). or in o ther  

words the map: 

p :g - -~  p~ 

is a representat ion of G as a group of permutat ions of 1 . . . . .  m. 
Let K be the kernel of p. Since the image of p is finite, K has finite index in G. 

We will prove: 

Lemma 38. [f G is Rrsamrated, then K is a definable subgroup of G. 

Assuming Lemma 38 we complete the proof of (1}---~(2) (Theorem 341 as 
follows. With the above hypotheses and notation (notably: ('T, .l. K) assume now 
that G is connected. We are to prove that m = I, Since the notions involved are 
invariant under  elementary extenston, we may asstmte that G is R~-satt, rated. 

Since K is a definable subgroup of limte index in G we have K = G. Making 
this more explicit, we have for ever), g~  G:  

(fix) A~g ~ A i, i = l . . . . .  r l l .  

Now consider the first-order theory consisting of the complete theory of G 
twith names for all elements of G) together with the following sentences involving 
an additional constant a: 

" 'agEA~ for each g c G .  

lhi.~ theory is consistent, since (lix) implies that for any linite set t :~ G: 

J - ~ a n k ( ~  . 4 , g ) = - . l - r a n k l A ]  

and hence: 

I.ct G '  be a model of this theor \ ,  Then in (~' we have: 

(me) a G c  At  

where A] is the canonical extension of ,4~ to G' .  
I', in easy to see that the inclusion (inc) implies m = I. Indeed if m "~ 1 consider 

the inclusions: 
(1) aA~ ~_A~NaA;  .- X ~sayL 
(2) a A 2 ~ A ] N a A ' ~ =  Y lsay). 
X, Y arc disjoint subse;.s of A~ and X. Y arc in .3(G) because .1 is left 

invarianl, so one of the two sets is . l-small,  since A~ is _I-indecomposable. On the 
other  hand neither ~lA~ nor  a A .  is A-small, and so wc appear  to have the desired 
contradiction. There is. however, the tcellllical point thai c.g. (IA~ alld X are 
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dethled  in dit[erent groups,  To  col:clutle we there fore  need  the following: 

L e m m a  39.  Let A be a set of fimnulas, let A be a structure, and let A" be an 
elementt~ry extension o]" A. Suppose that S ~ A ( A L  X is definable in A'.  and 
S ~  X. If L - r a n k ( X )  is defined then: 

.l-rank(S) ~< A-rank(X). 

Proof. Stra ight forward by induct ion on A-rank.  The point  is that any A-spli t t ing 
of  S in A can be canonically ex t ended  to A '  and will give a A-spl i t t ing o[ X if 

S ( ' A ( A L  

Thus  to comple te  the p roof  of T h e o r e m  4 we need  only to prove the definabil- 
ity L e m m a  38 above.  

4.5. A de fittabitity /emma 

We recas t  L e m m a  38 in a more  general  form:  

L e m m a  40. Let G be a group with a subgroup K of ]filite index. Suppose fi~r some 
cardinal K that K is the intersection of ~ definable subsets of G and that G is 
~'-saturated. Then K is definable in G. 

I ~ o o L  Fix coset  represen ta t ives  gt . . . . .  g~. for K in (3 whert,  i< is the index of K 

in (3. We may assume that g ~ = l  and fllat k > l .  For  l < i ~ k  consider  the 
following proper ty  of an unkm~wn x: 

(P~) x c K n K g , .  

In terms of the definable sets S,, (a  < ~) whose  intersect ion is K, we can construe 

(P,) as a type in at most  "; constants .  Since this type is not realized in the 
,~ ' - s a tu ra t ed  group  (3, it is inconsistent .  Thus  if we make  the harmless  assumpt ion 
that  {S,,} is closed under  finite intersect ion we may conclude that there  is a set S . .  

x~ hich by abuse of nota t ion  we will call S,. satisfying: 

S,f"lS, g,=O for l < i ~ k ,  

Set S = [-'li &, Then 
(1) K~_S: 
(2)  s n  U,-~ Kgi ~ s n  U,~., Sg, = ~. 

There fo re  K = S. so K is definable,  as claimed.  

Applying  this with K, ( ;  chosen  as in Section 4,4 shows that Lcmma 38 fol lo~s  

ff we can lind a definit ion of K which can he put into the form of a countable  
con junc t ion  of f i~ t -o rde r  condi t ions .  For  this it suffices to c~efine K as the set of 
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g~ G such that  

(def) A-rank (A~gn  A~)= A-rank (G)  for i = l  . . . . .  m, 

(This works because A~ . . . . .  A,, are A-indecomposablc. t  
To see that (def) has the right form we apply [12, Theorem Ii 2.2: (11--~ t71], 

which implies that the J - r a n k  of G is a linitc il"lteger r, and [12, Lcmma I1 23)131], 

which implies that the condition: 

..l-rank(A~g f"l A. ~ = r 

is equivalent to the consistency of the complete theory of G together with a 
certain countable first-order theory. Thus by the Compactness  Theorem (def~ can 
be put in the desired form. 

This completes the proof of Lemma 38, and hence of Theorem 34. 

5. More indecomposability theorems 

5.1. Results 

The main result of this section will be: 

Theorem 41. Leg G be a snpersmble grouf). -lhe~ the ]'oliowiJzg are equicalem: 
( I ) G is comwcted. 
(2) G is indecoozposable, i.e. give~ two di,sioint ,teCi;labh, sut~sets of G. (it leil,~t o~le 

of them has smaller zc-rank tha~l G. 
I f  G is ~o-stohlc another equivalent comtition is: 
(3) G has Morley degree 1. 

(We will not discuss tile Co-stable case. since the equivalence of (1} and (31 x~as 
aheady proved in [4] by a very similar argument.I  

Condition (2} of Theorem 41 is somcwha! unexpected,  because in general a 
superstable structure does not even have tinite multiplicity in the sense of ~-rank 
(as an example take the additive group of the integers which has ~:-rank It. 

Theorem 41 fi~l~ows from: 

Theorem 42. Let G I.e a sulwrstoble group and let S be a de tinahle subset ~l" G. 
Then the following ore equicalent: 

(I) There is ~ ]inite set o]" t~rm.los  A,~ such that .for every .fi~lilc int, aria. t  .~et A oJ" 
.fimnulas comaining A,,. 

A-rank(S) < A-rank(G).  

(2) :~-rank(Sl < :c-rankIGk 
I/" G is ~o-stable another equit, alent condition is: 
(3) rank(S) < rank(G).  
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t l e r e  rank means  Morley rank. i.e. J - r a n k  where  3 is the set of all formulas.  
We  omit  the p roof  that (1) is equ iva ;em to (3). even  though it was not  given in (4)• 
because  it is a trivial variant  of the proof  that  el) is equivalent  to ~2). 

Clearly T h e o r e m  42 can be appl ied to reduce  the lndecomposabi l i  W T h e o r e m  
41 to the previous Indecomposabi l i ty  T h e o r e m  34. (The indecomposabi l i ty  cofidi- 
lion of "[heoren'l 34 now clearly implies the indecomposabi l i ly  condi t ion of 

"[hc~ol*¢nl 4 ] ,  ~tlli, l t he  lat ter  easily implies c tmnectedness ,  i It remains  to prove 
T h e o r e m  42. 

5.2 .  Large  a n d  s m a l l  sets 

We will make  use of  the following purely g roup- theore t ic  not ions (which are 
p robab ly  useless in unstable  groups):  

Definition 43,  Let S be a subset  of the group  G, 
( 1 ) S is large ilt there  are linitelv m a n \  e l emen t s  g~ . . . . .  g~ such tht~t 

¢; c U s,.,,: 
i 

(2~ S is s m a l l  lit" for e~ery linite subset  F of  S there  ;ue arbitrarily many 
e J e n l e l l l S  o t ,  ~ 2  . . . . .  ~k such that: 

(sml~ g , t . f ' l g ,S  :- 0 for  i .z j, 

Lemma 44. ! f  S ix not  smMI,  then  S is large. 

Proof.  Suppose  .~ is not small.  Fix a linite .~ubsct F = I s ~  . . . . .  .~} of S and a 
maximal  integer  k such that  there  are  elcmcnt,~ !,~ . . . . .  gt sat isf) ing (smlt. Fix 
such e l emen t s  ~1 . . . . .  g~- 

For  any ,~ ~ (;. F toge ther  wittl g~ . . . . .  gk- g ~ does  not satisfy (sml) whereas  F 
toge ther  with g~ . . . . .  g~ does  satisfx (sml). Thus  for any g ~ G there  arc s~. g, such 

lhat:  

• , ,'s I - 

In short :  

( ; c  U Ss, i , ,  
L I  

and we have p roved  that S is large, as claimed.  

We arc not  claiming that  a set cannot  be both large and small. For stable groups  
this asser t ion ix part  ~t': 
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Theorem 45. Let G be a stable group and let S be a &qinable sltl,set of G. Then the 
]allowing are equivalent: 

(I) S is small. 
(2) There is a fitlite set of tbrmttlas A,, s,ch that fnr every liwtite int'ariant set at' 

formulas A c(mtt~ining A~, S is .A-small, 
(3) S is ~zot Im'ge. 
If G is super stable another equivalent condition is: 
(4) :~-rank(S)< ~ - r a n k ( G k  

Clearly Theorem 45 contains Theorem 42 pa, ith the obvious extension for 
~o-stable groups). Since wc have proved (31--~ (1) H_~cmma 44) it wili suffice to 
prove (1t----~(2)---~(3) and (I)--~(4)---~(3k The implications (2)--~(3!, (4~--~13~ 
arc entirely straightforward since the rank functions inxokcd  in (2L (4~ arc 
invariant (right invariancc would be adcquatcl  and satisfy 

(sup) f(S I US_,)= sup(f(S~ k .f(Sa)k 

Hence it suiticcs to prove ( I )--~ (2) arid ( 1 ) --~, (4t, The proo(s, which arc almost 
i'dcntical, make use of the machinery of 112. Chapter  III1, which ~ve will no~x 

review. 

5.3. Forking 

Definition 46. Lel S be a definable subset of a structure A. l.ct F I',e all inlinilc 
family ~f detinable subsets of A, 

(1) F is a family of equitmifl)rmly dcfinable subsets of A ill there is a single 
fornlula: 

and an infinite indiscernible set I of sequences ~ from A such that the sets in F 
are exactly the sets defined by the formulas: 

(2) S splir~ strongly within A ill' there are sets S~, S~ belonging to an infinite 
family of cquiuniformlv definal~le ~ubsets of A such that: 

,',; is contained in S~ and i~ disjoint from S~. 

(3) S splits strongly ifr A has an elementary extension A '  within ~h ich  the 
canonical cxtc~r:ion S' of S to A'  splits strongly. 

(Note: the canonical extension S' of S is defined in A'  by an \  formula which 
defines S in A. We will have occasion to make substantial use of this not ion3 

(4) S forks ia for somc elementary extension A '  of A, S is a iinitc union of sets 
which split strongly (of. [12, Thcorenl  II1 1,6]L This is called "Forking asor  ~l~e 
emp,y set"  in 1112], 
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We will need the following facts: 

Fact 47.  (f  A is sfabl(, and S is a delinabl(' s~d~set of A whirh forks lhen there is z 
,finite set of ]'ormM~s &,, such lhal  S is A-small fi)r any .li,itc set ,l ('onloining A.. 
Similarly, : , :-rank(S l < ~ : - rank(G)  i1' ~ - r a n k ( G )  exisls [ 12, L e m m a  111 1.2]. 

Fact 48.  l]" A is stable, A '  is an eleme~ztary exw~zsion qt" A ,  a n d  S is a definable 
subxel of A '  disjoint f rom A. then S forks [12. Corol la ry  I l l  4.10]. 

Fact 49.  If A is stable, S i., a definabh" s~&sel of A, and S' is the cononical 
exte.sio. (g S in a .  elementary extension of A~. then S forks iff S' fi)rks (trit,ial). 

We | ' c tnm nmv to the  p roof  of T h e o r e m  45, |;',ecall that  it suffices to prove:  
(1l--~{21 & ~41, 

L e m m a  50.  I1" S ix a small (h'tinal~h" ,~u/)s('r of the ,/ro~q) G, then lhere ix an 
ch'menlary extension G' of G which conlains an infinite seq~wnce o.t element,~ 

g~, g: . . . .  

xl(ch lht~[ 

g ,S 'Ng,S 'c_g ,  l G ' - G }  for i < j .  

Proo| .  In t roduce  cons tan t s  g~, g_, . . . .  and  ~onsider  the theory  7 ccnsis l ing of the 
comple t e  theory  of G {with names  for all c l ements l  t oge the r  with sen tences  
saying: 

"'g,s~':gfi'" for i---i  and so :&  

By dcfirdtiorl S is small  it}" T is consis tent ,  so we may take a model  (3' of T. The:l  

in G '  we have:  

g, S N g , S ' = ~  for i<-~j 

and  hence:  

g,S'Ngfi'c_g,(S'-S}'X._V.((;'--G) for  i<i .  

Proof of 111 ~ {2) & (4)  {Theorem 451. We assume that  S is a small  def inable  
subset  of G and  we adopt  the  no ta t ion  of L c m m a  51), assuming ia i~ddition I '  ia 
Ramsey ' s  T h e o r e m  and  the C o m p a c t n e s s  T h e o r e m )  thai  g~, g2 . . . .  are indiscerni-  
ble, W e  will prove  

{i} S ' N g  i ~g2S' forks:  
0it  g iS ' -g~S '  forks, 

This  and  Fact  4-7 will yield (2~ and  (4) because :  

S' = (S' I"I gl  ~ g2 S') CI g{ ~(gtS' - gzS') 

and the  r 'mk funct ions  involved  in (2), ~4) are invar iant .  
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Now we have: 

S' f'l g I Ig2S '~  G '  ~ G 

by I_,enlma 50, so Fact 48 proves {iL lgnally, if N = g ~ S '  ,og:S', then X is 
contained in g~S' and is disjoint from gaS' where g~, g: belong to an inlinilc 
family of indiscernibles, so X splits strongly in G '  and hence forks wilhin G'. 
proving ( i l l  This completes the argument.  

5.4. OIwstion 37 

We can now supply a partial answer to Question 37 of Section 4.3. 

Proposition 51. Let A be a xuperstablc strtwmrc, let X,  Y he de,lh~ablc x~b,st,ts o f  A 
st~ch that: 

:~-rank~ XL :':-rank( YI < x-rank{ A t. 

S .ppose  that A is equipped with m'o binary opere, tion,v * a n d . ,  such fl,at: 

( A -  X,  * }  mid  ( A  - ~, ,) tin" groups. 

Theu ( A - X ,  +) ix connected iff ( A -  Y..)  is comwcted .  

This follows at once from Theorem 4 I, which implics that the connectivity of 
( t : - - X .  +} or ( A -  Y, .'~ is equivalcn! lo the indecomposabili ty of A. {Note that 
Proposition 51 is adequate for tile proof of "l-heorem 7 in the superstable casc.I 

6. Variations 

Wc ~ill embark on the project, of extendino~ tile, re,,,ults ill [4"] to a larger class of 
stable groups in Section 7. This inxolvcs a systematic use of "'localization", i.c. 
getting ahmg ~i th  a lixed linite set of th'st-order formulas ill tile course o f  a gixcn 
argument,  and an unsxslematic use of detours m'otmd the spots ~vhcl-e this is 

impossible. 

In the present scctioll \~.'e supply technical variants of the tools of Sections 2, 4 
used in this subsequent analysis. 

6.1. A - _ l -cmmecled  groups 

Definition 52. Let G be a group, .1 a finite set of formukls such thai .1~r:mk ( ;  is 
deiined, and A a subgroup of G, 

(1) A - . 1 ( G ~  is the sabalgebra of .1{G) consisting of sets which are closed 
under right multiplication by elclllenls of A. 

{2} G is A -- .1-comwceed itt there is no definable subgroup H of finite index in 
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G such that:  

fi) for some S<.-1(G) H++~aS. 
(ii) +4 ~/-L 
13) G is (right) A - .1- indecompoxabh?  ill there  is no t lccomposi t ion G = St U S~ 

ol ("3 stlch that:  
(it S , ~ A - . 1 ( G t  for i = 1. 2 

( i i * . 3 - r a n k I S , ) = . l - r a n k ( G I  for i = l .  2. 

Two special cases arc impor tant :  if A =(1)  we speak of -1-conntc~ed and 

2 , - indccomposab le  groups,  while if A is tile set of all fornmlas  wc speak of 

A - c o n n e c t e d  anti of  A - i n d c c o m p o s a b l c  grot, ps. {When A = ( I ) and 3 contains all 
formulas  then wc arc speaking of  connec ted  groups  or  of indecomposab lc  groups.  
that is {o-stable groups  of Morley degree  1,! 

The re  will be an Indecomposabi l i ty  " lhcorcm in the next subsect ion.  It is 
convenien t  at lhis point  to survey the me thods  for obta ining cormcctcd or 
indecomposab lc  g roups  of  various sorts,  because tile proof  of otlr iil'sl result 

p r m i d c s  informal ion needed  for the p roof  of tile hldccmnl~osabilily Thctwcnl.  

"l'heorem 53. Let (7 be a stable group and h't -1 be a linite ineariant set qf ]'ormtdas. 
"l'llen (~ contains a unique maximal -1tGhindecomposable subgroup H o./ ¢inite 
imtex, H is normal in G. 

!Proo|. Let K be the kernel  of tile p e n n u t a l i o n  represen ta t ion  of (3 induced by a 
decompos i t ion :  

It.tee} G =': ('~1U • " • L! G,,, 

i'd (~ inlo A-indccOnll~osablc pieces,  where  m is the J -nml t ip l ic i ty  of G. Since K 

is of finite index in (}. ~vc have: 

.1( G }-rank{ K } = .3-rank{ (~ t. 

Now the a rgument  in Section 4,4 yields an e lementa ry  cxlcnsion ( ~  of (5 and an 
c l emen t  g ¢  (3~1 such that: 

(inc} g K g  G{. 

and then as in Sect ion 4.4 it follows easily llaat K is . 3 (G>indccomposab lc .  
We will now show that any -11GVindccomposablc  subgroup  of G is conta ined 

in K. which will comple te  the proof  of the thcorcnL This proceeds  in sc~ oral steps. 
Step 1: The  action of  (3 on G~ . . . . .  G., modu lo  : ~  is transitive: 
Fix l - - < i ~ m .  For  l ~ / ~ < m  let G,  be the set of g such that:  

G,g -=-a G,. 

T h e n  in an e l emen ta ry  extens ion G ~ of G there  arc e l ement s  g, c (;, satisfying: 

( inc-j l  .<(7,,~ GI, 
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Then the sets (;,~ are 3- indccomposablc  (scc the end of Section 4.4t and since (; 
has J-mult ipl icity m the decomposition: 

o =  U o,,. 

shows that J(G)-rank(G0/= J-rank(G} for each j. 
Hence no G u is empty, and G acts transitively, as claimed. 

Step 2: Define i by: 

(i~ J ( G l - r a n k ( K  n G~) = . . l - rank(Gh 

(Since K is A(GJ-indecomposable  this makes sensc.J Let K, be the isotropy group 
of G,. Then: every . . l(GJ-indccomposable subgroup L of finilc index in ( ;  is 

contained in K~. 
First consider H = L n K. Then H is a 3 ( ( ; t - indccomposab lc  subgroup of linitc 

index in G. Hcnce there is a unique j such that: 

(j) A(G}-rank(H n G~) = A-rank(G) .  

Comparison of (i} and (jl sho\vs i=  j. Hence i can also bc characlcrized bx: 

(i') A(G}-rank(Lr ' lG,  t= A- rank (Gh  

Then for g~ L we define another  j b\:: 

( j ' t  G~: ~-xG, 

and conclude: 

( L n G ,  tg ~ a L f 3 G , .  

Thus 

',~ (7)-rank( l. rq G, ) = J - r a n k ( G  I. 

so again i =  i. Then (j~l y;ws: 

as claimed. 
Step 3: K~ = K. (Combined with Step 2, this completes the argument . i  
Let l ~ < j ~  < m be arbitrary. Let K, be the isotropy group of G~. It suffices to 

show that K~ = K i. 
Now K i is ~(G)- indecomposable  by the argument  given in Step 1 ~since 

K i = G,i in that notation!. Hence by Step 2 

( .  ~ K i c K,. 

On the o ther  hand K~ and K, arc conjugate as a consequence of Step l:  if: 

G~g =- a G, 
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then: 

(con) g ~ K~g = K,. 

Now from this we conclude easily that K~ = K i by a stability argument. Just let .1 
be any finite invariant set of formulas containing the definitions of K, and K,. and 
compute: 

.1 ~-multiplicity(K,) = .1 ~-multiplicity( K, ). 

which together  with ( * )  yields K~ = K,. 
This completes the proof of the thcorcna. 

Lemma 54. I.ct ( ;  b c a  gro.p wiflz a s .bgro .p  A.  S.ppose only finiteh.' matzv 
dc¢imlble normal subgrtmps of ()  contain A.  "177en G contains a tmique de[hmhh' 
A - c o m w c w d  st~bgroup H ~ff finiw index, trod !-t ix normal in G, 

Proof. Let 14 be tile intersection of all definable nornlal subgroups of finite index 
in G, Then H is a definable normal subgroup of finite index. Suppose H contains 
a definable subgroup K of linite index. "Hlen by a standard argument  K contains a 
smaller definable normal subgroup of G. also of tinite index contradicting the 

choice of H. 
Tile uniqueness assertion is straightforward. 

Corollar, '  55. Let (3 be a gro.p with a s .bgro .p  A.  Sl~ppose either: 
I t ( ;  --- A consists o.f .finiwly m m w  G-colqugacy classes, or 

~2~ G consists of liniwty ninny &ruble cosets mod . lo  A.  Then G contai~ls a .~iqm" 
,le.linabtc A - c o m w c t e d  sul)gro.p H (ff finiw index, mul  H is normal i~ G. 

(~.2. An indecomlx)sability aworcm 

Theorem 56. Lct (~ be a smbh, gr(mp. A a s~d)gr(ml~, m~d ..1 a .finite invm'itmt set ~,.1 
formulas. Then the .fothm'i.g m'c eq~6rah'~t: 

( i ) (~ is A - J-comwcl( ,d.  
(2) ( ;  ix A -  _l-indecomlmsal)lc. 

Corollary 57. Lel C, I,e a saddle group. A a s.bgroup. Then the lbllowi~u arc 

eq . iealcm:  
( I l G is A-com~ecled. 
(2) G is A - - 1 - c o m w e w d  ]or all fi~ite im:arimz~ ..1. 
(3) G ix A - -1-imtecomlmsable fi~r all lblite inrariam -1. 
(4} For rely liniw sc~ (g f immdas  a~, there is a .tb~ite im' . r iam set -1 co~m~i~i,~g -1,, 

such that G is A -  A-imh'comln~sabh'. 

~I is clear that Theorcn3 56 proves Corollary 57. 
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Proot  o |  T h e o r e m  56.  (2) ~ (1). Let H be a def inable svbgroup  of linite index in 
G such that H contains  A,  and suppose  that for s o m e  S ~  A ( G t :  H t-:aS, We claim 

that if G is A - A-indeeomposab le ,  then H = G. 
Indeed,  suppose  g~  G and g H ~  H. T h e n  RH~-~gS, Set X = S - g S .  The  pair 

(X. gS) contradic ts  the A - . .~-indecomposahili ty of G. tile main point  be ing thal 

A- rank(S  - ,~St = 3 - r a n k ( G I  

since S - gS ~% H - gH = H, 

(I)--~ (2i. We modify tile a rgument  in Sect ions  4 .4-4 .5 .  Assan le  lhal G is 

A -  A-connec ted  and fix a decompos i t ion  

(dec) G = G  IU . - -  UG,,, 

of G into . l - i ndecomposab le  sets in 3 ( G ) .  where  m is the A-multipl ici ty of (3, 
Now suppose  S ~  A - . I ( G ) .  We  claim that S or  ( 3 -  S is .~-small. 

Fix 1_~{1 . . . . .  m} such that:  

(S-dect  S--=.~ U G,. 

Let  SG c, enote  the set of right t ranslates  Sg of S in (7, and cons ider  the 
quot ient  set: 

X = SGI --~ 

of S(} modulo  the equixalenee relation -~ax. If the  index sel 1 in (S-dee)  has k 
e lements ,  then X has at most  ('~') e lements ,  as one  sees  by letting G act on (S-dee)  
by right nmltiplieation and recalling that G acts (modulo  ~-:at as a g roup  of 

permuta t ions  of G~ . . . . .  (7,,,, 
Thus  G acts as a per ;nuta t ion g roup  of the finite set X. Let K be tile isolropy 

group  of S in X, dc l incJ  exl;licitly as the set of  g c  G for which: 

(S-fix) Sg :-~zS. 

Since the index ¢~f K in (7' is the order  of ti le orb i t  of S in X, this index is finite, 
We can use the ai'+~tiillcni of Section 4,5 to show thai  K is dcl inable in ( l  if (zj.x '~ve 
tllaV :+isSl.lllle) G is ~l-satt l ral l .d.  ][-or this purpose il suit)cos to rf2phra.~e the 
condit ion iS- l ix l  above for nlenlbcrship in K as follow.~: 

A - rank ( (T ig ( " lS l=A- ra i l k ( (T I  for iC l, 

Notice also that A ~ K, <dncc Sa = S for (i ( A, 

Now we wil l  show that i~ diftcrs f rom an etenlenl of . . i f ( i t  by a . l -smal l  set, Let 
L be ti le kernel of  the pern lu la t ion representat ion of G acting on (7~ . . . . .  (7,, 

modulo  :"a. Then  L is a subgroup  of  liilite index in K, so it sutliees to prove  thai 
L differs f rom an e lement  of J l G )  by a A-small  set. In the proof  of T h e o r e m  53 
we saw the following: 

( t )  There  is a unique index i for which 

J - r a n k ( L  CI (7,1 = ~ - r a n k ( G L  
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(2) L equals  the isotropy group  of G,. 
From I l k  (2} we may conclude:  
(3) Willl i as in (1) and g e G - L :  

Lg O, G, is A-small .  

It follows thai L -=a¢7;,, since I, is of finilc index in (; .  

Now the resl is easy. K is a definable s t .bgroup of finite index in (;, containing 
A, anti differing from an c l emen t  of  .I(G} by a . l -small  set. Since ( ;  is 
A - . . l - c o n n e c t e d  we conclude:  

K = G .  

Then  as in the last part  of Section 4.4 one  finds ao e lementa ry  extension (;~ of ( ;  
in which there  is an c l emen t  s so that:  

dnc) s ( ; ~ S ' .  

In part icular  this \'iclds: 
{11 x s ~ s ' n ~ s  ~ = K I s a y u  

121 s t ( ;  S I ~ S L N s { ( ; I  S~I : 'Y {sa.yt, 

and one  concludes  as in Section ,4.4 thai e i ther  S or ( ;  - S is ..~-small. as claimed. 

This comple tes  the proof  of T h e o r e m  56, 

6,3. A tim' lenzma~ 

We ment ion  two useful proper t ies  of A - c o n n e c t e d  groups.  

Lemma 58. [ t  K is a normal .~nb~rotq~ of Hu' ,A~conneclcd grozq~ (3. lllt'~l (J;/K J,; 
A K~ K - con necn'd. 

Lemma 59. !( N is a linilc nortmd sub~ro~ff) of  the A -comwcwa  groap G aidd N ix 

c . . t . i n c d  i~ Ou' cenmHi=er of .4. then N is co.laim'd in the center q G. 

(One looks at the kernel  of the pe rmuta t ion  r e p | c s e n t a t k m  gi',cn t~ r the action 

of ( ;  on N via cot'tjugatiorl: of. 15. § 3] for ,4 = (1 1.1 

!~,!. S U P E R S T A B L E  G R O U P S  

7. Generalities 

We nov~ enter upon the extension of the results of [4] to broader classes of 
stable groups.  O u r  basic idea is to reptacc w-stabilit~ by supcrstabil i ty and Morley 
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rank by x-rank in [4]; the main complication arising thercfrom is the necessity for 

working with disconnected groups. 
The main rcsults of this part are as follows: 

Theorem 62. (see Section 7.1). A stable gtm,'p of ~e-rank I is abelian-by- 
linite. 

Theorem 63. (see Section 8). A stable group of w--rank 2 is solvable-by- 
finite. 

Theorem 64. (see Section IOL A stable group of x-rank 3 which comains a 
definable subgroup of :c-rank 2 is either soh:able-by-tiniw or else contains d 
subgroup of finite index isnnlorphic to one of the gnmps: 

SL(2, FI or PSI.(2, FI 

with F m l  algebraically closed field. 

7.1. Abelian subgroups 

The main result of this subsection will be: 

Theorem 68. Let G be ml infiniw R~,-saturatcd group. If (3 ix ~lqwrstobh', thc~l (; 
contains an infinite abelian subgrottp. 

The next three lemmas can be replaced by trivial argu-acnts under the hypoth- 
eses of Theorem 68. but they cast some light on the general case. 

Lemma 69. Let G be a stable group containing a noroull subgroup N such ttult dl 
least one G-conjugacy class S contained in N ix infinite, Then N conlailLs ttll infinitc 
G-definable sl~bgroup K which is normal in G, 

Proof, Let 3 be a linite invariant set of formulas containing the definition of S. 
For any inteoer k let 

S ~ ={st ' . . . "  s~ :s, cS}, 

l.ct k be chosen so that: 

A-rank(S k ~ = r 

is as large as possible. For g. h e G deline an equivalence: 

g - h iff S~g and S~h differ by a set of A-rank less than r Iwith a slight 

alteration of earlier notation we will wrilc: Skg ~ S~h L 
Since S ~ g ~ S  "-~ for g E S ~. it follows that S ~ decomposes into finitely many 
equivalence classes (S =~ has A-rank r and finite multiplicityi. Let X be one of 
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Ihcs¢ equ iwdcncc  classes, It follows easily that X is det inablc ,  as in Section 4.5 
(this d e p e n d s  on the fact that X c S k, and that S ~ meets  only linitclv re 'my 

equiva lence  classes in G.I We may takc X to have _l-rank r. Fix x e X. 
Now let K be the equivalence  class of 1 in G, i.e. the isotropy group ol S ~ 

modulo  sets of  lower  rank. Notice that  X x  ~_ K. We will now show that X is 
definable .  T h e  e l ementary  extens ion  argument  at the end of Sect ion 4 .4  yields an 
e l ementary  ex tens ion  G ~ of G and an e l e m e n t  g c S  k for which: 

(inc) gK~_(S~) ~, 

b'ron'~ this one  der ives  easily that any def inable  subsct  of K has 3 - r ank  at most r 
and J -mul t ip l i c i ty  at most  the .X-multiplicity of S ~, Hence  there  is ~.t maximal 
finite set 

gt . . . . .  g~ 

of  e l emen t s  of  K such that:  

.Y.x t g~ . . . . .  Nx  ~h~ arc nlutually disjoint ,  

l h e n  for any g<< N there  is an i such that 

Xx ~gfq, '(x i g , ~ 0 .  

"I hus: 

K = U x X  ' X x  ~,' 

and it follows that N is del inable ,  as claimed.  
( ' lear ly K _q N, and since S ~ is closed under  conjugat ion  K is norr la l  in G. This 

comple te s  the ~,trgkllllcnt. 

L e m m a  70. Let G be an infinite stable gro+q) with finite cen,er in which the 
centralizer o f  cot arbitrary e lement  is ]btit¢ o f  boumted  orde, l h e q  (3 contoins an 

infinite de.lhmbh' stable md~grot+p H slwl" tirol all WOl~'r nom,a l  suhgrot+ps o,f tq are 
contained in lll~ + cc~lR, r o ]  ('L I~t parfict+lar H is connected. 

Proof .  Let .X be a finite hwaf ian t  set of f c rnml  s .  We ptovc first: 

The collection of normal intinite subgt~ ups of G which are in 
x(G~ contains a unique minima' elerm.qlt. 

Using j - 2 q ' a n k  [12. Chapt¢," i i ]  it is easy ,~+ see th~c any normal intinitc 
subgroup of G which is in ~(G)  contains a minimal such subgtx 'm. Suppose m~w 
that H~. H2 are distinct mhfimal normal infinite j(G)-subgroups, so that the 
iracrsccti tm: 

H = Ht n H: 
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must be finite. Then any element h 6 H~ centralizes an ildinite subgroup of It=, 
since commutation maps H~ x Hz into H, This contradicts our assumptions, and 

cstablishes claim (A). 
Call the group delined by (.1) Ga, and set: 

H= N c;+~ 
,.l l inlt~" 

ill~ at  i i l l l l  

(this is the interscction of a directed systemJ. Taking (; to he sulticicntly saturated 
(and noting that the hypotheses are preserved by elem,_ntarv cxtensionh we may 
suppose that H is infinite. It is a normal subgroup of G+ and every noneentral 
conjugacy class in H is infinite, sirce centralizers of noncentral elements are finite. 

"liras Lemma 69 shows that H contains an infinite definable normal subgroup K 
of G. By construction: 

K = H .  

Thus H is definable in G, and is the smallest infinite definable normal subgroup 
of G. Now apply the same construction to obtain lhe smallest G-delinabte inihlite 

subgroup N of H which is normal in H. h is clear that N is also normal in (;, so 
N = tt. Thus H has no proper delimd~le illlinite normal subgroup+ and Lcmma b t) 
shows easily that H has no infinite normal subgroup. 

Finally, suppose F" is a finite normal subgroup of H. Since H is c lcarh 
connected, F is contained in the center Z of H. But Z is a finite normal subgroup 
of G. and since nonccntral elemcnts have infinitc conjugacy classes, Z is con- 
tained in the center of G. Thus F is central in G, and the proof of Lemma 70 ix 
complete. 

Lemma 71, Let G be an in¢i~tite Ru-saturated stable gro+q~ containing m~ inlini+e 
abelian deJinabte subgroup, Then there is an in]inite stable Ru-xaturatcd simph' 
group such flu~t the centralizer of each element is lbtite of botmdcd ordeh Such a 
group is ~t torsion group of odd tinite exponent. 

Proof. Applying the stable chain condition to inlinitc centralL, ers in G, we may 

assume that the hypotheses of Lcmma 70 arc satislicd and take t t  a~, in the 
conch~sion of l+emma 70. Then 

( I )  H is infinite, stable and R, +saturated: 
(2) H has no infinite abelian ~ubgroup: 
(3~ H has no nonccntral proper normal subgroup: 

14J All centralizers of noncemral elements uf H are finite of bounded order, 

Let Z be the center of H. Then H / Z  is an infinite ~-tablc R,,+salurated simple 
group. Let a/Z  be a nontrivial clement ot" H/Z, and let (TZ be lhe centralizer of 
a/Z  in I4/Z. Since Z is finite, a con urmtcs with a subgroup of fi+~itc index in C 
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and it follows that C is finite, so that C/Z is finite. Thus H/Z  has all the desired 
properties. 

As to the final remark. . ,uch a group has odd exponent  by [8. Theorem 2.1]. 

R e ~ a r k  72. The existence of such a grou 0 is highly unlikely, but this question 
may involve combinatorial  group theory ..'sscntiallv. 

iahroo| of Theorem 68. By Lemma 7 I, if there is a counterexample G. then we may 
suppose G ix intinitc, supcrstable,  and connected,  and that the centralizer of every 
nontrivial c lement  of G is finite of odd order. For g e G -  1 the conjugacy class 
gO; of g in (3 may be identified wi 'h the cosct space: 

C ~ g I \ G .  

and since the centralizer of each element  ix linite, it follows from l .cmma 65 thai 
the x-rank of g¢; coincides with that of G. 

Nov,' if ( ;  is supcrstal'qc, tile Indccomposabili ty Theorem 41 implies that (3-- 1 
consists of a single conjugacy class, and tile desired contradiction follows by an 
elementary group theoretic result given in [14]: 

Fact 73. Lef G be a torsion tzrotq) coniaining ~ .~ingle nontrit, i , l  cmtjugacy t'lt~.~s. 
Then ( ;  is finite, o.f order at most 2. 

Corollary 74. Let G be a stable group of ~c-rank 1. Then G is abelian-by-finite. 

Proof. By Theorem 68, G contains an infinite abelian definable subgroup A. If the 
index of A in G wcrc not finite, it would follow easily that the :,:-raak of (3 would 
bc at least 2 (as usual, consider cosets of A in G k  

72 .  Stable nilpotent groups 

Definition 75. Tile group G is centralizer-connected ifl m~ conccntral element has 
a centralizer of finite index in ( ;  (equivalently cx,:ry conjugacy class with more 
than one clement is infinitcL 

Lemma 76. A,uy stable group Im.s a centralizer-cmmected ,~bgrtmp of ¢inite index. 

Proo | .  Apply tile stable chain condition to centralizers. 

Lemraa 77. Lel (3 be a centr~di.zer-comu'cted infinite nitpotent gr, mp. Then the 
center Z ~ff G is infinite, 

Pioot .  If Z is finite, let o lg  be a nontrivial ctcmcl~t of the ceiltCl of (71Z "[he 
conjugales of a all lie in the set oZ, which is finite, so a is ccntra~ by Definition 
75. which contradicts the choice of a, 
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Corollary 78. Any infinite stable nilln~tent group has a subgroup of ]inite it~dex 
whose center is infinite. 

7.3. Stable solettlde groups 

Remark 79, Let G be a staMe group. Let A b c  it maximal i/bclian subgroup or it 
maximal normal abclian subgroup, Then A is definable. 

{In eithcr case A is the center of its own centralizer, and the stable chain 
condition implies that this is a definable set.) 

Lemma 80. Let G be tin infilffw stable soleable ce~ltrtdizer-connecwd e, roup. Then 
G comains (In infilliw normal abelian dzfinable sul)gremp. 

Proof. Note that any finite ~ormal subgroup F of G is central in G [since ils 
centralizer in G has finite indexL 

Let Z he the center of G, which wc may assume to bc finite. 1.el II be the 
inverse image in G of a nonmvial  normal abelian delinable subgroul~ BIZ of (;IZ. 
' fhcn /3 is not central in G, so B is infinile, Fnrthermo~,e B is nilpotent of class 
two. If /3" is the intersection of all centralizers of linite index in B, then B" is 

normal in G, and by Lcmnra 77 its center is an infinite normal abelian subgroup 
of G. 

Corollary 81, If G is an in tit, tic s¢tlble solvable group, th~ n G con1~lins tm infinite 
abeliall dz{hlable xl~bgt'oup wl;ose m,'nlillizer has finite imlex in G. 

8. Theorem 63 

Recall Theorem 63: A svperstable group of :,~-rank 2 is solt'alde-by-fi~ffte. 
The proof of tiffs theorem ,viii be divided into three subsections. 

8.1. Prelilnintu'v attalvsi.~ 

We begin the analysts of 11 suf~crstable group of x-rank 2+ If G is m~t solvablc- 

by-linite a contradiction will emerge. For the present we ilSstlnle olllv: 

lhyp I} G is not abelian-by-linite. 

Let A bc an infinite abelian definable subgroup of G (Theorem 68L By (h~p l l 
the index of A in G is infinite. It follows thai A has x-rank I. 

Definition 82.  Let G bc a group with a subgroup A 
( I ) The clement g c G quasim,rn1~di..es A ill" A and A ~ are conlnlellsllral'~Ic (i,e. 

A N A ~ is of linitc index in bolh A and A':), For G snpcrstable an equivalent 
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condi t ion is 

~ - r a n k ( A  N A ~ ) ': "~-rankl A ), 

(2) The  qmlsinormalizer of A is lhe group  of all e l emcn l s  of (7 which 
quasinorntal ize  A. 11 will be dm/o led  O ( A ) .  

Lemma 83. Let G be a sml~le group and let A be a definabh, subgroup ~f G. The .  
t u'rc is a definable subgroup A,, of  finiw imh.x in A such lhal: 

NI A,D = O( A I. 

(Note  thl.i! if .A has a connec ted  ,~ut'lgrotlp At, of finite ind,:x, then this is 
obv it) I I .~,  } 

Prool. Apply lhc stable chah~ condithm to the famil~ of groups of lhc form A ~ 

wilCix,' g ~:: QI,A 1. 1.el . A  bc lilt: intersect ion of all such groups.  Since tills can bc 

reduced  to a finite intcrsecl ion,  tile index of  ,A,, ill A is finite, and i l  particular: 

Q(A<,I = O(AI .  

B \  t'OllSII'UCII')tl : 

O ( A  )~ NtA,, t ,  

hellt.'c: 

Q ( A , , tG  N ( A . I  

and the reverse  inclusion is, trivial. 1h i s  complctc.~ the argtlmClll. 

I t \  a change in our l loUil ion ~Ac hi{IV {lSStllllC {tie group A h{ls been chOscll m 

accordtmcc wi lh the aboxc Iclllnla: 

thyp 2i O ( A )  = N(A) .  

We now set N = N I A I .  
File analxsis now divides into an c:.ls\ and a diflicull C;lSC. according as the 

x - rank  of N is I o r  2. 

L e m m a  84.  If N has  x- rank  2. then G is soh'able-by-lmizc. 

Proot.  It sultices to show that N is solvablc-bv-l ini tc .  Cleai'lx N'tA has a - rank  1 
and hence  is abelian-by-finite by Corollary 74. The  result follows. 

Accordingly we IllI.IV nOW assunlc:  

l h y p 3 i  I x - r a n k ( N ) =  1.] 

Lemma 85.  O colltaills all A-c~mnecwd sidNr¢mp G,, of  liniw imh'x. 
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Proof .  For g c O -- N the intersect ion A r+ A '+ is finite+ It follows that for such ,~: 
AgA has x - rank  2, (To see this, cons ide l  the ttnifornlly del inable  inlinite sets 

Age 

where  c varies over  eosets  of A n A +~ in A,+ 
Since tim double  cosets  A g A  are uniformly del inable ,  it follows that  G - N is a 

finite union of  double  cosets  of  A. On  the o the r  hand  the index of  A in N is finite, 
so N is also a finite union of double  ccsets  ( = simple cosets`+ of A, 

Thus G breaks  up into finitely many double  cosets  of ex,, and Corol lary 55 
applies. 

Now by a change of nota t ion we may assttme: 

(hxp 4) [G is A-connec t ed , ]  

Notat ion  86 .  Z is the cen te r  of (L 
From now on we assume: 

(hyp 5) [G is not n i lpotent-by-f ini tc . ]  

L e m m a  87. Z i,+ ,tini+e. 

This is proved tikc Lemnla  84. 

Now consider  tile group H = G / Z  and the st+bgroup B = A Z / Z .  We claim that  it( 
tile pair  (G. A)  is replaced by tile pair  (El, B)  (so that N is replaced by \TlBtt lhell 

the hypotheses  (hyp 1-51 remain valid. This is cleat" for t11'+t +, 5+ (and similarlx il (7 
is no~ solvablc-byqini te ,  then the same appl ies  to HL For  dlyp 4"+ see l+emma 58, 
For <hyp 2-3"+ it i:. sullicient to prove:  

( l i O ( : \ Z / Z ~  = O ( A I / Z :  

t2) N I A Z i Z ) =  X(..~,l!Z. 

Now 'ac clearly ha \e :  

[O( A tiZ = N( A )iZ ~_ N{ AZ/Z~c_ O(+-iZIZI,] 

Thus if suffices to prove:  

[ Q { A Z / Z )  c_ O ( A  ~tZ] 

and since Z is finite this is s t ra ightforward,  

L e m m a  88. For gci E t -  N(17), IJN t~ ~ = (I).  

Proof .  Let a < A represent  b ~ B N Be'++ Then:  

a ~ A ' 7 .  
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It follows that ,,/ and  :~.v arc con ta ined  in tl~c centra l izer  ( '{o l of  d in G. Si~cc 

A n . A  ~ is finite the  sol :  

A • ,4 '~ 

has  x - r a n k  2, and  hence  C (u )  has  :c-rank 2. and  is the re fo re  of  finite index in G. 
Since G is A - c o n n e c t e d  we get  

G = C ( a L  

so  d c-Z.  a~d b ::: 1 in I-t, as c la imed.  

N o l a l i o n  89. Wc  change  ou r  n m a t i o n ,  wri t ing (7 fo r / 4 ,  A for B, N for N( B ~, and 

g for Z ( t l } .  ' l 'he~ wc have  in addi t ion  | o  (hyp 1-5): 

dlyp(~l For g t ~ G - - - N  A r i A  ~=(11 .  

N.2. The l~rulu~r 1)ecomposlion 

Nov,- v,c can ,..,,el de ta i led  s t ruc tura l  i n fo rma t ion  concc ln in~  G. (( 'f .  [4. [ . e m m a  

4, ~4.11, 

T h e o r e m  90.  If  w c (.~ - ,A, tlle~z G = A U .AwA.  13w element  w m a y  tw chose~ to 

be a~ itJvohaiotz (ia'. o f  order 2L th~rthemu)re .:~ = N(AI .  

P r o o f .  Wc proceed  in four  slops.  

Slep I: [=ix g in (7 •N. T h e n  G = N t O A g e  ~,: As  no ted  in thc  p roof  of  l . e m m a  

g5,  for g in ( ~ - - N  ~hc doub le  coset  A g A  has  :<-rank 2. No\~ sincc G is 

A~connec t cd .  condi t ion  4 of the  rc la t i \ i zcd  lndcconlposab i l i ty  T h e o r e m  

t ] ' i l co rcm 561 shows  that  the re  can bc only  one  such  doub le  coscl ,  as c la imed.  

Step 2: ( ' ; - - N  con ta ins  an involut ion,  Fix g v. G -  N. B \  Step w e  can write: 

g ~ =~dlgo, ,  

with a > { l , v  ,A, Let  w-= qd~ T h e n  w e = a ~ a , ~ < , A .  Sc t t ine  ~ t = w -  xvc ,,ct' 
, " ~ m • 

a = a " c A N A "  = 1 ,  

and  thus  w is an  inx'olulitm. Now lix such an in~olut i tm.  

Slep 3: Let  K = N F ~ A " ,  T h e n  N = A "k K (semidirect  product) :  Evident ly  

K ~_ N no rma l i ze s  A and  K ~ A = { 1 ~. | l  stl | l]ccs the re fo re  to sho \ \  lh:.l! N ..~K. 

I::ot + any  ++ in N s ince  P~w~. N we may  write:  

} | l ~ , '  = ( 1 1  W{|2 

with o~, d:? <7 :~, T h e n  o l ~1 :-:: o',' < :X" f") N = K. ' l h t | s  ~1 c= {~IK and ,\r = :XK. 

Slep 4. K = ( i I (and  hence  N = A) :  C o n s i d e r  a c-: K" .  T h e n  d e :x and  a "  e N. 

W e  claim that  ~t"~ N for all g ~ ( ; .  This  is clear il g , :  N xvhilc if ? - =  a~w~ e with 
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a~. a e ~ A ,  then: 

tl ~ = (a")"' 

is also in N. Thus .'~' is contained in N. as claimed, 
Now set B = ( a  ~ : g ~  G). Then I ] ~  G and B is contained in N, If .a ~ I we will 

now obtain a comradiction. 

By (hyp 6) since a ~ A therefore a is ,aoncentral. and hence C(a t  has inlinite 
index. This implies that B is infinite. Since [N: A n B] is finite, therefore [/3 : A n 
B]<~c.  Conjugating by w, 

[ B : A " N B ] < z ,  so [ B : A n A " A B ] < x ,  

contradicting (hy'p 6). 

Thus a = I, K = (1). and N =  A, completing the proof. 

The double cose( decomposit ion described in Theorem q0 is calicd the Brt&at 
decomposition of G. The motivatio,a for lh,s is described in 14, Scclion 4.41. 

Lemma 91. if ge  G aml Ihe index of flu' cemmli:cr C(gl  o, f g i ,  C i,~ liniw, &on 
g = 1. (In parlic~dar Z = ( 1 )). 

Proof. Let F be the subgroup of G consisting of elements  whose centralizer in (~ 
has finite index, Let H bc the centralizer oi /£ Then H is o: finite index in 
G ( L e m m a  76), hence is not nilpotcnt-by finite. It follows as in the proof ~f 
Lemma 87 that F N  t t  is finite, and hen(c  F is a finite normal ,,ubgroup of G. 

We will nox~ show that any linitc normal subgroup N. of (:  is trixia!. Since 
A ~ ~ A - N~ for g c  N., it follows that: 

N + g Q ( A ) = A  

by (hyp 2) and Theorem 66. Then since A is abelian Nu centra!izes A, so N,,g Z 
by Lemma 5Y. t to~e~cr ,  

Z N A  "(1~ 

by (hxp 61. This proves tha! N.-.. m~d a parti~uku / - - - i s  trivial, 

8,3. C(mjugacy cldsses 

In addition to the double coset decomposit ion of ¢,eclion "~.2 ~vc \viii ha~,." to 
acquire information concerning conjugacy classes ip, G. 

Lemma 92. With lhe hylmthesc,~ at~d nolafion~ of Srction S.2, ( ;  ~onl(fi~.~ o 
de linable sul)groul) K of lillit(' imte.v such I]~at iio co~l]ug(icy class of K hos 
~-rank 2, 
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X= U A", 

Thml ck'arly 01c ~-rank of X is 2 (u.Hng (hyp6)) .  Fm' thcrmore .  for a ~ A  the 
centra l izer  C{a) of a in G conta ins  A, hcnce  has ~- rank  at least one,  and it 
follows that the conjugacy class of a has ~:-rank at most  one.  

The  p rob lem then is to s tudy the conjugacy classes of  e lements  outs ide  x. Shlcc 
conjugacy classes are uniformly def inable ,  there  can bc al most  finitely many of 

:~-rank 2 in G ,  say C~ . . . . .  ( '~. 

Suppose  wc arc able to find definable subgroups  K i o[ tinitc index in G such 

that:  

K, F I ~  = ~  ( i = I  . . . . .  kk 

"l-hen we ilia} set K = ~ K, and we will be  done.  
It the re fore  suffices to cons ider  a single conjugacy class C of z - r ank  2, and to 

lind a dcl inablc  subgroup  of Iinitc indc.,: in G which is disjoint from C. 

Now givcll any definable set S ~ G. we will have the equivalent :  

/_N-ranklS) = ~- rank(S!  

f m a l !  sufficiently large finite sets A of formulas .  (Cf. [12. C hap t e r  11 Example  
1.1c~ (.\ = ~c) and T h e o r e m  3.13 (h = R,)].) Fix a finite invariant set ~ of formulas 

satisfying: 
(1) ~ - r a n k ( C )  = 2: 
~2~ The  formula~ "'x = y" .  x e y~;", "'x ~ A ~'', " 'xE X'" belong to ~. (any addi-  

tional pa ramclc r s  occurr ing in the l aq  two formulas  should  bc replaced by frcc 

,, ariablcs). 
By T h e o r e m  53 we may tix a A - i n d e c o m p o s a b l c  normal  definaI-le subgroup K 

t,f finite index i,, G. Wc claim: 

K n ( ' =  ~,1. 

I'. on ~lle contrary  the intersect ion is noncmpty ,  then:  

C'-~- K 

since K is normal  in G. Since K is , 5 - indccomposab lc  and the sets X and (" are in 

/_V G k  therefore :  

, ~ : r ank tK  Cl X I <  2. 

l 'h is ,  however ,  yields an immedia te  contradic t ion,  since the family: 

{ I K - { I D n A ~ : g ~ G }  

gives a ,:X-spli~ting of  K-{ 1 t into infinite pieces (as K f"l ,4 ~ is of linitc indcx in A v }. 

This  contradic t ion comptc lc s  th..2 argunlelll .  
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Wc will have fur ther  use for this part icular  subgroui~ K in lhe nexl lenlnl:.l, In 
part icular  note  that by L e m m a  91,  

A = C(a)  

for any nontrivial a c A, so wc may assume tha! IIic formulas  del ining A and .\' ill 
A arc formallzat ions of: 

"'x ~ C(y I'" 

" x c  U C ( y ~ f  ". 
G 

Assume now: 

(hyp 7) [G  is not solvable-by-f ini te . ]  

L e m m a  93. The grmq~ K constnwted in the pm~t  o.  L e m n m  ~)2 is contained in X, 

ProoL Suppose  b ~ K -  X and let Y'= U,:, ~ C( I'~h ~ , e  clainl 

(11 X f - /Y=  (1): 

(21 A - r a n k ( K r ' l  X ) =  A - r a n k ( K  f'l Y)~: 2 for large ,(x. Thi~ will conlradic! the 
A- indecomposabi l i tx  of K. 

As far as ( 1 ) is concerned ,  if the intersect ion of  X and Y is nonlrixial ,  then wc 
can assume there  is a nontrivial  c l e m c m  o in: 

A f3 C(bl .  

Then we get a = a~'< .~ f ' /A ~', so by (hyp (',~: 

I , . c N ( A t = A  (Lemma 88~, 

contradict ing b c: K - X, 

As for 12}. we showcd above:  

. l - r ank(K O X t : :  2. 

We consider  K N Y. 

No\v ( '(b* is in!hlite since :~-rankd¢~ }-- 2. } tene t  ( '(b<}fh K is infinite for all 
g c G. If A-rank(('lb~,~ :: 2, then (2} is trixiai, ~o assume:  

.X-rank C(bi  = l, 

Then with the help of L c m m a  S3 and lhc ILM>olhesis (hyp 7) it is easy to xcc |ha l  
tile index of tile quas inormal izcr  

O(C(b)~ 

ill G is infinite. Let t ing g run over  cosct  rcprescn ta l ivcs  ill (~ nu~dulo O(('(blk 
wc claim: 

{(K N ( ' ( b V ) t - [ I ) }  
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is a A-spl i t t ing of K f) Y into infinite pieces.  This will comple te  the proof  of (21. 
All that needs  to bc p roved  then is that the in tersect ions  

C(h l  ~'h C(h': ~ 

arc trivial if ~ c ('; -- O(C(btk  This is an easy variat ion of the proof  of  l~emma Sg. 

Thus  lhe proof  of l. ,cmma 70 is comple te .  

Corollary 94.  A c o n t a i n s  on il~colution. 

Proof.  It is clear  that flae group  G we cons idered  originally (before the changes  in 

nota t iont  con ta ined  an involution,  Hence  the same argumell t  provt.'s that K 

conta ins  an inxolution,  and  lhc~l l . cmma  93 implies that A contaiYis ;211 involution. 

Proof of  Theorem 63. We derive a contradic t ion  from the above analysis of a 

COUlltCl'eXal'llplc, 
l ,et i, ic: K l~c inx otul ions  in distinct coniuoates, ~ . t~l' ' A .  l ' C l  ~ = i i .  B ~  r l ~ c ~  ~ ~)3 

we lnav assume a ~ A. Note  a % 1. 
Bx a trivial computa t ion :  

a' := e, , .A CI ,A ', 

lJlencc by (hyp t~ and L e m m a  88 i~: N I A ) =  A. Similarly i~-,4 contradict ing the 

choice of i and i. 

9. Solvable groups of ~-rank 

We need a more  precise analysis of groups  of ~c-rank 2 for use in the analysis of 
groups  of  x-raP.k 3 We will study the s o h a l q c  nonni lpotcn t  groups  of x - rank ,2 .  

The  main example  -ff such a group is the ~cmidirect product :  

F. xF" 

of lhe addit ixe and l~vdtiplicatixe groups  of  an algebraically closed field t( x~herc 

F" acts on F, by mtdfiplicatioll.  The  general  case will turn out to bc not too far 

i rom lhis example .  
Our  main result wdl be: 

Theorem 95.  Let G Iw a SUlx~rstahle group of ~-rank 2 which ix not ~fitl~owm-by- 
tinite, "lTwn G contai~s o std~group H of finite imlex such that: 

(1) the center Z of H is finite: 
(2) the quotie~lt t t /Z  i~ isomorphic to a semidirect product: 

F_ ,", F" 
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of the additive and m.ltiplicative groups of ,m algebraically closed ]ieht E F" acting 
on E, by multiplications, 

Lemma 96. With the I~ypotheses of Theon,m 95, G comab~x d connecwd abelia~ 
subgroup of ~-rank I wl,,ose mmm~lizer is of ,hnitc imk'x in G 

ProoL We  may assume that G is solvable and centralizer connected (Definition 
75). Let A be an infinite normal abelian definable subgroup of G (Lemma 80L 
Then the index of A in G is infinite, so :c-rank(Al = 1. The center  Z of G is finite 

since G is not nilpotent-by-tinite.  
Fix a ~ A -  Z. The conjugacy class of a in G is infinite, since otherwise the 

centralizer of a would disconnect G. Since A has :,:-rank I, there can he only 
finitely many such conjugacy classes. If follows that A contains only linitcly many 
normal subgroups of G. 

Now any definable subgroup B of G which is a subgroul'~ of ,A of linite i~ttex in 
A must contain a normal delinahlc subgroup of G which is again of Ihtite index in 
A tapply tile stable chain condition to tl:c conjugates of B), I! follows that it" A" is 
the smallest definable subgroup of A which is normal in G and of linite index in 
A, then A" is connected. This proves ~he Icmma. 

Lemma 97. Let G be a xuperstable group of :c-rank 2 which is not ~ilpotct~t-l,x 2- 
!blite. Then G c(mtain,~ a comTected sM~gro~q~ of linitc imh'x. 

Proo | .  We may take G to be solvable, centralizer-connected.  Then the conjugacy 
class of any noncentral  c l e f - n t  is infi:lite. Since G is not nilpotent-b3-finite,  the 
center Z .  of G is finite. 

By Lcmma 80, we can fix an inlinitc normal abelian subgroup "~ of G, and b~ 
the proof of Lemma 96 A will contain a connected subgroup U of linite index, [ ; 
is again a normal abelian subgroup of G. Let Z = U (q Z. ,  and fix , ~ (! -- Z, Let (" 
be the centralizer of ~ in G. 

Now C con',.ains U and :c-rank( UI = 1, so U has finite index in ( :  I,ct this index 
be called k. Our  main claim is: 

(ind) for any delinable subgrm~p t l  of linitc index in (;, tile index of t t  in (~ is 
bounded by k. 

This will yield the conclusion of the icmma at once, so it suffices to verify (indL 
Fix H a delinablc subgroup of finite index in G, and consider the conjugacy 

class u "  o f .  in H. Applying Corol!ary 57 and noting that . "  is an infinite subset 
of U - Z ,  we conclude easily that / r - Z  reduces to the single coniugaey class ~" ,  
In particular u "  is invariant undm conjugation by G, so for g,: ( ;  wc call sol~:c 
the equation: 

| t  h = II ~ 

with h c H ,  so gh L~(- g c C H .  and thus G c C H .  
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On the other hand U E  C D  H tsince I. l is abelian and connectcdL so the index 
of t l  in G is al mosl  k, 

ILemma 98. Let G be a comwcled  mmni lpotent  centerless group with :c-rank (U)  = 

t. ~llu'n for some algelmficalh- closed /ieht F-, G is i.~omo~l~hic lo the semidirecl 
Prodtwl: 

F. x F "  

Of the addi t ice  and  mulliplicatit:e groups o f  1-\ where [-" a(ts  on 1:, by mul t ip l i ta-  
tioll. 

Proof .  | ' ly l , cn /ma 96 we may li'~ a connec ted  abu'l ian norn la l  subgroup  / i  o f  G 

Imving ~-rank I. Cl'his will lurn out to b c a  copy of F . . t  Fix u c  U - f  1). As in the 
proof  of  I . emma ~)7 h follows that U -  ( 1 '~ ::- u ~. 

No,,,,' fix b ~ G -  C( I,~ and set I =  ( ' t bL  Form the set of comnluta tors :  

X ,-~ {[b, u] :  i~ c U L  

( ' learl~ T D  [;  is linite and hence X is in linile. Fur the rmore  since G/LI is abelian. 
X ~  U. Bul [~ is connec t ed  of :~-rank l,  and it follows that  U -  X is timte. 

We  claim now that U T =  G. It suffices to prove ttlat [_IT has Iinite index in G. 

Fix go: G - U T  and cons ider  [tx ~]. If [b. , q ]~X i: follows easily that  g c U'/_ 

H e n c e  [b. g ] c  U - X. However .  U - -  X is finite, and if [b. g ,]  = lb. g2] then g, ~ Tg?. 
so it follows that G-I~T,, contains  o n h  linitelv many right T-c(~sets. Hence  a 
fort iori  UT  is of linitc index in G, and we conclude  that  G = UT, as claimed. 

Since G = U T  and [ r n  T is tinitc, it follows that F is infinite and x - r ank (T l  = 
I, Lcl T,, oe an infinite abelian definable subgroup  of T. Then  G = U T  o tsincc G 
is connectcd~ and /.}N T , ,= (1L  since G is centerless.  Make a small change of 

nota t ion ,  writ ing T for To. St) far we ha`.e ob ta ined  a scmidirect  pl'Oducl 
decompos i t ion  

G= U~ T, 

For t c T delinc:  

W c  clahn flte map:  

": T---~ U -  (I)  

is a 1-1 on to  map,  It is on to  shtcv [ ] - I 1 ) = ~ d ; = l d  :~ = u ~ ,  and I - I  since from 
,~ = [ W¢ conchIdc easily that  the ccn t ra l i l c r  of st ~ contains  

TU{.}, 

and this is a sel of ger~erators for G, SO st ~C-Z(GI = {1), 
Now wc can c o n \ e r r  ~1 into the muhipl icat ive  grotto of  a th,,Id. Adio in  to T 'a 
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formal symbol 0, and extend the multiplication on T to TO{0} by the rule: 

x . O = O . x  =0 ,  

Dvfine also ~)= 1 (the idet~lity element  of UI, Let F = T U  {0}, and detine adttilion 
on F by: 

( x+  y)~=:~ +~  

(on the right + denotes  the group operat ion restricted to U). 
It is easy to verify that F is a field, cf. [4, Theorem I of Section 4,2]. 

Furthermore F is superstab!e, hence algebraically closed, Thus the proof of the 
lemma is complete. 

Lemma 99. Let G be ~, connected nonnilpote~:t gro~q~ of x - rank  2. 71~en [or some 
algebraically closed fie~_d f. G is isomorphic to a semidirecl prod,ce: 

F. x T  

where T is a connected abelian dit'isil,lc md~gr(,~q~ of (~ cont~dnine, the centcr Z ~ff G 
and smh that 

T / Z = F "  

via a~ isomorl~hism whicl~ traF~s,hmns the action ~ff T /Z  ol F. t, ia conj,gation into 
the action of F" by ,mdtiplicatioa~. 

Proog. By an argument t,ml we have used repeatedly, the center  Z of G is tinitc 
and G/Z  is centerless (since ~11c center  o ¢ G / Z  is finite and pulls back to a finite 
normal subgroup of G, which is necessarily cenlralL The previous Icmma yields a 
facmrization: 

G/Z  ~ F x F" 

for some algebraically closed lield F. l.et U~, 7~ be lilt" ill'¢ersc images of f:., F" in 
G. 

Both /3~ and l~ contain abelian subgroups /~l, T of finite index, and wc may 
lake I.i to be normal in (L Then by the proof of Lemma '~)6 wc may even lake /.; 
lo be connected. 

Now U ' /  has :~-rank 2, so UT :: (;. Next ~vc will show: 

(intl U O Z = ( I h  

then since clearly U D  "/-~ Z il follows thai:  

(spll U N  T = ( I I ,  ( ;  '= U× T. 

Our claim ~intt is proved as follows, [:ix ~ U - Z  and define: 
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for t c 7. Since U is c~nnec tcd  Corol lary 57 shows that  "1- is cofinite in U ( J  ~ u" .  

st) "I is infinite). If U A  Z is nonlrivial  it follows du~t for some tt ~ t~ in T we get 
all equation', 

i~ = z t .  with z c  u n z .  z ~ -  1. 

Then  modu lo  Z we have tl = i':. so in F" (viewed as a sub-group  of G/Z)  we gel 

q / Z  = t , / Z .  However .  this yields: 

t~ = t:. s o  z = l ,  

a contradic t ion.  

Thus  tint) is p roved ,  and (sp~) follows, In part icular  it now follows that T is 
COl)heeled. Now T is of :,:-rank I and connec ted ,  so it follows easily that T is 

e i ther  of printe exponen t  or  divisible. Since W Z N  T is an algebraically closed 
lield, we must Itavc T divisible. 

Finally w e s h o w  that Zc_'it2 If z = t t t c Z ,  where  u c U ,  tCtTk then 

(1 = tic "~ tt ~ for tl ~ [I  

and hence  t central izes  both U and "l; Then  t c Z  and u c Z ~  U = ( l L  so that 

: = t ~ "I: as claimed.  

Proof of Theorem 95. Combine Lcmmas 97 q~ld 99. 

At this point  we can ~o,~ extra informat ion  sirnplv, by. repeatin,_'~ ar~umcnts~ in [4]. 

The  folloxving resuh occurs  in [4, §4,2 as "lheercm,,  3 and 4]. 

The)rein 100. Let G, Z.  "11 f£ be ~s i ,  the xtatcm('nt of  l.(,mmt~ 09 (ttl(t write U .for 

F.  viewed t~ a normdl s~d~gr(mp or' G. Then: 
( l )  l j  t t  is (t st~bgroup ~( G xl¢('h th~ll the strtwture 

G H ~ ( G  : H (lixtillgv.ishcd) 

ht~s ~-rank 2 trod xo that U, T drc co~ztzet'ted in GH, tile, H is (h~timtble i~z (;. 1{ H 

is i~]inite told unetltml to G. then H htz.~ one of  the .following two forms: 

(i) U × L  with I_~ T.~nite: 

(ii~ T"  with u ¢: t_!. 
(2t Let (~ be (m (tulomorl)hism of  G such that the strtwtm'e 

G,, = (C;:  (~') 

has  ~:-rank 2 t im/ so  thtlt U. T o r e  ( 'Ol l t l e ( 'w( t  itz G, , .  Suppose thai .t))r sore(" ,. 2, () 

(~ u = 1 

(~x On ~mlo~orf)hist)l o( (; .  Thct~ (v is tHt itmcr ~mlomort)hism, 
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I0. Groups of ~-rank 3. 

Definition 101. ~ superstable group G of x - rank  3 is good if it contaius a 
definable subgrotq~ of m-rank 2, and is bad otherwise, 

Thi,, section is dcvotcd to a proof of Theorem ¢~a, wl,dch reads as follows: ,'~ 
good grOUp Of x-rank 3 is either solv(d~le-by-finite or ( 'm~/ai~ tt xubgroup o f  timre 
iltttex isomorphic to o~le o f  the groups: 

SL(2. F) Mr PSL(2, FI 

with F aH algebraically closed ]ield. 

To avoid tmnceessary repetit ion of a rg tmen t s  given in detail in [4] wc will 
restrict ourselves to the proof of the following, which is all that is needed to carrx 
out the arguments in [4] using :~-rank rather  than Morley rank. 

Lemma 102. Let G be a stable group o f  x-rank 3 and  let B be a defimd~lc sMhqro~q~ 
o] :~-rank 2. A s s . m e  that G is not soh'at~h,-I)y-{inite. 77u'u: 

l l) /3 contains a cmmected  .om~ill)ote, t  dciim~t,h ' s~d~gr, mp ,,1' l i , i tc  imlcx': 
(2) G contains a comwctcd  sul..g, roup o]" ¢i.ite imh'x. 

(One also needs all the information in Section tL which is ~vlLv we went through 
it in detail.) 

We break the proof of this lemma up into se" eral pieces 

Lemma 103, Let G be a superstable group o.f x-rank 3, and suppose that G is ,or 
solt'able-I~y-.finite. Let  B be a d(qimlble ,~ul~group o f  (7, hewing ~--rank 2. The~l B is 

not n£2ote~zt, 

Proof. Since we may replace B by any definable subgroup o~" finite iudex m /3. v,e 
may take /3 to be solvable and central izer-connected (°lheorenl 1~3. l .mnma 7{~h 
and so that O ( B ) = N ( B )  (Lemma ~3h Fur thermore  we may take ( i  to l~e 
centralizer-connected. 

If B is normal in G. then easily G is solvable-by-linite. Therefore \re may iix 
x ~: G so that the group: 

,.'~,, = B n B'  

has inlinite fl~tlex in /3. and hence ~'--rank(A.) is at most I. In fact A .  has :~-rank 
exac th  1. since otherwise A.  would he finite and it would follow eas ih  lhal the 
set: 

B ' B "  

has ~-rank 4. 
Hence A.  contains an infinite abeliml definable subgroup A, I.ct (" be the 

centralizer in G of A. If C =  G, Ihen A is normal in G and x - rauk(G/A)  is at 
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most  2. It then follows that :c-rank(Ct  is at most 2, contradict ing our  assumptions.  

Thus  C¢:  (3 and since G is cen t ra l i ze r -connec ted  it follows that (" has zc-vank 
at most  2, This implies easily that e i ther  ('f"l I~1 or  ('f'l B' ha'; c.-,':mk t, Withoul  

loss of  gcncrali t},  ( ' ( ' 1B  has :,~-rank I. 
NOw the ¢cnlcr  Z of lit is inlinitc b \  I.mrtma 77. Then  A .  Zc_ Cf3 B. and it 

follo,,vs that A f"l Z is iY|linilc, Repea l  the foregoing maalvsis with A n Z ill place 
of .At: lhcn t : ~  (',  and we conclude  ( ' n  B" has x - rank  1, so 

A N Z ( B ) N Z ( B ' )  

is infinite. But the central izer  of this htst g roup  conl;,titls both  B und 13', 
contradic t ing tile foregoing al'l::tlxsis. Thus  ~rc tlt~X'C arrived at it contradict ion.  

The  lirst part  of I , cmma 102 is nmv easily obta ined .  

P r o o |  o[ L e m m a  102 ( i ) .  By I ,cmma It'G, I'} is not i l i lpotcnt-by-l ini tc ,  q h c n  the 
analysis of such group,, in Scctitm t) yields d'tc lesull.  

~oxv using H~corcm I t) t) and more  or  less dircct calcuktlious it is possil-,Ic to 

p r i n t :  

Lcmma 104. Let ( ;  bc tt xulwrstablc group o1 a,--rank 3. Assume  that (3 is- not 

xMcobh'-I,y-tinitc (rod that B ig a connect('d dethud~!c sHbgroup, ~ - r a n k ( B } =  2. Let 

I~ ~. T be t~s in Lcnlmt~ 9t) (we know that B i~ nol nil£otem by L e m m o  1031. "lTwn (} 

cqllo[~, t]lc xcI: 

/r.  N(TI./,7. 

( | h v  dctaits  v, ill be fotmd ill the sl;alcnlcllt i.tnd proof  of 14, Section 5. l, l , cmma 

Lemma 105. With the n(.mtio~s and hypothe,ws of  l.('mnla 1114, (~ i~ ~1 linite utlion 

(~t do ,bh '  cos<'*s o.t B. 

Proof .  Since I~ is clcarlx of tinilc index m N{I]), there  arc truly linitcl\ nlan~ 

double  coscls  ( :,: s imple cosclst  of tile rot'Ill: 

B.~:B : I]x {x t_ N(B)I .  

On the o the r  hand by Lcnmla  1tl4 an\  dt~ublc ct/scl of B max bc xxrittcn 

l~xl:~ (x ~ N(11),  

sO it stlll~ces to cons ider  the double  coscls  cor rcsp tmding  to e l ement s  x c. N( 1~1 
N(t3). It x~ill sutlice to show thai SLlch double  cosels  hLlvc x - rank  3. 

Fix x<  N{'/h~-N{I~}. Notice then that:  

T =  BNFJ'.  
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(Clear ly  T is c o n t a i n e d  in  the  in te r sec t ion ,  and  T h e o r e m  1 0 0 ( 1 t  yields the  r eve r se  

inclusion.)  

N o w  to e o m p l c l c  the  p r o o f  it will sttllice to s h o w  thai :  

It.\" ! * 

has z - r a n k  3.  a n d  f o r  th i s  i t  .'4tittices t o  s h o w  I h a l  

b x u = x  impl ies  u = l  for  b ~ B ,  u { U .  

A s s u m e  t h e r e f o r e  that  b x u  = x .  T h e n :  

T = T , = T  ~,~,,, 
s o  

T b ~ = T  . 1 ~_ B ,  f--i B = T, 

T h u s  "/-= T" and  a trivial c o m p u t a t i o n  s h o w s  u ~ "/f"l 1_! = l I I. Th i s  c o m p l e t e s  the 

a r g u m e n t ,  

Proof of L e m n l a  102 (2 ) .  Let  B be  a c o n n e c t e d  de lh l ab l e  s u b g r o u p  of "*-i'allk 2, 

T h e n  G b r e a k s  tip in to  finilelv m a n y  d o u b l e  cose l s  of  II. hence  c o n t a i n s  a 

B - c o n n e c t e d  s u b g r o u p  H o t  linite i!~dex by C o r o l h l r v  5 5 ,  Since t7 is c o n n e c t e d  il 

fo l lows thai  H is c o n n e c t e d ,  and  the  L c m m a  is p r o v e d .  

T h u s  we haxe  o b t a i n e d  the  ,~tarting po in!  for  a p r o o [  of  T h e o r e m  54,  a im  the  

rest  of  the p r o o f  goes  as in [4. Sec t ion  5 . t ] .  

References 

I I] J. I~,ald~ii~ and .1. Sa\l. I_.o.,.ficat slabililx in group/beer\..1 :\u~Iral. \lath. Soc. 21 ~ 1L,7~l 2~,7-27t~ 
12t \V l:Lmr, G, ('hcrlin amt X. M~lcinI\rc. lolatlx calcgorical groups and rings, ,I :\lgcb~a 

5- ( I~l'~l} 41)7-4411 
I31 G. Chcrlin. Supc~slable dixi~ion ring',, Prec. oi lhc .,\SI It~77 ,~ummm I:ti~opc,m Mcclmg. 

14 i ( ;  ('hcr'iu, Group\ of small Mollcx lank. Annals Malh. I.ogic, 17(DITq! I-2S. 
[51 (i ('hcrtin, Slablc algebraic lhcorlc,, m: Logic ('o#lo,t,~i.m Di7S. Men-, Plctgium, 
[(~] U. Feigner. N q-Kate.eorische Theoricn nichl-kommutalixer Ringe, Fund Math. S2 11~175) 

331 --34h, 
iVl % (}al-a~,agh, ,, I) l lcCl plOdUcl ticccqllpoMlion (~i < Ihcoric~ of lllodttlck. J g) lnbol ic I oelc 4..1 

i l/JTqi 77-XN. 
iSt (), Kcgcl til~<i la.. \Vchrfr i lz. }~,~ all~ l i m l c  (b'oltp~ I Nor lh- I  Iol land. Am~Icldam. 1'1731. 
I , i  \ * lach l l \ rc .  ()n .h-t'atCgOliCal ll~c'~,ilc< of field... Fund. Malh 71 ID)71~ I 25  

l l l i i  (i Sacks..S.,lraie<l .Xl,,del 171,'~r,," Otcniamin t~.v'cldhl~. M A .  DI721. 
i I I I S Shclah. The ia/~ modct- lhcorel ician's 7\fide to '~labilip~. lx~gitltie el Anal'.~c -1 -72  I t ) '5 }  
t121 s. Shclah. ( 'his,si! i{ation lTl{.or\" d/lit IJlc N'ii/lt/)t'r of Noll l~om~rpttic Modr lx INor lh - I to l laml .  

Am~lcrdallL 1 t)TSi. 
[13l B. Zil'ber, Groups tlrl,_, I rings "wllh categorical lheories tin Rlt.~*.i~,tll). I:ltlit4!. Malh. q5 tD)77t 

173 18s. 
114i J. Rcinekc. Minimalc Gruppcl~. Z. Malh, l,ob, ik G~undlagcn Malh. 21 iDF75t 357 37'). 
i l 5 I  B. Poi/at. Slralc nlt ixi l l l l l l l l ,  sotlx-gI'Otll~Ck d{'li!/ix.qll~lcs d' i l ldicc l i l l i  d'tl.~ gloupc qablc. 

J S', i t lb,  [,o~ic' I l t iNttt .  
l l { , t  Y. Jtlcobxotl, I.¢t'ltlrcx ill Ab~lf-dt'l -%lt~cbrlt Vol.  I l l  I l L  xan Nosl lal l t l .  Prmcctlm. N.I. 1c,1{~41 

( 'hapler II1. § 3.5. 

Sh:115


