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Abstract If P is a hereditary property then we show that, for the existence
of a perfect f-factor, P is a sufficient condition for countable graphs and yields
a sufficient condition for graphs of size 8. Further we give two examples of
a hereditary property which is even necessary for the existence of a perfect
f-factor. We also discuss the R;-case.

We consider graphs G = (V,E), where V = V(G) is a nonempty set of
vertices and E = E(G) C { e C V: |e| =2} is the set of edges of G. If x is a
vertex of G and F C E, then we denote by dr(x) the cardinal |{e € F: x € e}]|.
dr(x) is called the degree of x with respect to F and dg(x) the degree of x. ON
denotes the class of ordinals, CN the class of cardinals. Greek letters «, 8, v, . ..
always denote ordinals, whereas the middle letters «, A, i, v, . . . are reserved for
infinite cardinals.

Let G = (V,E) be a graph, f: V— CN be a function and F C E. F is said to
be an f-factor of Gif dr(x) < f(x) for allx € V. We call an f-factor F of G perfect
ifdp(x) = f(x)forallx € V.Fork € CNwedenote f~ (k) := {x € V: f(x) = «}.

Let C be the class of all ordered pairs (G, f), such that G = (V, E) is a graph,
f:V — CNis afunction, and f(x) < dg(x) forallx € V.
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This paper discusses the problem to find a necessary and sufficient condition
for the existence of a perfect f-factor of a graph. In [5], Tutte published a crite-
rion for finite graphs, and in [4] Niedermeyer solved the problem for countable
graphs and functions f : V' — w. We present a solution for graphs of size Rg
and functions f : V — w U {Xp}, a solution for graphs of size N1, and discuss
the R;-case.

If H C E, then denote by G — H the graph (V,E \ H), and if e € E, then let
G — e be the graph G — {e}. If x,y € V, denote by f;,: V — CN the function
defined by

| fw =1 ifvefx,y} and 1=<f(v) <Ro,
Fey¥) = [ fv) else.

Now let P be a formula with two free variables. P(G, f) means that (G,f) € C
and (G, f) has the property P. P is said to be hereditary if for every (G, f) with
P(G,f), for every vertex x € V(G) with f(x) > 0 there exists a vertex y € V(G)
with f(y) > 0, {x,y} € E(G), and P(G — {x,y}, fx)-

Remark 1 Let P be a hereditary property, let (G, f) € C such that P(G,f), and
let W € V(G) be finite. Then there exists a finite f-factor F' of G such that
P(G - F,f —dp),dr(x) = f(x) for every x € W with f(x) < Rg, and dr(x) > 0
for every x € W with f(x) > Ro.

Example I Let P1(G,f) be the property “G possesses a perfect f-factor”. Obvi-
ously P; is a hereditary property.

Definition 1 Let (G,f) € C. By recursion on « € ON we define the property that
(G,f) is an o-obstruction. Let G = (V, E).

If there is an x € V with f(x) > 0 such that f(y) = 0 for all y € V with
{x,y} € E, then (G, f) is a O-obstruction.

If there is a vertex x € V such that f(x) > 0 and
(i) Foreveryy e V with {x,y} € E and f(y) > 0 there is an ordinal B, such that

(G = {x,y},fxy) is a By-obstruction and

(i) a =sup{By +1: {x,y} € E,f(y) > 0},
then (G, f) is an o-obstruction.

Example 2 Let P>(G,f) be the property “(G,f) is not an «-obstruction for
every « € ON”. Then we can prove the following

Lemma 1 1. P; is a hereditary property.
2. If Pis a hereditary property, then P>(G,f) is necessary for P(G, f). Therefore
P, is a necessary condition for the existence of a perfect f-factor.

Proof 1. Assume P;(G,f), that means that for all « € ON, (G,f) is not an
a-obstruction. Let G = (V,E) and x € V with f(x) > 0. To get a con-
tradiction let us assume that, for each y € V with {x,y} € E and f(y) >
0, there is an ordinal B, such that (G — {x,y},fx,) is a By-obstruction. If
a =sup{By +1: {x,y} € E,f(y) > 0}, then (G, f) is an a-obstruction which
contradicts our assumption.
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2. By induction on « € ON we prove for any (G,f) € C with P(G,f) that
(G, f) is not an «-obstruction.
Since P is hereditary, (G, f) is obviously not a 0-obstruction.
Now let ¢ > 0. Assume that (G, f) is an «-obstruction. Let G = (V, E). By
definition, there is a vertex x € V with f(x) > 0 such that for each y € V with
f(») > 0and {x,y} € E there is an ordinal 8, < « such that (G — {x,y}, fxy)
is a By-obstruction. On the other hand, since P(G,f), P is hereditary, and
f(x) > 0, thereis an edge {x,y} € Esuchthat P(G—{x,y}, fx,). By inductive
hypothesis (G —{x, y}, fx,y) is not a B-obstruction. This contradiction proves
().

O

For a hereditary property P, it must not be true that P>(G,f) is sufficient for
P(G,f). This is demonstrated by the following example.

Example 3 Let P3(G,f) be the property “G possesses a perfect f-factor without
cycles”.

P3 also shows that not every hereditary property is a necessary condition for
the existence of a perfect f-factor.

Definition 2 Let (G,f) € C. For 0 < k < o we call a sequence T = (v;)o<i<k Of
vertices of G a trail if {v;_1,v;} € E(G) for 0 <i < kand {v;_1,vi} # {vj_1,v;}
fori #j. For any f-factor F, a trail T = (v;)o<i<k is called F-augmenting if

() k>1,
(i) {vi_,vi} € F iffi > Qis even,
iii) dr(vo) < f(vo),
(v) k=w
or
k <wiseven, vo # vi_1 and drp(vi_1) < f(Vik_1)
or
k <wiseven, vo =vi_1 and dp(vi_1) + 1 < f(vi_1).

Example 4 Let P4(G,f) be the property “for every f-factor F of G and every
vertex x € V(G) with dr(x) < f(x) there exists an F-augmenting trail starting
atx”. Further let P, (G, f) be the property “P4(G, f) and ran(f) C w”.

Lemma 2 If (G,f) € C and G possesses a perfect f-factor, then P4(G,f).

Proof For the convenience of the reader, we present the easy proof. Let G =
(V,E), let F be an f-factor of G and H be a perfect f-factor of G. For allx € V
with dp(x) < f(x), we construct by induction an F-augmenting trail starting at
x. Let vo = x. Since dr(vp) < f(vo) = du(vo) there is an edge {vo,y} € H \ F.
Let vi = y. Let the trail T = (vj)o<j<; be defined such that

(1) {vicr,vjye F\H iffj>0iseven,
(@) {vi,ve H\F iffjisodd.
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If iis odd, v; # vo, and dr(v;) < f(vi),letk =i+ 1.
Ifiis odd, vi = vg, and dr(v;) + 1 < f(v;), let again k = i + 1.
If i is odd and v; # vo, dr(vi) = f(vi) or vi = vy, drp(vi) + 1 > f(v;), then there
is an edge {v;,y} € F\ H which is not an edge of T. Let v; | = y.

Finally, if i is even, there is an edge {v;, y} € H \ F which is not an edge of the
trail T. Let vy = y. ]

Much more difficult is the proof of Lemma 3 which is Corollary 4 of [4].
Lemma 3 P, is a hereditary property.

Itis not true that every hereditary property P is a sufficient condition for the
existence of a perfect f-factor of a given graph. This demonstrates the property
Py, applied to the complete bipartite graph Ky, », and the function f = 1. But
we have the following

Theorem 1 Let (G,f) € C and |V (G)| = Ro. If P is a hereditary property and
P(G,f) then G possesses a perfect f-factor.

Proof Let vg,v1,v2,... be an enumeration of the vertices of G such that, for
everyx € V with f(x) = Rg, the set {i < w: x = v;}isinfinite. Since P(G, f) and P
is hereditary, one can define recursively finite f-factors Fyp € F; € F> C --- such
that (G — Fy, f — dp,) fulfills property P and the following is true: if f(vo) = Ry,
then Fo=({{x, vo}},if f(vik) = No, k > 0, then F\ Fx_1 = {{x, vi}} forsomex € V,
and if f(vy) < Ro, then dg, (vi) = f(vi). By construction, F := [J{F: k < w} is
a perfect f-factor. ]

Corollary 1 Let (G,f) € C and |V (G)| = Ro.

1. G has a perfect f-factor iff P2(G, f).
2. Ifran(f) C w, then G has a perfect f-factor iff P4(G,f).

Tutte’s condition ([3],[5]) for the existence of a perfect 1-factor for finite
graphs is necessary but not sufficient for countable graphs. Thus Theorem 1
shows that not every necessary condition for the existence of a perfect f-factor
is a hereditary property. The property “G has a perfect f-factor with cycles”
tells us that a sufficient condition for the existence of a perfect f-factor for G is
not necessarily hereditary.

Definition 3 Let (G,f) € C, G = (V,E), and |V| = «™ for some infinite cardinal
k. Let (Aq)y <+ be an increasing continuous sequence of subsets of V such that
|Ag| < kT foralla < k™ and V = |J{Ay: @ < k™). For a < k" we define

Vo = (VAN A UFH ),

Eq :={{x,y} € E:xeVy,y e V\ Au},
Gy = (Vy, Ey),

Jo =f 1 Va.
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For any property P, (Ay)q <.+ is said to be a P-destruction of (G, f) if
S = {a < kT : (Gq.fy) does not fulfill P}

is stationary in «t. (G,f) is called P-destructed if there is a P-destruction of

(G. 1.

Lemma 4 (Transfer Lemma) Let P(G,f) be a necessary condition for the exis-
tence of a perfect f-factor of a graph G. If (G, f) € C, |V(G)| = «™ for an infinite
cardinal k, and if G possesses a perfect f-factor, then (G, f) is not P-destructed.

Proof Let I be a perfect f-factor of G and assume that there is a P-destruction
(Ag)g<c+ of (G,f). Define Vy, E,, Gy, fs,S as above and let o« € S. (G, fy)
does not fulfill P, and by the hypothesis of the Lemma, G, has not a perfect
fo-factor. In particular Fy, := F N E, is not a perfect f,-factor of G,. Therefore
thereis a vertex x, € Vy such thatdp, (xq) < fo(xe) = f(xq). Since F'is a perfect
f-factor, there exists, for some vertex y,, an edge {xy,ys} € F \ Fy. Using the
fact |A4| <k we know that dg, (x) = dp(x) = k* = f(x) for any x € f~1 (k).
S0xy € Vo \ fH ™) and yg € Ag \ f (k).

If « € §Sis a limit ordinal, let S(«) < « be an ordinal with y, € Ag). By
Fodor’s Theorem (cf. [1] or [2], Theorem 1.8.8), there is an ordinal y < « such
that

l{a € S: « limit ordinal, B(a) = y}| =« .

Since |A,| < k™, there is a vertex y* € A,, such that

l{a € S: « limit ordinal, y, = y*}| =« ™.

Ifx € Agy \ f~1 (k™) for some ap < k™, then x ¢ V,, for all @ > ag and thus

Ha € S:xq =x} <«™.

It follows that f(y*) = dr(y*) = k™, so y* € f~1(xT). On the other hand
y* € Ay \ f~1 (k™) for every ordinal « with y* = y,. This contradiction proves
the lemma. O

Theorem 2 Let (G,f) € C and |V(G)| = Ry. If P is a hereditary property such
that P(G,f) and if (G, f) is not P-destructed then G possesses a perfect f-factor.

Proof Let (Ay)u<w, be an increasing continuous sequence of countable subsets
of Vsuchthat V = U(Kw1 Agy.Define Vo, Ey, Gg, i as above. Since (Ay)q<qw, 1S
not a P-destruction, there is a closed unbounded set K C w; such that (G, fy)
fulfills P for every @ € K. We can assume w.l.o.g. that K = w;, because
otherwise we could consider the sequence (Aq)qck instead of (Ay)a<w,- Since
(G, f) fulfills P we can further assume that Ay = ¢.
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To obtain a perfect f-factor of G, we now construct an increasing continuous
function i: w; — w; and an increasing sequence (F; )<, of f-factors of G with
the following properties:

1) UFe S Aiee),
(i) Vx € Aj) (fx) < Ro = dr, (x) = f(x)),
(iii) Vx € Aj (f(x) =8 = dFe+1\F£ x) = No).
Then F := |, _,, Fe obviously is a perfect f-factor of G.

The function i and the sequence (F;)s <, Will be defined by transfinite recur-
sion. Let i(0) := 0 and Fy := #. Now let ¢ > 0 and let us assume that, for each
8 < ¢,i(8) and F; are already defined. If ¢ is a limit ordinal, let i(e) := (J;_, i(5)
and F; == J;_, Fs.

Now let ¢ = § + 1. By induction on m we define an increasing sequence
(Hn)m<w of finite fi(5)-factors of G, an increasing function ¢: @ — w1, and,
for any n > m, vertices x;,, € Vi) such that for every m

(@) {xmp: = m) = Ageminy \ Agem \ F71(R1),

(b) UHm S Agim,

(©) dm,,., Xkm) = fis) Xk m) for all k < m with fies) (xx ) < Ro,

(d) de+1\Hm Xk m) > Oforallk <m Withfi(g)(xk’m) > Ny,

(e) P(Gisy — Hm,fis) — dn,,)-

Then let F; := F5 U J{Hn: m < o} and i(e) := J{o(m): m < w}. By construc-
tion, (i), (i), (iii) are fulfilled.

m=0: Leto(0) :=1i(3), Hy:=0¥.
m =m + 1: Now suppose that for m < w the ordinal o(m), the finite fi)-
factor Hy, of Gy(s), and, for all k < m and n > k, the vertices xi , € V) are
already defined such that (a) — (e) are fulfilled.

Theset W, := {xx,: k < n < m}isfinite. Since Pis hereditary, there exists
a ﬁnitef,-(g)—factor H,, 1 2 Hyof Gi(g) such that P(Gi(g) —H,, 1 ,ﬁ(g) _deH)
anddp,, ., (x) = fis)(x) whenever x € Wy, and fi(5)(x) < Ro,ordy,,  \m,, (X) >
0 whenever x € W, and fi(s) (x) > Ro.

Let o(m + 1) > o(m) be the least ordinal such that | J Hy,11 S Apgnt1)-
For n > m choose Xy With {Xp m, Xy 1, Xmma2, - - -} = Apem+1) \ (Aom) \

F1)).

Corollary 2 Let (G,f) € C and |V (G)| = Ry.

1. G possesses a perfect f-factor if and only if (G, f) is not Py-destructed.
2. Ifran(f) C w then G possesses a perfect f-factor if and only if (G, f) is not
Py-destructed.

To handle the cases of higher cardinality, we introduce the notion of a «-
perfect f-factor.

Definition 4 Let (G,f) € C and let k be an infinite cardinal. An f-factor F of G is
said to be k-perfect if dr(x) = f(x) for all vertices x with f(x) < k and dr(x) > 0
for all vertices x with f(x) > .
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Theorem 3 Let « be an infinite cardinal, (G,f) € C, and |V(G)| = k™. G pos-
sesses a perfect f-factor if and only if there is an increasing continuous sequence
(Ag)q<i+ of subsets of V(G) such that
(i) Ag=0 V(G = UlAu: @ < ™),
(i) |Ags1 \ Aol =« foralla < k™,
(iii) forall a < k™ there exists an k-perfect gq-factor of
By, {{x,y} € E: x € Bq,y € Agi1 \ Ao }), where

By = (Agi1 \ (Ao \ fF (k™)) and gy := f | Bg.

Proof Let (Aq)q <+ be an increasing continuous sequence of subsets of V and,
for o < k™, let F, be a k-perfect g,-factor with the properties (i), (ii), (iii).
Then Fy, N Fy, = P if oy # an. Let F := J{Fy: « < «}. We will show that F
is a perfect f-factor of G. Let x € V and let « be the smallest ordinal such that
x € Ay I f(x) <k thendp(x) = df, (x) = f(x). If on the other hand f(x) > «,
we have df, (x) > 0 for all B > « since Fpg is k-perfect. Thus dp(x) = kT,

To prove the converse, let F be a perfect f-factor of G and Ag = @. Let
(Ps: 8 < k) be a partition of V such that |Ps| = « for all § < «*. Now
assume that As € V is defined for all § < «. If « is a limit ordinal, then
let Ay = U{As:8 < a}. If « = § + 1, we define by induction an increasing
sequence (Cp)p<o of subsets of V. Let Cyp € V such that As U Ps € Cp and
|Co \ As| = k. If C,, is defined let C,, 1 be a “k-neighborhood” of C,,: If x € C,
and f(x) <k let N(x) = {y € V: {y,x} € F},andif f(x) = kT choose y, € V\ Cy
with {yy,x} € Fandlet N(x) = {y,}. Thenlet C,, ;1 = C,UJ{N(x): x € C,} and
Ay = U{Cy: n < w}. By construction, (Ay)y <+ 1S an increasing continuous
sequence of subsets of V with the properties (i), (ii), (iii). o
Remark 2 If kt = R, g4 :=f | Vo N Agqyq and Xy = Agpr N FIRD),
then there is an Nj-perfect go-factor of (Vo N Ag41,{{x,y} € E:x € Vi N
Agi1,y € Agi1\Ag)) if and only if there exists a function g : Agy 1 NF~1(Ry) —
o U {Ro, N1} such that there is a perfect (g, \ (g [ Xo)) U hy-factor of (V, N
Ao,y e E:x e VN AL 1,y € Agt1 \ Ar)).

Corollary 3 Let (G,f) € C and |V(G)| = Ry. G possesses a perfect f-factor if
and only if there is an increasing continuous sequence (Aq)q<w, Of subsets of
V(G), such that

(i) Ao=08VG) =], A

a<wy “ T

(ff) |Agi1 \ Al =Ry foralla < wy,
(iii) for each a < wy there is a function hy: Ay 01 (R2) = o U {Ro, Ry}
such that the graph

(Aas1\ (A F 7 (R)), [{x, ) € E: x € Aii\ (A \f 7' (%2)),y €Aus1\Au})

together with

(F 1 Ags1 \ (A \FIER)) \ 1T (A1 NFTIR2)) ) Uy

is not Py-destructed.
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