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Abstract If P is a hereditary property then we show that, for the existence
of a perfect f -factor, P is a sufficient condition for countable graphs and yields
a sufficient condition for graphs of size ℵ1. Further we give two examples of
a hereditary property which is even necessary for the existence of a perfect
f -factor. We also discuss the ℵ2-case.

We consider graphs G = (V, E), where V = V(G) is a nonempty set of
vertices and E = E(G) ⊆ { e ⊆ V : |e| = 2} is the set of edges of G. If x is a
vertex of G and F ⊆ E, then we denote by dF(x) the cardinal |{e ∈ F : x ∈ e}|.
dF(x) is called the degree of x with respect to F and dE(x) the degree of x. ON
denotes the class of ordinals, CN the class of cardinals. Greek letters α, β, γ , . . .
always denote ordinals, whereas the middle letters κ , λ, µ, ν, . . . are reserved for
infinite cardinals.

Let G = (V, E) be a graph, f : V → CN be a function and F ⊆ E. F is said to
be an f -factor of G if dF(x) ≤ f (x) for all x ∈ V. We call an f -factor F of G perfect
if dF(x) = f (x) for all x ∈ V. For κ ∈ CN we denote f −1(κ) := {x ∈ V : f (x) = κ}.

Let C be the class of all ordered pairs (G, f ), such that G = (V, E) is a graph,
f : V → CN is a function, and f (x) ≤ dE(x) for all x ∈ V.
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This paper discusses the problem to find a necessary and sufficient condition
for the existence of a perfect f -factor of a graph. In [5], Tutte published a crite-
rion for finite graphs, and in [4] Niedermeyer solved the problem for countable
graphs and functions f : V −→ ω. We present a solution for graphs of size ℵ0
and functions f : V −→ ω ∪ {ℵ0}, a solution for graphs of size ℵ1, and discuss
the ℵ2-case.

If H ⊆ E, then denote by G − H the graph (V, E \ H), and if e ∈ E, then let
G − e be the graph G − {e}. If x, y ∈ V, denote by fx,y : V → CN the function
defined by

fx,y(v) :=
{

f (v) − 1 if v ∈ {x, y} and 1 ≤ f (v) < ℵ0,
f (v) else.

Now let P be a formula with two free variables. P(G, f ) means that (G, f ) ∈ C
and (G, f ) has the property P. P is said to be hereditary if for every (G, f ) with
P(G, f ), for every vertex x ∈ V(G) with f (x) > 0 there exists a vertex y ∈ V(G)

with f (y) > 0, {x, y} ∈ E(G), and P(G − {x, y}, fx,y).

Remark 1 Let P be a hereditary property, let (G, f ) ∈ C such that P(G, f ), and
let W ⊆ V(G) be finite. Then there exists a finite f -factor F of G such that
P(G − F, f − dF), dF(x) = f (x) for every x ∈ W with f (x) < ℵ0, and dF(x) > 0
for every x ∈ W with f (x) ≥ ℵ0.

Example 1 Let P1(G, f ) be the property “G possesses a perfect f -factor”. Obvi-
ously P1 is a hereditary property.

Definition 1 Let (G, f ) ∈ C. By recursion on α ∈ ON we define the property that
(G, f ) is an α-obstruction. Let G = (V, E).

If there is an x ∈ V with f (x) > 0 such that f (y) = 0 for all y ∈ V with
{x, y} ∈ E, then (G, f ) is a 0-obstruction.

If there is a vertex x ∈ V such that f (x) > 0 and

(i) For every y ∈ V with {x, y} ∈ E and f (y) > 0 there is an ordinal βy such that
(G − {x, y}, fx,y) is a βy-obstruction and

(ii) α = sup{βy + 1: {x, y} ∈ E, f (y) > 0},
then (G, f ) is an α-obstruction.

Example 2 Let P2(G, f ) be the property “(G, f ) is not an α-obstruction for
every α ∈ ON”. Then we can prove the following

Lemma 1 1. P2 is a hereditary property.
2. If P is a hereditary property, then P2(G, f ) is necessary for P(G, f ). Therefore

P2 is a necessary condition for the existence of a perfect f -factor.

Proof 1. Assume P2(G, f ), that means that for all α ∈ ON, (G, f ) is not an
α-obstruction. Let G = (V, E) and x ∈ V with f (x) > 0. To get a con-
tradiction let us assume that, for each y ∈ V with {x, y} ∈ E and f (y) >

0, there is an ordinal βy such that (G − {x, y}, fx,y) is a βy-obstruction. If
α = sup{βy + 1: {x, y} ∈ E, f (y) > 0}, then (G, f ) is an α-obstruction which
contradicts our assumption.
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2. By induction on α ∈ ON we prove for any (G, f ) ∈ C with P(G, f ) that
(G, f ) is not an α-obstruction.
Since P is hereditary, (G, f ) is obviously not a 0-obstruction.
Now let α > 0. Assume that (G, f ) is an α-obstruction. Let G = (V, E). By
definition, there is a vertex x ∈ V with f (x) > 0 such that for each y ∈ V with
f (y) > 0 and {x, y} ∈ E there is an ordinal βy < α such that (G − {x, y}, fx,y)

is a βy-obstruction. On the other hand, since P(G, f ), P is hereditary, and
f (x) > 0, there is an edge {x, y} ∈ E such that P(G−{x, y}, fx,y). By inductive
hypothesis (G−{x, y}, fx,y) is not a βy-obstruction. This contradiction proves
(2).

�	
For a hereditary property P, it must not be true that P2(G, f ) is sufficient for

P(G, f ). This is demonstrated by the following example.

Example 3 Let P3(G, f ) be the property “G possesses a perfect f -factor without
cycles”.

P3 also shows that not every hereditary property is a necessary condition for
the existence of a perfect f -factor.

Definition 2 Let (G, f ) ∈ C. For 0 < k ≤ ω we call a sequence T = (vi)0≤i<k of
vertices of G a trail if {vi−1, vi} ∈ E(G) for 0 < i < k and {vi−1, vi} 
= {vj−1, vj}
for i 
= j. For any f -factor F, a trail T = (vi)0≤i<k is called F-augmenting if

(i) k > 1,
(ii) {vi−1, vi} ∈ F iff i > 0 is even,

(iii) dF(v0) < f (v0),
(iv) k = ω

or
k < ω is even, v0 
= vk−1 and dF(vk−1) < f (vk−1)

or
k < ω is even, v0 = vk−1 and dF(vk−1) + 1 < f (vk−1).

Example 4 Let P4(G, f ) be the property “for every f -factor F of G and every
vertex x ∈ V(G) with dF(x) < f (x) there exists an F-augmenting trail starting
at x”. Further let P′

4(G, f ) be the property “P4(G, f ) and ran(f ) ⊆ ω”.

Lemma 2 If (G, f ) ∈ C and G possesses a perfect f -factor, then P4(G, f ).

Proof For the convenience of the reader, we present the easy proof. Let G =
(V, E), let F be an f -factor of G and H be a perfect f -factor of G. For all x ∈ V
with dF(x) < f (x), we construct by induction an F-augmenting trail starting at
x. Let v0 = x. Since dF(v0) < f (v0) = dH(v0) there is an edge {v0, y} ∈ H \ F.
Let v1 = y. Let the trail T = (vj)0≤j≤i be defined such that

(1) {vj−1, vj} ∈ F \ H iff j > 0 is even,
(2) {vj−1, vj} ∈ H \ F iff j is odd.

Sh:557



668 F. Niedermeyer et al.

If i is odd, vi 
= v0, and dF(vi) < f (vi), let k = i + 1.
If i is odd, vi = v0, and dF(vi) + 1 < f (vi), let again k = i + 1.
If i is odd and vi 
= v0, dF(vi) = f (vi) or vi = v0, dF(vi) + 1 ≥ f (vi), then there
is an edge {vi, y} ∈ F \ H which is not an edge of T. Let vi+1 = y.

Finally, if i is even, there is an edge {vi, y} ∈ H \ F which is not an edge of the
trail T. Let vi+1 = y. �	

Much more difficult is the proof of Lemma 3 which is Corollary 4 of [4].

Lemma 3 P′
4 is a hereditary property.

It is not true that every hereditary property P is a sufficient condition for the
existence of a perfect f -factor of a given graph. This demonstrates the property
P4, applied to the complete bipartite graph Kℵ0,ℵ1 and the function f ≡ 1. But
we have the following

Theorem 1 Let (G, f ) ∈ C and |V(G)| = ℵ0. If P is a hereditary property and
P(G, f ) then G possesses a perfect f -factor.

Proof Let v0, v1, v2, . . . be an enumeration of the vertices of G such that, for
every x ∈ V with f (x) = ℵ0, the set {i < ω : x = vi} is infinite. Since P(G, f ) and P
is hereditary, one can define recursively finite f -factors F0 ⊆ F1 ⊆ F2 ⊆ · · · such
that (G − Fk, f − dFk) fulfills property P and the following is true: if f (v0) = ℵ0,
then F0={{x, v0}}, if f (vk) = ℵ0, k > 0, then Fk \Fk−1 = {{x, vk}} for some x ∈ V,
and if f (vk) < ℵ0, then dFk(vk) = f (vk). By construction, F := ⋃{Fk : k < ω} is
a perfect f -factor. �	
Corollary 1 Let (G, f ) ∈ C and |V(G)| = ℵ0.

1. G has a perfect f -factor iff P2(G, f ).
2. If ran(f ) ⊆ ω, then G has a perfect f -factor iff P4(G, f ).

Tutte’s condition ([3],[5]) for the existence of a perfect 1-factor for finite
graphs is necessary but not sufficient for countable graphs. Thus Theorem 1
shows that not every necessary condition for the existence of a perfect f -factor
is a hereditary property. The property “G has a perfect f -factor with cycles”
tells us that a sufficient condition for the existence of a perfect f -factor for G is
not necessarily hereditary.

Definition 3 Let (G, f ) ∈ C, G = (V, E), and |V| = κ+ for some infinite cardinal
κ . Let (Aα)α<κ+ be an increasing continuous sequence of subsets of V such that
|Aα| < κ+ for all α < κ+ and V = ⋃{Aα : α < κ+}. For α < κ+ we define

Vα := (V \ Aα) ∪ f −1(κ+),

Eα := {{x, y} ∈ E : x ∈ Vα , y ∈ V \ Aα

}
,

Gα := (Vα , Eα),

fα := f � Vα .
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For any property P, (Aα)α<κ+ is said to be a P-destruction of (G, f ) if

S = {α < κ+ : (Gα , fα) does not fulfill P}

is stationary in κ+. (G, f ) is called P-destructed if there is a P-destruction of
(G, f ).

Lemma 4 (Transfer Lemma) Let P(G, f ) be a necessary condition for the exis-
tence of a perfect f -factor of a graph G. If (G, f ) ∈ C, |V(G)| = κ+ for an infinite
cardinal κ , and if G possesses a perfect f -factor, then (G, f ) is not P-destructed.

Proof Let F be a perfect f -factor of G and assume that there is a P-destruction
(Aα)α<κ+ of (G, f ). Define Vα , Eα , Gα , fα , S as above and let α ∈ S. (Gα , fα)

does not fulfill P, and by the hypothesis of the Lemma, Gα has not a perfect
fα-factor. In particular Fα := F ∩ Eα is not a perfect fα-factor of Gα . Therefore
there is a vertex xα ∈ Vα such that dFα

(xα) < fα(xα) = f (xα). Since F is a perfect
f -factor, there exists, for some vertex yα , an edge {xα , yα} ∈ F \ Fα . Using the
fact |Aα| < κ+ we know that dFα

(x) = dF(x) = κ+ = f (x) for any x ∈ f −1(κ+).
So xα ∈ Vα \ f −1(κ+) and yα ∈ Aα \ f −1(κ+).

If α ∈ S is a limit ordinal, let β(α) < α be an ordinal with yα ∈ Aβ(α). By
Fodor’s Theorem (cf. [1] or [2], Theorem 1.8.8), there is an ordinal γ < κ+ such
that

|{α ∈ S : α limit ordinal, β(α) = γ }| = κ+.

Since |Aγ | < κ+, there is a vertex y∗ ∈ Aγ such that

|{α ∈ S : α limit ordinal, yα = y∗}| = κ+.

If x ∈ Aα0 \ f −1(κ+) for some α0 < κ+, then x 
∈ Vα for all α > α0 and thus

|{α ∈ S : xα = x}| < κ+.

It follows that f (y∗) = dF(y∗) = κ+, so y∗ ∈ f −1(κ+). On the other hand
y∗ ∈ Aα \ f −1(κ+) for every ordinal α with y∗ = yα . This contradiction proves
the lemma. �	
Theorem 2 Let (G, f ) ∈ C and |V(G)| = ℵ1. If P is a hereditary property such
that P(G, f ) and if (G, f ) is not P-destructed then G possesses a perfect f -factor.

Proof Let (Aα)α<ω1 be an increasing continuous sequence of countable subsets
of V such that V = ⋃

α<ω1
Aα . Define Vα , Eα , Gα , fα as above. Since (Aα)α<ω1 is

not a P-destruction, there is a closed unbounded set K ⊆ ω1 such that (Gα , fα)

fulfills P for every α ∈ K. We can assume w. l. o. g. that K = ω1, because
otherwise we could consider the sequence (Aα)α∈K instead of (Aα)α<ω1 . Since
(G, f ) fulfills P we can further assume that A0 = ∅.
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To obtain a perfect f -factor of G, we now construct an increasing continuous
function i : ω1 → ω1 and an increasing sequence (Fε)ε<ω1 of f -factors of G with
the following properties:

(i)
⋃

Fε ⊆ Ai(ε),
(ii) ∀x ∈ Ai(ε)

(
f (x) ≤ ℵ0 ⇒ dFε

(x) = f (x)
)
,

(iii) ∀x ∈ Ai(ε)
(
f (x) = ℵ1 ⇒ dFε+1\Fε

(x) = ℵ0
)
.

Then F := ⋃
ε<ω1

Fε obviously is a perfect f -factor of G.
The function i and the sequence (Fε)ε<ω1 will be defined by transfinite recur-

sion. Let i(0) := 0 and F0 := ∅. Now let ε > 0 and let us assume that, for each
δ < ε, i(δ) and Fδ are already defined. If ε is a limit ordinal, let i(ε) := ⋃

δ<ε i(δ)
and Fε := ⋃

δ<ε Fδ .
Now let ε = δ + 1. By induction on m we define an increasing sequence

(Hm)m<ω of finite fi(δ)-factors of Gi(δ), an increasing function 
 : ω −→ ω1, and,
for any n ≥ m, vertices xm,n ∈ Vi(δ) such that for every m

(a) {xm,n : n ≥ m} = A
(m+1) \ (A
(m) \ f −1(ℵ1)),
(b)

⋃
Hm ⊆ A
(m),

(c) dHm+1(xk,m) = fi(δ)(xk,m) for all k ≤ m with fi(δ)(xk,m) < ℵ0,
(d) dHm+1\Hm(xk,m) > 0 for all k ≤ m with fi(δ)(xk,m) ≥ ℵ0,
(e) P(Gi(δ) − Hm, fi(δ) − dHm).

Then let Fε := Fδ ∪ ⋃{Hm : m < ω} and i(ε) := ⋃{
(m) : m < ω}. By construc-
tion, (i), (ii), (iii) are fulfilled.

m = 0 : Let 
(0) := i(δ), H0 := ∅.
m = m + 1 : Now suppose that for m < ω the ordinal 
(m), the finite fi(δ)-
factor Hm of Gi(δ), and, for all k < m and n ≥ k, the vertices xk,n ∈ Vi(δ) are
already defined such that (a) – (e) are fulfilled.

The set Wm := {xk,n : k ≤ n < m} is finite. Since P is hereditary, there exists
a finite fi(δ)-factor Hm+1 ⊇ Hm of Gi(δ) such that P(Gi(δ)−Hm+1, fi(δ)−dHm+1)

and dHm+1(x) = fi(δ)(x) whenever x ∈ Wm and fi(δ)(x) < ℵ0, or dHm+1\Hm(x) >

0 whenever x ∈ Wm and fi(δ)(x) ≥ ℵ0.
Let 
(m + 1) > 
(m) be the least ordinal such that

⋃
Hm+1 ⊆ A
(m+1).

For n ≥ m choose xm,n with {xm,m, xm,m+1, xm,m+2, . . .} = A
(m+1) \ (A
(m) \
f −1(ℵ1)).

�	
Corollary 2 Let (G, f ) ∈ C and |V(G)| = ℵ1.

1. G possesses a perfect f -factor if and only if (G, f ) is not P2-destructed.
2. If ran(f ) ⊆ ω then G possesses a perfect f -factor if and only if (G, f ) is not

P4-destructed.

To handle the cases of higher cardinality, we introduce the notion of a κ-
perfect f -factor.

Definition 4 Let (G, f ) ∈ C and let κ be an infinite cardinal. An f -factor F of G is
said to be κ-perfect if dF(x) = f (x) for all vertices x with f (x) ≤ κ and dF(x) > 0
for all vertices x with f (x) > κ .
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Theorem 3 Let κ be an infinite cardinal, (G, f ) ∈ C, and |V(G)| = κ+. G pos-
sesses a perfect f -factor if and only if there is an increasing continuous sequence
(Aα)α<κ+ of subsets of V(G) such that

(i) A0 = ∅, V(G) = ⋃{Aα : α < κ+},
(ii) |Aα+1 \ Aα| = κ for all α < κ+,

(iii) for all α < κ+ there exists an κ-perfect gα-factor of
(Bα ,

{{x, y} ∈ E : x ∈ Bα , y ∈ Aα+1 \ Aα

}
), where

Bα = (Aα+1 \ (Aα \ f −1(κ+))) and gα := f � Bα .

Proof Let (Aα)α<κ+ be an increasing continuous sequence of subsets of V and,
for α < κ+, let Fα be a κ-perfect gα-factor with the properties (i), (ii), (iii).
Then Fα1 ∩ Fα2 = ∅ if α1 
= α2. Let F := ⋃{Fα : α < κ+}. We will show that F
is a perfect f -factor of G. Let x ∈ V and let α be the smallest ordinal such that
x ∈ Aα+1. If f (x) ≤ κ then dF(x) = dFα

(x) = f (x). If on the other hand f (x) > κ ,
we have dFβ

(x) > 0 for all β ≥ α since Fβ is κ-perfect. Thus dF(x) = κ+.
To prove the converse, let F be a perfect f -factor of G and A0 := ∅. Let

(Pδ : δ < κ+) be a partition of V such that |Pδ| = κ for all δ < κ+. Now
assume that Aδ ⊆ V is defined for all δ < α. If α is a limit ordinal, then
let Aα = ⋃{Aδ : δ < α}. If α = δ + 1, we define by induction an increasing
sequence (Cn)n<ω of subsets of V. Let C0 ⊆ V such that Aδ ∪ Pδ ⊆ C0 and
|C0 \ Aδ| = κ . If Cn is defined let Cn+1 be a “κ-neighborhood” of Cn: If x ∈ Cn
and f (x) ≤ κ let N(x) = {y ∈ V : {y, x} ∈ F}, and if f (x) = κ+ choose yx ∈ V \Cn
with {yx, x} ∈ F and let N(x) = {yx}. Then let Cn+1 = Cn ∪⋃{N(x) : x ∈ Cn} and
Aα := ⋃{Cn : n < ω}. By construction, (Aα)α<κ+ is an increasing continuous
sequence of subsets of V with the properties (i), (ii), (iii). �	
Remark 2 If κ+ = ℵ2, gα := f � Vα ∩ Aα+1 and Xα := Aα+1 ∩ f −1(ℵ2),
then there is an ℵ1-perfect gα-factor of (Vα ∩ Aα+1, {{x, y} ∈ E : x ∈ Vα ∩
Aα+1, y ∈ Aα+1\Aα}) if and only if there exists a function hα : Aα+1∩f −1(ℵ2) →
ω ∪ {ℵ0, ℵ1} such that there is a perfect (gα \ (gα �Xα)) ∪ hα-factor of (Vα ∩
Aα+1, {{x, y} ∈ E : x ∈ Vα ∩ Aα+1, y ∈ Aα+1 \ Aα}).
Corollary 3 Let (G, f ) ∈ C and |V(G)| = ℵ2. G possesses a perfect f -factor if
and only if there is an increasing continuous sequence (Aα)α<ω2 of subsets of
V(G), such that

(i) A0 = ∅, V(G) = ⋃
α<ω2

Aα ,
(ii) |Aα+1 \ Aα| = ℵ1 for all α < ω2,

(iii) for each α < ω2 there is a function hα : Aα+1 ∩ f −1(ℵ2) → ω ∪ {ℵ0, ℵ1}
such that the graph

(Aα+1\(Aα\ f −1(ℵ2)), {{x, y}∈E : x ∈ Aα+1\(Aα\f −1(ℵ2)), y∈Aα+1\Aα})

together with

(
f � Aα+1 \ (Aα \ f −1(ℵ2) ) \ f � (Aα+1 ∩ f −1(ℵ2))

) ∪ hα

is not P2-destructed.
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