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EXPONENTIATION IN POWER SERIES FIELDS
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Abstract. We prove that for no nontrivial ordered abelian group G does the
ordered power series field R((G)) admit an exponential, i.e. an isomorphism
between its ordered additive group and its ordered multiplicative group of
positive elements, but that there is a non-surjective logarithm. For an arbitrary
ordered field k, no exponential on k((G)) is compatible, that is, induces an
exponential on k through the residue map. This is proved by showing that
certain functional equations for lexicographic powers of ordered sets are not
solvable.

1. Introduction

Let k be an ordered field and G a nontrivial ordered abelian group. Then
the (“generalized”) power series field K = k((G)) admits at least one nonarchi-
medean order. Further, K is real closed if and only if k is real closed and G is
divisible. This provides a very simple and elegant method of constructing nonar-
chimedean ordered real closed fields. On the other hand, power series fields were
already studied by Levi-Civita [LC], later also by H. Hahn [H], A. Robinson [R] and
many others, in an attempt to develop function theory over nonarchimedean fields.
One of the first concerns was to define elementary functions (e.g. the logarithm log,
or equivalently, its inverse exp) on those fields. It was already known to Levi-Civita
that log is definable through its Taylor expansion on the positive units of R((G)),
for archimedean ordered G (cf. the discussion in [L1], [L2]). This was generalized
to arbitrary G by B. H. Neumann [N]. But the problem of defining a logarithm
from the group K>0 of positive elements onto K remained open. We answer this
problem in the negative (Theorem 1). In fact, we show that the domain of the
logarithm can be extended to K>0 if G is divisible, but that a logarithm on K>0

will never be surjective onto K.
For an exponential f on the ordered field (K,<) we only require f to be

an isomorphism between its ordered additive group (K,+, 0, <) and its ordered
multiplicative group (K>0, ·, 1, <) of positive elements. If K = k((G)), then we
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say that f is compatible if it induces an exponential on k through the canonical
residue map (see Section 2 for details). We shall prove:

Theorem 1. Let k be an ordered field and G a nontrivial ordered abelian group.
Let < be any order on K = k((G)). Then (K,<) does not admit any compatible
exponential. If (k,<) is archimedean, then (K,<) admits no exponential at all.

Theorem 1 shows that the construction method for real closed fields described
above is not available for exponential fields. Note that there is an exponential on
the surreal numbers (cf. [G]), but this “power series field” is a proper class. For an
even stronger version of Theorem 1, see Theorem 8.

The key to our result is the fact that every group complement of the valuation
ring in K = k((G)) is a lexicographic product of ordered abelian groups. Let us
recall the definition of lexicographic products. Let Γ and ∆γ , γ ∈ Γ, be totally
ordered sets. For every γ ∈ Γ, we fix a distinguished element 0 ∈ ∆γ . The support
of a = (δγ)γ∈Γ ∈

∏
γ∈Γ ∆γ , denoted by supp(a), is the set of all γ ∈ Γ for which

δγ 6= 0. As a set, we define Hγ∈Γ∆γ to consist of all (δγ)γ∈Γ with well ordered
support. The lexicographic order on Hγ∈Γ∆γ is introduced as follows. Given a
and b = (δ′γ)γ∈Γ ∈ Hγ∈Γ∆γ , observe that supp(a) ∪ supp(b) is well ordered. Let
γ0 be the least of all elements γ ∈ supp(a) ∪ supp(b) for which δγ 6= δ′γ . We set
a < b :⇔ δγ0 < δ′γ0 . Then (Hγ∈Γ∆γ , <) is a totally ordered set, the lexicographic

product of the ordered sets ∆γ . If ∆γ = ∆ for all γ ∈ Γ then we write ∆Γ for
their lexicographic product; it consists of all maps from Γ to ∆ with well ordered
support.

If all ∆γ are totally ordered abelian groups, then we can take the distinguished
elements 0 to be the neutral elements of the groups ∆γ . Defining addition on
Hγ∈Γ∆γ componentwise, we obtain a totally ordered abelian group

(Hγ∈Γ∆γ ,+, 0, <),

the Hahn product of the ordered groups ∆γ .
In Section 3, we prove the following theorem and explain how it relates to the

surjectivity of a logarithm.

Theorem 2. Let Γ and ∆ be totally ordered sets without greatest element, and fix
an element 0 ∈ ∆. Suppose that Γ′ is a cofinal subset of Γ and that ι : Γ′ → ∆Γ is
an order preserving embedding. Then the image ιΓ′ is not convex in ∆Γ.

The same holds for an order preserving embedding ι : Γ′ → Hγ∈Γ∆γ and already
under the condition that Γ has no greatest element and 0 is not the greatest element
of ∆γ for any γ ∈ Γ (cf. [K–K–S]). If we drop the condition that Γ has no greatest
element, the situation changes drastically. Suitably chosen ordered sets Γ and ∆
will even admit an isomorphism Γ ' ∆Γ. We study this situation and related
questions in [K–K–S].

2. Preliminaries on left logarithms

Let G be a totally ordered abelian group. The set of archimedean classes [a] of
nonzero elements a ∈ G is totally ordered by setting [a] < [b] if |a| � |b|. The map
v : a 7→ [a] is called the natural valuation of G. It satisfies the triangle inequality
v(a− b) ≥ min{va, vb} and v(−a) = va as well as

a ≤ b ≤ 0 ∨ a ≥ b ≥ 0 ⇒ va ≤ vb .(1)
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In this paper, (K,<) will always be a totally ordered field. We let v denote
the natural valuation on its additive group (K,+, 0, <). In this case, vK :=
v(K \ {0}) forms a totally ordered abelian group endowed with the addition [a] +
[b] := [ab], and v is a field valuation. For more information on natural valuations,
see [K].

Let w be any field valuation on K. The value group of (K,w) will be denoted
by wK and its residue field by Kw. Further, w is convex with respect to < if
it satisfies (1). The valuation ring Rw = {a ∈ K | wa ≥ 0} of a convex valuation
w is convex in K, and so is its valuation ideal Iw = {a ∈ K | wa > 0}. Further,
the set U>0

w := {a ∈ K | wa = 0 ∧ a > 0} of positive units of Rw is a convex
subgroup of (K>0, ·, 1, <) . Note that w is convex if and only if Rv ⊆ Rw (i.e., w is
a coarsening of v), in which case its value group wK is the quotient of vK by a
convex subgroup.

If K admits an exponential, then its multiplicative group of positive elements is
divisible (since the additive is). In order to prove Theorem 1, we can thus always
assume divisibility. As in [K] (Lemma 3.4 and Theorem 3.8), we then have the
following representations as lexicographic sums:

(K,+, 0, <) ' Aw q (Rw,+, 0, <)(2)

where Aw is an arbitrary group complement of Rw in (K,+), and analogously,

(K>0, ·, 1, <) ' Bw q (U>0
w , ·, 1, <)(3)

where Bw is an arbitrary group complement of U>0
w in (K>0, · ) . Endowed with

the restriction of the ordering, Aw and Bw are unique up to isomorphism. In view
of (1) and the fact that w(−a) = wa, the map

−w : (K>0, ·, 1, <) → (wK,+, 0, <) , −wa = wa−1(4)

is a surjective group homomorphism preserving ≤ , with kernel U>0
w . We find that

every complement Bw is isomorphic to (wK,+, 0, <) through the map −w.
An exponential f on K will be called compatible with w if it satisfies that

f(Rw) = U>0
w and f(Iw) = 1 + Iw . Since Kw = Rw/Iw and (Kw>0, ·, 1, <)

= (U>0
w , ·, 1, <)/ 1 + Iw , this means that f induces canonically an exponential

fw : (Kw,+, 0, <) → (Kw>0, ·, 1, <). The canonical valuation w of a power series
field K = k((G)) has value group G and residue field k. Further, it is henselian.
Consequently, w is convex with respect to every order < on K (cf. [KN–W]). Hence,
f is compatible on k((G)) if and only if it is compatible with w.

Remark 3. If an ordered field K admits an exponential, then it admits an expo-
nential which is compatible with the natural valuation (cf. [K], Section 3.3).

Let w be any convex valuation on K. Every compatible exponential f decom-
poses into two isomorphisms of ordered groups:

fR : (Rw,+, 0, <) → (U>0
w , ·, 1, <),

fL : Aw → Bw .

Conversely, in view of (2) and (3), such isomorphisms fR and fL can be put together
to obtain an exponential compatible with w. The inverse f−1

L is called a left

logarithm, and f−1
R a right logarithm. Through the isomorphism (4), every

isomorphism

h : (wK,+, 0, <) → Aw

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:601



3180 FRANZ-VIKTOR KUHLMANN, SALMA KUHLMANN, AND SAHARON SHELAH

gives rise to a left logarithm h ◦ −w. Conversely, given a left logarithm f−1
L , the

map f−1
L ◦ (−w)−1 is such an isomorphism h. This correspondence motivates the

following definition: a logarithmic cross-section of an ordered field (K,<) with
respect to a convex valuation w is an order preserving embedding h of wK into an
additive group complement of the valuation ring (that is, an embedding h of wK
into the additive group (K,+, 0, <) satisfying wh(g) < 0 for all g ∈ wK). Thus,
every left logarithm induces a logarithmic cross-section which is surjective (i.e.,
h(wK) is an additive group complement to the valuation ring), and vice-versa.

Our goal in the next section is to show that power series fields always admit
logarithmic cross-sections, but never surjective ones.

3. Lexicographic products and logarithmic cross-sections

Proof of Theorem 2. Assume that Γ and ∆ are totally ordered sets, and fix an
element 0 ∈ ∆. Assume further that ∆ has no greatest element, so that we can
choose a map τ : ∆ → ∆ such that τδ > δ for all δ ∈ ∆. For every well ordered
set S ⊂ Γ and every d = (dγ)γ∈Γ ∈ ∆Γ, set

d⊕ S = (d′γ)γ∈Γ where d′γ :=

{
dγ if γ /∈ S,
τdγ if γ ∈ S .

Observe that the support of d⊕ S is contained in supp(d) ∪ S and thus, it is again
well ordered. Further, if S, S′ ⊂ Γ are well ordered sets (or empty), then

S & S′ ⇒ d⊕ S < d⊕ S′ .(5)

Now suppose that Γ has no greatest element, Γ′ is a cofinal subset of Γ and
ι : Γ′ → ∆Γ is an order preserving embedding such that the image ιΓ′ is convex in
∆Γ. We wish to deduce a contradiction.

By induction on n ∈ N, we define elements γ
(n)
0 ∈ Γ′. We choose an arbitrary

γ
(1)
0 ∈ Γ′. Having already constructed γ

(n)
0 , we carry through the following induc-

tion step. Since Γ has no greatest element, the same holds for Γ′, and there is some

α(n) ∈ Γ′ such that γ
(n)
0 < α(n). Hence, ιγ

(n)
0 < ια(n). Let β(n) ∈ Γ be the least

element of supp(ιγ
(n)
0 ) ∪ supp(ια(n)) for which

(ιγ
(n)
0 )β(n) < (ια(n))β(n) .

Since Γ has no greatest element and Γ′ is a cofinal subset, we can choose γ
(n+1)
0 ∈ Γ′

such that β(n) < γ
(n+1)
0 .

If S ⊂ Γ is a well ordered set with least element γ
(n+1)
0 , then

ιγ
(n)
0 < ιγ

(n)
0 ⊕ S < ια(n) .(6)

Indeed, (ιγ
(n)
0 ⊕ S)β = (ιγ

(n)
0 )β for every β < γ

(n+1)
0 . In particular,

(ιγ
(n)
0 ⊕ S)β(n) = (ιγ

(n)
0 )β(n) < (ια(n))β(n) ,

which implies the second inequality of (6). Its first inequality follows from (5).

The image of Γ′ in ∆Γ being convex, (6) yields that also ιγ
(n)
0 ⊕ S lies in this

image. Thus, ι−1(ιγ
(n)
0 ⊕ S) is a well defined element of Γ′.

Suppose now that for some ordinal number µ ≥ 1 we have chosen elements

γ
(n)
ν ∈ Γ′, ν < µ, n ∈ N, such that for every fixed n, the sequence (γ

(n)
ν )ν<µ is
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strictly increasing. Then we set

γ(n)
µ := ι−1(ιγ

(n)
0 ⊕ {γ(n+1)

ν | ν < µ}) ∈ Γ′

for every n ∈ N. If λ < µ, then {γ(n+1)
ν | ν < λ} & {γ(n+1)

ν | ν < µ} and thus,

γ
(n)
λ < γ

(n)
µ by (5). So for every ordinal number µ, the sequences (γ

(n)
ν )ν<µ can be

extended. We obtain strictly increasing sequences of arbitrary length, contradicting
the fact that their length is bounded by the cardinality of Γ′.

Now we apply Theorem 2 to logarithmic cross-sections of the power series field
K = k((G)) with canonical valuation w. One of the complements for the valuation
ring Rw = k[[G]] is the Hahn product HG<0(k,+, 0, <), which we will denote by

kG
<0

. Since the complements are unique up to isomorphism, a surjective logarith-

mic cross-section h with respect to w would induce an isomorphism G ' kG
<0

.
This in turn would imply that G<0 has no greatest element and would give rise to

an embedding of G<0 in kG
<0

with convex image, which contradicts Theorem 2.
So we have proved:

Theorem 4. Let k be an ordered field and G a nontrivial ordered abelian group.
Further, let w be the canonical valuation on K = k((G)) and < any order on K.
Then (K,<) admits no surjective logarithmic cross-section with respect to w.

This theorem implies Theorem 1. Indeed, a compatible exponential of K would
induce a surjective logarithmic cross-section with respect to w, which is impossi-
ble. If (k,<) is archimedean, then w will coincide with the natural valuation v of
(k((G)), <). So the second assertion of Theorem 1 follows by Remark 3.

If G is an ordered abelian group, then we denote its natural valuation by vG . For
the definition of the archimedean components Bγ of G (where γ ∈ vGG), see [FU].
They are archimedean ordered abelian groups. Hahn’s embedding theorem states
that there is an order preserving group embedding ρ of G in the Hahn product
Hγ∈vGGBγ , if G is divisible (cf. [H] or [FU] , IV, Theorem 16).

Proposition 5. Let G be a nontrivial divisible ordered abelian group. Then R((G))
admits a logarithmic cross-section. If every archimedean component of G embeds
in the ordered additive group of k, then k((G)) admits a logarithmic cross-section.

Proof. By taking representatives, we obtain an embedding σ : vGG → G<0; it

is order preserving by (1). Now σ lifts to an embedding σ̂ : kvGG → kG
<0

. If
every archimedean component Bγ of G embeds in (k,+, 0, <), then there is an
embedding τ : Hγ∈vGGBγ → HvGG(k,+, 0, <) = kvGG. So h = σ̂ ◦ τ ◦ ρ is
the required logarithmic cross-section for k((G)). Since every archimedean ordered
abelian group embeds in R, the first assertion follows from the second.

Corollary 6. If G is nontrivial and divisible, then the real closed field K =
R((G)) admits a non-surjective logarithm, i.e., an embedding (K>0, ·, 1, <) →
(K,+, 0, <).

For the proof, note that a right logarithm on R((G)) always exists: it is defined on
the positive units of the valuation ring R[[G]] through the logarithmic power series
(cf. [A]). In combination with a non-surjective logarithmic cross-section, it gives
rise to the desired (non-surjective) logarithm. By taking the union over a suitable
countable ascending chain of power series fields with non-surjective logarithms, we
can obtain a surjective logarithm. Using this construction, we prove in [K–K2] the
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existence of exponential fields with arbitrary given exponential rank (= the order
type of the set of all convex valuations compatible with the exponential).

Remark 7. Kaplansky [KA] has shown that a valued field is maximal (i.e., admits
no proper immediate extensions) if and only if every pseudo Cauchy sequence admits
a limit. The same principle was proved by Fleischer [F] for valued abelian groups.
It can also be proved for certain classes of valued modules. At first sight, one
might believe that this principle holds for all (reasonable) valued structures. But
the nonarchimedean exponential fields with their natural valuation constitute a
counterexample:

There are maximal naturally valued exponential fields (i.e., they do not admit
proper immediate extensions to which also the exponential extends). These are
precisely the exponential fields whose natural valuation v is complete: On the one
hand, it was remarked in [K] that if (L, v) ⊃ (K, v) is immediate and the exponential
extends from K to L, then (K, v) is dense in (L, v). On the other hand, if (K, v)
is dense in (L, v), then an exponential of K extends to L by continuity. Hence,
the completion of a nonarchimedean exponential field with respect to its natural
valuation is the maximal immediate extension as a naturally valued exponential
field. But by our nonexistence result, it cannot be a power series field. On the
other hand, Kaplansky has also shown in [KA] that a valued field (K,w) of residue
characteristic 0 is a power series field with canonical valuation w if and only if it
is maximal. (Note that the natural valuation has residue characteristic 0 since the
residue field is ordered.) Hence, a maximal naturally valued exponential field is not
maximal as a valued field.

An argument similar to that used in establishing Theorem 4 shows that a Hahn
group (i.e. a maximally valued group) cannot be an exponential group in the sense
of [K], and thus cannot be the natural value group of an exponential field. Further
consequences of Theorem 2 for exponential groups will be studied in a subsequent
paper.

Under the hypothesis of Theorem 1 we can prove that an exponential cannot
even be compatible with any nontrivial coarsening w′ of w: Since K is a power
series field with canonical valuation w, it can also be written as a power series field
(Kw)((w′K)) with canonical valuation w′, and from Theorem 1 it follows that no
exponential can be compatible with w′. We have seen in the above remark that we
can talk about maximal valuations instead of power series fields. So we can restate
our result as follows: If the ordered field K admits an exponential f , then there is
no nontrivial coarsening of its natural valuation v which is maximal and compatible
with f . We prove the following generalization:

Theorem 8. Let f be an exponential on the ordered field K and w a coarsening
of the natural valuation v of K such that f is compatible with w. Then there is no
coarsening w̃ of w such that the valuation w = w/w̃ induced by w on the residue
field Kw̃ is nontrivial and (Kw̃,w) is maximal.

Proof. Suppose to the contrary that such a coarsening w̃ exists. We have that
Rw ⊂ Rw̃. Let A be a group complement of Rw in Rw̃ and Ã a group complement
of Rw̃ in (K,+, 0, <). Then Ã qA is a group complement of Rw in (K,+, 0, <).

Further, f induces an isomorphism h from G = wK onto ÃqA as ordered groups.
In particular, G<0 has no greatest element.
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The value group of w is isomorphic to a nontrivial convex subgroup G of G. Since
(Kw̃,w) is maximal and has residue field (Kw̃)w/w̃ = Kw, it is isomorphic to the

power series field (Kw)((G)). Hence, A is isomorphic to a Hahn product (Kw)G
<0

.
This yields an embedding of the nontrivial convex subgroup H := G ∩ h−1(A) of

G in (Kw)G
<0

. Under this embedding, the image of the final segment H<0 of G
<0

is convex in (Kw)G
<0

. But G
<0

is a final segment of G<0 and thus has no greatest
element. This contradicts Theorem 2.
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