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Classification over a Predicate I

§1 Introduction and preliminary facts.

Let T be a fixed complete first-order theory, and P € L(T) be a fixed

monadic predicate.

Question: Describe the structure of M | 7 knowing M1 P.
When (Vz) -~ P(z) € T, this is a problem addressed [Sh 1], [Sh 4].

If Yx P(xz) € T, there is an extremely strong structure theory. Gaif-
man dealt with the case "# has few (<|P¥|) automorphisms over P¥ " and

gels a representation theorem.

But for us the maximal siructureness will be

"M is prime and even primary over P¥".

This is parallel to the case "7 categorical in A'; but this is stronger:
remember that by Loewenheim Skolem Theorem T (if non- trivial) has
models in all A= |7] + 8, So the exact parallel will be "||# |}, ¥t P deter-
mine M"”, or at least "dim (M,P), Mt P determine M.” If we are inlerested
in the "categoricity theorem” (= uniqueness) we can restrict oneself to the

case!

1.0 Hypothesis : (VM | T)(|P¥] = ||M]]) and even @y € TV M E ¥)
(1P¥| = ||M]]) (to avoid having to deal with the possibility that 7 is
uncountable, and (VM) | T)[|P¥| = ||M}]] because of Chang’s two cardinal
theorem failing for all A= |7|). The last condition is equivalent to:
[N<MET PY¥cN=N=H].
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We add * to the theorems assumings Hypothesis 1.0 {in our main conclu-

sion here we shall do.)

This means that generally from P¥ we cannot reconstruct M, not even its

power,

We have start to deal with the problem in [Sh 2], but reading of it is not
required {see there on other works on the subject of Gaifman Hodges and Pil-

lay).

Section 3-4 are given almost as they were lectured in the seminar,
hence are less formal but are more detailed and repetitious then usual. We
do not try to save on set theoretic assumptions. In [Sh 1] the following

classification is discussed.

superstable
stable ~ Wgo—unstable
unstable| superstable |(only for categories o—stable

of models -‘0f countable theories)

This corresponds to, roughly:

foreveryp € S(4):

stability => each p I ¢ is definable

superstability => p is almost definable over some finite 5 € 4
By-stability => p definable over some finite B ¢ A.

We expect that the classification will be {(this) X & with @ levels of complexity.
Each time, for the unstable case, a non-structure theorem for | T'|*-saturated
models, and for the unsuperstable T a non-structure theorem for N,-
saturated models. Only in the stable case we can continue teo the next level.
In fact it seemed that in order to get non-structure from unsuperstability
we need first stability for all levels. We expect that the solution will be long,
involving many branches. We concentrate on the stable/unstable dichotomy
and quite saturated models. We shall use in "non-structure”™ proofs
hypothesis like G.CH, V = L freely. f we do not do this we maybe forced

to look at diagrams we get at approximation of less comfortable cofinalities;
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if the properiies are distinct the picture will be even more elaboborate. Let

us explain more the expected classification.
n =- 1.Is every relation on P¥ definable in M, also definable in M tP¥?
1.1 Hypothesis: We assume, yes and even:

"every formula is equivalent (by T) to an atomic relation.” {see [Sh 2})

n =0 1f ¥ is saturated, ||#]| =A > |T],is ¥ determined by M I P? Its

isomorphism type, yes but its isomorphism type over M I P not necessarily.

1.2 Hypothesis : For every @ € ¥ | T and ¢, p = tp(@,P¥) is definable
{i.e. for some ¥, and ¢ € P¥; Vb € P¥[p(z,b) € p <> ¥,(b,c)]. (see [Sh 2])

1.3 Theorem : If M is saturated, ||M || = A > |T]|, then ¥ is A-prime over
P¥ among the A saturated models, and is even A-primary over it (i.e.
M| =fa; i <a}, tp(a; P¥ ) fa;i <j}) is A-solated for A regular; this

proves uniqueness over P¥).

This is a weak structure theorem.
Proof: Note:

1.4 Facl: For every c € M E T, tp(c,P¥) is |T|*-isolated, in fact if
M < N, then tp (¢.P¥) | tp (g,PV).

This follows from Hypothesis 1.2: for every ¢ there are ¥,,¢, ('gl/q, does not
depend on €, only on £(¢),c, CP) such that:

(Vg € P)le(c.¥) = v,(7.€,)]

So the formula @,(%,c,) = (V¥ C P)e(Z.9) = ¥,(¥.C4)] is satisfied by €,
its parameters are from P¥, so ®,(*x‘,6¢) etp(e,P¥) and easily
8,(z.c,) I tp¢(6,PM). Hence,

C tp(c,.PY)
So tp(e,P¥) is | T'| *-isolated.

If M <N, then N | @,(¢.c,) hence
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to{(c, N
(8,(z.¢,)p € L;g}j;c{a&
but {0,(z,,):¢ € L} C tp(c,PY).

Proof of the Theorem 1.3: Let |M| = {a;:i <A}. As A > |T|, by the fact
for j <A t;p((ai,i $j>.PM) is isolated by a subset of power < |T| + |j| <A
{taking union on all finite subsequences). Hence ip (aj,PM Ule, 1 <jl)is A
isolated. So M is A-primary over P¥ etc. (see [Sh 1], Ch. IV).

1.5 Notation: Let [8 be a very saturated model on 7T; we restrict our-

selves to "small” elementary submodels of it. {see [Sh 1], Ch. I, §1).

1.6 Definition : 4 ¢ [5 is complete if Bt (4 n P) <B¢t P@ and for every
@ € A and ¢ there is €, , CA N P such that E ®¢(d,€¢|d) (@, as previously).
An equivalent formulation is: for every formula ¢{(Z,5y) and b €4, if
E@z ¢ P) ¢(z,b) thenforsome @ C 4 N P, F¢la,b].

Hence if M N PE C A C M, then 4 is complete.

1.7 Remark: 1) If 4,7 are countable, this means (by the omitting type

theorem ):
AMACMHMAM P=4A N P)

2)if A M P is A-saturated, A = |A| this means the same.

1.8 Definition : S.(4) = {tp(a,A):A ya complete, @ NP =¢} Of
course 4 complete, and let SI*A) ={p € Ss(4d)p =tp(&,4).L(@) =m}.

1.9 Explanation: We are reconstructing M from P¥. It is reasonable to
try to do this using intermediate 4, P¥ ¢ A ¢ M but then the types in which

we may be interested in realizing are only those from 5.(4).

1.10 Explanation: From where comes the w levels of the classification?
We try to reconstruct M from P¥ (e.g. in the case of categoricity). We let
HMIl = Ao let M = y M;, ¥; increase continuously, {{#;|] = {T|+ |i{. This

1<Ag
can be decomposed to Ay problems of:

"reconstruct M;,, over P¥ \y M;"
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By Hypothesis 1.2 (see Fact) tps (M., P () M) b tpo (Mg, PE U M), s0 we
have the reconstruction problem of M; ., over pHin \J M;. We can decompose
the diagram again, decreasing the power while increasing the diagram to 2"
sets. This is similar to [Sh 3] (and [ Sh 4] XII §5, but therc only the good cases

occur). Note that if we allow | P¥| < || # || an extra complication arises.

If we have "good” behaviour for one power, every n, we can prove it for all
larger powers. For each m we look at =n-dimensional diagram
A= Ay (A, <P¥ it 0¢ w, 4, <[Bif 0 € w), and ask about |SI4). If we

won
get stability (i.e. |STH4)| =< |4|!T]), we can define (n+1)-diagrams [as we like

to have that #p.{4,.4,) is determined by tpe(Ay. Ay yu

ness we deal with them mainly when stability for n-diagrams was already

), and get some unique-

proved, and 1.0 help simplifying]. If e.g. for every n the parallel of Ny
stability holds, we would be able to prove “M is prime over PY”. From insta-
bility we will try to get non-structure theorems. We shall deal with ranks

corresponding to stability {unstability .)

1.11 Definition : For every complete set 4, for A, A; (sets of formulas
p(Z)) we define F = RP{p ,A;,A,0) (we sometimes omit 4).
[the rank measure how close we are to:
P has a perfect set #¢ of extensions in S7(4)
A, is for "many extension”

Asisfor "4 ( Z is complete™.]
We now define by induction when £ = «.
DE=—1<=pt \/ Py
g<r(z)
2) R=0<=>R#-1<>p Ul-Plzg):¢ <2(z) is finitely
satisfiable.
N RE=6 (6limit) <> R =1forevery i <46.

4) B = a+1 <= for every finite ¢ C p and cardinals u,x where [a
odd => u=0] , [a even =k =0] and u + k <A, and for every formula
@(Z.,9;%;) € Ay and b; € A (i < k) there are A;—m —types r;(j < u) pairwise
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explicitly contradictories and d; € PIB M A(i = k), such that:
RE™( qur;ul(Vz, € Plley(Z.5,.2;) = ¥,(2;.d;)i <kl]l, Al =z«
1.12 Remark: It does not matter whether we fix <'¢1¢:§o € L> or just

asked for "some suitable %,

1.13 Definition : If X is a category of complete A C [® and some embed-
dings f:4 > [5, then we can define F for K rather than for A4, allowing in the
definition to replace A by K-extension { i.e. the r; but not d; can be found
there].

1.14 Claim: If Bt 4 can be expanded to an Bg-saturated model, and A.A;
are finite, then ET{(p,A;,As8p) is finite or «=. {We make explicit the dependency
on A4).

Proof: By compactness. (similarly to [Sh 1], ch. 1T §2)

§2 Ranks and non-structure for n=1,2.

2.1 Remark: We concentrate on the case A;,Ap,A finite, this lead to the
"stable/unstable” dichotomy.
Of course the rank has obvicus monotonicity and the finite character proper-

ties.

2.2 Claim: For every finite m A Az A,n and ¢{(Z.7) there is a formula

8(7) such that for any complete 4 anda € 4
RMe(z,a),AL0:,0) =n  iff Bra Eeola)
Proof: By induction on n.

2.3 Definition : 1) We say p is A;-big {for 4) if 4 is complete and
RPp A As,2) = o for ever finite Ap

2) A is unstable if for some finite Ay, {% = 2] is Ay-big for 4.
2.4 Lemma : Suppose 4 is complete and stable. Then |ST(4)| < [4[!7].

Proof : For every p € S(4) we can find a complete g, Cp, of cardinal-
ity < |T| such that for every finite Aj,Ay: Ry(p.A1,A5.2) = Bq,.0,42,2). 1f
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[sTa)] > [A]IT],

then for some finite A;, {p 1 A;: p € SIA4)] has power > |4|!T] there are
BCA,|B|<|T| , q and p.p; €ST™4) for i< (|A}'T)* such that
dp, = gp € S™(B) hence p; 1 B=p I B, and the p; I A; are pairwise distinct.

The rest is easy noting:
2.5 Fact: If 4 is complete, p € S.{4), then B, {p,A;,A;,2) is = or is even.

2.8 Lemma : If |4] = A, 4 complete, B 4 saturated, 4 unstable, then
[S™4)| =2
In fact: there is a finite A, such that |{p 1 A; 1 p € STM{4)}] =21

Proof: There is A; such that EPZ = £ ,A{,A5.2) >n for every finite A
and n. We define by induction on a < A for every n € *2 an m-type p, over A
such that:

(1) [pyl <8+ j2(m)|*
(R) for every finite Ay Ef*(p,.A;.822) =
(4) If @« = B+1, v € #2 then for some ¢ € A}, € € 4,9(Z,C) € Pp~co> and

~p(Z.C) € pymci>
(5) For every formula ¢(Z.,8,2), @ € 4, for some a, for every n € %2, for

somef € A NP (V2 CP)(9(Z,8,2) =9,(2,C)) €py

For a = 0, a limit no problem.
How to satisfy (4)?:

As A, is finite we can code it by one formula (see [Sh 1] II 2.1); so let
A ={p(F,5)}. What are the demands on £&? Write Z for ¢
{RT(q Ulp(Z,2)Y,A,,A2.2) = n: for finite g Cp any tand any finite Agn}

(where tis false or truth, i = o pf¥se = o)

By claim 2.2 each demand is first order in Bra As Br4 is saturated,
lp,| <A={4], it is enough to show any finitely many demands are
satisfiable. By monotonicity in rank just ome is enough; say
RPMq Uie(Z.2)414,,A5,2) = n. But R*(q,....) = n+2 and use this.
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A similar proof works for (5).

2.7 Remark: Now there are theorems which give us for unstable 4 and
u=|T|and = A, |STHA)| >u= 4]
But we shall be "easy” on the non-structure side, as this is not our main con-

cern in these notes.

2.8 Question: Is some (= every) model stable?
Meanwhile we assume no and gel some non-structure theorems, then we will

assume yes and continue.
2.9 Note: We shall observe that: no = (@# E T)(|#]| > |P¥])

2.10 Theorem : Suppose that for some models ¥ ¢ N, cardinal g, and
finite Ay, PY ¢ M, || M || < . |{ippfa,M): @ € N}| = pu*.
¥ |Ti<a= )\“,0 x 2* < 2* and then there are 2\ non-isomorphic models .

of T of power A%, with the same restriction to 2.

Proof : Expand N to have enough set theory and get N*, let @¥" = M. Let
N¢s be a saturated model of Th{N*) of power A.
We define by induction on a < A* N, , I', (for 5 € ®2) such that :

(1) N, is saturated of power A, elementarily equivalent to N¥, T,
a family of =< A types omitted by N, moreover no one has a support over N,

in the sense of [Sh 5] { for carrying this we need OA)'

() For B<¢(n); Nypg<Ny TpgCTy PY = pNe  and even
QM = @Ne,

(3) For a=g+1, v € 82, there is a Aj—m-type over PY® realized by

Ny~co> and belonging to I'y~cqs.

For the continuation of the process in the limit we have to have more
induction hypothesis as in the paper above; in the case a = g+1, v € 2 N,
has a A-saturated extension in which A* A, —m-types complete over e are
realized. So there is one p, with no support <A over Ny So let

Fymci> =Ty UP L. Ny~co» realizes p,, (we can get also the dual demand).
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So, let for 7 € M2: Ny = U Nypg. Over QN they are pairwise non-isomorphic;
@

as 2 < 2%, 22 of them are not isomorphic (even over ¢) {easily, by [Sh 1, 1.2]
and Ngt Pl = N<>rPN<> is the same.

Remark: We can eliminate the use of <> » by forgetting I'; by demanding
that for a = 8 + 1, v € P2 there is a A,—m —type p over PYe which Nopago> real-
ize it whereas Ny~.;, "says” it is omitted (and you can demand that you can

interchange them.)
2.11 Remark: We can replace A-saturated by A-compact.

2.12 Theorem: Suppose that some model is unstable, but the hypothesis
of the last theorem fails.
If |T|=A= 7\0‘,<> {6<A*:cr (5)=a)s then the conclusion of the last theorem
holds.

Remark: We can replace diamond by weak diamonds.

Proof : We define by induction on a for every n € ®2 a model N, such
that:

(1) N, is A-saturated when £(7) is a successor or cf (£(n)) = A

() 1Ny | = A(1+L(m))

(3) Nypg < Ny, PM = ple
Let <<n5,v5,F5>: 8 <At cf 6 =A, A? divides 6(A? is ordinal exponeniation)>
be a <>-sequence i.e. Fg:6 >0, my# vs €92 and for every n # v € ¥ 2, and

function FA* > A* for some (in fact a stationary set of)
d: <n6,ua,F5> = (nré,md,Frd); so /" maps 6 to 4.

(4) For each 6, there is a type ¢ over N,, which is realized in Ny ~co> and
also in Ny~¢1> but Fg(g) is not realized in any A- saturated extension NY of
Nyg<on OF Npyneys with PN'= ple,

If we succeed; there will be no problem.

For a = 0, a limit : no problem.
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o = §+1 B successor : Over N, there is a A;-big p € SI(N,). Let it be realized
by &, N,|C is complete, hence (as Bt PN is A-saturated of power A) there are
{for e =0,1) A-saturated N,.., for power A, such  that

N,UC € Nymgey, PYree> = pv,

a=g+1,cf B<AN Np={)Np, is a complete set with P saturated (see
7<f

below); hence we can find Ny~ 5 2 N, saturated with the same P. We use
Jreely:
2.13 Claim: If 4 is complete, Bt (4 N P) A-saturated, |4]| =A[ and

| 7] <A =AM, then we can find N,PY ¢ 4 ¢ N [and N is A- saturated]. (like
the proof of the unstability Lemmma 2.6, but simpler).

The next case is:

a=8+1,cf B=A and wlog. (N,,,ud,F6> is defined. We define by induction
on i a model N* of power A, N® = N,,,, N7 < N* for j <i, P = PY and there is
€; € N;4; such that tp, (¢;,N°) is not realized in N*. We define as long as we
can fori < At,

If we can continue for i < A* we get the hypothesis of the previous theorem:.
As for limits we have no problem, there is a last NY, w.l.o.g. (by 2.13) it is A-
saturated. Let Ny~ce5 = N for e =0,1. Now | STH{Ngp) | > A, [N| < A, so for

some gg € STH{N,,), Fis(qs) is not realized in N¥". Choose Nps~<e> to realize g4
(possible as g4 € ST™(N,,) not just € S™(N,,)). For p€ 28\ {vsms] you have

more frecdom. (We could have made the situation symmetric).

* * *

So we have shown non-structure when some M is unstable. Let us relist

our hypothesis:

T complete, P one place predicate
n = -1 Hypothesis A=1.1: every formula is equivalent to a relation

n = 0 Hypothesis B=1.2: For every @ €[5, tp (E!?,P@) is definable
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n = 1 Hypothesis C: For every M,|ST{M)| < || M |]'T].
Note: For every M by B,ip.{#,P¥) |- tp.(M,PE)‘ The next stage is:
n = 2 Question D: Is every My P¥ stable, where Mo < My <52

2.14 Theorem : Suppose the answer to question D 1is yes,
AX=AA> |T| =R, If M is A-saturated of power A*, then over P¥ there is a
A-prime model
(Soif (YN E T{(|N] = |P}]) then M is A -prime over P¥)

2.15 Remark: Really: A< < A* A > | T is enough.
Proof: If |P¥| = A use the previous theorem 1.3.
Let P¥ = |\ 4, increasing continuous, Bt 4; 48t P¥ <[B1 P and for i =0,

i<t
and i successor => [B1 4; is A-saturated.

We define by inducton on 1 models M;, increasing continuous,
M, PE = 4;, such that

(*) for every ¢ € M, tp{(c,M; U A;4+q1) is Aisolated
(**) Mg, M; . are A-saturated, || #; || = A.

{***) tp (T, Aq) is A-isolated for € € My

Why is this enough?
Let Mg=f{cpa <A} M \M =fcy AM1+)=a<A(l+i+1)}, maybe with

repeatitions.

Now tp.({cg: 8= a},Ag) is A-isolated (as union of < Ja|* + 8 such types) but
tp«(fcp.B < &}, Ag) | tp«(fcp.B = a},P¥) so the latter is A-isolated too; hence
tpe(c o, PY fcg - B<al) is A-isolated. Also for (1+i)A=a< (1+i+1)A
tp(c,,P% fcg.f < ai) is A- isolated by:

2.18 Fact: If 4 {j @ is complete, then
tp(@.4) b tp(@.4 y P)
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Proof of Fact 2.16: For every b € A, tp(a~b,ANP) tp(
hence tp (a@,{4 N P@) ub) k- tp(ﬁ,P('g U b), taking unions over all
get the fact.

d
b €A we

We know tp.({cg(1+i)A < B < af, M| J4;41) is A-isolated and
ipe(feg : (14N = B < o My Uderr) Ftps (o g (140N < B = af M UPY)
by the Fact.

Hence the latter is A-isolated, hence tp(c,, fcg{l+i)A=g<a] Y ¥ UPH¥)y is
A-isolated, but this is tp(cg,fcg: < ajUPH). So tpleafeg:B<a} U PH) is

A-isolated for every a < A%, and this is enough.

We still have to define #;

For 1= 10, as Aj is complete A-saturated of power A, there is M, PM":AO,

My  A-saturated and we know M satisfies (***) necessarily.

Note:

2.17 Fact: If B is complete, A = A2 > || 7], !B (B (\PB) is A- saturated,
| B| = A, then there is a A-saturated N D> B,N N P[g =B N PE

For i+1: As M; (J 4;4, is complete, and its intersection with PIE is (4; 44, which
is) A-saturated, clearly by 2.17 there is N; 2 M; U 4;41.N;, A-saturated
P NN, =44, We define by induction on a<Acge€ N such that
tp(co My U 4isy U fcgf <af) is Aisolated. By standard bookkeeping it is
enough to prove that if p{z,) is a type over #; {J A4 Ulcg: B < af of power

< Xk then it has a A-isolated extension { over this set).

By the induction hypothesis there is a type
q(zp: <) Ctp.(cpf <o), B Uhis)
of power < A such that g(zg: 8 < a) |- tp. (<05,B < a>,M£ U4 +1). Replace in
P(zg) the cg’s by x5 and get p'(zg: = a). So p' U ¢ is finitely satisfiable (in
N;) and of power < A and is over M;(J4;4,- Let {(gy,A?,Ag):'y < |la] + |T]} be
the list of all triples (§,A1,4;); ¥ C {zg: = a is finite and Ay,A; € L(T) are
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finite.

We define by induction on 7 a type 7, in N; over M; {J 4;4, where 7, is
increasing of cardinality <A, 7,4 =7,Ur7(¥,), 77 finite over M;J4;4,, the
union consistent and R(r7(%,),A;,A;2) is minimal where the rank is for
M; 4,4, (minimality: under the constraints required). As M;|J4;,, is stable
and as 4;4; is A-saturated, Ny(\P = 4;,,, we can extend 75417 to r’ so that
its domain is a set C C4;, UM, and 7ty € SPC) for any finite
¥ Clzg: B <aj of length m. Simply let <cp B = cx> be a sequence in N, real-
izing 7 |qj4|7); NOW choose Cg € Ay so that Yd C fcpg : < ajyDom 7 g4 7|
tp (d,PM) = tp(d,4;4,) is definable over Cy and let C = CoyDom 74147
r = tp((c'ﬂ D B< cx>,C).

By the definition of #( - - ), 2.5, and as for no A,
{(Vn) (V finite Ap) RAtMUMt(f: z , A;,A,2) = n, clearly r has a unique complete

extension over 4;,,yM; (using the construction of r1).

So we have finished proving 2.14.

2.18 Theorem : Suppose the answer (to Question D) is no, A= AX > [ T].
Let @ be Lhe forcing of adding A* Cohen subsets to A. Then for some
4 <PB A=

|lg "there are 22" A-saturated models #,P¥ = A, || M}| = A*, pairwise non-

isomorphic over A."

2.19 Remark: We can replace forcing by appropriate diamonds and get

such models. Note that the answers to all our questions so far are absolute.

Proof : By assumption:

»

e N
There is a triple: P¥ M® < N® whose union, PY |y M, is unstable. We

cpV
can prove that there are many such triples. But for us it is enough to do the
following. We define (in V) by induction on i < A* 4; such that 4; is strictly
increasing, continuous, |4;| =A, [Br4; <Br P , 4g4;,, are A-saturated
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and when cf i=x (B14;,,.4)=(C1 PY . P¥) and when cf i € §0,1,A}
(Br4,,,.4;) is A-saturated.

For ¢+ = 0,1 limit : no problem.
1+, 1 successor or ¢f i < A: easy.

cf i =x Br 4, is A a saturated of power A by the induction-assumption.
i (ER PN’,PM‘) has the A- saturated model of power A say (4,4%), the A% part
is saturated of power A and has the theory of B P, hence is isomorphic to 4;.

We can identify them and choose 4;,; as 4%.

Now for any sequence <r¢ i1 <Atef v;=)\> =7 of Cohen subsets of A we

describe how to build a A-saturated model M, of T with P = U 4

Before this:

2.20 Fact: If ¥ is a A-saturated model of T, ||M]|] = A M N PlB = 4,
ef i =A; then M (4 4;,, is a A-saturated model of Th{H#" UPN’), and even
(M U Ager, A M, Ayyy) is a A-saturated model of Th(#M" PN, P¥" M* PN
(same argument as before plus use of 1.3).

We shall define M, = \y M. . depends on 711 only, M,,,'i nN FE =4,

Pon* .1’ i

M, is A-saturated. So in SI™(M,,J4;4,) there is a perfect set

F i+l

homeomorphic to *2; we can (see 2.6) choose a tree {p,:7n € *>2} of types

Py € STCGN) G increasing with 7, py~co» » Py~c1> €xplicitely contradictory,

Cly € My ;. U Aiyq has power <£(n) +8;

and (Ve € M, U 4ia1) Q) (Ype2®) [c e O]

Now 7; define a branch 7; € *2 and we demand that M; 4y Tealizes (JPy,re We
i<

can carry this as under our hypothesis since:

Fact A: tp(M,P¥) | tp. (#,P5)

Fact B: If 4 is complete, |A] = A, 4 N P saturated of power A then
(IN 2 A){Nis A-saturaledand NP =4 N Pl

Now, if we add to A AY Cohen subsets, there is no problem to define 75 ( for
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ECAtFEe Vand<<(S(E),gE> CECAY E e V> from V such that:
Tp € Vlr; 1 j € S(E) €AY,
Tg(i) = Ty ) where gg : AY > S(E) is one to one and gp € V.

Ey# E;=>{t <A*:cf 1 =X, rg (1) does not appear as 7g(j)] is station-

ary

[Basy, as there are S¢ € {i <A*icf © = A} for £ < A" stationary pairwise
disjoint]

Suppose f, a @-name, is forced to be an isomorphism. As the forcing

satisfies At-cc there is a club D ¢ A*, D € V such that :

f maps M,,,E onto Mfgg.i fori €D and f ran,i does not depend on 7 (1)

ot
(in fact depend only on the generic sets {F;(j):7<i} U {r : 7 does not appear
in 7g,.7g,}). Choose i € D,cf i =X, 7g (i) does not appear in this 7z, Let
V¥ =Vlr; ir; £rp(i)]. Now f 1 M, ,

; is in the universe V*, as well as the tree

of types we have for MFE , after Fact 2.20. But in M‘?’g {i+1) there is a type
iy 1

realized which ¢ V¥, a contradiction.

§3 Introducing n-dimensional diagrams and on uniform local atomicity

3.1 Remark: In our non-structure theorems we prove something like: If
..., and A is special e.g. A = put =2~ | 0,‘ and <> {6<n:cy 6 = uf then over some
AcC PlE |41 = A, there are 2* models M with P¥ = 4 pairwise non-isomorphic
over it. This excludes e.g. singular cardinals even if V = L. However in the
cases we have dealt with we can really get 2*" non-isomorphic models
M, P% = 4 (non-isomorphic over it) with lA] = x for any x > A. Just iterate
taking ultraproduct for D an ultrafilter over w. So when our proof rests on
omitting types of power u, p > 8; this does not change much. For e.g. u = Ng,

we have to use indiscernibles instead; we shall return to this.
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3.2. Let Pn) = fwyw C {0,1,...,n—1}}

Pn)y=pPn)-inj=tw:wci{o1, . .. ,n-1}]
We shall deal with 7 ¢ fAn) closed under subsets, mainly with /9(77.), p‘(n)
and with (A, /)-system <A$: s € I> A = Z|4, | such that

0 s => 4, < P2
Des => A, < 5
AsP = As\qop As M A = 4 Nt
and more.
We first deal with small n; for such systems we may ask about stability ( of
U A4s), and existence (of M, PY ¢ \(y A, € M)

sel sel
* &k

Note that:
for f}((}) we gel nothing

for FX0) we have just Ag which is < P!B (iie. 4 C P@ and B Ag < B P[g).

P(1) = {4}
sp (1) = §¢.10}

So a J{1)-system is <A{o]:<4¢>
Agpy 8 model
Agits P-part

a P~(1)-system is just Ay < PIB and the existence-problem is IH(PH¥ = Ag). The
stability just asks on S.(4) when A4 < P[g

n=2: A /-)(2)-system is ‘<A¢,A[0;),Au¢),Aw'”> .

For /9'(2) we have dealt with stability and existence. In this case automat-
ically ip. (A{(B}’Agé) }" D {Aiﬁi*Aili)'

n = 3: We have a cube, we add the demand
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(Ag1p.44) < (Ag1234421)-

We shall assume that 7 absolutely has no two cardinal model (i.e. 1.0} (not

always we shall use it).

3.3 Claim % If PY ¢ A ¢ M, A stable (and complete), then M is locally
atomic over A that is Vb € M,fp (b ,A4) is locally isolated which means that for
every ¢ = ¢(%,2), there is ¥(Z.@) € tp(b,4), ¥(Zz.@) |-tp,(b,A)] and even
uniformly so (i.e. ¥ depends on ¢ only and not on b, though @ may still
depend on b).

Proof : First assume (#M,4) is saturated of power A. Then (see 3.4(2)) we
can find N.PY CA CN, |N| ={a; :i <A} tp(a;,4 Yla;j <1i}) is Adsolated,
hence we can embed N into M over A, by 1.6 the embedding is onto 4, hence
w.lo.g. N =M. So for every b € M,tp(b,A) is Aisolated. For some q C tp(b,A4),
lgl <Xqg Ftp(b.,4). For every ¢ = ¢(%,7) let

=gz )ua(®z) U le(Z27),-9(21.79), /\ yg € Aj
2<2(g)

(we have a predicate for A4). Now I' is not realized in M, because if
Z,>b,,Z,» by, 7 > d realized it thend C 4 and

g1 =q{Z)yUle(Z,d)] is consistent (b, realized it)

g, =¢q(Z) U {-¢(z,d)} is consistent (b, realized it)

contradicting "q | tp(b,4)."

So this holds if we replace ¢ by some finite ¢’ € ¢ hence by some for-
mula ¥, g(Z.6,) € tp {b,4). So

‘!"@,5(515%5) Ftp,(b,4), and F 1{’,,5(5,5%5)
Similarly we can deduce the uniformity from the | 7| ¥-saturativity.

3.3A Notation: 1) Let l.a. stand for locally atomie, u.l.a. stand for uni-

formly locally atomic.

2) Let Ag, C means that if p(Z,Z) € L,
ceC,aed, B Eg[c,a]thenthereist € 4 such that B [ ¢[c,a].

3.4 Claim: 1)* If A is complete, unstable and | T|*-saturated, then
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over A there is an m-type p of power < |7| with no | 7| *-isolated extension.
2)f A is complete stable, A-saturated and A > | 7|, then

{(a) for every m-type p over 4 of cardinality < A there is an m-type
g over A,p Cq, |g—p | =< |T|, ¢ has a unique extension in S™(4) and it is
in ST*(A).

{b) over A there is a primary model N, so necessarily

Nmpgzn}’{g.

3)*If A is complete, 4 N P@ is A-saturated and P¥ C 4 ¢ M then M is

A-saturated.
Remark: We use "absolutely no two cardinal model” for 1) and 3)

3.5 Claim: Suppose A is complete, A ¢ B and C(;Flg. then
Ac, BycC.

Proof: Let @ € 4, b € B, ¢ € €, and suppose E ¢[c.b.@].

Let (7.%)=(3zp2y. - )elzezy, ... . F.2) A /Q\ P(zg)], so clearly

[ 9[6,@], hence for some b € 4 E¥[b.@]. As A is complete, and @,b € 4
clearly for some cg,cq, ..., € 4, Eglcg.cy,....0.@]

This proves 4 ¢, B yC.

3.6 Claim: If tp(b,4) is locally isclated, 4 ¢, B then tp(b,4) + tp(d,B).
IfAisla [ulalover 4,4 ¢, Bthen4'isla [ula]over4 y B.

Proof: Easy.

§4 On /=(3)- systerns and /-(3) non- structure when there are unstable
/9‘ (3)- systems.

4.1 Definition : We define what is a /(3)-system. It is
S=<ASZS‘ 6/9‘(3)> such that :

1) A¢,A“},A$2§,A“’2g < @ rP
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2) The rest are < 3
3) 4 N P = As 10y
4) AS M At = Asﬂt

5) (Ag2p Ay > (Agipdg)

8) Aygy,0p is uniformly locally atomic over Ay U Agoy and

Ajgz 01 Is uniformly locally atomic over Az U Ao

Now 8) follows by previous hypothesis, for T absolutely with no two cardi-

nal model, (see 3.3). We say S is stable if | 4 is stable. S has the existence

s

property if (3M 2 Y4, )PY < 4.
5 S

4.2 Fact: Being a [/7(3)-system depends on the first theory only [of
( U As. A5 sep)] (because we have u.l.a. notjustla.).
sep(3)

¥..Question: Is there unstable /9’ (3)-system?

4.3 Theorem* : Suppose <As' ‘s € /9’(3)> is unstable, A = A* > | T} and
@ is the forcing of adding A**-Cohen subsets to A( and oA = At 2M = A**) and
u = At Then in V9 there are 22" non isomorphic models of 7T of power
with the same P of power u. [If e.g. u = u then we can have A-saturated

models).

4.3A Remark: We do not try here to eliminate the set theory. We are

more interested to show the dividing line is right.

4.4 Claim: Suppose for £ =0,1 <As£ ] eP‘(&‘)) is a P‘(S)-system,
<ASQ:S € /9({12§)> is saturated of power A > | T|, <ASZ '8 € /9(21,2§>, (¢ =0,1)
are elementarily equivalent and Asp‘ is saturated of power A when 0 € s. Then

the two systems are isomorphic.

Proof : Obviously there is an isomorphism g from <As° 18 € /9(21,2¥)>
onto <A31:s Ep(il,2§)> . Now we know (see 1.3) thal: as Ai%; is saturated of
power A, it is unique over Agy N = Ag. So we can extend g rAg to a iso-

morphism gy from Afy onto Ady. Now (by 1.6 2.18) we know that
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tp. (Af%; ,Ag) - tp.(Aizo; PIB) hence  ip. (Ai%i Ag) F o (A!%] :A{Ql,zg) hence
9°%¥g, U g is an elementary mapping. We know {by condition 6 of Definition
4.1) that Afzz,ol is u.l.a over A{%; U AIQO!' hence it is A-atomic over it, so as il is
A-saturated it is unique over Afy ) Afy. Hence g%t (4 U Afy) can be
extended to an isomorphism g; from 40, onto Aoy As we know
tp (Ao Agzy) }—fpt(Azo,zi,Pg) also tpe(Agozy Agey)) b t0e(Ago2) Agr,zy) hence
tpe (Ago 2y Ay U Agey) 0 (Ao Agiay U Ajoy) [note Ag ) Udgop € Agogy] so
necessarily g! gfgl U g% is an elementary mapping. Now Aﬁm is also A-prime
over Ay i) Ay so again there is an isomorphism g, extending
gl (4f; U Afy) to an isomorphism from Af o onto A¢ o). So it suffices to
prove that g, \|yg' is an elementary mapping. As Aﬁm is u.l.a. over
A%g U Ai%% it suffices to prove tpe (Af%,u, Aﬁ; U Afzog)
(o th(A;%,u’ Aiﬁl,zl U Azﬁo,z;),

for this, by 3.5 (and see 3.3A) it suffices to prove:
() afyuafy < Al U Ay

Let ¢, € 42, b, € AsZU{ZR for s =¢,§0}, {1} be such  that

Eel. . 6. 55,...,)36‘&(2}. We shall show that there are c‘; €As€, ( for
s € /9“(2)) such that | :p[...,é's’,_,.,gs,...]SEP.(Z). As we have already proved that

tp. (Ai%.zl A {%; U A,Qz!) [ tp*(A&,zi,Alzl’zl U Ai%l)’ w.l.o.g. for some P, ¥,
a) B 91(04.6413.64.611.b404]
D) B E VT, Y1327 513 2 10i((¥1(T g0 ZiiZ 11y Tp Tpop) > Y2 9T 7 103))
c)B E (VY s.ZgTi0p) [V2(U6F4.T50)) > @F50))8 (T s Y j0}.Z - F503)]
d) B EVTg 73T 10126 F 1y Zo) V1V g Ty T T g3 Egoph
Y 9Y 03T Z10)) > T T 13T 10T T 13T pop) ]

So in fact we have shown that w.l.o.g. €y is empty [replace ¢ by ¥, (a) is the
assumption; so suppose E; EAg, 6{1; GA,QI; and I:'&l[E;,Ei”, b4.0413.b04]
hence by (b), }=¢2[€;,5¢,bwi] and (¢) E@F0) ﬁ(ﬁ;&,g‘mg, by by and as
A,%, <[B for some 550! €A,Qo;, Fﬂ[é;,ﬁiog, bg.bioy), and by (d) we finish].
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Then we can eliminate the use of byg; as tpA(Em;,PIE) is isolated by some for-
mula in tp(l;m,A‘#) (for A a finite set of formulas). At last we know that
(Ag1p.44) < (A1 21 412))-

In fact we have prove

4.5 Claim :If (As:s € /9‘(3)> is P7(3)-system, and <As :s €/9({1,2§> is

A-saturated then S is A-saturated.

Proof of 4.3: The Hypothesis 4.3: There is a /27(3)-system <As':s 6/9'(3)>
such that |y Ag unstable.

s

Assumptions: A = AA > | 7|, 22 = A*, 22" =\

We first define 4;(i < A**) increasing continuous, 4; <BIP, |4;| =A%, 4,
w.l.o.g. a set of ordinals < A** [cf (i) € {0,1,AY]} => 4, is saturated]. For
each j < A*tcf(j) =A% .1 =j+1 we define A% ,AJ for a < A* such that:

AL CAG Al = 1ALl =N U AL =4, U Ah=4
a\*t a<\*
(A% .4%) is an elementary chain (increasing-continuous) in «
(A%, A1) = (A} A}) and
[ef (@) = A => (4441 . 404185 .4%) = (A1 21,42 451} Ag), and is saturated.]
We do it by induction on 1,
For i =0, or ilimit: no problem.

i=j+1, ef j:# A*: no problem

i=j+1, cf j = A*: no real problem. First we define by induction on a,

(4%.A%) = (A§yy.43) a  continuous  increasing (in a) chain;
[cf acf0,1,A] => (4%,47) is saturated], so that |y (4%,4%) will be saturated:
a<at

for a =0, or a limit or a =8 + 1, ¢f (B) # XA no problem arise and take

care of the saturation of the union

a=gB+1,cf B =X Let (A“'Z;,A!Z],AM,A‘#) be a saturated model of power A
of the theory of (Af;2;.4121.4113.4¢)- So (4(13.44) and (A},4%) are saturated
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models of the same power and theory; hence isomorphic, so w.l.o.g. equal and

iet
Ay = Ay AL = Ay

Now (J A} is a saturated model of the theory of 43( = the theory of 4%)
a<it

and has power A*, so it is isomorphic to 4; and w.l.o.g. they are equal. So we
have defined 4;.

Now we define by induction on i < A**

M, <&, such that:
a) M; N PtB = A;, M; increasing continuous.
b) M; is A-constructible over 4;,
cywhencf 1 € {0,1,AY} J#; is A-saturated and
d) if j <1 then ¥; is A-atomic over M; U 4;;

We will define the M;’s in some forcing extension V¥ of V: but @ is A-
complete: so (when ¢f i € {0,1,A*}) M, is isomorphic over 4, to some M, € V
[as over A; there is in ¥ a A-prime model ¥, in fact a A-primary one and this
property is still true in V?. This property is also satisfied by M; over 4;; so
they are isomorphic: use the uniqueness of the A-primary model (see [Sh 1],
Ch. 11, §5).

Specifically, @ will be "adding A**-Cohen subsets of A, <'r°‘:a < ?\+> ". For
every sequence FF = <ri’ﬂzi <Attt a< 7\+> {where for some
h €V, 7, o =7*4%) h one to one) we shall define a model # 7. For a while we

suppress the superscript 7.

Case I 1 = 0: by the proof of the existence of a A-primary model over
any A-saturated 4 <[B1 P, 4| = A* (see 2.14).

Case II: i limit: The only problematic point is "M; is A-constructible over

A;, and M; is A-atomic over M; \y 4; for j <i". Let j <1, every € € M,
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belongs

to Mg for some £, j < € <1, so by the induction hypothesis ip (¢, 4 UM;) is A-
isolated , but M; \y 4, {J € is compete hence tp(€,4¢UM;) I tp(c.A; UHM;) so
the latter is A-isolated too. So M; is A-atomic over M; \) 4;.

Now each M; (j <1) is A-constructible over 4;, hence over 4;. So (see [Sh

11V §3] M; = U Mj o | M all =X M, 4 increasing continuous in a and #; is
a<At

A-constructible hence A-atomic over A; \y M; 5 and even over 4; U M; 4 Let

S&X

1= (Y Wa |Wal <A W, increasing continuous, W, with no last element. Let
a<i*t

No= U M, soclearly || Ngll <A Let
jeHa

CO = ia < >\+: V] < g < Wa, Mz,a [ Mj = Mj,a;
Clearly Cy is a closed unbounded subset of AY.

Now for every j < £ <1, M, is A-atomic over M; \y 4¢ hence (as usual)
over M; \J 4;, and for every ¢ € M there is a(¢,j) < A* such that
tp(C. M) oy U (Me,a(c,j) NAg) b tp(e.M; () 4) (are A-isolated). Clearly
Cr={a€CoVe(Vj £ € Wy)[j <€EnT € Mgq > alC.j) <al} is closed
unbounded. It suffices to prove that for every a € €3, Ngy41 is A-atomic over
N4 U 4; (hence A-constructible). (as we know Ny is A-atomic over N;). First
we prove that for every j € W, M; is A-atomic over N, U 4;; let d e M; ti'len
as a € Cy, tp(d . M; 4 U 4;) is A-atomic hence tp (d,M; o U 4;) is A-atomic, so it
suffices to prove tp(d,M; o U 4) Ftp(d.c Y Mj 4 U 4;) for every € € N,. For
any such €, as W, has no last element, for some § € € Mg, j <§ € Wy Now
a(t,j) < a, hence
tp (€. M) qz. 5y U (Mg ey NAY) Hip (e M; U 4) as d € M;, this implies
tp(C.Mjq U A;) Fip(C. M 0 U4 U d) and by symmetry we get the conclu-

sion. So we have proved that M; is A-atomic over N U A;, hence Y M;is A-
jeHa
atomic over N, U 4;, but ) M; is Mgypp, and so we have proved it if
j € Wa
sup(W,) = 1. Now if ¢ Z'sup W, < i, then remember that we had proved that M,

is A-atomic over M, |J 4;; as we have just proved that M, is A-atomic over
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Ng U 4;, together we get that M; is A-atomic over N, (J 4;.
Caselll:i =j + 1,ef 7 <At

As Mj is A-constructible over A;, we can find Mj,a, and 4; 4 for a < AY such
that, M; = U M;, where M

a<at e
WM ol =X M; Aatomic over M;, U 4; (hence over M;, U 4;), and

is increasing continuous (in a)

|4l A, A= U 44 A increasing continuous in a, and
a<it

(4i,aMj adja) < (4 M;,4;) where A; =4 q N A; =M;q N 4;, and when
cf a€{0,1.0. (4;q4;,) is A-saturated, also when cf a € {0,1,A],
(4,0 Mj oA a) <1p, (A M; A7)

We define by induction on a, M;, such that 4;, U Mo <C M,
pla = A q lcf a € 10,1\ - M; 4 is A-saturated] , ¥, 4 increasing continuous
in &, and #; 5 is A-atomic over M; o \J M; o and also over 4; 5 \J #;. For the

last demand note that

(*) when cf a € {017}, as (4; oM adj o) <1, (4 M;,4;) it suffices to
prove that M; 5 is A-atomic over 4; o \J #;

So for a = 0 it is easy, by the last sentence, for a-limit there is no prob-
lem. For a =g + 1, over 4; o | M; o there is a A-atomic A-saturated model
M; . but why M; g € M; ,? As the previous is A-atomic over 4; o \J #; o ([prove

it as you have proved (*} and for g limit we use Mg= {y M,,;) and as
7<B
W #; 6]l <A, clearly M;g is A- constructible over A;, U M; , and we can

embed it into M; 4, over 4; 4 \J M; o and so by renaming we can finish.

So M; ¥ M; o is A-atomic over M; U 4; (hence over M, (J 4; for £ <1
a<At

(see [Sh 1] ch. IV §3]) and is A-saturated. We still have to show that it is A-
constructible over A;. For this it suffices to prove ¥ ,,, is A-atomic over
M; o \U 4j a+1 Which we could have guaranteed this easily in the construction.
More exactly, M; 441 i5 a A-saturated model of cardinality A extending

M 0 U 4ja+r; Now if T' is a set of < A types over M; o (U 4 q41 €ach with no
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support of power <A (i.e. no type g over M, U Aj artr (consistent),
lg] <A, ¢ -p where p is the type from I'), then there is a A-saturated
M 24 o U Mj g4, M omitting every p € I Now the other demands on #; 444
are of the form: omits some type; and to prove those types have no support
< A, it suffices to find a (A-saturated M, M D A; 4 \J M 441) omitting such a
type for each p € I separately.

CaseIV:i =j+1,cf j = At

We act exactly as in Case III, with one additional feature. When
a=f+1,cf =AM we demand

(**) o Miao Mj g 4 Aj o Ao Ajog)

= CAjozy Afoy Aoy Afrey Afey Afyy Ap )
[Remember 4; ,.4; (7 < At) were defined in the first part of the proof, so that
the relevant part of (**) holds. We then can define M; (7 = 0), A-saturated of
power X, #; , N PIE =4; ., and M; 44y is  A-atomic over 4; 441 U M, by 2.14

w.lo.g. M; = M;, Now we defined by induction on 7, ¥;,, A-atomic over
4

M; ., U4, Clearly there is a A-saturated model of cardinality A elemen-
tarily equivalent to <A;o,2;, A{o,“, A{O; A {1,2;,14 ;2;, Ai‘ll ,A¢>, and by 4.4 it is
iSOI}'lOI'phiC to <Mj,aﬂMi,a' Mj,ﬂ’A‘L,a’ Aj,a'A‘l:,ﬂ’Aj,ﬁ> SO (**) hOldS]

So the left system is unstable so by 3.5 there is an m-type p over it of
power <A with no A-isolated extension over M \y Mk U 4%, so in the con-
struction we have a perfect (i.e. homeomorphic to M) set of possibilities an we
use 7; g to decide {except here we do not use the Cohen sets, though once

used we may continue to use it).

The non isomorphism is as in previous proofs.

Remark: We could simplify the proof of 4.3 by a more extensive use of
0.1.

§5 General system and relevant symmetry.
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We change slightly the thing we analyze - we shall analyze "the possible

re

existence of a A-prime model over any 4 < . Remember

Hypothesis: Every formula is equivalent to a relation.

In this section we shall deal with systems of the following kind:

5.1 Definition : A [-system is S = <A$:s € I> {{ = I(S)) where

1) for some n =n{l) =n(8), /9(21, B A S R Qp(n), I close
under subsets
2) 4 M 4 zAsnt

3)a)if 0 s, then 4, <BrP ,b)if0cs 4 <[B

4)
<AS s e P, ,n—2§)> <<Asu!n_” s e i, n—2§)> are both sys-

tems {so the definition is by induction on n).

5)if 0 € s, 4 isula over (U 4;.
tcs

Remark: This is useful when no two cardinal models exist.

5.2 Definition : 1) A system Sis stable if (y ASis
s€I(S)

2) A system has the existence property if there is M,
P¥ cyAScH.

11
3) The I-goodness holds if every I-system is stable.
4) n"(T) is sup {n+1 : P(n)-goodness holds} (so n”*(7) < w).

5) n"(T) is sup {n+1: every P (n)-system has the atomicity

property }.
where

6) <As: s €[> has the atomicity property if for every |T|*-
saturated <As+:s € [) E(As:s € ]>, and m-type p over {J 4;" of cardinality

sel
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< |T| , hasa |T|*-isolated extension over (J 4.
sel

5.3 Lemma : 1) Being an /-system depends only on its first order theory.

2} Having the atomicity property (for an /-system) depends only

on its first order theory.

3) If <As:s € I> is a system, n{T)>0, then so are
{4 s €1 A Pr(d)-1)) and
<Asuzn(1)—1; cs ytn(H-yel, (n(H-1) ¢ S>~

43 If J C I satisfies (1) of 5.1 then <As:s € J> is a J-system.

5)* If every model is stable (i.e., |SPAM)| =< [|M]||!T)) then
n*(T) =n**(T), in fact stability and atomicity of [ (n)-systems are
equivalent. {see 3.4(2)(a)). (Without 0.1 we get: stability implies atomicity.)

5.4 Lemnma : For any system <As: s € [>, (n =n(D):
a) if 0€s &f then tp.{4s, U 4¢) - tpe(4s, U4t € [,s¢ t}); moreover
tcs
for every ¢(Z,§) and ¢ €4, for some 'g(/,,,(f,bvq,,c) € tp{e, |y 4),
tcs

'¢¢(:f,5¢,5) Fitp(c,ul4:t € Is & t}).

b) U 4 & U A, in fact: for b, € 4,(t € I) such that | ¢(...b,...) we
(n—l)]g’s sel
s<

can find by € A;_gn_qy, such that [(n—1) & t => b," = b;], and Fe(.. b ...).

Proof : The proof is by simultaneous induction on |/] {for all systems
and both a) and b)). The proof is splitted to cases.

Proof of a):

Case 1: Thereist €/,s Ct.

Then we can reduce the problem to one on /¥ ¢/ and use the induction
hypothesis. Soifnot Case 1 {f:f € I s & t{=TI—{s}.

Case2:notCase tand(n—1) ¢ s.
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Let € € Ay, ¢(Z,¥) be a formula.

let J=ftel{n—-1)& t], then by the induction hypothesis [as
{7l < |4 yin—1}| = |7}, because fn—1} & J, (and In—1} € ], as [ is downward
closed and n =n(l)}. Note that n—1>0 as n—1¢ s,0€s] for some
Vo 8y) € 11 (s, Ue), Vgl By ) - 1P4(. U )
8

ics
ted
So for no d ey 4. ]:(35)[10’,(5,5%5) A@(Z,d)] A @z)]
t#s
tes

';94,(1'5,5%5) ~ - @¢(z,d)]. Applying the induction hypothesis to /—{s} (for (b)) we
see that 4t € J—{s}} ¢; U4t € I-{s}}. So also in Y{4;: t € I-{s}] we
cannot find d as above. So 1"4’(5'526.6) b tp (e, Ul4s it € I={s}]), as required.

Case 3: Not 1 nor 2 and there is v ,a maximal member of I,

Devw #s,(n—1) & v. Sowv,s are C- incomparable.

By using the induction hypothesis for /—{vi,s and case 2 for [,v we see
that

tp (A, U4:) Fitp(A,, Ut €1, #v,5%)
tcs

tp. (A, UA) Ftpa (4, uldpt €1t #v])
tCv

Together we get the first close of (a). As for the second: we can treat our sys-
tem as an |/|-sorted model, find a | T|*-saturated elementary extension, so
also there we get the first close of (a). By saturativity we get the ¥, and note

that its property is preserve by elementary equivalence.

Case 4: For some t €/,0¢ tandt 0] & I

Let Jo=lvel:0o& vl Jy=twel:0¢ v, v |y {0} €7},
Je=fv el :0evi. We shall prove that
tp( U A4y, U 4u) Fito( U Ay, U A4Ay) (by[Sh 1, ch. IV §2 §3], this suffices

wESg ued uES; wu€sy

for the first phrase of (a),) then proceed as in Case 3.
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For each v €J; as tp.{4,, U 4,) is ula by the induction

hypothesis U 4y S U4, v & ch u € Jy U J4d, hence by 3.5
Uy
U4 G U, v € u,uwell], together we get
(&
1if.p:}(A,, U 4) Ftp(A, U4, ;v &€ w,u €1}). By [Sh 1, IV 3.3] this gives
Uy
tp(U 4, U 4) Fip(U 4, U 4).
veESy ue; vES, weESy

Case &: not cases 1,2,3,4.

So (n—1) € s [as not Case 2] and (V¢ € I)(t yin—1} ), [if t is a coun-
terexample, as [/ is downward closed w.lo.g ¢ is maximal in /; as
tyin—1} & Iclearlyt € s,n—1¢ ¢, by “not case 4" t | {0} € I hence by
t's maximality 0€t, and we get Case 3, contradiction]. So
I=Jylt yn—1}:it € J} where J =t € Ii{n—1) & I}. We apply the induc-
tion hypothesis to <A$U£‘n—1§: s € J>, s — fn—1} {remember 5.3(3}) so

tpe(As, Ul4s 1t Cs,(n—1) € t]) Ftpe(ds, Ulds:t #s,s—in—1{})
hence the first close of (a} follows (by Ax VII of [Sh 1, ch IV §1]) and we prove

{(a) as in the Case 3.

Proof of (b) of 5.4: Now we prove {(b) of 5.4, Let J = { € [:{n—1) & t].

First replace our system by a | T|*-saturated one. Then by increasing the
b, to sequences of length < |7|* we can assume for each s € [ if 0 € s then
tp(bs, U by) | tp (b, Ulds:t € I,s ¢ t}). Now we define the b, . If (n—1) & s
tcs

let b} = b,. Next choose <55+:s €/ 0¢ s,(n—1) € s>, so that b5 € 4s_gn_y
and in the model <Asuin—1;5s e P, ... ,n—2})> it realizes over
Ulbs: s 6/5'({1, ...,n—2}} the same type as <Es:s €el0¢g [(n-1) € s>
{possible by {4) of Definition 5.1). For the others, define by induction on
[s].6s" such that tp( -~ ~b;~ - - )ies =P (- - ~bf~ - )ics, and simultane-

ously prove that the mapping b, - b," defined so far is elementary (for =,

5.5 Conclusion: 1)* Suppose A = A* > | T|, and <Asg:s € I> is a system,
(ASZ:O g s € I> is A-saturated, each 4f is A-saturate and of power A and



Sh:234

76

<ASO:O &5 € I> = (Asle g s € ]>. Then the two systems are isomorphic.
2} If in (1) we do not assume 1.0, we need (Asg,c )ceu&z is A-saturated
ics
whenOes € [.

5.6 Conclusion: 1) If <As:s € [> is an I-system, /9(21, ..oam—1)cJ T
then {J 4, isu.l.a. over {y 4.

sef sed

2y <Aszs € I> is an I-system, then fors € 7, 4, N P‘g = A _q01-

§6 A proof of the existence property.
6.0 Hypothesis: n""(7) = w.

6.1 Theorem * : Suppose T is countable and <A3: s €P‘(n)> is a sys-

tem satisfying:
4
(Moes e P(n) = 4 is I‘; - constructible over (4.
0 tCcs

[4
Then there is a model M Fs -constructible over |} 4, u.l.a. over it, and
0 g

P¥ ¢ U4 . So the existence property holds for such systems.
8

Proof : The proof is broken to some claims.

14 14
62 Claimm: If A ¢, C, B is Fﬂ -constructible over 4, then B is Fﬂ-
G ]

constructible over C (by the same sequence), tp.(8,4) | tp.(B,C), and
A LJ.B C C.

Proof : See [Sh 1, Ch. XII].

£
6.3 Claim * If M is Fﬁ -constructible over (Y4, ¢ M, <As:s 6/9‘(72,)>

k]

is a system fthen M is u.l.a. over 4.
g

Proof : W.lo.g. (by easy set theory) for some A> |UA4s| +|T],
g
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A=A s0 let <As’: s 6/9'(n)> be a saturated elementary exiension of
<As s € p‘(n)> By 6.2 tp.(M,JA,) is A-isolated so there is a A-primary N,
s

M U U4, CN. Hence N is ul.a over | 4; see 3.3 and we finish by the next
§
Fact (6.4).

6.4 Fact: If 4 < C, and B is ul.a. over C, tp,{B,A) I tp.(B,C) then B is

u.l.a. over 4 (witnessed in the same way).
Remark: Note that we assume 4 < C,i.e. B14 < C 118, not just 4 ¢; C.

Proof : let b€ B,¢e€l, then for some wlp(f,fw,g)etp(g,c)
Vo(£.6,5) Ftp,(6,C). As tp.(B.A) | tp.(B.C) there is 9(z,8) € tp,(5,4),
9(Z &) }—%(5,6%5), So

E(VE)8(z.c, 5) > ¥yl(2., 5)] A
(Vg € ONVE)Wp(Z.cpp) » ¢(2.9)) vVE)(YulZe 5) » - ¢(Z,7))]

so there is 5;,5 € A with those properties.
6.5 Claim: If <As:s 6/9‘(n)> is a system, satisfying (*) {from 86.1)
A=Y |4s| > | 7| then we can define <As"‘: s € p‘(n)> {a < A) such that
s

(1) Z14>] = laf +|T|

(2) <As‘*: s Ep'('n,)> < <As: s 6/9'(n)>
(3) <As°‘:s € p'(n)> is increasing continuous in a.

(4) <As“: sepP(n )> is a  system, as well as
<As“:s €P‘(n+1),s # 10, ... ,n—l%) { where Al iy = ASY for s Ep‘(n)),

satisfying (*) in both cases.
Proof : Kasy. [Sh 1, ch. IV, §3]
Proof of 6.1: We prove it by induction on A=Y} |4 | (for all n simultane-
§

ously).
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Fasily of the three properties demanded of M in 6.1 the first implies the
second (by 6.3) and the third (apply u.l.a. for the formula z=y). Remember T

is countable.

Case 1: A = R,

So A ¥y A, is countable. By Hypothesis 6.0, easily for every ¢(Z,&)

&5
g €A, Fize(za), and ¢(F,y) there is #(Fa,) ,6,€4, and
F@z)le(z.@a) »9(2.8,)] and ¥(Z.@,) | tp,(€.4) for some €. [otherwise
replace <As 8 €/Q‘(n)> by an elementarily equivalent |7T|*-saturated sys-

tem and get contradiction to 5.2(8)]. So we can define by induction on n,

enlzg ..., Tp,G,), @, € A such that @z, ..., 2, )en{xg - - ., z,.8,), EV
To - Tpat) Pneil@o - o Tpsts Fps) 2 PnlZo .. . .2, 8,)) and for every
Y=v%x, . ...%,;¥) for some k>n and cg4...,c, (Er,. - Zg)
730 € F Z,, 0 ) tp((co, C ,cn>A) ton{zg ... 2y, 8, ) m <w} is com-

plete over 4 (in {z,: n < @}) and is the complete diagram over A of a model

[
as required { remember Ax VII (of [Sh 1, Ch. IV. §1]. holds for FN )
g

Case 2: A > | T|.

Define A&(a < A) by 6.5. We now define by induction on «, a model #,, so

{4
that M, is FS -constructible over y A& U A4S C M, also if a is limit
N s s
4
Mg= U Mg, and a=8+1 M, is F;.; -constructible over (Jj A& J Mg We
g<a o s

should prove for each a, that <As“ Y E p“(n+1)> is a system where
A2 = Mg, this follows by 6.5(4) and noting M, is u.l.a. over {42 :s € P (n)}
by 6.3.

6.6 Theorem * : Suppose 7 is countable. If ¥,N are 8;-saturated, with
Mt P =Nt P then M,N are isomorphic over P#. ( by 3.4(3) the ¥;-saturation
of M1t P implies that of ¥).

|4 t
Proof : Over P¥ there is a Fs primary model #%, so M* is FN -primary
o 1
t
and FN -prime. So it can be elementarily embedded into M over P¥ hence its
1
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image is equal to M. Similarly for N.

This theorem is made more interesting by the following (not using 6.0

anymore):
6.7 Fact: Assume for every M, P¥ is stable.

If there are Mg < M,P¥ ¢ My # M, then for every A= |T| + |6] we can find
M and a; € M(i < &8) such that :

()i #j =>a;#a,, [|M]|| =x=|PH]
(b)fori <j itp(a;,P" U faga<i]) =tp(a;, P¥ U faga <i}).

{c) moreover for every b € M there is 1(b) < &§ such that: if 1(b) =1 < j,
tp(a; P2 b U faga <i}) = tp(ag,P¥ b U faga <))

Proof : W.l.o.g. My is A*-saturated. Let a € M;—M, and define by induc-

tion on © <8, N; < My, [|N; || = A and e, such that YN; U {a;:j <1} € N; and
F<i
a; € My realizes tp{a,N;). By claim 216 {(or 1.4) UWN .fa;i < 8] are as
i<s
required.

6.8 Lemma : 1) Under the assumption of 6.7, if the conclusion of 6.1
holds then when |T] < A < p there is a model #*,{|#" || = |P¥"| = p, so that
there are a;{(i < 8) as there ( for #*) when § = Abut not when A <cf § = pu.

2) If 1.0 fails, A regular 2* = A*, then we can find #, a;(i < A) as
in 8.7, P¥ is saturated, ||#|] = || P¥|] = A*.

Proof : 1) Let M ,a,(i <A) be as there, choose 4,.P¥ e 4 <[P,

[4
JA] = A and let M be F!# -constructible over M |y 4. By the P¥’s stability,

0
a;{i < A) has the property in #* too. Suppose <c,£:?', < 6) has the property (in
M, i.e. a),b),c) of 6.7) tooand A < cf . By [Sh 1 Ch IV §3] we can find N < #°,
M C N |INY| = A, N closed enough { under history of the construction and the

function b -» Ci5)Ci > G

¢
+1), So that M" is FN -constructible over N | A, and

4]

<a,.i:a.i€N> has the property in N and cf (supf{i:a; € N}) > |T|. Then
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tp (@ guppizaeny: vV U 4) is not 8- isolated, contradiction.

2) Left to the reader.

§7 Manipulations with systems for an arbitrary theory.

7.0 Discussion: We are dealing with several kinds of /-systems, so we shall
use the name "/—x —system”, z a latin letter to differentiate. For Definition

5.1 we use z=a and say it is for 8 or for 7.
7.1 Definition: We call S = <As:s € [> an /—b ~system for T if:

1) for some n =n(l) =n(S), I ¢ PAn), I & Pn—-1), I closed under sub-

sets.
2) (As: syn—llelin-1¢ s> <<Asu§n—1]: syin—leln—-1¢ s>
3) each 4 is a model of 7.
4) <As:s € J) isa I-system when J = {s € I:(n—-1) & s}.

5) If n—1etel then
AN n-1tgsell) ¢ Yyl : n—-1¢s el s yifn—1j €l

7.2 Fact: 1) For Sto be an /—b —system for T depends on its first order
theory only.

2) If <As:s € I> is an [—b—system then A; N 4; = 4, for any

st el

Proof: 1) Check.

2) Prove it by induction on n. If n—1 ¢ s|yt-trivial using condi-
tion 4). f n—1€snt, by condition (4) and the induction hypothesis
As_fn-1) N At—fn-1y = A t—_fn—1; and use condition (2). f n—1€sn-1¢
thens Nt =(s—{n—1 N ¢, and again 4s_gr_1y N 4 = s ¢ DY condition (4),
and by () As_gn—13 =45 N (U {4y : v Uin—1] € [, n—1 # I{, and we finish by
(5).
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7.3 Fact: <As: s € ﬂn)> is a pPn)-b-system for [BrP if
<As_1: sefPn+1)0¢g s> is a JX{1, ... ,n})—a—system (for an integer k& let
s—k ={i—k :1 € k} s+k is defined similarly.)

7.4 Fact: If n >0, <As:s E/O(n)> is a P(n)—b—system for T and for
s € PAn-1) B, = (A(s+1)U)o;’AS+1) then <Bs:s 6P(n—l)> is a
Pn—1)—b —system for T, = Th (Agey.4g)

Proof: We prove it by induction on n

n=1: so An-1) = JX0) = {4}, so <Bs:s € p(n—1)> consistent of one model, of

T, of course:
n+1:
Condition: 1) is trivial.
Condition: 2) We should prove
{Bys € Pn—1)) < <Bsu!n_1;:s € Pin-1)»

{looking what 7 is).

This is equivalent to

<<A(s+1)U{0]'AS+1>:S €p("—1)> <<<A(s+1)U{0,n§'A(s+1)U(n§>:S eP(n—1)>

which is equivalent to

<As:s 6/9(77,)> < <ASU§M:S E/Q(n)>
which holds as (As:s € /9(n+1)> is a /9(77,+1)—b —systemn.

Condition: 3) we know <AS: s E/Q(n)> is ‘a JXn)—b—system hence by
the induction hypothesis for s € p(n—l), (A(s+1)ufo{'A(S+1)) = (A4op.4¢)- As we

have proved condition 2), for s € p(n—l) By < B i.e.

Vin—1
(A(S+I)U[0;’AS+1) = (A(s+1)U§O.n—1} 'A(s+1)u$n—1 {), so the condition holds for

s U {n—1} whens € An—1).

So it holds for every s € JXn), as required.
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Condition: 4) Easy.
Condition 8): Obvious, (by 8) for <As :s € p(n+i)> ).

7.5 Lemma: 1) Suppose <Ms:s ep(n)> is a fAn)—b—system for T,
A=%11M1l, x> | T|. Then we can find <Ms'a 8 Ep(n)) {a <A) such that:
5

(i) <Ms,a55 ep(n)> <<Ms.:s €/9(n)>
(ii) ”Ms,a” = |T‘ + |al.
(iii) Let for a < A*;s € PAn),

Msa — Msav San‘nf — Msa+1

Then <Ms"‘:s € P(n-l-l)) is a An +1)—b —system for T.

2) 1t { Hy:s € Pn)) is k-saturated (Ya < A)[ |a|<F <A, 2171 < A
then we can demand <Ms,a55 € p(n)> is k-saturated when c¢f a € {0,1} or
cf a=k, but then || M , |l < (|T| + |a|)<* (if we ask just for k-compact then
UM o1l = (UT] + |a])<=

(2a) We can even demand this for each I € [Xn) separately.

3) f A=«* k=x%>|T| and { M, :s € Pn)) is saturated,
then we can also demand <M3"‘:s € /9(7?,+1)> is saturated when cf a & [Np.k).
(but || M o |l = k) We can, except for some unbounded non stationary subset

determine its theory as that of <N$:s € p(n +1)> a p(n-l-l)—b —system, pro-
vided that { Ny:s € Pn)Y = M5 € Pn)).

Proof: 1) Easy, 2) Easy, 3) See proofs in §4.

7.6 Lemma: Suppose A =A<A and 2\ =A*+1 for ¢ <n. Suppose
<A_::s EP(n)) is a fg(n)——b —system for 7. Let J =Jy, “/{nm a sequence of
ordinals of length =n 7(¢) < A*n—2)

Then we can define models #, ,(n€ J, t € P2 (m))) of T such that:

(i) M, ¢ is a model of T of power At(m—€m) it is saturated provided that
(ve<e(nicf n(e) € (0,13 v g et].
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(i) ifp € J,t € Pe(n)) and £(n) < n, then
a) Myt = U HMpyrcingit < A —£m)

b) if n~<8> € J & limit then Mp-csns = U Myrcive
i<d

c) va‘(i),z‘uﬂ(n) = Mpcir1>-
(iii) for each n € J,S" ‘f—f’( Myt € A2 (n))> is a JXL(n))—b —system.

(iv) if (V€ <2(n))[cf n(€) € §0,1,A*™®)}] then S, is saturated and its
theory is that of  45:s € (e (17))).

Proof: We prove it by induction on n for all possible T, <A;:s € /9(n)>
For each m >0 we define by induction on a < A*"™ the models M, ¢ and
Mye(n(0) <a,) nedi EP(!Z (n)), such that when ¢f a € §0,1,AHn=1y, Megs,g
is a saturated, of cardinality A** ™D M, E T, Mig»gy is saturated,

<M<a>:a<)\+n> an elementary chain, for a limit, Mias= U M gy, for
8<a

a =B+ 1 Measg = Meps (1)

For a limit or zero - no problem. For a =g + 1, c¢f B & {0,1,AY» D}, we let
Mca> g1y be a saturated elementary extension of Mg, of power A*("=1) and
then use 7.5 (2a). For a = 8 + 1,=0 for M, there is no problem and then
use 7.5. For a=g+1, c¢f B {1, At} M gs 4 is saturated. We use the
induction hypothesis for n—1, and T, from 7.4 (starting there with
<As':s 6/9(n)>). Getting (M} M2:) m € Jxpn-1. So Mgs 4 is a model of T of
power A*(®~D. saturated hence = M g,4 so wlog it is M, let
Mia>e=Mis = Megsiop » Mea > ~nit—jop—1 is M, it 0 & ¢, and is Mg ¢—jop-1 if
0et.

7.7. Lemma. Suppose AM> |T|, 22" =a**l for ¢ <n and
<As':s € /O(n)> a An)—b—system for T . Let

WAy =18 <Atcf 6 =2} WHX) = §6+1:6 € W(N), and
N = WA Uy TR

Jan= {1 : 11 a sequence of ordinals of length =n, 7{¢) < Arn—£),
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[e+1<2(n) =>n(e) e W (A —ED]
$n={n€Jyp foreveryL+1 <2(n) n(L) € w(atn—0)y.
Dan = 0 € Ly picf (n(e(n)-1)) € w*AHE@-D).
Then we can define models M,(n € J),) of T such that:
(i) M,, is a model of T of power At =€)
(i) if 5 € Jy, then M, is saturated.
(iii) if 5 € J, , is not maximal then
i < =D Mymcis < Mymgjni My = L;;M,,A(D; for & limit Mp~cs> =iL<)aM,r<,;>.
(iv) For each wne€J%, we define a /9(2 (n))—b —system ST
S = Mt € X)), M = My q) where €(v(n,t)) = £(n) and
7n(2) if 2<e(n) ¢gt

v(n,t)(e) =
n@)+1 if £ <C(n) €€t

We shall want:

(iv) It § € Jy,,S7 is saturated and ={ 45:s € (¢ (7)))>'

Proof: Like 7.8, only simpler.

§8 The structure theory we can still get whenk <n**(7)

8.1 Claim: If 4 ¢ C, and B is Ff{-constructible over 4, then B is Ff-
constructible over C (by the same construction) and tp.(B,4) +tp(B,C).

Proof: See [Sh 1, Ch. XI].

Remark: 1) A c} C if every m-type of power < A over 4 realized in C is

realized in 4.

2) The same holds for C§, but we ignore this distinction (important for
A=|[T}).
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3) Remember M is A-compact if every m-type over M of power <A,

finitely satisfiable in # is realized in M.
8.2 Claim*: If # is Fi-constructible over |J4; € M, <As:s € p‘(n)> a A
3
compact P7(n)—a —system and n < n**(T) then M is u.l.a. over 4.

Proof: W.lo.g. for some upu>T|A|+|T|, p=u¥ and let
<As':s CP‘('n)) be a p-compact elementary extension of <As s Cp'(n)>
which has power u. As <A$:s Ep‘(n)> is A-compact clearly 4s < U 4, (in

s

case of saturation instead compactness - even Cj) so by 8.1 M is Fi-

constructible over |J4,, so tp (M, JAs) I tp (M, A,) hence there is a p-
s 5 S

primary model N over |y 4,, M C N. We know (see 3.3) N is u.l.a. over |J4,. So

s L3
for every € € M and ¢ there isa ¢ = ¢(z.,b) € tp(¢,U4s). ¥ tpq,(c_,UAs'). But
5
we know tp (€, J4s) F tp (€, UA,) hence for some ¥ € tp(c,yds) ? ¢ So
5 s 5

P etp(c,Uds) s tp¢(6,UAs(°))‘ We get M is l.a. over (4. But we want u.la.
s

This follows from 6.4.

8.3 Claim*: Let S = <As:s € [> be an /—a —system and A > |T|. S is A-
saturated if <As:s el n P, ... ,n(])—1§)> is A-saturated and each
M(s € I, 0€ 5) is A-saturated.

Proof: => trivial.

<—: We prove it by induction on |/|. Let p =p (x,, ..., Z,,_1) be an m-type
over S. |Dom p|<A and p is finitely satisfiable in S. If
I =/9({1, .. ..,n(I)—1}) this is trivial. Otherwise choose £ € I, 0 € £, t maximal,
andlet J = I-§{t} W.lo.g.

g€ Ai— U4y, . Zp_q € 44— UAs,
sct sct

T, & A— U4, . .., Ty €4 —UAlChp.
sct sct

As 4; is ul.a. over Y4 (and 5.1) there is ¥(Z,5) € L(T) such that for every

sct
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a € A~ 4, for some b e UA,, Evla.b] and

sct st

y(z,b) | {z #ee € Ul4s:s € J} (this in B, so w.log. ¥ is atomic, we shall
not mention such things). So p U W (zo¥s): ToC Uds. (¥

seJ
z € Y4 )(~y9(z,99)] is finitely satisfiable in S. So wlog. for € <k
seJ
@) [¥(ze7)g € UdsnlVz € U4)-v(z.7)]€p. Now let
s&ed s€J
9=z, ... Ty 2L =z, ,xm_1>, and
pl=pulvz uIAs)[vJ(f",f)Ew(f,m)] AN C Uds o€ l]
SE sCt

Let p? be the closure of p! under conjunctions. Let p3 = {(az%) 59 € p?}.

By the induction hypothesis p? is realized say by z! » El,glp - 5¢ for g € L
(you may argue that p2 has | T{ variable not some m’ < w, but A-compactness
implies this). Now we can find @° realizing §'¢/¢(3_:O,5¢):99 € L}. Still we do not

1

know that @"a' realizes p - it may contain formulas which are not atomic.

But our conclusion follows from:

8.4 Claim: Let <As:s € [> be an /—a —system, 0 € £ € I, t maximal. Let
<'¢¢:¢ € L> wittness the ul.a. of 4; over (J 4,
sct
dldfe 4, o't € 4, U ks, Ev,cb02) b € U4,
sct sct scd

~~-,5$~--,¢72)=tp(---,bq§ <. dY) then in <As:s €]> the sequences

tl~d! &2~ d® realizes the same type.

—~~

Proof: Again as in the previous claim; then some automorphism of
<A;i € J> take d! to d® and bj to bZ. Then there is an automorphism of N
embedding it taking ¢! to g2,

8.5 Claim: Suppose <As:s € p‘(n)> is an /—a —system, A-compact, and
w=El41 > 7).

Then we can find <As“:s € /f"(n)> {a < u) such that
(1) 147 <p, it p=x* |A7] =x,

() <As"‘:s ep“(n)> <<Aszs Ep‘(n)>
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(3) If JcCpP(n), <As:s€J> is A-compact (Va < u) [|a|<* <u]
then <As°‘+1:s € J> is A-compact (also for a =— 1).

(4) If Ay is A-constructible over |J4; then there is an F§-

tcs
construction <a§,Bf:i < ,u,> of A over (JA4; such that for each a for some
itcs

j(a),
AF— QAT = tafd <j(a)], (Vi <j(a)Bf € UAS

tcs tcs

Proof: Easy (for (4) see [Sh 1 Ch IV §3]

8.6 Claim * A complete set A is stable iff it has the atomicity property
provided.

Proof: W.l.o.g. A is saturated of power u, u = u<# > | T|. Now easily sta-
bility implies atomicity. So assume atomicity for 4, so there is ¥, A-primary
over A . Let (M,A)=(M,A) be saturated of power u, so wlog A=A and
M < M. By the hypothesis 1.0 M = ' . Hence M is atomic over 4, so by the
saturation M is u.l.a. over A. Also for every p € SI(4) there is a A-saturated

M >4 0pPT realizing p, but as again w.l.o.g. M = M, p is A-isolated, hence
a

FN -isolated. From here atomicity is easy.
0

8.7 Lemma: Suppose |T| < A = AN, A = A++1 tor g < k4n.

1)* In the definition of an /—a —system we can omit "4, is ul.a.

over | JA4; for s € 1,0 € s” when |s | <n™ (7).
tcs

2Qn (7)) =n"" (D).

3) 1If for =1,2 <Aszzs € 1> is a JPr(n)—a-system,
<ASQ+1 s+l € I> is saturated of power u with first order theory not depending
onf, n{I)<n"(T) th,en<AsQ:s €[> = <Aszzs € [>.

D* If E+n <n* (D), <As:s Ep'(n)> and P (n)—a-system,

n-1] 1S A- saturated then over (JA; there is a A-primary
s

.....
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Proof: 1) By 3.3,
2) See 8.6.

3) We prove by induction on n (similar proof occurs previoulsy) we
start with an isomorphism from <A51+1 s +1€f> onto <A52+1 s +1 EI) and
extend it step by step. For this we have to prove 4;(0 €t €/} is u-primary over
U 4, for this it suffices to prove it is u.l.a. over |J4;, which follows by 3.3 if

scCt st
we have proved 2).
4) We prove it by induction on k. For k =0, 4, is stable, so
k)

there is a A-primary model over it but

8.8 Claim: If A is complete, 4 N PIE is A- compact, p € ST(4) is A-
isolated then p € S*{(4).

For k+1: Use 8.5 to get 42(a < A***1D_ Now we define by induction on a,Afn)
so that

(i) Ag(n) is A-primary over {4l:s € P(n)].
{ii) A&:l) is A-primary over {AZ*ls € (n)] U Afiny-
(iil) A%n) = UAZn)-
a<d
{iv) Afny is ula. over y{Afs € )} and is a model,

V) Ay NPE =4y (and  1pe(Afn).Ulh:s € P}
Fitpe{Afgm). U {4 s €/7(n)}). The induction step (for a ) is by the induc-
tion hypothesis for k (as |42*!| =A**) and 7.7 for « successor, and

remember 7.5(3).

§9 Non structure when n'"(7) < w and there is no two cardinal model

9.0 Hypothesis : PY ¢ ¥ <N => M = N; every formula is equivalent to
a relation (for 7).

9.1 Main Theorem : Suppose A = A\, 22 = A*+ for ¢ < n ¥n**(T), @
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is the forcing of adding A*" Cohen subset to V say <rn:7) € J;'\,n> . (see 7.7).

Then in V¥ there are 2™ model #;, || ¥; || = | P#| = A*" which pair-
wise are not isomorphic over P¥; really we can make || 3; || = | P®] = p, for

any g = A",

Proof : Let {4, s Ep'(n)> be an J/—a—system which is unstable.
Working in V let A4,(n €Jyn) be as in 7.7 [4, standing for M,
<AS+1 s € Pin— l)> for <A s €P{n— 1))) and Th (Br P) for T]. Define a
well ordering <* on J;\n n<'v iff n=vii(n) or
(@)n1¢ =vreZan€) <v{g)]. For A CJy,4 €V, we now define for each

7 by induction on <* a model Nﬁ such that
Nt PB =4, NA<E
(i)if ne J;'\'n is not maximal then
(2 <j => Nigis < Na~gis]  for & limit  Njagss = U‘,N ~<i> and
i<
Ng = UNgegis'
%
(iii) if s € £ € € (n)) then Ny, )€ Nty
{(iv) The construction of <N,,:1) <’ 1/> is done in V[< roym < V,n€A>],

{(where by renaming assume § odd the sets <r.,, nE J;“n>, r, a function
from A to {0,11.

There are no particular problems (especially if you have read §4).
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