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ABSTRACT

A group homomorphism Z : A! H is called a localization of
A if every homomorphism j : A! H can be ‘extended un-
iquely’ to a homomorphism F : H! H in the sense that
FZ ¼ j. This categorical concept, obviously not depending on
the notion of groups, extends classical localizations as known
for rings and modules. Moreover this setting has interesting
applications in homotopy theory, see the introduction. For
localizations Z : A! H of (almost) commutative structures
A often H resembles properties of A, e.g. size or satisfying
certain systems of equalities and non-equalities. Perhaps the
best known example is that localizations of finite abelian
groups are finite abelian groups. This is no longer the case
if A is a finite (non-abelian) group. Libman showed that
An ! SOn�1ðRÞ for a natural embedding of the alternating
group An is a localization if n is even and n � 10. Answering
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ORDER                        REPRINTS

an immediate question by Dror Farjoun and assuming the
generalized continuum hypothesis GCH we recently showed
in [12] that any non-abelian finite simple has arbitrarily large
localizations. In this paper we want to remove GCH so that
the result becomes valid in ordinary set theory. At the same
time we want to generalize the statement for a larger class of
A’s. The new techniques exploit abelian centralizers of free
(non-abelian) subgroups of H which constitute a rigid system
of cotorsion-free abelian groups. A known strong theorem on
the existence of such abelian groups turns out to be very
helpful, see [5]. Like [12], this shows (now in ZFC) that there
is a proper class of distinct homotopy types which are loca-
lizations of a given Eilenberg7Mac Lane space KðA; 1Þ for
many groups A. The Main Theorem 1.3 is also used to answer
a question by Philip Hall in [13].

1. INTRODUCTION

A homomorphism Z : A! H in some category is a localization if every
homomorphism j : A! H in the commutative diagram

ð1:1Þ

extends uniquely to a homomorphism F : H! H.
Such localization functors LZA ffi H with respect to Z derive from

modules and rings, have there a long history and are considered in many
recent papers in group theory for non-commutative cases and in connection
with homotopy theory, see e.g. [2,17,3]. It turned out to be of special interest
to investigate properties of A which carry over to LZA - or not. Examples for
groups are the properties to be commutative, nilpotent of class at most 2, or
the condition to be a ring. In particular cases the size of H relates to the size
of A, see a summary in [12]. The relation to homotopical localizations can be
looked up in [3], see also Dror Farjoun’s book [6]. Here we want to con-
centrate on the just mentioned cardinality problem mentioned in the
abstract:

If A is finite abelian, then every localization Z : A! H is obviously
epic, hence jHj 	 jAj. Moreover, if A is torsion abelian then jHj 	 jAj@0

as shown in [17] by Libman. In contrast to this localizations of Z are the
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ORDER                        REPRINTS

E-rings, see [3] and by Dugas, Mader and Vinsonhaler [8] (using [5]) there
are arbitrarily large E-rings. The question about the size of LZA for finite,
non abelian groups A still remains. As also mentioned in the abstract,
Libman [18] has shown that for particular alternating groups A ¼ An there
are localizations LZA of size 2@0 . Moreover assuming GCH any finite non
abelian simple group A has arbitrarily large localizations, as recently shown
in [12]. From our new main result we will see that GCH can be removed.
Using stronger algebraic arguments, like abelian centralizers of free (non-
abelian) groups and the existence of large rigid families of cotorsion-free
abelian groups, we are able to avoid the old combinatorial setting (the Hart
Laflamme Shelah game from [15]), hence GCH. As in [12] we will use the
following definition.

Definition 1.1. Let A 6¼ 1 be any group with trivial center and view A �
AutðAÞ as inner automorphisms of A. Then A is called suitable if the following
conditions hold:

(1) A is a finite group.
(2) If A0 � AutðAÞ and A0 ffi A then A0 ¼ A.
(3) AutðAÞ is complete.

Note that AutðAÞ has trivial center because A has trivial center. Hence
the last condition only requires that AutðAÞ has no outer automorphisms. It
also follows from this that any automorphism of A extends to an inner
automorphism of AutðAÞ. A group A is complete if A has trivial center zA
and any automorphism is inner. If h 2 A then we denote by

h� : A! A ðx! xh� ¼ h�1xhÞ the function which conjugation by h:

We also recall the easy observation from [12] which is a consequence of the
classification of finite simple groups:

All finite simple groups are suitable.
Also note that there are many well-known examples of suitable groups

which are not simple.
If m is a cardinal, then mþ is the successor cardinal of m. A partial

homomorphism between two groups is a homomorphism between sub-
groups accordingly. Moreover, if U � G is a subgroup of G, then the cen-
tralizer of U in G is the subgroup

cGU ¼ fh 2 G : ½h;U� ¼ 1g;

where ½h;U� ¼ h½h; u� : u 2 Ui is the subgroup generated by the commutators
½h; u� ¼ h�1u�1hu.

CONSTRUCTING SIMPLE GROUPS 811
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ORDER                        REPRINTS

Definition 1.2. If A is a family of groups and G is any group, then G½A�
denotes the A-socle which is the subgroup of G generated by all copies of A 2
A in G. If A ¼ fAg, we write G½A�.

Then we have the following

Main Theorem 1.3. Let A be a family of suitable groups and m be an infinite
cardinal such that m@0 ¼ m. Then we can find a group H of cardinality l ¼ mþ

such that the following holds.

(1) H is simple. Moreover, if 1 6¼ g 2 H, then any element of H is a
product of at most four conjugates of g.

(2) Any A 2 A is a subgroup of H and two different groups in A have
only 1 in common when considered as subgroups of H. If A is not
empty, then H½A� ¼ H.

(3) Any monomorphism j : A! H for some A 2 A is induced by
some h 2 H, that is there is some h 2 H such that j ¼ h� +A.

(4) If A0 � H is an isomorphic copy of some A 2 A, then the cen-
tralizer cHA0 ¼ 1 is trivial.

(5) Any monomorphism H! H is an inner automorphism.

Note that the second property of (2) follows from the first property of
(2) together with (1). Also (5) can be virtually strengthened replacing
monomorphism by nontrivial homomorphism, which is also due to (1). The
group theoretical techniques derive from standard combinatorial group
theory and can be found in the book by Lyndon and Schupp [19]. We will
also use a theorem concerning the existence of complicated abelian groups
from [5]. For clarity the proof will be restricted to the case when A is a
singleton. The extension to arbitrary sets A is easy and left to the reader.
The reader may also ponder about our hypothesis that all members of A are
finite. In fact it turns out that there are many infinite groups A such that A
¼ fAg can not be extended to H as in the Theorem 1.3., see [14].

We are now ready to answer Dror Farjoun’s question in ordinary set
theory ZFC.

Corollary 1.4. Any finite simple group has localizations of arbitrarily large
cardinality.

The localization A! H induces a map between Eilenberg7Mac Lane
spaces

KðA; 1Þ ! KðH; 1Þ

which turns out to be a localization in the homotopy category; [18]. Hence
these examples show the following
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ORDER                        REPRINTS

Corollary 1.5. Let A be a finite simple group. Then KðA; 1Þ has localizations
with arbitrarily large fundamental group.

A discussion of these corollaries is given in [12], they easily derive from
the Main Theorem 1.3, see also [12]. The Main Theorem 1.3 will also be used
to answer a problem of Philip Hall from 1966 in [13] mentioned in the
Kourovka notebook. There is a class of groups G such that any extension of
G by a copy of G is isomorphic to G. Only some of the properties of the
groups in our Main Theorem 1.3 will only be used for the Hall problem.

2. FREE PRODUCTS WITH AMALGAM

AND HNN-EXTENSIONS

The following lemma was shown in [12, Lemma 2.1]. It was basic for
the proof of the main theorem of [12] and it will be used here again. The
non-trivial proof needs that A is finite.

Lemma 2.1. Let H ¼ G1 �G0
G2 be the free product of G1 and G2 amalga-

mating a common subgroup G0 ¼ G1 \ G2. If A is a finite subgroup of H, then
there exist i 2 f1; 2g and y 2 H such that Ay � Gi.

Hence we have a

Corollary 2.2. Let G be any group, and f : G0 ! G1 be an isomorphism
between two subgroups of G. Consider the HNN-extension H ¼
hG; t : t�1ht ¼ fðhÞ; h 2 G0i. If A is a finite subgroup of H, then there exists a
y 2 H such that Ay is contained in G.

We want to refine the well-known notion malnormality and say

Definition 2.3. If k is a cardinal and L � G are groups, then L is k-mal-
normal in G if

jL \ Lgj < k for all g 2 G n L:

This is used in the following

Lemma 2.4. Let L � G be groups, K ¼ U� L be a direct product and H ¼
G �L K be a free product over L. Suppose that

ðiÞ L is k-malnormal in G,
ðiiÞ h 2 H n G is an element such that k 	 jG \ Ghj, and
ðiiiÞ if e 2 L and k 	 jcLðeÞj, then e ¼ 1.

CONSTRUCTING SIMPLE GROUPS 813
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ORDER                        REPRINTS

Then the following holds.

(a) There are1 6¼ y 2 U; x; z 2 G such that h ¼ xyz.
(b) If k 	 jcGðhÞj then x ¼ z�1 and cGðhÞ ¼ Lz.
(c) G \ Gh � Lz.

Proof. We distinguish two cases depending on the position of h.

Case 1: Let h 2 K ¼ U� L. Then we can write h ¼ xy ¼ xyz with
x 2 L; y 2 U and z ¼ 1. If y ¼ 1, then h ¼ x 2 L � G contradicting ðiiÞ,
hence y 6¼ 1 and ðaÞ follows.

Suppose c 2 cGðhÞ n L; h 2 K n G and recall K n G ¼ K n L then h ¼
c�1hc is reduced of length 3 and of length 1 in H ¼ G �L K, a contradiction,
hence

cGðhÞ ¼ cLðhÞ:

We have h ¼ xy from above. Since ½y;L� ¼ 1, cLðhÞ ¼ cLðxyÞ ¼ cLðxÞ fol-
lows. If x ¼ 1 then cLðhÞ ¼ L, x ¼ z ¼ 1 and ðbÞ holds in this case. If x 6¼ 1
then by ðiiiÞ follows jcLðxÞj ¼ jcLðhÞj ¼ jcGðhÞj < k and ðbÞ holds trivially.

If g 2 G \ Gh, then g ¼ h�1fh for some f 2 G, hence h ¼ f�1hg. Note
that h 2 K n L. If g; f 2 G n L then h ¼ f�1hg has length 1 and 3, a contra-
diction. If g 2 G n L; f 2 L (respectively f 2 G n L; g 2 L) then h ¼ ð f�1hÞg
has length 1 and 2, which is impossible. If f; g 2 L, then h ¼ xy and
xy ¼ f�1xyg ¼ f�1xgy. Thus g ¼ x�1fx ¼ f x and G \ Gh � L ¼ Lz.

Case 2: If h 2 H n K, then let h ¼ b1 � � � � � bn be in reduced form for
H ¼ G �L K, hence 1 < n and alternately bi is an element of G n L and K n L.
Let Xi be the element of fG n L;K n Lg with bi 2 Xi and let X�i be the other
element of fG n L;K n Lg. If bi 2 K we surely may assume that bi 2 U as the
L-part of bi can be absorbed into the amalgam L. If x 2 G \ Gh then
x ¼ h�1yh 2 G for some y 2 G, hence hx ¼ yh and if

w1 ¼ b1 � � � � � bn w2 ¼ y�1b1 � � � � � bnx; x; y 2 G and w1 ¼ w2 ð2:2Þ

then we claim that

x; y 2 X1 ¼ Xn; and 3 	 n is odd. ð2:3Þ

We distinguish various cases:

(1) If x 2 X�n; y 2 X�1 then w2 is in reduced form and has length nþ 2
and lðw1Þ ¼ n contradicts (2.2)

814 GÖBEL AND SHELAH
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ORDER                        REPRINTS

(2) If x 2 Xn; y 2 X�1, bnx =2L, ðy�1b1Þb2 � � � bn�1ðbnxÞ is reduced of
length nþ 1. So lðw1Þ ¼ n and (2.2) is impossible.

(3) The dual case x 2 X�n; y 2 X1, y
�1b1 =2L is similar to (2).

(4) If x 2 X�n; y 2 X1 and y�1b1 2 L then w2 ¼ ðy�1b1b2Þ � � � � � bnx
and w1 are both in reduced form of length n but y�1b1b2 2 X2

and from w1 ¼ w2 follows b1 2 X2 hence b1 2 X1 is a contra-
diction.

(5) The dual case x 2 Xn; y 2 X�1 and bnx 2 L is similar.
(6) If x 2 X�n; y 2 L then w2 ¼ ðy�1b1Þb2 � � � � � bnx has length n and

lðw1Þ ¼ n but x 2 X�n and bn 2 Xn is impossible for (2.2).
(7) the dual case x 2 L; y 2 X�1 is similar.

Finally we have the case

(8) x 2 X1 [ L, y 2 Xn [ L, hence b1 � � � � � bn ¼ ðy�1b1Þb2 � � � � �
bn�1ðbnxÞ and both sides are reduced of length n. By uniqueness
we find t1; . . . ; tn�1 2 L such that

b1t1 ¼ y�1b1; t
�1
1 b2t2 ¼ b2; t

�1
2 b3t3 ¼ b3; . . . ; t

�1
n�1bn ¼ bnx:

From x; y 2 G follows X1 ¼ Xn and n is odd. We noted that n 6¼ 1, hence
3 	 n and the claim (2.3) is shown.

Note that ti ¼ tiy depends on y in (2.2) and the last displayed equations
give us

t1y ¼ ðy�1Þb1 ; t2y ¼ tb2

1y; . . . ; x ¼ ðt
�1
n�1;yÞ

bn :

We consider the pairs ðy�1; b1Þ; ðt1y; b2Þ; ðt2y; b3Þ; . . . of the last equal-
ities. In the first pair the first element may not be in L, in the second pair the
second element may not be in G, but the third pair has both these properties.
If 5 	 n then the third pair exists and t3y 2 L, the equation above shows that

tb3

2y ¼ t3y 2 Lb3 \ L for all y 2 G \ Gh:

Hence

k 	 jft3y 2 L \ Lb3 : y 2 Ggj;

by assumption ðiiÞ of the lemma, so k 	 jL \ Lb3 j. Condition ðiÞ of the
Lemma implies b3 2 L, but this contradicts the reduced form of
w1 ¼ b1 � � � � � bn. Hence n ¼ 3 and h ¼ b1b2b3 and from the last claim

CONSTRUCTING SIMPLE GROUPS 815
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ORDER                        REPRINTS

b1; b3 2 G hence b2 2 K so, as mentioned above, without less of generality
b2 2 U, and if we let x ¼ b1; y ¼ b2 and z ¼ b3 then ðaÞ of the lemma holds.

Now it is easy to show that ðbÞ and ðcÞ hold:
ðbÞ We may assume ðaÞ and that we are not in Case 1, hence h ¼ xyz

2 H n K with y 2 U and x; z 2 G n L. The element h ¼ xyz is in reduced
normal form.

If c 2 cGðhÞ, then h ¼ c�1hc and we have

xyz ¼ ðc�1xÞyðzcÞ both sides in reduced normal form.

By uniqueness there are t1; t2 2 L such that

xt1 ¼ c�1x; t�1
1 yt2 ¼ y; t�1

2 z ¼ zcx:

From y 2 U; t2 2 L;K ¼ U� L follows ½y; t2� ¼ 1, hence t :¼ t1 ¼ t2 and the
last displayed equations become

xt ¼ c�1x; t�1z ¼ zc:

Hence c ¼ ðt�1Þx
�1

¼ ðt�1Þz and cGðhÞ � Lx
�1 \ Lz equivalently cGðhÞx �

L \ Lzx. If zx 2 G n L, then jcGðhÞj < k by ðiÞ, and ðbÞ holds
trivially.

If zx ¼ l 2 L then cGðhÞ � Lz \ Lx�1 ¼ Lz, the element h becomes h ¼
xyz ¼ xðylÞx�1 ¼ z�1ðlyÞz and ½y; l� ¼ 1.

From cGðhÞ � Lz, zx ¼ l and h ¼ z�1ðlyÞz follows Lz � cGðz�1ðlyÞzÞ ¼
cGðlyÞz or equivalently cGðlyÞ � L. Hence cGðlyÞ ¼ cLðlyÞ ¼ cLðlÞ by
½L; y� ¼ 1. However k 	 jcLðlyÞj ¼ jcLðlÞj and ðiiiÞ implies l ¼ 1. We derive h
¼ z�1yz and cGðyÞ � L from above. Obviously L � cGðyÞ, so cGðhÞ ¼ cðy

zÞ ¼
Lz and ðbÞ follows.

ðcÞ If g 2 G \ Gh, then g�1 ¼ h�1ch for some c 2 G, hence h ¼ chg and
from ðaÞ we have h ¼ xyz. We get that

xyz ¼ ðcxÞyðzgÞ and both sides in reduced normal form of length 3.

Again there are t1; t2 2 L with xt1 ¼ cx; t�1
1 yt2 ¼ y; t�1

2 z ¼ zg and y 2 U.
As before t ¼ t1 ¼ t2 2 L and hence t 2 L; xt ¼ cx; t�1z ¼ zg. We get g ¼
z�1t�1z 2 Lz and ðcÞ is also shown. u

We must extend k-malnormal to sets of subgroups, as in the

Definition 2.5. A set L of subgroups is k-disjoint in G if each L 2 L has size
jLj ¼ k and jLg \ L0j < k for all L 6¼ L0 2 L and g 2 G.

Iterating Lemma 2.4 we get a

816 GÖBEL AND SHELAH
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Lemma 2.6. Let Ls ¼ fL1; . . . ;Lng be a finite collection of subgroups of G
such that

(a) Each group in L is k-malnormal in G.
(b) L is k-disjoint in G.

If 0 	 m 	 n, Ki ¼ Ui � Li; Mi ¼ Ki �Li G ði 	 mÞ and

H0 ¼ G; Hm ¼ �GfMi : i 	 mg for m 6¼ 0;

then the following holds for m 	 n.

(i) Each Li is k-malnormal in Hm for m < i 	 n:
(ii) L is k-disjoint in Hm.
(iii) If h 2 Hm n G and k 	 jcGðhÞj, then there are g 2 G; 1 	 l 	

m; r 2 Ul with h ¼ rg.
(iv) If h 2 Hm n G and k 	 jG \ Ghj, then there is 1 	 l 	 m such that

h 2Ml.

Proof. The proof is by induction on m. If m ¼ 0, then ðiÞ; . . . ; ðivÞ hold by
hypothesis. Suppose ðiÞ; . . . ; ðivÞ holds for m. From Mmþ1 ¼ Kmþ1 �Lmþ1

G
follows

Hmþ1 ¼ Hm �G Mmþ1 ¼ Hm �Lmþ1
Kmþ1

¼ Hm �Lmþ1
ðLmþ1 �Umþ1Þ:

ð2:4Þ

(i) If h 2 Hm n Lk and mþ 2 	 k 	 n, then ðiÞ holds by induction
hypothesis. Hence we also may assume that h 2 Hmþ1 nHm and suppose for
contradiction that

k 	 jLk \ Lhkj: ð2:5Þ

The assumptions of Lemma 2.4 hold, hence we may apply ðaÞ of the
lemma and can express h ¼ xyz with x; z 2 Hm n Lmþ1 and 1 6¼ y 2 Umþ1.
From (2.5) and Lemma 2.4 ðcÞ follows Lk \ Lhk � Lzmþ1, hence
Lk \ Lhk � Lzmþ1 \ Lk. From k 6¼ mþ 1, (2.5) and hypothesis ðbÞ we get the
contradiction

k 	 jLk \ Lhkj 	 jLk \ Lzmþ1j < k:

(ii) From (2.4) we have a canonical projection p : Hmþ1 ! Hm with
Ker p ¼ Umþ1. If 1 	 i 6¼ j 	 n and h 2 Hmþ1 such that Lhi \ Lj � Hmþ1 has
size at least k, then also k 	 jLhpi \ Ljj. But hp 2 Hm contradicts the
induction hypothesis for ðiiÞ.
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(iii) Let

h 2 Hmþ1 n G such that k 	 jcGðhÞj: ð2:6Þ

If h 2 Hm n G, then the induction hypothesis applies and ðiiiÞ follows. We
may assume that h 2 Hmþ1 nHm. By Lemma 2.4(a) we have h ¼ xyz with
x; z 2 Hm n Lmþ1 and 1 6¼ y 2 Umþ1. From Lemma 2.4(b) follows

x ¼ z�1 and cGðhÞ ¼ Lzmþ1; ð2:7Þ

hence h ¼ yz. If z 2 G, then ðiiiÞ is shown. Otherwise z ¼ x�1 2 H n G. We
want to derive a contradiction, showing that this case does not happen.

By Lemma 2.4(c), (2.6) and (2.7) we have cGðhÞ �
G \ Gh � Lzmþ1 ¼ cGðhÞ, hence

cGðhÞ ¼ G \ Gh ¼ Lzmþ1 ð2:8Þ

Hence we have that

k 	 jLzmþ1j ¼ jG \ Gzj ð2:9Þ

and by induction hypothesis from ðivÞ for z in place of h we find an l 	 m
such that z 2 G �Ll Kl � Hm. Now we apply Lemma 2.4(a) to write z ¼ abc
with a; c 2 G and b 2 Ul. From (2.9) and Lemma 2.4(c) we get Gx \ G � Lcl .
Using cGðhÞ � Gx \ G � Lcl and (2.6) we also have cGðhÞ � Lcl \ Lzmþ1, hence
k ¼ jLcl \ Lzmþ1j which contradicts ðaÞ.

(iv) Let h 2 Hmþ1 n G and k 	 jG \ Ghj. Again, if h 2 Hm then ðivÞ
follows by induction hypothesis, hence we may assume that h 2 Hmþ1 nHm.
By Lemma 2.4(a) we have h ¼ xyz with x; z 2 Hm n Lmþ1 and 1 6¼ y 2 Umþ1.
If x; z 2 G then h ¼ xyz 2 G �Lmþ1

Kmþ1 and by induction hypothesis also ði
vÞ follows. We may assume that x; z 2 G is not the case, so without
restriction let z =2G. From Lemma 2.4(c) follows

G \ Gh � Lzmþ1 � Hm: ð2:10Þ

If w 2 G \ Gh then wz
�1 2 Lmþ1 � G. By hypothesis on h we derive

that also

k 	 jG \ Gz�1 \ Lmþ1j ð2:11Þ

818 GÖBEL AND SHELAH

D
ow

nl
oa

de
d 

by
 [

R
M

IT
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 1
2:

51
 2

8 
D

ec
em

be
r 

20
17

 
Sh:739



ORDER                        REPRINTS

Now, using (2.10),(2.11) and the induction hypothesis ðivÞ for Hm, we
find 1 	 l 	 m such that z 2 G �Ll Kl � Hm. Using Lemma 2.4(c) for c�1 in
place of h and (2.11) there is z0 such that G \ Gc�1 � Lz

0

l , hence

G \ Gc�1 \ Lmþ1 � Lz
0 \ Lmþ1 and l 6¼ mþ 1:

Finally we apply (2.11) once more. By Lemma 2.4(a) we get the contra-
diction on cardinals k 	 jLz0l \ Lmþ1j < k. u

The last Lemma 2.6 extends to infinite sets L. We have an immediate

Corollary 2.7. Let L be a collection of subgroups of G such that
(a)#Each group in L is �-malnormal in G.

(b) L is k-disjoint in G.

If KL ¼ UL � L; ML ¼ KL �L G and H ¼ �GfML : L 2 Lg, then the follow-
ing holds.

(i) Each L is k-malnormal in H for L 2 L.
(ii) L is k-disjoint in H.
(iii) If h 2 H n G and k 	 jcGðhÞj, then there are g 2 G;L 2 L and r 2

UL with h ¼ rg.
(iv) If h 2 H n G and k 	 jG \ Ghj, then there is L 2 L such that

h 2ML.

Similar to polynomials over a field K which are elements of K½x�, we
will say for a group G that

Definition 2.8. A word w over G in a free variable x is an element of G � hxi.
We will write w ¼ wðxÞ and may substitute elements of an over-group.

Lemma 2.9. Let G ¼ G1 � G2 � G3 be a free product of groups, let wiðxÞ be
words over G1ð1 	 i 	 3Þ and let x2 2 G2; x3 2 G3. Then the following holds.

(1) If w1ðx2x3Þ ¼ w2ðx2Þw3ðx3Þ, then w1ðx2x3Þ ¼ tx2x3u; w2ðx2Þ ¼
tx2t

0 and w3ðx3Þ ¼ t0�1x3u for some t; u; t
0 2 G1.

(2) If also w2 ¼ w3, then w1ðxÞ ¼ xu for u 2 G1.

Proof. Note that it is enough to consider G ¼ G1 � hx2i � hx3i. Write
w2ðx2Þ ¼ t1 � � � tn with ti 2 G1 [ hx2i in normal form (from alternate factors).
Similarly, write w3ðx3Þ ¼ u1 � � � um with ui 2 G1 [ hx3i in normal form. Then

w :¼ w2ðx2Þ � w3ðx3Þ ¼ t1 � � � tn � u1 � � � um:
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ORDER                        REPRINTS

If tn 2 hx2i or u1 2 hx3i, then w is in normal form as well. Otherwise tnu1 2
G1 and w ¼ t1 � � � tn�1ðtn � u1Þu2 � � � um is in normal form. If also w1ðxÞ ¼
v1 � � � vk with vi 2 G1 [ hxi is in normal form. We also may assume that v2 2
hxi without loss of generality. Then writing vi ¼ xmi if vi 2 hxi, we have that

w1ðx2x3Þ ¼ v1ðx2x3Þm2v3 � � � vk

is in reduced normal form. Hence

w1ðx2x3Þ ¼ v1x2x3v3 ¼ w2ðx2Þ � w3ðx3Þ ¼ t1x2ðt3u1Þx3u3

and it follows that t3u1 ¼ 1; v3 ¼ u3 and t1 ¼ v1. We get

w1ðx2x3Þ ¼ t1x2x3u3; w2ðx2Þ ¼ t1x2t3 and w3ðx3Þ ¼ t�1
3 x2u3:

If we put t1 ¼ t; t3 ¼ t0 and u3 ¼ u, then ðiÞ follows.
If also w2ðxÞ ¼ w3ðxÞ, then txt0 ¼ t0�1xu, hence t0 ¼ u; t ¼ t0�1. It fol-

lows that w1ðx2x3Þ ¼ u�1x2x3u ¼ ðx2x3Þu as well as w2ðx2Þ ¼ xu2 and
w3ðx3Þ ¼ xu3. u

The following lemma describes centralizers of finite subgroups in free
products with amalgamation.

Lemma 2.10. Let H ¼ G1 �G0
G2 be the free product of G1 and G2 amal-

gamating a common subgroup G0. Let A � G1 be a non trivial finite subgroup
and let x 2 H be an element which commutes with all elements of A. Then
either x 2 G1 or A

g � G0 for some g 2 G1.
We repeat the short proof from [12].

Proof. Suppose ½x;A� ¼ 1, x 62 G1 and h 2 A. Express x in a reduced
normal form

x ¼ g1g
0
1 � � � gng0n;

that is, gi 2 G1 n G0, ð1 < i 	 nÞ and g0i 2 G2 n G0, ð1 	 i < nÞ. The relation
h�1x�1hx ¼ 1 yields the following

h�1g0�1
n g�1

n � � � g0�1
1 ðg�1

1 hg1Þg01 � � � gng
0
n ¼ 1:

By the normal form theorem for free products with amalgamation [19,
Theorem 2.6 p. 187], this is only possible if g1 2 G1 and g�1

1 hg1 2 G0 for all
h 2 A, so Ag1 � G0. This concludes the proof. u

By similar arguments we have
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ORDER                        REPRINTS

Lemma 2.11. Let G be any group, and f : G0 ! G1 be an isomorphism
between two subgroups of G. Consider the HNN-extension H ¼
hG; t : t�1ht ¼ fðhÞ; h 2 G0i. If A is a non trivial finite subgroup of H and x 2
H such that ½x;A� ¼ 1, then x is in a conjugate of G.

Let pInn ðGÞ denote the set of partial inner automorphisms, which are
the isomorphisms f : G1 ! G2 where G1;G2 � G such that f can be
extended to an inner automorphism of G. Hence pInn ðGÞ are all restrictions
of conjugations to subgroups of G.

Definition 2.12. In addition we will use Definition 1.1.

(1) Let A � Â ¼ AutA be fixed groups such that A is suitable.
(2) K consists of all groups G such that A � Â � G, and any iso-

morphic copy of A in G has trivial centralizer in G. That is,

K ¼ fG : Â � G; if A ffi A0 � G; x 2 G with ½A0;x� ¼ 1; then x ¼ 1g:

We have an easy Lemma from [12].

Lemma 2.13. If G and G0 are in K then G � G0 2 K.
By a well-known result of Schupp [21] any automorphism is partially

inner for some group extension. We will refine this result below. If G is any
group in K and f is an isomorphism between two subgroups of G iso-
morphic to A, we will need that f is an partially inner automorphism in
some extension G � H 2 K. This follows by using HNN-extensions as we
will show next.

Lemma 2.14. Let G 2 K and B � G be a subgroup isomorphic to A. Then
there is H 2 K such that G � H and AutðBÞ � H.

Proof. Let B̂ ¼ AutðBÞ and N ¼ nGðBÞ the normalizer of B in G. If B̂ � G
then let H ¼ G. Suppose that B̂ 6�G. Note that N ¼ G \ B̂, so we can con-
sider the free product with amalgamation H :¼ G �N B̂. We shall show that
H 2 K. Let A0 � H be a subgroup isomorphic to A and 1 6¼ x 2 H such that
½A0; x� ¼ 1. By Lemma 2.1 we can suppose that A0 � G or A0 � B̂. Suppose
that A0 � G, the other case is easier. Let x ¼ g1g2 � � � gn be written in a
reduced normal form. First suppose that n ¼ 1. If x ¼ g1 2 G then x ¼ 1
since G 2 K, and this is a contradiction. Hence x ¼ g1 2 B̂ nN. As in
Lemma 2.10 we deduce that A0 ¼ ðA0Þg1 � N, thus A0 ¼ B since B is suitable.
Hence g1 2 N is a contradiction. If n ¼ 2, then we obtain ðA0Þg1 ¼ ðA0Þg

�1
2 a

contradiction unless A0 � N, so A0 ¼ B. So both g1 and g2 are in N, which
also is a contradiction. Similarly, if n � 3 we have gn�1 and gn in N. This is
again impossible. This concludes the proof. u
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ORDER                        REPRINTS

By the previous lemma we can suppose that if B � G 2 K, and if
B ffi A, then B̂ � G as well. If C;B � G, A ffi B ffi C and Ĉ, B̂ are conjugate
in G then C and B are also conjugate. Indeed, if g 2 G such that
g� : Ĉ �! B̂, then Cg � B̂ is a subgroup isomorphic to B, hence Cg ¼ B by
Definition 1.1.

Lemma 2.15. Let G 2 K and B � B̂ � G. Suppose that A and B are iso-
morphic but not conjugate in G. Let f : Â! B̂ be any isomorphism. Then the
HNN-extension

H ¼ hG; t : t�1ht ¼ fðhÞ for all h 2 Âi

is also in K.

Proof. see [12, proof of Lemma 3.5]. u

Lemma 2.16. Let C and B be isomorphic to A and suppose C � Ĉ � G 2 K
and B � B̂ � G. If f : C �! B is any isomorphism, then there is G � H 2 K
such that f 2 pInn ðHÞ. Moreover, H can be obtained from G by at most two
successive HNN-extensions.

Proof. see [12, proof of Lemma 3.6]. u

Lemma 2.17. Let G 2 K and suppose that G0 2 K or G0 does not contain any
subgroup isomorphic to A. Let g 2 G and g0 2 G0 with oðgÞ ¼ oðg0Þ. Then ðG �
G0Þ=N 2 K where N is the normal subgroup of G � G0 generated by
g�1g0 2 G � G0.

Proof. The group H ¼ ðG � G0Þ=N is a free product with amalgamation,
hence G and G0 can be seen as subgroups of H respectively. Suppose that we
have a subgroup A0 � H isomorphic to A > and x 2 H such that ½A0; x� ¼ 1.
By Lemma 2.1 we can assume that A0 is already contained in G. Suppose
that x 6¼ 1. By Lemma 2.10 it follows that either x 2 G or a conjugate of A0

is contained in hgi. In the first case x ¼ 1 from G 2 K is a contradiction. The
second case is obviously impossible. Thus H 2 K. u

Lemma 2.18. Let H ¼ G �G0
G0 be the free product of G and G0 amalga-

mating a common subgroup G0. If any X 2 fG;G0;G0g is in K such that
monomorphisms from A to X are induced by inner automorphisms of X, then
H 2 K as well.

Proof. Let A0 � H be a subgroup isomorphic to A, and 1 6¼ x 2 H such
that ½A0; x� ¼ 1. By Lemma 2.1 we can assume that A0 � G0 and
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ORDER                        REPRINTS

x ¼ g1g2 � � � gn, is written in a reduced form of length bigger than two. Then
we have g�1 : A

0 �! ðA0Þg1 both of them inside G0. By the choice of G0 there
exists g 2 G0 such that g� : A0 �! ðA0Þg1 . We can also suppose that the
automorphism group Â

0
is already in G0 by Lemma 2.14. Hence the com-

position ðg�1
1 gÞ� : A0 ! A0 is an automorphism, which is inner by com-

pleteness. Thus, g�1
1 g 2 G0 and g1 2 G0. This is a contradiction, since x was

written in a reduced form. u

Proposition 2.19. Let G be a group in K. Let g; f 2 G, where oð fÞ ¼ oðgÞ ¼
1 and g does not belong to the normal subgroup generated by f. Then there is
a group H 2 K such that G 	 H and g is conjugate to f in H.

Proof. Let a : hfi ! hgi be the isomorphism mapping f to g. By hypothesis
a=2 pInnG. As in Lemma 2.16 consider the HNN-extension
H ¼ hG; t : t�1ft ¼ gi. We must show that H 2 K. Clearly jHj < l and
consider any A0 with A ffi A0 	 G and any x 2 H with ½A0; x� ¼ 1. As above
we may assume that A0 � G and x 2 H with ½A0;x� ¼ 1. Now we apply
Lemma 2.10. u

Recall Definition 1.2 of an A-socle G½A�.

Lemma 2.20. If g 2 G 2 K, then there is a group H 2 K, such that G � H,
with jHj ¼ G � @0 and g 2 H½A�.

Proof. Suppose that oðgÞ ¼ 1 and that g =2G½A�. Let A1 and A2 be two
isomorphic copies of A. Choose a non trivial element h 2 A and let h1 and h2

be its copies in A1 and A2 respectively. Now define

H ¼ ðG � A1 � A2Þ=N

where N is the normal subgroup generated by g�1h1h2. Then H 2 K by
Lemma 2.17 and moreover g 2 H½A�.

If oðgÞ ¼ n <1 we first embed G � ðG � KÞ=N where K is defined
by the representation hx1; x2 : ðx1x2Þn ¼ 1i and N is the normal closure
of g�1x1x2. Then by the Lemma 2.17 ðG � KÞ=N 2 K. Now, since
oðx1Þ ¼ oðx2Þ ¼ 1, we can apply the first case. u

3. CONSTRUCTION OF RIGID GROUPS

We want to use the following natural definition where we slightly
abuse the notion of a free product as customary for external and internal
direct products.
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ORDER                        REPRINTS

Definition 3.1. If G is a group and U � G, g 2 G then g is free over U if
hg;Ui ¼ U � hgi.

In this section we want to construct from a given suitable group A as
in Definition 1.1 certain rigid groups G containing A. For the rest of the
paper we make the following assumptions on the cardinals k; m and l:

(1) k is an infinite regular cardinal ðcf k ¼ kÞ.
(2) m ¼ mk and l ¼ mþ is the successor cardinal of m.

Moreover note that k ¼ @0 will be good enough in the following.
We want to apply (in Construction 3.4) the following theorem on

torsion-free abelian groups.

Theorem 3.2. For each subset X � k of the set (the cardinal) k there is an
@1-free abelian group GX of cardinal k such that the following holds.

HomðGX;GYÞ ¼
Z : if X � Y
0 : if X � Y

�

Remark 3.3. A proof of the theorem can be found in Corner, Göbel [5, p.
465]. An abelian group is@1-free if all its countable subgroups are free abelian.

The next section is a short description for the construction of the
group H of Main Theorem 1.3. Let l ¼ mþ be the cardinal above and assign
four disjoint stationary subsets Si � l ði ¼ 0; 1; 2; 3Þ such that each ordinal a
is a limit ordinal of cofinality cfðaÞ ¼ o if a 2 S0 [ S1 [ S2 and cfðaÞ ¼ k if
a 2 S3. Moreover, identify the group Â as a set with a fixed interval ½m; a0Þ of
ordinals in l. We also will need three lists of maps, elements and pairs of
elements each with l repetitions respectively. Let

L0 ¼ fxa 2 l : a 2 S0g

and let

L1 ¼ fha : A! Aa  l; a 2 S1g

where ha runs through all bijective maps from A to subsets of l with l
repetitions for each map. Finally choose an enumeration of pairs

L2 ¼ fðya; zaÞ 2 l� l : a 2 S2g

also with l repetitions for each pair. From jS0j ¼ jS1j ¼ jS2j ¼ l follows
that L0;L1 and L2 exist. Now we are ready to define H. The definition is by
transfinite induction. The inductive steps are also called approximations, see
Shelah [23] or Göbel, Rodriguez, Shelah [12].
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ORDER                        REPRINTS

The set of approximations in the Construction 3.4 is just the collection
P of initial sequences p ¼ fHa : a < bpg for any bp < l of the final group
H ¼ [a<lHa. More generally, the members of p could depend on p, i.e.
p ¼ fHp

a : a < bpg. Then P becomes naturally a poset by component-wise
inclusion, and any unbounded sequence in P gives rise to a group H. This
obvious generalization may be useful for other constructions, in this case it
can also be applied for finding a family of 2l non-isomorphic groups like H.
Again, for transparency we will restrict to only one group H and the
ordering on P is just extending the initial sequence p by some members Ha

satisfying the

Construction 3.4. We define an ascending chain of subgroups Ha (a < l)
with universe a subset of mðaþ 1Þ of cardinality m whose union is
H ¼ [a<lHa. The chain is constructed by transfinite induction subject to the
following conditions.

(i) (a ¼ 0) Let H0 ¼ Hb ¼ �a2maZ � Â for all b 	 m be the free pro-
duct of m infinite cyclic groups aZ and Â. Hence A � Â � H0 are
prescribed subgroups of any Ha.

(ii) If a 2 l n ðS0 [ S1 [ S2 [ S3Þ, then let Haþ1 ¼ Ha � aZ.
(iii) If a 2 S0 and xa 2 Ha½A�, then let Haþ1 ¼ Ha � aZ. Otherwise

apply free products with amalgamation Haþ1 ¼ Ha � A � A=N as
in Lemma 2.20 to get that xa 2 Haþ1½A�.

(iv) If a 2 S1 and ha : A! Aa � Ha is a partial inner automorphism
mapping A to some subgroup Aa of Ha or ha is not an isomorphism
between A and Aa, then we also put Haþ1 ¼ HA � aZ. Otherwise
choose an HNN-extension Haþ1 ¼ hHa; tai such that t�aA ¼ ha is
inner on the extended groups, see [19].

(v) If a 2 S2 and ya; za from L2 are two elements of infinite order in Ha

such that ya is not a conjugate of za, then choose an HNN-
extension Haþ1 ¼ hHa; tai such that ya ¼ ztaa . Otherwise let
Haþ1 ¼ Ha � aZ.

(vi) If a 2 S3, then we apply the Black Box 5.1 (i),(ii),(iii) in order to
define a family Fa ¼ fFaj : j 2 kg of free subgroups of rank k of
Ha: There are branches

Zaj : k! a ðj 2 kÞ

given by the traps and models ðHa
j ;jj;cjÞ which are triples of

subgroups Ha
j � Ha, a unary function c : Ha

j ! a and a partial
two place function

j : Ha
j �Ha

j ! a such that Im Zaj � Ha
j :
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ORDER                        REPRINTS

We will say that a is useful (for j and c) if we can choose for any
j 2 k a strictly increasing, continuous sequence zaj : k! a such
that the following holds.

(1) cðZaj ðz
a
j ðeÞÞ < Zaj ðz

a
j ðeþ 1ÞÞ and

(2) jðZaj ðz
a
j ð2eÞÞ; Zaj ðz

a
j ð2eþ 1ÞÞÞ < Zaj ðz

a
j ð2eþ 2ÞÞ.

In this case j is a total map and we define xaj ðeÞ by

jðZaj ðz
a
j ð2eÞÞ; Zaj ðz

a
j ð2eþ 1ÞÞÞ ¼ xaj ðeÞ:

Let Faj ¼ hxaj ðeÞ : e < ki and Fa ¼ fFaj : j 2 kg.
If this is not possible, we say that a is useless and pick Fa ‘trivially’
from branches as in the first case but regardless of what j and c
do. In Lemma 3.6 we will show that Fa meets all requirements, in
particular that each Faj is free of rank k. Now we define Haþ1 in
two steps:
Take a rigid family Uj ðj 2 kÞ of torsion-free abelian groups of
cardinal k from Theorem 3.2 such that

HomðUi; UjÞ ¼ dijZ
and let

Kaj ¼ Uj � Faj and Maj ¼ Ha �Faj Kaj:

In the second step choose

Haþ1 ¼ �HafMaj : j 2 kg

be the free product with amalgamated subgroup Ha. Hence Ha �
Haþ1 by the normal form theorem, see [19, p. 187, Theorem 2.6].

(vi) Finally let H ¼ [a2lHa.

It remains to show that H meets the requirements of the Main Theorem
1.3. The proof of condition ðviÞ, which is based on the Black Box 5.1, will be
postponed to the next section, however all prerequisites will be established now
using the following

Remarks and Notations 3.5. If a 2 S3 and j 2 k from the construction 3.4
ðviÞ, then let ajðeÞ ¼ Zaj ðz

a
j ðeÞÞ; hence xaj ðeÞ 2 Hajðeþ1Þ nHajðeÞ is free over

HajðeÞ and the elements xaj ðeÞ ðe < kÞ freely generate Faj 2 Fa. Moreover
supe<kajðeÞ ¼ a and Ha ¼ [e<kHajðeÞ for each j 2 k. If i 6¼ j < k, then
jfajðeÞ : e < kg \ faiðeÞ : e < kgj < k:
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First we show the

Lemma 3.6. Let H ¼ [a2lHa be as in the Construction 3.4.

(a) The groups Faj ðj 2 kÞ defined in ðviÞ for a 2 S3 are freely generated
by the sets fxaj ðeÞ : e < kg.

(b) Each Faj is k-malnormal in Ha and Fa is k-disjoint.
(c) If y; z 2 H and z 6¼ 1, then y is a product of at most four conjugates

of z.
(d) Any monomorphism A! H is induced by an inner automorphism of

H.
(e) H ¼ H½A�.
(f) If So denotes the infinite symmetric group acting on countably many

elements, then HomðH;SoÞ ¼ 0.

Proof. (a) Comparing with Remark and Notations 3.5 we see that each
xaj ðeÞ 2 Hajðeþ1Þ nHajðeÞ is free over HajðeÞ, hence HajðeÞ � hxaj ðeÞi �
Hajðeþ1Þ � Ha. An easy induction shows that Faj � Ha is freely generated by
the set fxaj ðeÞ : e < kg.

(b) If g 2 Ha n Faj for some j < k, then g 2 Hajðe�Þ for some minimal e�
< k from Ha ¼ [e<kHajðeÞ. If e� 	 e < k, then clearly by freeness7as shown
next7

hxaj ðnÞ : n < ei \ hxaj ðnÞ : n < eig ¼ hxaj ðnÞ : n < e�i \ hxaj ðnÞ : n < e�ig

which is a set of cardinality less then k as je�j < k, and the first part of ðbÞ
follows.

The proof of the displayed equation is by induction on e < k. If e ¼ e�
or e is a limit ordinal the assertion obviously holds. So suppose e� < e < k is
not a limit and let U ¼ hHajðe�Þ; x

a
j ðnÞ : n < ei. Hence

g 2 hHajðe�Þ; x
a
j ðnÞ : e� < n 	 ei ¼ U � hxaj ðeÞi � Ha:

If w is an element of the left hand side of the displayed equality,
then there are also two words w1ðxÞ;w2ðxÞ free over U such that
w ¼ w1ðxaj ðeÞÞ ¼ g�1w�1

2 ðxaj ðeÞÞg. Hence g ¼ w2ðxaj ðeÞÞgw1ðxaj ðeÞÞ has length
1 in U � hxaj ðeÞi. Write w2 ¼ a1x

t1a2 � � � xtn�1an and w1 ¼ f1x
s1 f2 � � � xsm�1fm in

normal form, hence

g ¼ w2gw1 ¼ a1x
t1a2 � � � xtn�1ðangf1Þxs1 � � � xsm�1fm
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ORDER                        REPRINTS

has length 1 which is only possible if t1 ¼ s1 ¼ 0, so w ¼ w1ðxaj ðeÞÞ 2 U and
the claim follows by the induction hypothesis.

Next we consider g 2 Ha and i 6¼ j < k. We must show that
jFai \ Fgajj < k. If w 2 Fai \ Fgaj, we can choose g < a such that g 2 Hg and
Im Zai \ Im Zaj � g. Then fxai ðeÞ : e < kg \Hg ¼ fxai ðeÞ : e < e1g and fxaj ðeÞ
: e < kg \Hg ¼ fxaj ðeÞ : e < e2g for some e1; e2 < k. As before we have
Fai \ Fgaj \Hg ¼ Fai \ Fgaj \Hn for all n with g < n < a. Hence
Fai \ Fgaj \Ha ¼ Fai \ Fgaj \Hg, which has cardinality < k, and ðbÞ is shown.

ðcÞ If y and z have infinite order in H, then ðy; zÞ ¼ ðya; zaÞ for some a
2 S2 and it is y ¼ zta in Haþ1, so ðcÞ follows in this case. If y has finite order,
then we can write y ¼ y0y00 with both y0; y00 of infinite order and it remains to
show that y0 is product of at most two conjugates of z. If z has infinite order,
this is clear from above. If z has finite order, then we can find suitable
elements xi 2 H such that w ¼ zx1zx2 has infinite order. By the first case y0 ¼
wt for some t 2 H, hence y0 ¼ zx1tzx2t is product of two conjugates and y is
product of four.

ðdÞ This is taken care of by the construction at stage ðivÞ for S3.
ðeÞ If g 2 H, there is a 2 S0 such that g ¼ ga, hence g 2 Haþ1½A� by

construction and H½A� ¼ H follows.
ð f Þ If So is the infinite symmetric group acting on countably many

elements, then jSoj ¼ 2@0 	 m@0 ¼ m < mþ ¼ l. Hence jSoj < l and ðfÞ fol-
lows because H is simple by ðcÞ. u

Corollary 3.7. H is simple and there is an element in H such that each other
element is a product of at most four of its conjugates.

Lemma 3.8. Let H be as in the Construction 3.4.

(a) If a 2 S3 and a < b < l; j 2 k, then Faj is k-malnormal in Hb

and Fa is k-disjoint in Hb.
(b) If A0 � H is an isomorphic copy of A, then cHA0 ¼ 1.

Proof. (a) follows from Lemma 3.6(b). (b) is based an the definition of K
and also follows by induction on b for all A0 � Hb (b < l), using Lemma
2.15, Lemma 2.17, Lemma 2.18 and Lemma 2.20. u

We now have an implication which follows from Corollary 2.4, a

Lemma 3.9. If d 2 l and Hd from the Construction 3.4, a 	 b < d and y 2
Hb nHa with a large centralizer k 	 jcHaðyÞj, then a 2 S3 and there are j < k,
g 2 Ha and x 2 Kaj such that y ¼ xg.

Proof. Let b be minimal such that y 2 Hb nHa. The proof is now induc-
tion on b. Clearly a < b and b is not a limit ordinal, hence b ¼ gþ 1 for
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ORDER                        REPRINTS

some a 	 g. We write Dy ¼ cHgðyÞ and similarly Cy ¼ cHaðyÞ. From a 	 g
follows Cy � Dy. For the first part of the lemma is enough to show that jDy

j < k if g 6¼ a or if g ¼ a 62 S3. Recall that y 2 Hgþ1 nHg. We must distin-
guish cases depending on the position of g.

If g 2 S1, then Hgþ1 ¼ hHg; ti is an HNN-extension. Let y ¼ g0t
e1g1 � � �

gn�1t
engn be given in normal form with gi 2 Hg such that there is no subword

t�1git with gi 2 A or tgit
�1 2 A0 � Hgþ1, see the Construction 3.4 and [19, p.

181]. Note that 1 	 n from y 62 Hg. Any 1 6¼ x 2 Dy is in Hg and commutes
with y, hence

x�1g�1
n t

�e1 � � � t�e1ðg�1
0 xg0Þte1g1 � � � gn�1t

engn ¼ 1:

By the normal form theorem of HNN-extensions ([19, p. 182]) either
e1 ¼ 1 and g�1

0 xg0 2 A or e1 ¼ �1 and g�1
0 xg0 2 A0. By symmetry we may

assume that e1 ¼ 1, hence g�1
0 xg0 2 A for all x 2 Dy. We have Dg0

y � A and
jDyj 	 jAj < k as desired.

If g 2 S2, then Hgþ1 ¼ hHg; ti is another HNN-extension and the result
follows as in the last case.

If g 2 a n ðS0 \ S1 \ S2 \ S3Þ then Hgþ1 ¼ Hg � hti which is similar to
the first cases but much easier.

If g 2 S0 then Hgþ1 arrives from two extensions as before which
settles this case. We finally deal with g 2 S3 and the free product of the
Maj’s, which is

Hgþ1 ¼ �HgfMaj : j < kg:

Now apply Corollary 2.7 to find y ¼ xg as in the lemma. u

4. PROOF OF THE MAIN THEOREM

The crucial part of this paper is the following

Main Lemma 4.1. Any endomorphism of the group H from Construction 3.4
is an inner automorphism of H.

Proof. If p is an endomorphism of H, then p is a monomorphism because
H is simple. We will write H ¼ [a2lHa as in the construction.

Constructing modules with prescribed endomorphism rings, the most
important condition is finding elements x of the module (say H) such that
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ORDER                        REPRINTS

xp =2 hHa; xi�, see the ‘strong case’ in [5, p.455]. Here we will also say that an
element 1 6¼ x 2 H is strong (for p) at a 2 l if x is free over Ha, hence

hHa; xi ¼ Ha � hxi ð4:12Þ

and

xp =2 hHa; xi: ð4:13Þ

In this case we also say that a is strong for p. If x is free over Ha (i.e. (4.12) is
true), but (4.13) does not hold, we call x weak (for p) at a, and if all free
elements x over Ha are weak at a, we call a a weak ordinal for p.

We will distinguish two cases:

(A) All ordinals are strong.
(B) There is a weak ordinal a� < l.

The case (B) is the complementary case of (A).We first consider case (A):
For each ordinal a there is a strong element x�a 2 H for p at a.
By a back and forth argument we can choose a closed and unbounded

set C � l and an enumeration C ¼ fba : a < lg such that the following
holds for all a < l:

(1) a 	 ba,
(2) Hbap � Hba and p�1ðdomp \HbaÞ � Hba
(3) x�a 2 Hbaþ1 nHba for all a < l.
(4) fba : a < lg is strictly increasing and continuous.

Note that (2) is a purity condition for p, saying that Hp \Hba � Hbap.
Condition (3) follows by a new enumeration of the x�a’s and the Hba ’s. Let
Ua be the set of all ordinals g � ba þ 1 such that all elements in Hgþ1 are
weak for p over . First we claim

if a is strong, then the set Ua is bounded in l; ðhencejUaj 	 mÞ: ð4:14Þ

If Ua is unbounded and x�a 2 Hbaþ1 nHba is strong for a, then choose
any g 2 Ua and yg 2 Hgþ1 free over Hg. This is possible, because by con-
struction often (on a stationary set) we choose Hgþ1 ¼ Hg � hygi. The ‘weak
element’ yg tells us

ygp 2 hHa; ygi ¼ Ha � hygi:

830 GÖBEL AND SHELAH

D
ow

nl
oa

de
d 

by
 [

R
M

IT
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 1
2:

51
 2

8 
D

ec
em

be
r 

20
17

 
Sh:739



ORDER                        REPRINTS

On the other hand the strong element x�a makes

x�ap 62 hHa; x�ai and x�a 2 Hbaþ1 � Hg:

Hence x�ayg 2 Hgþ1 is also free over Ha, and g , being in Ua, requires

ðx�aygÞp 2 hHa; x�aygi:

Hence there is a word wgðyÞ over Ha with free varible y such that
ygp ¼ wgðygÞ. As we assume that Ua is unbounded in l and l ¼ mþ, also
jUaj ¼ l > jHajm. By a pigeon hole argument we find an equipotent subset
U � Ua such that for g 2 U the word wgðyÞ ¼ wðyÞ does not depend on g.
We have ygp ¼ wðygÞ for all g 2 U and jUj ¼ l. Pick any g1 < g2 in U
and consider y ¼ yg1

� yg2
. Clearly y is also free over Ha and gi 2 U

implies yp 2 hHa; yi, hence yp ¼ w0ðyÞ for another word w0 over Ha. We can
summarize

w0ðyÞ ¼ yp ¼ ðyg1
� yg2

Þp ¼ yg1
p � yg2

p ¼ wðyg1
Þ � wðyg2

Þ:

Also note that we have ‘freeness’

Ha � hyg1
i � hyg2

i � Hg2þ1

and normal forms

wðygiÞ 2 Ha � hygii ði ¼ 1; 2Þ;

and Lemma 2.9 applies. There is g 2 Ha such that

ygip ¼ wðygiÞ ¼ yggi ði ¼ 1; 2Þ; and similarlyðx�aygiÞp ¼ ðx�aygiÞ
g:

Using g ¼ g1 we derive

x�ap ¼ ðx�aygy�1
g Þp ¼ ðx�aygÞpðygpÞ

�1 ¼ ðx�aygÞgðyggÞ
�1 ¼ xg�a;

hence x�ap ¼ xg�a 2 hx�a;Hai contradicts that x�a is strong for a. The claim
(4.14) is shown.

By case (A) we may apply the last claim (4.14) to all a < l and see that
all Ua’s are bounded. Hence there is a new increasing, continuous sequence
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ORDER                        REPRINTS

E ¼ fnx : x < lg � C of ordinals such that in addition Unx � nx þ 1, hence
Unx � Hnxþ1. Hence (1), (2), (3), (4) hold for nx in place of ba there. In
particular x 	 nx and x�x 2 Hnxþ1 nHnx is a strong element at nx.

We now want to adjust the Black Box 5.1 for application in this case
(A). Let us define two maps jp (a partial map) and cp on H which makes
ðH;cp;jpÞ into an L-model as mentioned in the Black Box 5.1.

Let cpðxÞ ¼ nx ðx < lÞ and define jpðx; gÞ if and only if nx 	 g < l and
let jpðx; gÞ ¼ x�x be from above. Hence cp is a total function and jp is
partial such that jpðx; gÞ exists if and only if cpðxÞ 	 g. The group H
together with cp;jp is an L-model M with universe l. We want to consider
L-submodels M ¼ ðH0;c0;j0Þ ofM ¼ ðH;cp;jpÞ, henceM is a subgroup H0

of H, c0 a total function and j0ða; bÞ is defined if and only if c0ðaÞ 	 b. As E
is a cub and S3 is a stationary set, we also find stationary many a 2 S3 \ E,
hence Ha is closed under p and p�1. The restriction cpa (denoted by cp
again) is a total function, and Ha with these restrictions of cp;jp is an L-
model M0 with universe a subset of l.

By ðivÞ of the Black Box there is some i < k for such a such that
ðHa

i ;jp;cpÞ � ðHa;jp;cpÞ. Hence Ha
i is a subgroup of H with Im Zai � Ha

i ,
cpH

a
i a unary total function on Ha

i , jpH
a
i a two place function on Ha

i which
is defined again for ðx; gÞ if and only if cpðxÞ ¼ nx 	 g < a and such that jp
ðx; gÞ ¼ x�x 2 Hnxþ1 nHnx is strong for p at nx.

The Black Box 5.1 predicts some j < k and a strictly increasing
sequence zaj ðeÞ ðe < kÞ with supe<kz

a
j ðeÞ ¼ a, zaj ðeÞ þ 2 < zaj ðeþ 1Þ for all e <

k and

ajðeÞ 2 ½nze ; nzeþ1
Þ with jpðZaj ðz

a
j ð2eÞÞ; Z

a
j ðz

a
j ð2eþ 1ÞÞÞ ¼ xaj ðeÞ ¼ x�ajðeÞ

ð4:15Þ

for all e < k as defined in the Construction 3.4. If F1 ¼ Faj, which is
freely generated by the xaj ðeÞ ðe < kÞ, also given by the Construction 3.4,
then F1p � Ha follows from F1 � Ha and a 2 C. Recall that Haþ1 ¼
�HafMaj : j < kg. If 1 6¼ r 2 Uj, then r =2Ha and rp =2Ha by the closure
property (2). However

Maj ¼ Ha �F1
Kj ¼ Ha �F1

ðF1 �UjÞ � Haþ1 and Uj \Ha ¼ 1

hence cHaðrÞ � F1. Clearly r 2 Uj implies F1 � cHaðrÞ, we get the important
centralizer condition

cHaðrÞ ¼ F1:
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ORDER                        REPRINTS

Next we calculate the centralizer of the image rp, using Hap � Ha:

F1p ¼ ðcHaðrÞÞp ¼ cHapðrpÞ � cHaðrpÞ: ð4:16Þ

By Corollary 3.9 there are Fai ¼ F2 2 Fa; g 2 Hd and f 2 Ki such that

rp ¼ f g: ð4:17Þ

From f 2 Ki follows rp ¼ fg 2 Haþ1. We derive the invariance

Haþ1p � Haþ1: ð4:18Þ

Using (4.16), (4.17) and g 2 Ha, f 2 Ki we get

F1p � cHaðrpÞ ¼ cHaðfgÞ ¼ cHaðfÞ
g ¼ Fg2: ð4:19Þ

Note that by definition g ¼ gr depends on r and similarly F2 ¼ F2r. We
want to show that different r’s give the same g and F2:

If r1 6¼ r2 and gr1 ; gr2 are as above, then by (4.19) we have
F1p � F

gr1
2r1
\ Fgr22r2

, hence k ¼ jF2r1 \ F
gr2g

�1
r1

2r2
j and by the choice of Fa (which is

k-disjoint by Lemma 3.6) it follows that F2r1 ¼ F2r2 and gr1 ¼ gr2 . We obtain
that for all r 2 UF1

also rp 2 Ug
F2

, hence UF1
p � Ug

F2
ffi UF2

. The family fUi

: i < kg of abelian groups is rigid, and this forces F1 ¼ F2 and pUF1
is

conjugation by g. The claim (4.19) becomes F1p � Fg1 , and g 2 Ha ¼ [e<k

HajðeÞ is an element of some HajðeÞ. If r 2 ðe; kÞ, then x�ajðrÞ by (4.15) is a
canonical free generator of F1 and x�ajðrÞ 2 HajðrÞþ1 nHajðrÞ: Hence x�ajðrÞ 2
HajðrÞþ1 � Hajðrþ1Þ and also

xajðrÞp 2 Fnrþ1
\ hxajðtÞ : t < kig � hxajðtÞ : t < rþ 1ig

from F1p � F1 and Lemma 3.6. From g 2 HajðeÞ and xajðtÞ 2 HajðrÞ for all
t < r follows xajðrÞp 2 hxajðrÞ;HajðrÞi: However xajðrÞ is free over HajðrÞ and
strong for r by definition of nr, which is a contradiction. Hence case (A)
does not come up.

Case (B) can be derived quite easily: There is an ordinal a� < l such
that any free element x 2 H over Ha� is weak for a, hence xp 2 hHa�; xi. So
there is a word

wxðyÞ over Ha� with variable y such that xp ¼ wxðxÞ:
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ORDER                        REPRINTS

Pick any two free elements b1; b2 over Ha� such that b2 is also free over
hHa�; b1i. There are many b’s! And choose g < l such that
Ha� [ fb1; b2g � Hg, also let z 2 H be free over Hg. Hence b1z; b2z and z are
free over Hg and we have

hHa�; bi; zi ¼ Ha� � hb1i � hzi:

For the words wbizðyÞ;wzðyÞ we get ðbizÞp ¼ wbizðbizÞ and zp ¼ wzðzÞ and it
follows

wbizðbizÞ ¼ ðbizÞp ¼ ðbipÞðzpÞ ¼ wbiðbiÞwzðzÞ

and Lemma 2.9(a) applies. We can write bip ¼ eibidi; zp ¼ ezzdz with
ei; di:ez; dz 2 Ha� and diez ¼ 1 for i ¼ 1; 2. Hence d1 ¼ d2 ¼ d and ez ¼ d�1.
We have bip ¼ eibid and zp ¼ d�1zdz. The same argument for ðb1b2zÞp ¼
ðb1pÞðb2zÞp gives d ¼ dz. Similarly for b�1

1 b�1
2 z�1 also ei ¼ d�1, hence

bip ¼ bdi ; zp ¼ zd. We conclude that p ¼ d� for all elements b 2 H which are
free over Ha� . Obviously H is generated by such b’s, hence p ¼ d� on H is
inner, which finishes the proof of the Main Lemma.

Proof. (of the Main Theorem 1.3) From Main Lemma 4.1 follows that we
only must check conditions 1., 2., 3. of the Main Theorem 1.3. This follows
however from Lemma 3.6.

5. APPENDIX: A MODEL THEORETIC VERSION

OF THE BLACK BOX

Let L be the language (of groups in our case) with a finite vocabulary
of cardinality at most k and with a unary function cð Þ and a partial two
place function jð ; Þ. From Shelah [23, Chapter IV] we adopt the following
prediction principle - a model theoretic version of the ‘old’ and often used
Black Box form [24] which was also used and proved in the appendix of [5],
see also [11,7,10] for other applications.

In order to match the setting to earlier ones, we will use terms from
trees. Condition ðiÞ below can be viewed as a tree embedding from kk into a
tree in l of branches below d and condition ðiiÞ just says that distinct
branches of length k have only a small branch of length < k in common.
Condition ðiiiÞ is the earlier requirement that the image of a tree kk can be
found in any submodel of the ‘trap’ (see [5] for instance) here called ðZdi ;Md

i

: i < dÞ and ðivÞ is the prediction of a submodel of M, earlier ([5]) this was a
module or a group together with an unwanted homomorphism j, so a pair
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ORDER                        REPRINTS

ðH;jÞ. In our application it will be a group together with a unary map c
and a partial two place map j on H.

Another preliminary remark seems in order:
We will predict ordinals from a stationary subset of l (and sub-

models), hence the following is actually a ‘stationary’ Black Box as used in
[10] for instance. The reader can either find a proof of the group theoretic
version of the Black Box by slight modification from these references, or
adopt the model theoretic version, which then has the advantage that it is
applicable in many different algebraic situation (including the old ones)
without any further changes. Again the proof of the model theoretic version
of the Black Box is a natural and easy modification of the existing proofs; a
final reference will be [23].

Black Box 5.1 (in model theoretic terms). Let L be a language just mentioned
and suppose m ¼ mk < l ¼ mþ as before and let S be a stationary subset of

fd < l : cf d ¼ kg:

Then there is a sequence (of traps)

hððZdi ;Md
i Þ : i < kÞ; d 2 Si

such that the following holds.

(i) Zdi : k! d ðe! Zdi ðeÞÞ (i < k) is an increasing, continuous se-
quence with supremum d (a branch):

(ii) Any two distinct branches are almost disjoint:

If i < j < k; then jIm Zdi \ Im Zdj j < k:

(iii) Md
i is an L-model with a universe of cardinality k which is a subset

of d and Im Zdi �Md
i .

(iv) If M is such an L-model with universe l, then there are stationary
many d 2 S with some i < k such that Md

i �M.
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5. Corner, A.L.S.; Göbel, R. Prescribing Endomorphism Algebras 7 A
Unified Treatment. Proc. London Math. Soc. 1985, 50 (3), 4477479.

6. Dror Farjoun, E. Cellular Spaces, Null Spaces and Homotopy Locali-
zation, Lecture Notes in Math.; Springer-Verlag: Berlin, Heidelberg,
New York, 1996, Vol. 1622.
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