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ABSTRACT

A group homomorphism # : A — H is called a localization of
A if every homomorphism ¢ : A — H can be ‘extended un-
iquely’ to a homomorphism ®: H — H in the sense that
@y = ¢. This categorical concept, obviously not depending on
the notion of groups, extends classical localizations as known
for rings and modules. Moreover this setting has interesting
applications in homotopy theory, see the introduction. For
localizations # : 4 — H of (almost) commutative structures
A often H resembles properties of A4, e.g. size or satisfying
certain systems of equalities and non-equalities. Perhaps the
best known example is that localizations of finite abelian
groups are finite abelian groups. This is no longer the case
if A is a finite (non-abelian) group. Libman showed that
A, — SO,_1(R) for a natural embedding of the alternating
group 4, is a localization if n is even and n > 10. Answering
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810 GOBEL AND SHELAH

an immediate question by Dror Farjoun and assuming the
generalized continuum hypothesis GCH we recently showed
in [12] that any non-abelian finite simple has arbitrarily large
localizations. In this paper we want to remove GCH so that
the result becomes valid in ordinary set theory. At the same
time we want to generalize the statement for a larger class of
A’s. The new techniques exploit abelian centralizers of free
(non-abelian) subgroups of H which constitute a rigid system
of cotorsion-free abelian groups. A known strong theorem on
the existence of such abelian groups turns out to be very
helpful, see [5]. Like [12], this shows (now in ZFC) that there
is a proper class of distinct homotopy types which are loca-
lizations of a given Eilenberg—Mac Lane space K(A4,1) for
many groups 4. The Main Theorem 1.3 is also used to answer
a question by Philip Hall in [13].

1. INTRODUCTION

A homomorphism # : A — H in some category is a localization if every
homomorphism ¢ : 4 — H in the commutative diagram

AL H
vl /(I) (1.1)
H

extends uniquely to a homomorphism ® : H — H.

Such localization functors L,4 = H with respect to # derive from
modules and rings, have there a long history and are considered in many
recent papers in group theory for non-commutative cases and in connection
with homotopy theory, see e.g. [2,17,3]. It turned out to be of special interest
to investigate properties of 4 which carry over to L, 4 - or not. Examples for
groups are the properties to be commutative, nilpotent of class at most 2, or
the condition to be a ring. In particular cases the size of H relates to the size
of A, see a summary in [12]. The relation to homotopical localizations can be
looked up in [3], see also Dror Farjoun’s book [6]. Here we want to con-
centrate on the just mentioned cardinality problem mentioned in the
abstract:

If A4 is finite abelian, then every localization 5 : 4 — H is obviously
epic, hence |H| < |A|. Moreover, if 4 is torsion abelian then |H| < |A|™
as shown in [17] by Libman. In contrast to this localizations of 7 are the
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CONSTRUCTING SIMPLE GROUPS 811

E-rings, see [3] and by Dugas, Mader and Vinsonhaler [8] (using [5]) there
are arbitrarily large E-rings. The question about the size of L,A for finite,
non abelian groups A still remains. As also mentioned in the abstract,
Libman [18] has shown that for particular alternating groups 4 = A,, there
are localizations L,A of size 2™. Moreover assuming GCH any finite non
abelian simple group A4 has arbitrarily large localizations, as recently shown
in [12]. From our new main result we will see that GCH can be removed.
Using stronger algebraic arguments, like abelian centralizers of free (non-
abelian) groups and the existence of large rigid families of cotorsion-free
abelian groups, we are able to avoid the old combinatorial setting (the Hart
Laflamme Shelah game from [15]), hence GCH. As in [12] we will use the
following definition.

Definition 1.1. Let A # 1 be any group with trivial center and view A C
Aut(A) as inner automorphisms of A. Then A is called suitable if the following
conditions hold:

(1) A is a finite group.
(2) If A CAut(A) and A' = A then A" = A.
(3) Aut(A) is complete.

Note that Aut(A) has trivial center because A has trivial center. Hence
the last condition only requires that Aut(A) has no outer automorphisms. It
also follows from this that any automorphism of 4 extends to an inner
automorphism of Aut(4). A group 4 is complete if 4 has trivial center 34
and any automorphism is inner. If 4 € 4 then we denote by

h*:A— A (x — xh* = h'xh) the function which conjugation by /.

We also recall the easy observation from [12] which is a consequence of the
classification of finite simple groups:

All finite simple groups are suitable.

Also note that there are many well-known examples of suitable groups
which are not simple.

If u is a cardinal, then p* is the successor cardinal of p. A partial
homomorphism between two groups is a homomorphism between sub-
groups accordingly. Moreover, if U C G is a subgroup of G, then the cen-
tralizer of U in G is the subgroup

U={heG: [hU =1},

where [, U] = ([h,u] : u € U) is the subgroup generated by the commutators
[h,u] = h~'u " hu

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INC. ﬂ
270 Madison Avenue, New York, New York 10016 o



Sh:739

Downloaded by [RMIT University Library] at 12:51 28 December 2017

ORDER | _=*_[Il REPRINTS

812 GOBEL AND SHELAH

Definition 1.2. If A is a family of groups and G is any group, then G[A|
denotes the A-socle which is the subgroup of G generated by all copies of A €
Ain G. If A= {4}, we write G[A].

Then we have the following

Main Theorem 1.3. Let A be a family of suitable groups and u be an infinite
cardinal such that i = . Then we can find a group H of cardinality 7. = u*
such that the following holds.

(1) H is simple. Moreover, if 1 # g € H, then any element of H is a
product of at most four conjugates of g.

(2) Any A € Ais a subgroup of H and two different groups in A have
only 1 in common when considered as subgroups of H. If A is not
empty, then H[A] = H.

(3) Any monomorphism ¢ : A — H for some A € A is induced by
some h € H, that is there is some h € H such that ¢ = h*l A.

(4) If A C H is an isomorphic copy of some A € A, then the cen-
tralizer cyA' =1 is trivial.

(5) Any monomorphism H — H is an inner automorphism.

Note that the second property of (2) follows from the first property of
(2) together with (1). Also (5) can be virtually strengthened replacing
monomorphism by nontrivial homomorphism, which is also due to (1). The
group theoretical techniques derive from standard combinatorial group
theory and can be found in the book by Lyndon and Schupp [19]. We will
also use a theorem concerning the existence of complicated abelian groups
from [5]. For clarity the proof will be restricted to the case when A is a
singleton. The extension to arbitrary sets A is easy and left to the reader.
The reader may also ponder about our hypothesis that all members of A are
finite. In fact it turns out that there are many infinite groups 4 such that A
= {4} can not be extended to H as in the Theorem 1.3., see [14].

We are now ready to answer Dror Farjoun’s question in ordinary set
theory ZFC.

Corollary 1.4. Any finite simple group has localizations of arbitrarily large
cardinality.

The localization 4 — H induces a map between Eilenberg—Mac Lane
spaces

K(A,1) — K(H,1)

which turns out to be a localization in the homotopy category; [18]. Hence
these examples show the following
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CONSTRUCTING SIMPLE GROUPS 813

Corollary 1.5. Let A be a finite simple group. Then K(A, 1) has localizations
with arbitrarily large fundamental group.

A discussion of these corollaries is given in [12], they easily derive from
the Main Theorem 1.3, see also [12]. The Main Theorem 1.3 will also be used
to answer a problem of Philip Hall from 1966 in [13] mentioned in the
Kourovka notebook. There is a class of groups G such that any extension of
G by a copy of G is isomorphic to G. Only some of the properties of the
groups in our Main Theorem 1.3 will only be used for the Hall problem.

2. FREE PRODUCTS WITH AMALGAM
AND HNN-EXTENSIONS

The following lemma was shown in [12, Lemma 2.1]. It was basic for
the proof of the main theorem of [12] and it will be used here again. The
non-trivial proof needs that A4 is finite.

Lemma 2.1. Let H = G| *¢, G2 be the free product of Gy and G, amalga-
mating a common subgroup Gy = G| N G,. If A is a finite subgroup of H, then
there exist i € {1,2} and y € H such that 4> C G,.

Hence we have a
Corollary 2.2. Let G be any group, and ¢ : Gy — Gy be an isomorphism
between two subgroups of G. Consider the HNN-extension H =

(G,t:t7"ht = ¢p(h), h € Go). If A is a finite subgroup of H, then there exists a
y € H such that A’ is contained in G.

We want to refine the well-known notion malnormality and say

Definition 2.3. If x is a cardinal and L C G are groups, then L is k-mal-
normal in G if

|[LNLE| <k forallge G\ L.

This is used in the following

Lemma 2.4. Let L C G be groups, K = U x L be a direct product and H =
G x1 K be a free product over L. Suppose that

(i) L is k-malnormal in G,
(i) h e H\ G is an element such that x < |G N G"|, and
(iif) if e € L and x < |cL(e)|, then e = 1.

Copyright © Marcel Dekker, Inc. All rights reserved.
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814 GOBEL AND SHELAH

Then the following holds.

(a) There arel #y e U, x,z € G such that h = xyz.
(b) If k < |cg(h)| then x = z7" and cc(h) = L.
(¢c) GNG'CI~.

Proof. We distinguish two cases depending on the position of 4.

Case 1: Let he K=UXx L. Then we can write h = xy = xyz with
xe€LyeUand z=1. If y=1, then h=x € L C G contradicting (if),
hence y # 1 and (a) follows.

Suppose ¢ € ¢g(h) \ L,h € K\ G and recall K\ G =K\ L then h =
¢ 'he is reduced of length 3 and of length 1 in H = G *; K, a contradiction,
hence

C(;(h) = CL(h).

We have &1 = xy from above. Since [y, L] =1, ¢ (h) = ¢ (xp) = c(x) fol-
lows. If x =1 then ¢, (h) = L, x =z = 1 and () holds in this case. If x # 1
then by (iii) follows |cz(x)| = |cL(h)| = |cg(h)| < k and () holds trivially.
If g € GNG", then g = h™'fh for some f€ G, hence h = f~'hg. Note
that h€ K\ L. If g,f € G\ L then h = f 'hg has length 1 and 3, a contra-
diction. If g € G\ L,f € L (respectively f€ G\ L,g € L) then h = ( f'h)g
has length 1 and 2, which is impossible. If f,g € L, then & = xy and
xy=f'xyg=f"xgy. Thusg=x""fx=fand GNG" C L =1L".

Case 2: If he H\ K, then let h=5h;-----b, be in reduced form for
H = G xp K, hence | < nand alternately b; is an element of G\ L and K \ L.
Let X; be the element of {G \ L, K\ L} with b; € X; and let X} be the other
element of {G'\ L, K\ L}. If b; € K we surely may assume that b; € U as the
L-part of b; can be absorbed into the amalgam L. If x € GNG" then
x=h"'yh € G for some y € G, hence hx = yh and if

wy=by----- bywr=y by byx, x,y€Gandw =w, (2.2)
then we claim that
x,y € X1 =X, and 3 <nis odd. (2.3)

We distinguish various cases:

(1) Ifxe X, ye Xjthen w, is in reduced form and has length n + 2
and /(w)) = n contradicts (2.2)

Copyright © Marcel Dekker, Inc. All rights reserved.
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CONSTRUCTING SIMPLE GROUPS 815

2 If x€ X,y X, bux¢ L, (y"'b1)by---b,_1(b,x) is reduced of
length n + 1. So /(w;) = n and (2.2) is impossible.

(3) The dual case x € X%,y € X1, y~'b1 ¢ L is similar to (2).

4 IfxeX,yeX and y'by € L then wy = (y~'byby) - b,x
and w are both in reduced form of length n but y~'bh, € X;
and from w; = w, follows b; € X, hence b; € X is a contra-
diction.

(5) The dual case x € X,,,y € X7 and b,x € L is similar.

(6) If x€ X%,y €L then wy = (y~'hy)bs - -+ - byx has length n and
[(wi) =nbut x € X} and b, € X,, is impossible for (2.2).

(7) the dual case x € L,y € Xj is similar.

Finally we have the case

®) xeX/ UL yeX,UL, hence bj-----b,=y"'b)by-----
bu—1(b,x) and both sides are reduced of length n. By uniqueness
we find #,...,%,_1 € L such that

-1 -1 -1 -1
bity =y b]7 4 bzlzzbz, t bits :b3>~~-a[,171bn:bnx~

From x,y € G follows X; = X,, and n is odd. We noted that n # 1, hence
3 < n and the claim (2.3) is shown.

Note that #; = t;, depends on y in (2.2) and the last displayed equations
give us

“1yb by 1 b
hy =) by =1, x=(t,_,)"
We consider the pairs (y~1,b1), (11, b2), (t2y,b3), . .. of the last equal-
ities. In the first pair the first element may not be in L, in the second pair the

second element may not be in G, but the third pair has both these properties.
If 5 < n then the third pair exists and #3, € L, the equation above shows that

tlz’; =t,€lPNnLforallye GNG"
Hence
k<|{ts, e LNL»: yec G},

by assumption (i) of the lemma, so x <|L N L"|. Condition (i) of the
Lemma implies b3 € L, but this contradicts the reduced form of
wy=by-----b,. Hence n=3 and h = b1bb; and from the last claim

Copyright © Marcel Dekker, Inc. All rights reserved.
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816 GOBEL AND SHELAH

b1, b3 € G hence b, € K so, as mentioned above, without less of generality
b, € U, and if we let x = b,y = by and z = b3 then (a) of the lemma holds.

Now it is easy to show that () and (c¢) hold:

(h) We may assume (@) and that we are not in Case 1, hence 1 = xyz
€ H\ K with y € U and x,z € G\ L. The element & = xyz is in reduced
normal form.

If ¢ € cg(h), then h = ¢'he and we have

xpz = (¢”'x)y(zc) both sides in reduced normal form.

By uniqueness there are #,#, € L such that
[ B L 1 _ _.
Xty =c¢ X, t; yh =y, t, z=zcX.

Fromy € U,1, € L,K = U x L follows [y, 2] = 1, hence  := 1, = t; and the
last displayed equations become

Xt = cilx, 2=z

Hence ¢ = (r'1)" = ('Y and cg(h) € L' N L7 equivalently cg(h)* C
LNnL™ If zxeG\L, then |cg(h)|<x by (i), and (b) holds
trivially.

If zx = [ € L then ¢g(h) C L* N LY ' = L, the element /s becomes 1 =
xyz = x(y)x~!' = z7(Iy)z and [y,]] = 1.

From cg(h) C L?, zx = [ and h = z~'(Iy)z follows L* D ¢6(z7' (Iy)z) =
cg(ly)® or equivalently cg(ly) C L. Hence cg(ly) =cr(ly)=cr(l) by
[L,y] = 1. However x < |er(Iy)] = |cr(])] and (iii) implies / = 1. We derive
=z 'yzand ¢g(y) C L from above. Obviously L C ¢G(y), so ¢g(h) = ¢()°) =
L* and (b) follows.

(¢)If g€ GNG", then g~! = h~!ch for some ¢ € G, hence h = chg and
from (a) we have h = xyz. We get that

xyz = (ex)y(zg) and both sides in reduced normal form of length 3.

Again there are 11,1 € L with xt; = cx, t;'yta =y, t;'z=zg and y € U.
As before t =t =1, € L and hence t € L, xt = cx, t 'z =1zg. We get g =
z7 171z € L7 and (¢) is also shown. O

We must extend x-malnormal to sets of subgroups, as in the

Definition 2.5. A set & of subgroups is k-disjoint in G if each L € & has size
Ll =k and |[LSNL'| <k forall L#L € and g € G.

Iterating Lemma 2.4 we get a

Copyright © Marcel Dekker, Inc. All rights reserved.
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CONSTRUCTING SIMPLE GROUPS 817

Lemma 2.6. Let &s={Ly,...,L,} be a finite collection of subgroups of G
such that

(a) Each group in & is x-malnormal in G.
(b) X is k-disjoint in G.

IfO<m<n Ki=U; xLj, Mi=K;*,G (i <m) and
Hy=G, Hy, =x¢{M;:i <m} for m#0,

then the following holds for m < n.

(i) Each L; is k-malnormal in H,, for m < i< n.
(ii) R is k-disjoint in H,,.
(iii) If he H,\ G and k <|cg(h)|, then there are g€ G, 1 <I<
m, r € Uy with h =r8.
(iv) If h € Hy \ G and x < |G N G"|, then there is 1 <1< m such that
he M,

Proof. The proof is by induction on m. If m = 0, then (i), ..., (iv) hold by
hypothesis. Suppose (i),..., (iv) holds for m. From M, 11 = K41 *1,,., G
follows

Hy, = H, *¢ My = Hy, *Lonet

= Hm O (Lm+1 X Um+1)-

K11+1 (2 4)

(i) If he H,\ Ly and m+ 2 <k <n, then (i) holds by induction
hypothesis. Hence we also may assume that 4 € H,,;; \ H,, and suppose for
contradiction that

K <|Ly N L} (2.5)

The assumptions of Lemma 2.4 hold, hence we may apply (a) of the
lemma and can express & = xyz with x,z € H,,\ L,+1 and 1 #y € Uyy1.
From (2.5) and Lemma 24 (c) follows LyNL;CL;. . hence
LeN L} C L N L. From k # m+ 1, (2.5) and hypothesis (b) we get the
contradiction

K <|LeNLYH <Ly N L, | < k.

(i1) From (2.4) we have a canonical projection = : H,,., — H,, with
Ker 7= Upys1. If 1 <i#j<nandh € Hy such that L' N L; C H,,1 has
size at least k, then also k < |Lf?” NL;. But hn € H, contradicts the
induction hypothesis for (ii).

Copyright © Marcel Dekker, Inc. All rights reserved.
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818 GOBEL AND SHELAH
(iii) Let
h € Hyi1 \ G such that k < [cg(h)]. (2.6)
If h € H, \ G, then the induction hypothesis applies and (iii) follows. We

may assume that 7 € H,,.; \ H,. By Lemma 2.4(a) we have h = xyz with
x,z€ Hy\ Ly and 1 # y € U,yyy. From Lemma 2.4(b) follows

x=z'and ¢cg(h) = L;,,,, (2.7)
hence h = y°. If z € G, then (iii) is shown. Otherwise z = x~! € H\ G. We
want to derive a contradiction, showing that this case does not happen.

By Lemma 24(c), (2.6) and (2.79 we have cg(h) C
GNG"C L;,,, =cg(h), hence

wh)=6nG" =1L, (2.8)

Hence we have that

K<

Ll =160 G| (2.9)

and by induction hypothesis from (iv) for z in place of & we find an / < m
such that z € G %, K; C H,,. Now we apply Lemma 2.4(a) to write z = abc
with a,c € G and b € U,. From (2.9) and Lemma 2.4(c) we get G* NG C L.
Using ¢g(h) € G* NG C L{ and (2.6) we also have ¢g(h) € Li N L; ., hence
k = |Lj N L;, | which contradicts (a).

(iv) Let h € H, 1\ G and k < |GNG"|. Again, if & € H,, then (iv)
follows by induction hypothesis, hence we may assume that 1 € H,,,.1 \ Hy,.
By Lemma 2.4(a) we have h = xyz with x,z € H,, \ Ly,;1 and 1 £y € Uy,
If x,z € G then h = xyz € G *,,,, K41 and by induction hypothesis also (i
v) follows. We may assume that x,z € G is not the case, so without
restriction let z¢ G. From Lemma 2.4(c) follows

GNG"C L., C Hy. (2.10)

If weGNG" then w' € L1 €G. By hypothesis on & we derive
that also

K<|GNG" N Ly (2.11)

Copyright © Marcel Dekker, Inc. All rights reserved.
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CONSTRUCTING SIMPLE GROUPS 819

Now, using (2.10),(2.11) and the induction hypothesis (iv) for H,,, we
find 1 <7< m such that z € G *1, K; C H,,. Using Lemma 2.4(c) for ¢ 'in
place of & and (2.11) there is 2/ such that GN G C L3, hence

GNG ' 'NLyy CLF N Ly and [ #m+ 1.

Finally we apply (2.11) once more. By Lemma 2.4(a) we get the contra-
diction on cardinals x < |Lj N L, 1| < k. O

The last Lemma 2.6 extends to infinite sets £. We have an immediate

Corollary 2.7. Let & be a collection of subgroups of G such that
(Q)#Each group in L is k-malnormal in G.

(b) & is k-disjoint in G.
If Kp =Up XL, M;, =Ky %, G and H=xg{M : L € £}, then the follow-
ing holds.

(i) Each L is k-malnormal in H for L € .

(ii) X is k-disjoint in H.

(iii) If he€ H\ G and k < |cg(h)|, then there are g € G, L € ¥ and r €

Uy with h = 8.
(iv) If h€ H\ G and x <|GNG"|, then there is L € & such that
he M.

Similar to polynomials over a field K which are elements of K[x], we
will say for a group G that

Definition 2.8. A4 word w over G in a free variable x is an element of G * (x).
We will write w = w(x) and may substitute elements of an over-group.

Lemma 2.9. Let G = G| x Gy x G3 be a free product of groups, let wi(x) be
words over G(1 < i< 3) and let x, € Gy, x3 € G3. Then the following holds.

(1) If wi(x2x3) = wa(x2)ws(x3), then wi(xpx3) = txaxsu, wa(xy) =
txat" and wi(x3) = ' x3u for some t,u,t € G.
(2) If also wy = ws, then wi(x) = x" for u € G.

Proof. Note that it is enough to consider G = Gy * (x5) * (x3). Write
wa(xz) =ty -+ 1, with t; € G U (x) in normal form (from alternate factors).
Similarly, write w3(x3) = u; - - - uy, with ; € G U (x3) in normal form. Then

wi=wa(x2) - wi(X3) = £ty Uy Uy
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820 GOBEL AND SHELAH

If #, € (x2) or u; € (x3), then w is in normal form as well. Otherwise #,u; €
Gy and w=1t; - ty_i(ty - u))iy - - - tty, is in normal form. If also w;(x) =
vy -+ - v with v; € Gy U (x) is in normal form. We also may assume that v, €
(x) without loss of generality. Then writing v; = x™ if v; € (x), we have that

wi(x2x3) = v1(x2x3)" 03+ 0
is in reduced normal form. Hence
Wi (X2X3) = V1 X2X303 = WQ(XQ) . W3(X3) = l1X2(13u1)X3u3

and it follows that t3u; = 1, v3 = u3 and #; = v;. We get
wi(x2X3) = (1xox3u3, wa(X2) = fixat; and wi(x3) = 1‘3_1)(?21/13.

If we put 1, = t,13 = ¢’ and u3 = u, then (i) follows.
If also wa(x) = w(x), then rxt’ = ¢~ xu, hence 7/ = u,t = ¢~ It fol-
lows that wi(xx3) = u ' xaxsu = (x2x3)" as well as way(xy) = x4 and

w3(x3) = x§. O

The following lemma describes centralizers of finite subgroups in free
products with amalgamation.

Lemma 2.10. Let H = G| xg, G2 be the free product of G| and G, amal-
gamating a common subgroup Gy. Let A C G| be a non trivial finite subgroup
and let x € H be an element which commutes with all elements of A. Then
either x € G| or A% C Gy for some g € G.

We repeat the short proof from [12].

Proof. Suppose [x,A] =1, x¢ G, and h € 4. Express x in a reduced
normal form

X = glgll o 'g)7g:17

that is, g; € G1 \ Gy, (1 <i<n)and g € G2\ Gy, (1 <i<n). The relation
h~'x~'hx = 1 yields the following

hlg eyt g (e he)d - gng, = 1
By the normal form theorem for free products with amalgamation [19,

Theorem 2.6 p. 187], this is only possible if g; € G; and g;'hg € G for all
h e A, so A%' C Gy. This concludes the proof. O

By similar arguments we have
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Lemma 2.11. Let G be any group, and ¢ : Gy — G| be an isomorphism
between two subgroups of G. Consider the HNN-extension H =
(G,t:t7"ht = ¢p(h), h € Gy). If A is a non trivial finite subgroup of H and x €
H such that [x,A] = 1, then x is in a conjugate of G.

Let pInn (G) denote the set of partial inner automorphisms, which are
the isomorphisms ¢ : G; — G, where G,G, C G such that ¢ can be
extended to an inner automorphism of G. Hence pInn (G) are all restrictions
of conjugations to subgroups of G.

Definition 2.12. [n addition we will use Definition 1.1.

(1) LetAC A = AutA be fixed groups such that 4 is suitable.
(2) K consists of all groups G such that 4 C 4 C G, and any iso-
morphic copy of 4 in G has trivial centralizer in G. That is,

K={G:ACG, if A~ A CG,xecGwith [4,x] =1, then x = 1}.

We have an easy Lemma from [12].

Lemma 2.13. [f G and G' are in K then G x G’ € K.

By a well-known result of Schupp [21] any automorphism is partially
inner for some group extension. We will refine this result below. If G is any
group in K and ¢ is an isomorphism between two subgroups of G iso-
morphic to 4, we will need that ¢ is an partially inner automorphism in
some extension G C H € K. This follows by using HNN-extensions as we
will show next.

Lemma 2.14. Let G € K and B C G be a subgroup isomorphic to A. Then
there is H € K such that G C H and Aut(B) C H.

Proof. Let B= Aut(B) and N = 15(B) the normalizer of Bin G. If BC G
then let H = G. Suppose that BZ G. Note that N = G N B, so we can con-
sider the free product with amalgamation H := G *y B. We shall show that
H e K. Let A’ C H be a subgroup isomorphic to 4 and 1 # x € H such that
[4',x] = 1. By Lemma 2.1 we can suppose that 4’ C G or 4’ C B. Suppose
that 4" C G, the other case is easier. Let x = g1g>---g, be written in a
reduced normal form. First suppose that n=1. If x=g; € G then x =1
since G € K, and this is a contradiction. Hence x =g; € B \N. As in
Lemma 2.10 we deduce that 4" = (4')*' C N, thus A’ = Bsince B is suitable.
Hence g € N is a contradiction. If n = 2, then we obtain (4)*' = (4')*> a
contradiction unless 4’ C N, so A’ = B. So both g; and g; are in N, which
also is a contradiction. Similarly, if » > 3 we have g,_; and g, in N. This is
again impossible. This concludes the proof. O

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INC. ﬂ
270 Madison Avenue, New York, New York 10016 o



Sh:739

Downloaded by [RMIT University Library] at 12:51 28 December 2017

ORDER | _=*_[Il REPRINTS

822 GOBEL AND SHELAH

By the previous lemma we can suppose that if BC G € K, and if
B2 A, then B C G as well. If C,BCG, A= B=~Cand C, B are conjugate
in G then C and B are also conjugate. Indeed, if g€ G such that
g : C — B, then C% C B is a subgroup isomorphic to B, hence C¢ = B by
Definition 1.1.

Lemma 2.15. Let Ge K and BC BCG. Suppose that A and B are iso-
morphic but not conjugate in G. Let ¢ : A — B be any isomorphism. Then the
HNN-extension

H=(G,t:t"ht=q¢(h) forall h e A)

is also in K.

Proof. see [12, proof of Lemma 3.5]. O

Lemma 2.16. Let C and B be isomorphic to A and suppose C C CCGek
and BC B C G. If ¢ : C — B is any isomorphism, then there is G C H € K
such that ¢ € plnn (H). Moreover, H can be obtained from G by at most two
successive HNN-extensions.

Proof. see [12, proof of Lemma 3.6]. [

Lemma 2.17. Let G € K and suppose that G' € K or G' does not contain any

subgroup isomorphic to A. Let g € G and g € G’ with o(g) = o(g'). Then (G *

G')/N € K where N is the normal subgroup of GxG' generated by
71 l c G % Gl

Proof. The group H= (G*G')/N is a free product with amalgamation,
hence G and G’ can be seen as subgroups of H respectively. Suppose that we
have a subgroup 4’ C H isomorphic to 4 > and x € H such that [4', x] = I.
By Lemma 2.1 we can assume that A’ is already contained in G. Suppose
that x # 1. By Lemma 2.10 it follows that either x € G or a conjugate of A’
is contained in (g). In the first case x = 1 from G € K is a contradiction. The
second case is obviously impossible. Thus H € K. O

Lemma 2.18. Let H = G xg, G’ be the free product of G and G' amalga-
mating a common subgroup Gy. If any X € {G,G',Go} is in K such that
monomorphisms from A to X are induced by inner automorphisms of X, then
H € K as well.

Proof. Let A’ C H be a subgroup isomorphic to 4, and 1 # x € H such
that [4’,x]=1. By Lemma 2.1 we can assume that A4’ C G, and
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X =g1g2 - &n, 1s written in a reduced form of length bigger than two. Then
we have gj : A" — (A4")*' both of them inside Gy. By the choice of Gy there
exists g € G such that ¢*: A" — (A4")*'. We can also suppose that the
automorphism group A is already in Gy by Lemma 2.14. Hence the com-
position (g;'g)": A4’ — A’ is an automorphism, which is inner by com-
pleteness. Thus, gl’lg € Gy and g| € Gy. This is a contradiction, since x was
written in a reduced form. O

Proposition 2.19. Let G be a group in K. Let g,f € G, where o(f) = o(g) =
oo and g does not belong to the normal subgroup generated by f. Then there is
a group H € KC such that G < H and g is conjugate to fin H.

Proof. Leta: (fy — (g) be the isomorphism mapping f'to g. By hypothesis
ofpIlnnG. As in Lemma 2.16 consider the HNN-extension
H=(G,t:t"'ft =g). We must show that H € K. Clearly |H| < 4 and
consider any 4’ with 4 =2 4’ < G and any x € H with [4’,x] = 1. As above
we may assume that A’ C G and x € H with [4’,x] = 1. Now we apply
Lemma 2.10. ]

Recall Definition 1.2 of an A-socle G[4].

Lemma 2.20. [fge€ G € K, then there is a group H € K, such that G C H,
with |H| = G - R and g € H[A].

Proof. Suppose that o(g) = co and that g¢ G[A]. Let 4, and A4, be two
isomorphic copies of 4. Choose a non trivial element 1 € A and let 4, and &,
be its copies in A; and A, respectively. Now define

H=(Gx A x A;)/N

where N is the normal subgroup generated by g~'/11h;. Then H € K by
Lemma 2.17 and moreover g € H[A].

If o(g) =n < oo we first embed G C (G * K)/N where K is defined
by the representation (xi,x;: (x;x3)" =1) and N is the normal closure
of g7'x;x;. Then by the Lemma 2.17 (Gx*K)/N € K. Now, since
o(x1) = o(x2) = 0o, we can apply the first case. O

3. CONSTRUCTION OF RIGID GROUPS
We want to use the following natural definition where we slightly

abuse the notion of a free product as customary for external and internal
direct products.
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824 GOBEL AND SHELAH

Definition 3.1. [If G is a group and U C G, g € G then g is free over U if
(g, U) = Ux(g).

In this section we want to construct from a given suitable group 4 as
in Definition 1.1 certain rigid groups G containing 4. For the rest of the
paper we make the following assumptions on the cardinals x, u and A:

(1) «x is an infinite regular cardinal (cf k = K).
(2) w=p* and A= ut is the successor cardinal of p.

Moreover note that k = Xy will be good enough in the following.
We want to apply (in Construction 3.4) the following theorem on
torsion-free abelian groups.

Theorem 3.2. For each subset X C k of the set (the cardinal) x there is an
N, -free abelian group Gy of cardinal k such that the following holds.

7. ifXCY
Hom(Gy, Gy) = {0 . ifXCy
Remark 3.3. A proof of the theorem can be found in Corner, Gobel [5, p.
465]. An abelian group is N -free if all its countable subgroups are free abelian.
The next section is a short description for the construction of the
group H of Main Theorem 1.3. Let 4 = u™ be the cardinal above and assign
four disjoint stationary subsets S; C A (i = 0, 1,2, 3) such that each ordinal «
is a limit ordinal of cofinality cf(a) = w if @ € Sp U S} U S and cf(a) = « if
% € S3. Moreover, identify the group A as a set with a fixed interval [, o)) of
ordinals in 4. We also will need three lists of maps, elements and pairs of
elements each with A repetitions respectively. Let

Ly={x,€1:0€ S8}
and let
Liy={h,:4— A, C A o €S}

where &, runs through all bijective maps from A4 to subsets of A with A4
repetitions for each map. Finally choose an enumeration of pairs

LQZ{(ya,Zx)E/IX/l:OCGSQ}

also with A repetitions for each pair. From |Sy| = |Si| = |S2| = 4 follows
that Ly, L; and L, exist. Now we are ready to define H. The definition is by
transfinite induction. The inductive steps are also called approximations, see
Shelah [23] or Gébel, Rodriguez, Shelah [12].
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The set of approximations in the Construction 3.4 is just the collection
%8 of initial sequences p = {H, : « < f,} for any f, < A of the final group
H =U,.; H,. More generally, the members of p could depend on p, i.e.
b ={H) o< f,}. Then 5 becomes naturally a poset by component-wise
inclusion, and any unbounded sequence in ¥ gives rise to a group H. This
obvious generalization may be useful for other constructions, in this case it
can also be applied for finding a family of 2* non-isomorphic groups like H.
Again, for transparency we will restrict to only one group H and the
ordering on %8 is just extending the initial sequence p by some members H,
satisfying the

Construction 3.4. We define an ascending chain of subgroups H, (o < 1)
with universe a subset of w(a+1) of cardinality p whose union is
H = U,.; H,. The chain is constructed by transfinite induction subject to the
following conditions.

(i) (x=0) Let Hy = Hp = %507 % A for all B < u be the free pro-
duct of w infinite cyclic groups o7, and A. Hence A C A C Hy are
prescribed subgroups of any H,.

(i) ]f'OCE/AL\(S(]USl US;US3), then let H,.1 = H, * o7.

(i) If « € Sy and x, € H,[A], then let H, .y = H, x o’Z.. Otherwise
apply free products with amalgamation H,., = H, * A+ A/N as
in Lemma 2.20 to get that x, € H,[A].

(iv) IfoaeS)and hy: A— A, C H, is a partial inner automorphism
mapping A to some subgroup A, of H, or h, is not an isomorphism
between A and A,, then we also put H, | = H 4 * 07.. Otherwise
choose an HNN-extension H,. = (H,,t,) such that t;A = h, is
inner on the extended groups, see [19].

(v) Ifa€ Syandy,, z, from Ly are two elements of infinite order in H,
such that y, is not a conjugate of z,, then choose an HNN-
extension H,i| = (H,,t,) such that y,=zl. Otherwise let
Hoz+l = H(x x o7/,

(vi) Ifa € S, then we apply the Black Box 5.1 (i),(ii),(iii) in order to
define a family 5, = {F,; : j € k} of free subgroups of rank « of
H,: There are branches

n ik — o (j€K)

given by the traps and models (H‘]?‘,(pj,lﬁj) which are triples of
subgroups H} C H,, a unary function y : Hf — o and a partial
two place function

@ : H x H; — o such that Imn; C H;.
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826 GOBEL AND SHELAH

We will say that o is useful (for ¢ and ) if we can choose for any
Jj € Kk a strictly increasing, continuous sequence Cf T K — o such
that the following holds.

(1) Yy (e) <n({f(e+1)) and

(2) @ln7 (5 (2e)),n7 (G (2e + 1)) < nf(F (26 + 2)).

In this case ¢ is a total map and we define x7(e) by

@(n} (G (26)),m} (G (26 + 1)) = X} ().

Let Fyy = (x}(e) 1 e <x) and §, = {8 9 ] € K}
If this is not possible, we say that o is useless and pick %, ‘trivially’
from branches as in the first case but regardless of what ¢ and
do. In Lemma 3.6 we will show that &, meets all requirements, in
particular that each F,; is free of rank k. Now we define H,. in
two steps:

Take a rigid family U; (j € k) of torsion-free abelian groups of
cardinal k from Theorem 3.2 such that

HOH’](U,‘, U/) = 5117’
and let

Kyj = Uj x Fyj and Myj = H, *p, K.
In the second step choose

Hyy =5, {My: j€x}

be the free product with amalgamated subgroup H,. Hence H, C
H, . by the normal form theorem, see [19, p. 187, Theorem 2.6].
(vi) Finally let H= U,c,H,.

It remains to show that H meets the requirements of the Main Theorem
1.3. The proof of condition (vi), which is based on the Black Box 5.1, will be
postponed to the next section, however all prerequisites will be established now
using the following

Remarks and Notations 3.5. If o € S5 and j € k from the construction 3.4
(vi), then let o;(e) =n#((7(e)), hence x7(e) € Hyor1) \ Hyye) is free over
H,(¢) and the elements x¥(¢) (¢ < k) freely generate Fy € §§,. Moreover
sup,%(¢) = and H, = U, H, ;) for each jewx. If i#j<xk, then

{oj(e) e <k} N{o(e) : e < k}| < k.

Copyright © Marcel Dekker, Inc. All rights reserved.

MaRcEL DEKKER, INC. m
270 Madison Avenue, New York, New York 10016 o



Sh:739

Downloaded by [RMIT University Library] at 12:51 28 December 2017

ORDER | _=*_[Il REPRINTS

CONSTRUCTING SIMPLE GROUPS 827

First we show the

Lemma 3.6. Let H = U,c;H, be as in the Construction 3.4.

(a) The groups F,; (j € x) defined in (vi) for o € S3 are freely generated
by the sets {x}(e) 1 & < K}

(b) Each F,; is k-malnormal in H, and %, is k-disjoint.

(c) If y,z € Hand z # 1, then y is a product of at most four conjugates
of z.

(d) Any monomorphism A — H is induced by an inner automorphism of
H.

(e) H= H[A].

(f) If S, denotes the infinite symmetric group acting on countably many
elements, then Hom(H, S,,) = 0.

Proof. (a) Comparing with Remark and Notations 3.5 we see that each
xj‘((v) € Hyorn) \ Hye) . is free over H, ), henf:e Hy ) * (x]”(e?)> C
H,c+1) € H,. An easy induction shows that F,; C H, is freely generated by
the set {x%(e) : ¢ < x}.

(b) If g € H,, \ Fy; for some j < «, then g € H, ) for some minimal &,
<k from H, = U« H, (). If 6. < & < K, then clearly by freeness — as shown
next —

(XF) s v<e) N{xXF(v) s v <) = (xF(v) 1 v<ae)NT(v) v <)

which is a set of cardinality less then x as |¢,| < k, and the first part of (b)
follows.

The proof of the displayed equation is by induction on ¢ < k. If ¢ = ¢,
or ¢ is a limit ordinal the assertion obviously holds. So suppose ¢, < ¢ < Kk is
not a limit and let U = (H,.,), x}(v) : v <¢). Hence

g < <H“/_(ﬁ*)7x]°f(\)) Dee <y < 8> =Ux <X7(8)> CH,.

If w is an element of the left hand side of the displayed equality,
then there are also two words wj(x),ws(x) free over U such that
w=wi(x7(e)) = g 'wy ' (x7(¢))g. Hence g = wa(x7(¢))gw1(x}(¢)) has length
1in U=x (xj‘(s)) Write wy = a1x"ay - - - x"'a, and wy = fix’'f5 -+ - X1, in
normal form, hence

g=wgw = a;x"ay - X" (a,gfi)x" - X"
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828 GOBEL AND SHELAH

has length 1 which is only possible if 71 = 51 = 0, so w = wi(x}(¢)) € U and
the claim follows by the induction hypothesis.

Next we consider g€ H, and i#j<k. We must show that
| Fyi ﬂFfj\ <k IfweFy, ﬂF(f}, we can choose y < a such that g € H, and
Imnf NImn? Cy. Then {x}(e) : ¢ <x}NH,={x}(c): ¢ <e}and {x}(e)
pe<wkjNH,={x¥e): ¢<e} for some &,e <x. As before we have
FuNFiNH,=F,;,NF{NH, for all v with y<v<a Hence
Fyi N Fy;N Hy = Fy 0 F,; N Hy, which has cardinality < «, and (b) is shown.

(¢) If y and z have infinite order in H, then (y,z) = (yy, z,) for some o
€ Syanditisy =z in H,y, so (c¢) follows in this case. If y has finite order,
then we can write y = y'y” with both J/, y” of infinite order and it remains to
show that y’ is product of at most two conjugates of z. If z has infinite order,
this is clear from above. If z has finite order, then we can find suitable
elements x; € H such that w = z¥12*2 has infinite order. By the first case y/ =
w! for some ¢ € H, hence )/ = z"z*?' is product of two conjugates and y is
product of four.

(d) This is taken care of by the construction at stage (iv) for Ss.

(e) If g € H, there is o € Sy such that g = g,, hence g € H,[A4] by
construction and H[A] = H follows.

(f) If S,, is the infinite symmetric group acting on countably many
elements, then |S,| = 2% < M = u < u* = 4. Hence |S,,| < 4 and (f) fol-
lows because H is simple by (c). U

Corollary 3.7. H is simple and there is an element in H such that each other
element is a product of at most four of its conjugates.

Lemma 3.8. Let H be as in the Construction 3.4.

(a) IfoeSsand a<p <4, jek, then F,; is k-malnormal in Hg
and 3, is k-disjoint in Hyp.
(b) If A’ C H is an isomorphic copy of A4, then cyA’ = 1.
Proof. (a) follows from Lemma 3.6(b). (b) is based an the definition of K

and also follows by induction on f for all A" C Hy (ff < A), using Lemma
2.15, Lemma 2.17, Lemma 2.18 and Lemma 2.20. O

We now have an implication which follows from Corollary 2.4, a

Lemma 3.9. [If 6 € 1 and H; from the Construction 3.4, a < f <0 and y €
Hpy \ H, with a large centralizer k < |cy, ()|, then o € S3 and there are j < k,
g € H, and x € K,j such that y = x5.

Proof. Let f be minimal such that y € Hg \ H,. The proof is now induc-
tion on f. Clearly o < f# and f is not a limit ordinal, hence f =7y + 1 for
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CONSTRUCTING SIMPLE GROUPS 829

some o < y. We write D), = ¢y (y) and similarly C, = cg,(y). From o <7y
follows C, C D,. For the first part of the lemma is enough to show that |D,
| <k ify#oorif y=o¢Ss Recall that y € H,,; \ H,. We must distin-
guish cases depending on the position of y.

Ify € Sy, then H,y = (H,, ) is an HNN-extension. Let y = got*' g; - - -
gn—11g, be given in normal form with g; € H, such that there is no subword
'git with g; € A or tg;t™! € A’ C H,,, see the Construction 3.4 and [19, p.
181]. Note that 1 <n from y ¢ H,. Any 1 # x € D, is in H, and commutes
with y, hence

g e (g g g gua !

en

By the normal form theorem of HNN-extensions ([19, p. 182]) either
e =1and gy'xgy € 4 or &y = —1 and g;'xgo € A’. By symmetry we may
assume that ¢; = 1, hence galxgo € A for all x € D,. We have D% C 4 and
|Dy| < |A] < x as desired.

If y € S», then H,, = (H,, ) is another HNN-extension and the result
follows as in the last case.

Ifyea\(SonSiNS,NS3) then H,y = H, * (f) which is similar to
the first cases but much easier.

If y €Sy then H,;; arrives from two extensions as before which
settles this case. We finally deal with y € S5 and the free product of the
M,;’s, which is

H, = *H-,{M%/' nJ< K}'

Now apply Corollary 2.7 to find y = x# as in the lemma. O

4. PROOF OF THE MAIN THEOREM

The crucial part of this paper is the following
Main Lemma 4.1.  Any endomorphism of the group H from Construction 3.4
is an inner automorphism of H.

Proof. 1If mis an endomorphism of H, then 7 is a monomorphism because
H is simple. We will write H = U,¢,H, as in the construction.

Constructing modules with prescribed endomorphism rings, the most
important condition is finding elements x of the module (say H) such that
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830 GOBEL AND SHELAH

xn¢ (H,, x),, see the ‘strong case’ in [5, p.455]. Here we will also say that an
element 1 # x € H is strong (for ) at « € 4 if x is free over H,, hence

(H,, x)y = H, * (x) (4.12)
and
xné (Hy, x). (4.13)

In this case we also say that a is strong for n. If x is free over H, (i.e. (4.12) is
true), but (4.13) does not hold, we call x weak (for n) at o, and if all free
elements x over H, are weak at «, we call « a weak ordinal for 7.

We will distinguish two cases:

(A) Al ordinals are strong.
(B) There is a weak ordinal o, < /.

The case (B) is the complementary case of (A). We first consider case (A):

For each ordinal o there is a strong element x,, € H for = at o.

By a back and forth argument we can choose a closed and unbounded
set C C A and an enumeration C = {f,:a < A} such that the following
holds for all o < 4:

() a<p,

(2) HpnC Hg, andn’l(domnﬁpr) C Hg,

(3) xuw € H/;Q_H \Hﬁy fOl‘ all o < A.

4) AP, :a < A} is strictly increasing and continuous.

Note that (2) is a purity condition for 7, saying that Hr N Hy C Hy m.
Condition (3) follows by a new enumeration of the x,,’s and the Hy ’s. Let
U, be the set of all ordinals y > f, + 1 such that all elements in H,;; are
weak for © over . First we claim

if o is strong, then the set U, is bounded in A; (hence|U,| < u). (4.14)

If U, is unbounded and x.,, € Hg 1 \ Hp, is strong for o, then choose
any y € U, and y, € H,, free over H,. This is possible, because by con-
struction often (on a stationary set) we choose H,.| = H, * (y,). The ‘weak
element’ p, tells us

PLRS <H1a)/'y> = H, % (yy>.
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On the other hand the strong element x,, makes
X & (Hy, Xyy) and x,, € Hg o C H,.
Hence x.,y, € H, is also free over H,, and y , being in U,, requires
(Xsoy)T € (Hy, XasVy)-
Hence there is a word w,(y) over H, with free varible y such that
;1 = wy(y,). As we assume that U, is unbounded in 4 and 1= u*, also
|U.| = 2 > |H,|u. By a pigeon hole argument we find an equipotent subset
U C U, such that for y € U the word w,(y) = w(y) does not depend on 7.
We have y,m =w(y,) for all y € U and |U| = A. Pick any y; <y, in U
and consider y =y, -y,,. Clearly y is also free over H, and y;€ U

implies yn € (H,,y), hence yn = w'(y) for another word w' over H,. We can
summarize

W)=y =y, - yp)T =Yy =w(yy,) - w(yy,).

Also note that we have ‘freeness’

H, * <y“/1> * <y"r'2> c H72+1

and normal forms
W(J"y;) € H, * <J’7,> (i=1,2),

and Lemma 2.9 applies. There is g € H, such that

v =w(yy,) =5 (i=1,2),and similarly(x.,p,)m = (x.00,,)%.

Vi

Using y =y, we derive

_ 1 . —1
X TT = (x*ocy*,'yy 1)7'5 = (x*ayy)n(yyn) = (x*zyv)é (yﬁ) = X‘E%,

hence x,,m = X8, € (X.,, H,) contradicts that x,, is strong for «. The claim
(4.14) is shown.

By case (A) we may apply the last claim (4.14) to all « < 4 and see that
all U,’s are bounded. Hence there is a new increasing, continuous sequence
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E = {ve: £ < A} C C of ordinals such that in addition U,, C v¢ + 1, hence
U,. € H,.11. Hence (1), (2), (3), (4) hold for v¢ in place of B, there. In
particular & < ve and x,: € H,.41 \ H,, is a strong element at ve.

We now want to adjust the Black Box 5.1 for application in this case
(A). Let us define two maps ¢, (a partial map) and ¥, on H which makes
(H, Y., ¢,) into an L-model as mentioned in the Black Box 5.1.

Let (&) = ve (€ < 4) and define ¢, (&, y) if and only if ve <7y < Aand
let ¢,(&,7) = x.¢ be from above. Hence ¥, is a total function and ¢, is
partial such that ¢_(,y) exists if and only if (&) <7y. The group H
together with ., ¢, is an L-model M with universe 4. We want to consider
L-submodels M = (H',{/', ¢') of M = (H, ., ¢,), hence M is a subgroup H'
of H,y/ a total function and ¢'(a, ) is defined if and only if /' («) < B. As E
is a cub and Sj is a stationary set, we also find stationary many o € S3 N E,
hence H, is closed under = and n~!. The restriction ¥ o (denoted by
again) is a total function, and H, with these restrictions of _, ¢, is an L-
model M’ with universe a subset of A.

By (iv) of the Black Box there is some i < k for such o such that
(HY, ¢, ¥,) C (Hy, @, ¥,). Hence H? is a subgroup of H with Imn? C H?,
W, H? a unary total function on H?, ¢, H? a two place function on H? which
is defined again for (&, y) if and only if (&) = ve <y < o and such that ¢,
(&,y) = xue € Hy.41 \ Hy, is strong for 7 at ve.

The Black Box 5.1 predicts some j < k and a strictly increasing
sequence {7 (¢) (¢ < x) with sup, (f(e) = o, {F(e) +2 < {f(e+ 1) forall e <
x and

oj(e) € [ve,sve,,,) with @ (n7(( (2e)),n7 ({ (26 + 1)) = x7(e) = X
(4.15)

for all ¢ < as defined in the Construction 3.4. If F; = F,;, which is
freely generated by the x¥(e) (¢ < k), also given by the Construction 3.4,
then Fin C H, follows from F; C H, and o € C. Recall that H,, | =
s, {Myj<wx}. If 1#re U, then r¢ H, and rn¢ H, by the closure
property (2). However

M%I:H% *F I</:H% *F (F] X U,) Q Hoc+1 and U/QH“ =1

hence ¢y, (r) C Fy. Clearly r € U; implies F; C ¢y, (r), we get the important
centralizer condition

(‘Hx(}") = Fl.
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Next we calculate the centralizer of the image rn, using H,n C H,:

Fin = (¢, (r))n = ¢y (rn) C g, (rm). (4.16)
By Corollary 3.9 there are F,; = F, € §,,¢ € Hs and f € K; such that

re = f%. (4.17)
From f € K; follows rn = f® € H,,. We derive the invariance

H, yn C H,y. (4.18)

Using (4.16), (4.17) and g € H,, f € K; we get

Flnchl(rn):cHy(fg):CHy(f)g:Fg. (419)

Note that by definition g = g, depends on r and similarly F> = F,,. We
want to show that different r’s give the same g and F»:

If rn#r, and g,,g, are as apove, then by (4.19) we have
Fin C Fy!' N Fy?, hence k = |Fy, N Fzgr"jg"‘ and by the choice of 7§, (which is
k-disjoint by Lemma 3.6) it follows that F5,, = F»,, and g,, = g,,. We obtain
that for all € Uy, also rn € Uf,, hence U, C Ug, = U,. The family {U;
:i <k} of abelian groups is rigid, and this forces F; = F, and nUp, is
conjugation by g. The claim (4.19) becomes Fin C F{, and g € H, = Uy
H, ;) is an element of some H, . If p € (¢,«), then x.,(p) by (4.15) is a
canonical free generator of Fy and x., (p) € Hy ()41 \ Hyyp)- Hence x.,(p) €
H )11 C Hypy1) and also

Xy € Foyppy N X0y 1T <K C Xy T < p+1)¥
from Fin C Fy and Lemma 3.6. From g € H, (¢) and X)) € H., (p) for all
© < p follows X, () € (Xy(p); Hy(p))- However x, ) is free over H, ,) and
strong for p by definition of v,, which is a contradiction. Hence case (A)
does not come up.

Case (B) can be derived quite easily: There is an ordinal a, < 4 such
that any free element x € H over H,, is weak for o, hence xn € (H,,, x). So
there is a word

wy(y) over H, with variable y such that xm = wy(x).
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Pick any two free elements b, b, over H, such that b, is also free over
(Hys,b1). There are many b’s! And choose 7 <A such that
H, U{by,b>} C H,, also let z € H be free over H,. Hence bz, b,z and z are
free over H, and we have

(Hyy, by, z) = Hy, % (by) * (z2).

For the words wy,.(y), w-(y) we get (b;z)m = wy,.(b;z) and zn = w.(z) and it
follows

Whz(biz) = (biz)m = (bim)(zm) = wy, (b)) w.(2)

and Lemma 2.9(a) applies. We can write b;nw = ¢;b;d;, zt = e.zd. with
ei,die.,d. € H, and die. =1 fori=1,2. Hence d| = d>» = d and e. = d~.
We have b;n = e;b;d and zn = d~'zd.. The same argument for (h1brz)n =
(bym)(byz)m gives d =d.. Similarly for b;'hy'z7! also e; =d!, hence
bin = b¢, zr = z¢. We conclude that n = d" for all elements » € H which are
free over H,, . Obviously H is generated by such b’s, hence n = d* on H is
inner, which finishes the proof of the Main Lemma.

Proof. (of the Main Theorem 1.3) From Main Lemma 4.1 follows that we
only must check conditions 1., 2., 3. of the Main Theorem 1.3. This follows
however from Lemma 3.6.

5. APPENDIX: A MODEL THEORETIC VERSION
OF THE BLACK BOX

Let L be the language (of groups in our case) with a finite vocabulary
of cardinality at most x and with a unary function {( ) and a partial two
place function ¢( , ). From Shelah [23, Chapter IV] we adopt the following
prediction principle - a model theoretic version of the ‘old” and often used
Black Box form [24] which was also used and proved in the appendix of [5],
see also [11,7,10] for other applications.

In order to match the setting to earlier ones, we will use terms from
trees. Condition (i) below can be viewed as a tree embedding from x* into a
tree in A of branches below ¢ and condition (if) just says that distinct
branches of length x have only a small branch of length < x in common.
Condition (iii) is the earlier requirement that the image of a tree ¥ can be
found in any submodel of the ‘trap’ (see [5] for instance) here called (17?, M?
: 1< ) and (iv) is the prediction of a submodel of M, earlier ([5]) this was a
module or a group together with an unwanted homomorphism ¢, so a pair
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(H, ). In our application it will be a group together with a unary map v
and a partial two place map ¢ on H.

Another preliminary remark seems in order:

We will predict ordinals from a stationary subset of 1 (and sub-
models), hence the following is actually a ‘stationary’ Black Box as used in
[10] for instance. The reader can either find a proof of the group theoretic
version of the Black Box by slight modification from these references, or
adopt the model theoretic version, which then has the advantage that it is
applicable in many different algebraic situation (including the old ones)
without any further changes. Again the proof of the model theoretic version
of the Black Box is a natural and easy modification of the existing proofs; a
final reference will be [23].

Black Box 5.1 (in model theoretic terms). Let L be a language just mentioned
and suppose = p* < A= u" as before and let S be a stationary subset of

{0 <A: cfo=x}.
Then there is a sequence (of traps)
(7, M)z i<x),6€S)

such that the following holds.

(i) nl:ix— 5 (e—nl(e)) (i<k) is an increasing, continuous se-
quence with supremum o (a branch):
(ii) Any two distinct branches are almost disjoint:

If i <j <k, then |Im n?ﬂlmnﬂ < K.

(iii) M? is an L-model with a universe of cardinality i« which is a subset
of 6 and Tmn? C M?.

(iv) If M is such an L-model with universe 1., then there are stationary
many 0 € S with some i < k such that M? C M.
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