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giving examples of compact logic. For example, aliowing qus
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We prove that there are models with few antomorphisms, and
Chang's two-cardinal theorem.

ve shtorpative p

Infroduction

This iz (the first) part of a series of papers, in which we try 10 butld model
various second order properties,

Examples of such properties are:

{a) Let T be a (first order) theory, and we want a model M, such
every Boolean algebra definable in A1) all its automorphism are

{b} We extead first order logic by allowing quaniification over aut
Boolean algebras, and want to show: this logic is dompact (see [3, p.
definition of second order quaniiﬁcatienj ‘and this amounts o {a} assuming

fN]

satisfies varirus schemes, e.g. T has a model expanding (H{(x ™), «).

LR

{¢) We have a model M of T in which a ad{dﬁm‘n}«,} Boolean alg
and we want to build other such models.

We waat more concretely to build those models in-specific gdrfﬁman, and
replace “automorphisms of Boclean algebras” by automorphisms of other strice
tures (e.g. ordered fields) branches of trees etc; )

Note that (a) is stronger thaa (b) which is stronger thau {¢); and in (b},
expand the language, so w.Lo.g. the theory has Skolem functions, anc
bmid in set thcorv But i (d} this r: fc}rbxdden N{)&z Yh‘it 1f WE £ Wai

bra 18

orlgm&! proof of hlS two cardmai theorem i3 nm "z;:»pmnnarey as ?
language (so fo encode finite sets); see Section 2. Note dlso that {(b)

automorphisms of Boolean algebras, gives 1is 2 logic stronger than first ¢
on finite models (we can say a B’oo}san algebra is atomic, and has an aut
ism of order. two, which moves every atom. This distinguishes among
Boolean algebras between those with-even nmnhc,r of atoms. As w

*The rese u-ch was supported by & (mi.;t No 1110 {ro:m dn {Jmfm ‘Smkwhmd Bin
Foundation zBSP) Jems'uun, Israel, . :
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this logic is compact {assuming GCH) this garmﬁv solves a problem of Freedman'
(see [3], p. 343, and 1). o ;

Let us return to this paper. ‘ - '

This is a continuation of Rubin and Shelah [2]. Tin,re we prove faxsimuna O,
or even CH) that for a Boolean algebra B, the {two-sorted} model (B, Aui B)
(with the Boolean operations, and the operations of applying an automorphism
where Aut B is the group of automorphism of B) is elementarily équiv‘a‘lem to
{B', Aut B} for some B’ of cardinality N,. We can add more relations and make
other strengthening. Qur first aim was to generalize this 1o uncountable car-
dinalities, This is done in Section 1, for an appropriate A our results are stronger;
because we prove a theory T has a mode! in A™ in which every automorphism of
{PMY U Q{M), RM) is inner (i.e. definable is the model) and we do not expand
the language {o have, essentially, some replacement axioms. Here the require-
ments on A are severg; but this paper was written in order to exemplify the
technique developed for solving the problem, and better results will appear in [S1

In Section 2 we use our technique to prove (a slightly stronger version of)
Chang two cardinal theorem without expanding the language.

The result was announced in [4]. ‘

Remarks. (1) In Section 1 we can easily omit hypothesis (E) by amalgamating

the cor;difiam as done in Section 2. o ~
(2) We car. replace “A measurable” by “A strongly inaccessible”. The only
change is in 1.9.2C(2). Weredefine tha eqmvalmce ydamen S a‘; a b h :;‘ a- -i; or

there { il H

appear (where (k) i

cardinality x).

1. A model with only definable sutomorphisms

1.1 Assomption.
{(Ay h=2"
B) (8%

5e &%) such thm

implies 2% = A",
{C) T will be a complete, (first ordér) i,x:*orv 'Tiﬁ.l P Ocme ulace pmdmate R

a two-place predicate (the interpret

the n'aember:hip relation). We suppose ,i :

disjoint, x Ry ~» P(x)A Q(y} and R sduxhes L“Lu
strong tndapendence propertv

(Voxy, o0 X, € P)Vys..., v, €P) [/\’xi%é Yi—*

* (hence A is regular).
here §%=I{8<A™: of 8=2A)), and let 5 :8— § be functions. (for
svery wiAT—» AT {§e 8% "I“th?‘;x} is stationary; this

»mmgea saymg, P, Q are
camality - axiom; and: the

Y,

{Ez&“@(l\ xRz A ;’\ “ ¥Rz }

i} TEo : £

L,...“..“..J
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: 1;.’7. S,iage._Wa dofine by mductmn oni= At modeh M s‘sch th.tt‘far B<ib

the wrrexpmuimﬂ pmpuiv v::ii :\ variz
(I A measurable, is particular A :o-
for every <A, A - (@) . ,
(E) There is a family {S.: o< ATY of stationary, almos
for a# B, 1S, NSal<A). ' ‘

émﬂgif; i

1.2. Condlusion. I has a A-saturate
tomorphis; f{(PUQG R, ( ”3} is d efinable fn M G

1.3, Remark. Conditions (I} and (B) ar
tion.

We Iook at ae QUMD (M a model of T} as a subset of P
1.4, Sketeh of the Constroction, We shall build an elementary chain of “;31‘;‘*‘-
M, (@ <<A™) M., is A-saturated, M, l=2A and U M, &5 the f;‘*"“ "xf«.ﬁ mf;t ' f
the notational simpiicity' M, has universe A{1+«). The chain s
and for & e 8% fLe. of &= A) we shali “kill” the antomorphism m,, except when it
is definable. To kill means that we prevent | .M, {rom having an antomorph
ar such that oI M, = m,. The murder is done in the construction of M,
adding an element a® ¢ QL 1) such that the seis w{ay, ), and i1s complemented
in P(M,) cannot be separated in M, 4, by a formula; and we shall demand that in
every Mg, B>« those seta cannot be separated.

The mair difficulty will be preserving the non-separability in ]nmf stages am
overcoming this difficulty we shall strengthen our demands.

1.5. Definition. Let A, B be disicint subsets of a model 8, A a cardinal, I?
filter over A. The sets are D-strongy unseparated if there are sequences {g,,,: ¢
@) for e A such that: '
(a) a,p€ A, Ay € B for each «; ‘
(b} for every (finite sequence) ceM, thm sét fos {dy e n< o) s an indisce
sequence over 7} belongs to D.
We say that {{a,,, :n < @) <A) memphfv this, and such a hc,qusﬂz,; sa!
{h wﬁi be called D-nice.

1.6. Definition. Dy is the filter generated by the closed unbounded sul
In 1.5 D =Dy we cmitit. If S is \mtxomry D{S z& the ;mw genery :
the mcmbcrs of D (md S R

Now we prove the: ﬂlemmm. The pmof is dmdud mt{) stages.

M; (so we build an-elementary Lh m} M, Em& {he umwwc }Lgi 41 ) ;‘*9 nace



Sh:72

8. Shelah

2
b

the chain is continuous) and for i successor, 3, is A-saturated. (This implies for
i 8§ this holds too, but if 1<Cct i <A, not necessarily). During the induction we
define for some of the B’s sets A%, Bf "M}, and sequences af ={af, 1n <w}for

&

£ <A, and demand that for each f=i, {af:{<<A) exemplify A% B® are D(8,)-
strongly unseparated in M. So for B<i we hawe to assure only {af! <A is.
D Sﬁ}quce
We let M, be any saturated model of T of L&Ydlﬂ&ht‘{' , whose universe is .
For i=§ a limit ordinal we let My = [_;<sM,. Tt is easy to see all thc induction
hypethesis from 1.7 still holds.

1.8, Stage. Suppose i=j+1, of j» A\, M, is defined and we have to define M.
M should be an elementary extension of M, be A ~x~a‘curated, and have universe
A{1+1), so the cardinality of |M,|—{M;] should be A.
In this stage we do not add new sequences {@;: £ <A} buf we have to fulfill our
old obligations: {af: <A} should beD{(S. \wmge in M; whenever defined. o <J.

1.8.1. Notation. Let M| ={b,: §<< A}, Now we have at most A &’s smaller than j
forwhich {af: {<<A)is dem}:ﬁd, so we list them without repetitions: a{p)p<<p{ii=
Ao We let Shen ™ Suir— WU senSuie; 50 the sets 8l {p < p(0)) are pairwise di%jeint
and Shey = Sam mod Dy (n fact S50 S Sais [Saie = Shanl <A so §hme
D{ ga(p}f o

Now we define by induction on y<CA, types p,=p, (Xp...., Xg, .- Jgwy i M
(i.e. set of formulas with parameters from M, finitely satisfied in 4, with the free
variables {y,: 8<Cv}. We define them such that:

{&) pw,i\,& p Ly <CA) is increasing and continuous;

{b) even p,U{xe by B<y, £<A} 8 & type it M; (at the end U,p, is
essentially, the diagram of M), ‘

For constructing them we let {gz: B<<A} be a list of all types in M, of
cardinality <A, and free variables amornig {y}U{xz: 8 <A} only, each type appear-

¥

ing A fimes. By a possible renaming we can assume dg = qa(¥, Xoy - -2 X ..

Bey + » Je<p (. the free variables of gs are among {y}U{x:£< 8}, and the
appearing in it arc, among {h: £ B},
Al this is possible as A= A" (assumption A). (T his will be used to assure M, is
A-saturated.) (Notz that many times g will have much fewer variables and
parameters.) ‘ ‘ ‘

We define pv by induction on v:

first case y=0: Po=§;

secornd case vy limit: let py={ s, py

1.8.2. Substage third tase v = 3 42,

fHere we take care of the saturatmtv of M ) So pﬁﬂ is dlrmm' M;md we
separate three cases,
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raperites 1 &3

PO 0N

(@) IF puos Ulng# by (<B-+1
 finitely Qahbﬁﬁbc‘ in M@}, mm Ni;“:‘h“é
!}«zp ;\5(3;3{19“‘}“1 ..kgz,’gf‘,.,;“'

(b If not m} but

b}

p pg I\Ji‘h@t f}.‘., g, ‘<§3"’L iy 6 f ::;*}é;‘gj (f;gﬂ

I

is incons st 11, },mm;. m somwe 1, p'

i .
Py = Pasr Mgl Xos oo Bg, oL

{c} Not {a) nor (b}, then let p, = py.,

1.8.3 Substage fourth case y=g-+1, § Hmii.

In this substage we take care of the niceness of i
we separate to two. cases:

Case (a‘i- for some o << A, the following helds

(i) pesSe

(i) py is a type over By ={b,:£< B} (ie. all parameter
from B}

(iii} aj is indiscernible over B,

in this case we let

P, = pa Uthe formulas saying af is an indiscernible
sequence aver Bg U{x, 1£< g}
{see below for the proof p; is appropriate).
Case {B): there is no sucﬁh «o.
Then let p, = ps

183A Claim. p, u{tﬁ“léba Bty £<CAY is cousistént.

Wea whmﬁd check anv finite  subset is consistent.. Suppose {7 B 3
incon»sgst&nt subset.
Let

i e N A e
"?Dm',n{xm eie s Xt Yor oo n‘yﬁmﬁ} "f"‘\ xi"'é yk‘

i

But for notational simplicity we write ¢ mﬂea& P e 5
closed under conjunc‘timxs S0 We Can assume this finite A“Ebﬁmf has the Tform

a o w B
{lﬁ’(x b)}U{ﬁ(‘lg,nn s)~ ap, n{?,,,, B N R TR &'
: L5 "i‘

‘01. ‘\aﬂ nLH 113 {:ﬁ;m(? x}! Ry {(n e 3) X0
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where n{l, N=n{2, O ?1(3‘ N o omil, D ;}1{‘ N3, D=, ., XK=
(o -« - Xpa(-1) i{f < B, b, b e Bﬁ and &€ M. Let the conjunction of the second

sets be 8(F, alq, ..., 25 b)) (50 B* LB~} As I'is inconsistent

_f‘e{fH‘v‘i}(fpi,’f:, BYAB(S, a%g, - or BT ).

Let
£ =Xk - - » Y1) E={Cgy 05 Qayt)
MENVE®,. .., &¢ ’}{ A (@ BA ehx ,au e BE)
Llﬁ:giﬁ)
Gt ke ]
> A et{E X ‘}j
ik
As @(: by ep,. there are d'e M{I=<[{2)), such that
Afi",f\ eld, BIn A o¥[d'; d"]
irk
{define by indoction on I). By R sey theorem there are natural numbers n{f) <<

sy n{2 < .- such that {Jé () AR e - - -1 18 an indiscerntble sequence for
@V oo Yoy 45 BY) for each 1< (Q} k= i{2} and is disjoined to {o: <2}
Hence

» 3 41 T, k\
MEATeld, DIAB, a% s @Bace - - -» BN /\ T(dt d%)
H
50
" ey r -
ME ""!{Vﬁ“ [N x“?}[ A {\n{/( !? ? M f?{\ . 125, a2t ay '; R E?‘L'\\}}
Fe {2y

M.‘;~~l’\ ‘P“!{“\ xk)}
ik e

But b, b¥ e B, and {a§ .. m <w) is indiscernible over By, Hence

r -
ME—(YE%, ..., xﬂ A (e(E BIA(E, ajoady, ... 1 BY)

[ 104]

= ;0“'1'(553;;‘6"‘31
#k S

contradicting a previous s

ent. So T, hence p, is consistent, and we finish
subcase 1.8.3A, ‘

1.83B. The model,

2 A} i consistent,
tonme m Xer> c;a ;

Now we define p, = U,y..ﬂpy,_;dearly P WHxa# b B ¢
hence M; has an elementary extension N, such that some
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satisfies p. By the choice of py.
submodel of N, Eecwse'fur :

be M o) xgus . -5 bras .
clearly NE{3v)e(y; oo - o0 i B
submodel of Nowith ui"f‘ﬂ‘:"&? M U
notational changes we can ‘isﬂuw{:
Let us chem\ r‘m more

im}e;z*m‘y
i clearly |

frmn it th%t it wﬁme& 10 prove 5‘ < s\'
{as IH&,) 18 a filter) it suffices to check

L f

LARE

of Xb, ti'w set of @’s satisfying them
Hmit™ this s trivial.) For @), as me =ntioned 5 ”‘%f ;";’;,@D
define for every v<<i

&
£
S

glvy=min {{ < A: for any b, appearing i

PR -
as p,|<)

hence by p,’s utznuzt\* as Do e D8 lvip, s g type over
left with (i »} s D{8,)nice in AL for IHEC

subset £

Now for eduh ,13 \,\9 e bF:JB ia closed unbounded hance
{B:(V{<BBeCh}is x:.}o:ed imbom}ded and on C’*‘“’" 187, (i) holds. So
the construction of M, i=j+1 (ie. 1.8

an indiscernible s sequence over H xﬁqa L
3

1.9, Staige, We m’)nstmctrz‘vli, Whmﬂ i ‘=:,‘+L cf = A, Duuns}; this stag
M, by Mz by o ‘

We now assume ar is an amemerphmm of {PMUQM P R} (othe
bc,havc as'in 1.8). So M is a saturated model of f:zm!wuh{t Aandap
mapping PM onto P*, O™ onto QY preserving R, but not de
a first order formula with parameters), We want to “}\32}%”‘
model N, M<N, N A-saturated, satisfying previous ohiir
quut’;‘ﬂbt‘;\x) aied such that for S0me & € Q"’ ‘

~lrb“be}"” bRa.h B, *“{'z”b bcP“’ e:u Ra}

,wn! assurfa,thdt 111.1%15: »nd we metﬂx,u, ,AL, Iy o,
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64
1.9.1. Claim. = is not definable in M by an L, ,-formula with parameters.

Proof. In a A-saturated model, for a formula oixg, .. e Ly the holding. of.
MEglag, ..} depersis only on the first order type of {ag, .. . Now suppose
o{x, ¥} = (X, ¥: G, @1, ... . )is aformula from L, , with parameters gy, 44, ... from M

defining =, then the "question whether MbEela bl depends - only on
tp({a, b), A)=the type {a, b) realise in M over A) where A is the sot of
parameters appearing in @, 0 A &M, [Al<A. ; ;
Now for each a e PUQ there should be a # such that MEela, b1 If for some
B b, wplla, by, A)=tp{{a, b'). A) we would get &' =s{a)=b contradiction. So
(b, A U{aD) is realized by a upique element. Also the parallel assertion we get
by interchanging @ and b holds. So for sonre ¢.(x. y: &)

(GaeA e.lx,y.2)ely MEWIEWVe.ny, &)
ME \V‘V MR Y}@’u{ﬁ:« ¥» {:‘:}

and

We want to show @,{x. v, &, cen be chosen independently of a.

t we show that if m{ezi,ﬁ} =1pla,. A}, then we could have chosen the
Wy such that @, = o,, &, =2, This is because for a fixed a,, for ﬂi Fe 3
io{a, AL by §1~ A-saturativiiy
CAY=pl{a,, By, A Hence {as @lx, v) define 7)) b= wia,), so ME
wa (s, b 8). So for every complete Wpe r over A (ie. a type of the form
tpla,, AY, F( v@(x)er there are ¢, ¢ such that for evéry a< M. realizing
P T O iﬁ =

I

o

pres

of M, there s & b wch tha

~

econdly we show that for every complete type g over A, P{x) & g there
#(x), such that for every aelM|—A, realizing ¢ we can choose
Suppose not, w.Lo.g. A is algebraically closed. (i.e. every type
over A realized in M by an element not m A, is realized by mﬁmtuh many such
elements) and A is ¢ ar and 7 \nctg, that every type over A realized
in M by only ﬁmtdy fe chlements not In A, has 4o finite sut’atw{; with this
propesty, so if A is the unh [ an clementary submodel of (M, w7} it is as
desired).
Now lai

{5

flx, &) = Aly)eulx, v, &A (Vﬂ[tpq(.x, ¥, €

Bz, v &1

It is easy to check 9(%}‘“9{& L(?)Q.q, 50 1t follows that if :& eq, Me
iVx){df\x)»»B(x)L then {as we assume no ¢ satisfies our wmhmmﬁ i for some-ay,
MEglag]n ¢ lay, ma,, €1 and there is a umque d, suc,h hat | ME
@gla, dy, €1 Let ¥ be'the set of Sm‘:?rq’i{, S -
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Clearly 8{x, v, &) dsfines a function on P{M), and call it «', ti?f}“ﬂv 7 LP{M) ~
A)=7(PM)~A). 1 lae P(M): wial# w'(a) W is finite, clearty as %' is definable
also | P(M) is definab ¢, 50 by the themmnahw of R # Is dehmh}e So suppose
there are fixsmlcf a, e P(M}n<w) such that w(a.)##%{a,) wlog for
n#Em T {a, ) # w{a,,) and so (remembering 7 | P(M) is one-to-one and onto
PM)) ¢ baﬂy ' {ah) # e :

We now {by the strong mdepgnda,me prop&rt}) choose a Q{M ) such that

MEag,Ra* i\”’i{ 7 (a. NRa* * for each n<w;
so Mea, Ra¥A—{w'a, M R{ma™)

{as 7 is an amammphiim of (PIMYU QM) RPY. Let
bRa™ ~{33k8(b V,L,J\ vR a* T Now if b€ A, ME(YV[B(h, v, Ey={y = 7b}]
as MEbRa*=(zD)Rwa™), cleatly bgB. So Bg A, but for n<w, a,6F {as
Mra,Ra™ and ME—{a a,.)R{,,a 1. So B < M is definable, of infinite cardinality
<TA, contradicting the A-saturativily of A

So 7 should be definable, “(mnadicnom s0 we prove 1.9, g 1§ pot definable
even by a formula in L, ,.

9.2. N's construction.

So we have a saturated model M of cardinality A and an vndefinable (in M)
automorphism # of (P(M)U Q(M), R). Let {@,(v;, b
A} be a Hst of all L, , -formulas with parameters *mm ’Xf We define b
on vy atype p, =N, ..., S SBove s B ey in M such hmﬁ

{a) lp,]<A, p, increasing and mmmuam, and w.lo.g. closed under (finite)
conjunctions and existential quantifications;

1) Qlxgep,;

{¢} for evory formula Ylxy) e p, and n< @ there is a finite &7 outside of which
Xg 18 n-independent, ie, ‘

&
. «\}z:(a\;:’}!' s

MEMYMYn . Y 20 e e s 20
/

{1 . iy, -
¥ a\rz«'*!--‘«'*'zn)/\‘@ {.\'Es"'a nw"‘:tj‘)

r«,xn Fesn

<y Zas 5}"}«-}(310)1'1{{060} AN )LR}L»A /Ax ﬁﬁ«kaG})

Note that (¢} is equivalent to o Co
(¢) there is C¥& M |CY <A, such that {or every disjoint G, C < P(\f)wc“” o
P Ao Ry A0 Rxg: ¢pe Co, o €} s ¢ stent At the end | j,p, will be the
complete diagram of N, A'={ma:aRx,ep}, B ={wra:aRxe Usnk
and we want that no formula of L, with parameters froy a. N will separate
between A" and B’ (later we shall define (ai: Z<:’ A l[t N|- (M will have
cardinality <A ‘we repeat 1.8.) ‘
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i'i’iit’fi d;‘i‘i‘m& nee, |

BRxoATBRRS, 50 ¢
more exactly, its mtcr@ss:h{m
define A"

£ By
RECess

TO2A, This is
Supposa p,
have ammww <]

o

rL}‘;n

sainrate

_ - ‘n
g : 4:{ {31+
. over M coniradicting 1*}*{

LO2B, {al: /< AYs definition. ,

Above we have constructed N, M <N, W saturated, N
Bo M not separated by any Ly A formula with parameters
cannot be extended to N, as il a” corresponds 10 Xg, and ¥ e
be a formula separating Ai and BY So we “kill” . But ff‘z this
hold we have to show:

1.9.2C. Chaim. (1) AY, B’ are D(5;)-strongly unseparated in M.
(2) For every set A< M, LA[<A there is an ind iscernil :
over A, such that ape Al , ffi;i“-B’- ﬂicf claim holds f

- cardinality A and two L; -inseparable sets.

Proof. (1) Let [N]={c.: &<},
got B sequence (., 1< w) mciw: mxbig over A, w@y,‘ :
 {2) Define a two-place relation 5 on P(M:
indiscernible sequence in N over A In Whmh ;f zz appes
- Now we choose inductively 4, amh that q e A’ i}B‘" and

If we ¢an define g, for (<A, as A->{oh " {u=
contains an mﬁmm snbsmiuv,m:e indin ccrmi*h, gver f«?;,

hvpothexxk { D)‘;




Sh:72

68 8. Shelah
S0 g is defined for {<{ G)<’ only, and m A¥= A U{a. (< {0} Now we
assume ae A’ beB but tpla, AT)= tp{b A*Y and set a cont md f:tmn.ﬁc *0§

every asA’, be B, tpla, A*}#tpx b, AT thus -V v{g‘\{gv{x}} @lix ‘:«.f

aEAl
separates A’, B'; this is a formula in L, contradicting our assumption. Thus we
finish 1.9.2C (2¥s proof.

As ayq is not defined, for some £<[(0) acSa holds, so in some mﬁmtw
indiscernible sequence of A%, a. and q appear, so mk a, az € AU BY .
A’ But as tpla, AR =tp(h, A®) alko mplla, &0, AY=ipld &'I;::‘:., Al hm{«,
{remember N is A-saturated) there is an infinite indiscernible sequence over A in
which, b, a; appear so again be A'®aq; e Al Thm ae A& be AY, contradic-
tion. So 1.9.2C is proved.

118, The ead

So we hav: defined inductively M {I<CA™) and let M= [}, -M,. Clearly this is
a A-saturated model of 7, of cardinality A™.

Now suppose 7 1§ an automorphism of (P(M)U Q(M),R
Let
Ca <A™ (M ] Moy < (M, w3,
S={i<A™: w|M=m and cfi=AL
Clearly C is a closed unbounded subset of AT, and § is a stationary set (by m’s
choi ce hypothesis (B)). Hence there is j& SNC I =7 | M, is definable in

M,, itis éeﬁnabm in M by the same formula {a zj C). I ; is not definable in M,

then we have “killed” 7}, i.e. ensured no extensioh of it will be an antomorphism
of (PMUQM), R).

g two-cardinal theorem revisited

In this section we shall give a new proof of the two-cardinal theorem of Chang;
whose novelty is that o not expand. the language. Our aim is to exemplify a
technique of proof used iater. Remember that the problem in the proof of Chang
themem is that if M{(i<(8) is an increasing dw’;cnmw chain of A-saturated
models, PIM))=P(M,) and p is a type in L. My Plx)e P ipl <X A, then not
necessarily p is realized in U< M. The solution of Chang was that if the theory
& rich enough (eg we can encode the finite subsets of P by elemenis of P) the
above mentioned assertion holds; and that the two- ~cardinal model we started
with can be expanded so that this condition holds. But w*nem ex we do not want
to expand the language. BN

Let T be a fixed wmplme first crdu themv in the id 1guage L
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“which p <X, a, e M, {a* ‘{%f}s.ﬂ +a)}, @t ={al, *w_e:: Lot (so'td

Fi= ”\’lf'zift): ‘

Foodn{Ze W oand

uaikh Z 3““ (
ig\}u”%i

Then {o{x,

2YIna mﬂd “of T a formuls, oy 4) s called sy

glihe W, A

fnite g p, Ag i

{(3) W is trivial

j

2.2, Definiion. Let M be a model, A M
sequences of length = from ML
‘We then define AviD, A, M} {Av for average

deApe (M), asnd {belMroplB,dlle I}

Notice that always Av(D A, M) 15 a complete +

replace M, by any elementary extension, and when ?3 meaning 5 clear from the
text we omit M ‘

1.

2.3, Theorem. Mi’};‘é?sa Tl A = 3%, W a non-wrivial set of cardinality witnesses.
Then T kas a A-compact viodel of cardinality A, such that for every t-ivpe p in M,
p is realized by X7 elements of M iff it is noi small.

Prool. Let € be 2 A -saturated model of T, and D,
uiteafilter over I, = Suolpe) = the family of finite subsets
w,e b, lwel  wocwleD
We shall define by mdu{:tion on o <<A" models A, such that
() M, is A-compact, A =M,
{bY for B<a. M, <M, < and for limit o, M, =
{o) # A<a, Ge My, xp@ 4) a small formula :;
@{(M,, 4) 5 My v
{d) if-p is a non- muli tspe in AfLu Ipi=<a,
element of |M,|~|M.} realizing p. :
We now introduce some notation. . Lo
-There is an enumeération of all‘l indexed families of the form

the'mnumerafion for < m anu we - Iu D; tile Jollowing ult
3&% lg‘z Iqw ’?:u‘w AA i{.—I Yok ” : -
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S, Shelah

)
[

Now the main conditions are <
{e) for each ¢ << A{l+a) there are b ={bj: ;31 M3 gﬁ&} that for every
ceM, and ¢l ‘ ' : .

ofx, c\ﬁA»(Dc, &) zmphes ;{3<A C’Fo%é ¢ 36-:}13&;

Moreover
& i
Oy < <Alltalpe L, fe M,
and @Ko, ... s X €)E AVDpy X Dty X -+ X Dy, ©)
then
{B<A: CE[BEP, BEV, .. bE™;

We now defing by induction on «, first M, then a®, b5 D, for {<A(l+e)

Case I M, a =0, -

M, will be any A-compact elementary submodel of € of cardinality A.

Case I1: a%, b, [y for {<{1+a) after M, is defined.

For o limit we have nothmg to do, so assume ¢ = or « successor hence M, is
3 A-compact model of cardinality A: and we shall define them for { Aas{<
A{l+a) where 8 =1+a~1. There are no problems in defining the @%’s and then
the D,’s are also defined. So we are left with b%’s.

Let AV{DQ, M ys=LpHx): i< A}; so for satisfying () we have to chfm\\e 5% such
§‘z<=: b c 7S iq:f;x il mat for ensuring {} oo we have o work more. Let
<A}, and M, = U a4 AF<A) increasing and continuious,
§A,»g*\)\, fmd L=Jiexle L{i<<A) increasing and continuous, [L:| <A, Now we
define b* for AB < <<A(1+a) by induction of {: b* is chosen such that bf realizes
AviDy, A, UbEAB s &<}, M, I L), This is a 1-type in M, of cardinality <A,
hence realized. It is easy to check our requirements are satisfied.

e TH: M, o limit,

M= U M.

e

er M, a® bY ({<A{l+a))k o :
¢ requirement (d), we have a non-small i-type p, in
M., Ipol <A, and we want some b e lM, . |- |M,] will realize it.
S0 we deﬁm by induction on <A wents e osuch that, letting A, =
M 1U{q: j<i} the following conditions ‘ o
(i) A, satisfies requirement ) for £(0),. ...
(il) co#M,, and c, realizes py; - ' !
(iii) for eack { we are given.a l-type p, over Aslp 5\.& such that for e\urx A
and 1-type g over A.lql<A, for some i, p; = g3 and & rehlizes o :
{iv) if ae M, elx; @) small, and ;£ M,,, then CE “mp(n,, ‘@), moreover if he A,
%‘HA}(w(k, b)/\ @(r a?) st,ﬂ fm some ¢ & M, C Pt!f{f b iw‘w al

Ay Al +a);
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Now given a predmdtp P such that [PM{<[[M] we take f“""
‘{{P(xifwmv y=yik as M=y we get X=X W, §0 Thfsg};} m 2.3

At the end, sfs; s the v wz"w of M., which will
for i=10, and i limit there sre 1
defined for j<(i and il ?&m xf‘ :
For defining ¢, we defis ing
Xyin G jpll<hr and g (’ mi; realize 5
that each pg is not small.
~We of course define ph=p,
complete, () and ().

Assigmment 1t Let ormuias wit!

t {e
from A S0 for y=4£-

clearly at least one of then
smatl

(%, A ) E<A} b

o

AS’?F’g}'H”?fﬂé il: 5o .,w'?; ose. Se M., oy &)
[irfy, x, ﬁ),\ e(y, £)]= pl. Let us show that for sen
consistent {and not small, 7 =10}, First let i>0.
satisfies {iv), so let pl={6{x); i<u< A}, :zms:! f
a, € o{ M., &) such that {8.{x) £

a9, %, D)y

o evn

‘.30“>1’

Ww we ft} 5
/
o (v} = {3x) { Blx)A gy, x,

henve {£<A: Ok, ;
CEp lBEle Dy, 50 a,,l 0058 é}} n i, and [}5( is the
Yook not at formulas saying p' Uidle, x B3} is wﬁmtmxi bu
their mamber is still <71 A, this holds.

Now we can dedicite the definition of Phaz {8 18 limit or zero} to deal with such
specific assignments, so that each of them will hold.

Asszg,nmem T Let {£(7 j=<<A} canummmc: AL i'**z’x} and A=

nereasing continvous and A<

For each Hmit, <A, we define pSH as follow
each j< 8, b§¥ realizes A\A(I e AL UTHES: ef
p5+g such that for any ¢ realizing it, for every j
A"‘U”?i}?b‘ 1B, g‘,{g‘; ““m%) {)t‘mm; 5

rmﬂul ar cardnmi mxd W a set of p.urb {o(x, 3‘% af;{v 5“} such fizai: M *

§@\M i) < g, then each pair in W, the miinimal set of cavCinality witnesses
tncluding w,. satisfies the same mndm:’)n, This is msy 0 Lhﬂ(l}x

desired model for the rwc) i:arfiztmi ?3 e n‘u. Yio



Sh:72

72 8. Bhelal:

References

i
M

i1l 'r{ Fmdmam Hundred and two pmb ems in mhux inal k:!gia:,— J. Symbelic L@g—-k 40 {1978y
113-129. - o

{21 M. Rubin and S. sheiah On the mamsnl&fy squivalence of automorphism groups of Boolean
algebras, Downward Skolem~Lewenhein t}rwmm% and wmp‘rme:@ of related .y.as‘;tiﬁers, I
Symibolic Logie, to appear.

1 4. Shelah, Generalized quantifiers md compagct Iouu Trans! Am \{ath Soc. 204 {18753
[47 8. Shelah; On powers of singular cardinals, compactness of second order logie. Notices
Sog. 23 (3976) Ad 49, ‘

{51 8. Shelah, Models with secend order properties IV, in preparstion.

=

-
34




