The Journal of Symbolic Logic

THE
JOURNAL OF SYMBOLIC LOGIC
Additional services for The Journal of Symbolic Logic:

Email alerts: Click here
Subscriptions: Click here
Commercial reprints: Click here
Terms of use : Click here

ISOMORPHIC BUT NOT LOWER BASE-ISOMORPHIC CYLINDRIC SET ALGEBRAS

B. BIRÓ AND S. SHELAH

Abstract

This paper belongs to cylindric-algebraic model theory understood in the sense of algebraic logic. We show the existence of isomorphic but not lower base-isomorphic cylindric set algebras. These algebras are regular and locally finite. This solves a problem raised in [N 83] which was implicitly present also in [HMTAN 81]. This result implies that a theorem of Vaught for prime models of countable languages does not continue to hold for languages of any greater power.

In this paper we deal with algebraic logic, in particular with special isomorphisms of cylindric set algebras (Cs's). We use the terminology and notation of the basic monographs [HMT 71] and [HMT 85] on cylindric algebras. The base set base (\mathfrak{H}) of a Cs \mathfrak{A} was defined therein in Definition 1.1.5 or 3.1.1. (base (\mathfrak{H}) is that set from which \mathfrak{A} is built up: i.e., base $(\mathscr{H})=\bigcup\{\operatorname{Rng} f: f \in \bigcup A\}$, where A is the universe of \mathfrak{A}). Isomorphisms of Cs's which are induced by a bijection between their bases are called base-isomorphisms. These are very rare because if \mathfrak{A} and \mathfrak{B} are base-isomorphic then $|\operatorname{base}(\mathfrak{H})|=|\operatorname{base}(\mathfrak{B})|$ must hold, and isomorphic Cs's may have bases of almost arbitrarily different cardinalities. To get rid of this cardinality restriction, lower base-isomorphisms were introduced in [HMTAN 81] generalizing base-isomorphisms. (Using the terminology of [HMT 85], a lower base-isomorphism is a composition of a strong ext-isomorphism with a sub-baseisomorphism. So two Cs's are lower base-isomorphic if they both are ext-baseisomorphic to a third one.) If an injection base $(\mathfrak{H}) \supseteq \operatorname{Dom} f \rightarrow$ base (\mathfrak{B}) induces an isomorphism $h: \mathfrak{A} \rightarrow \mathfrak{B}$ then h is a lower base-isomorphism.

Throughout, α is an ordinal. Cs_{α} and CA_{α} are the classes of α-dimensional Cs's and α-dimensional cylindric algebras, respectively. The subclasses $\mathrm{Cs}_{\alpha}^{\text {reg }} \subset \mathrm{Cs}_{\alpha}$ and $\mathrm{Lf}_{\alpha} \subset \mathrm{CA}_{\alpha}$ were introduced in [HMT 85] and [HMT 71], respectively. To every $\mathfrak{M} \in \mathrm{CA}_{\alpha}$ and $n<\alpha$ the natural n-dimensional part $\mathfrak{N r} \mathfrak{r}_{n} \mathfrak{A}$ of \mathfrak{A} was defined in 2.6.28 of [HMT 71].

Several results in the literature deal with conditions under which every isomorphism on a $\mathrm{Cs}_{\alpha} \mathfrak{H}$ is a lower base-isomorphism. Such conditions are given in Theorem I.3.6 of [HMT 81], in Lemma 4.5 of [L 85] and in Proposition 3.4.3 of

[^0][AN 81]. For countably generated algebras in $\mathrm{Cs}_{\alpha}^{\text {reg }} \cap \mathrm{Lf}_{\alpha}$ the following result was given in [S 83].

Theorem 1 (Serény). If $\alpha \geq \omega, \mathfrak{M} \in \mathrm{Lf}_{\alpha}$ is countably generated, for every $n \in \omega$ $\mathfrak{M r} \mathfrak{r}_{n} \mathfrak{M}$ is atomic, $\mathfrak{B}_{i} \in \mathrm{Cs}_{\alpha}^{\text {reg }}$, and $f_{i} \in \operatorname{Is}\left(\mathfrak{A}, \mathfrak{B}_{i}\right)(i \in 2)$, then $f_{1} \circ f_{0}^{-1}: B_{0} \rightarrow B_{1}$ is a lower base-isomorphism.

Concerning Serény's result, the following questions were raised in [N 83]; cf. also Proposition 3.5(3), Problem 3 and Problem 4 of [AN 81].

Problem 2. (a) Can the condition " \mathfrak{A} is countably generated" be omitted from Theorem 1 ; i.e., for every $\alpha \geq \omega$ does there exist an $\mathrm{Lf}_{\alpha} \mathfrak{\mu}$ such that, for every $n \in \omega$, $\mathfrak{M r}_{n} \mathscr{\mathscr { H }}$ is atomic, and, for $i=0$ and $i=1, \mathfrak{B}_{i} \in \mathrm{Cs}_{\alpha}^{\text {reg }}$ and $f_{i} \in \mathrm{Is}\left(A, \mathfrak{B}_{i}\right)$ such that $f_{1} \circ f_{0}^{-1}$ is not a lower base-isomorphism?
(b) Is it possible with the above conditions that \mathfrak{B}_{0} and \mathfrak{B}_{1} are not lower baseisomorphic?

The answers to both 2(a) and 2(b) are shown below to be affirmative. Though 2(a) is a special case of $2(\mathrm{~b})$, we deal first with the former.

To begin with we prove a lemma which shows that a theorem of Vaught on (elementary) prime models in countable languages (Theorem 2.3.4 of [ChK 73] or Theorem 27.10 of [M 76]) cannot be extended to languages of any greater power.

Notation. If \mathscr{L} is a first-order language then $F_{\mathscr{L}}$ is the set of all formulas of \mathscr{L}, while if $n \in \omega, F_{\mathscr{L}}^{n}$ denotes the set of those formula of \mathscr{L} in which the free variables are taken from the set $\left\{v_{0}, \ldots, v_{n-1}\right\}$.

Lemma 3. There exist a language \mathscr{L} of power \aleph_{1}, and a complete theory Th in \mathscr{L} such that, for any $n \in \omega, F_{\mathscr{L}}^{n} / \mathrm{Th}$ is atomic and there exist two models of $\mathrm{Th}, \mathfrak{T}^{0}$ and \mathfrak{I}^{1}, without isomorphic elementary submodels.

Proof. Let $\mathfrak{T}^{\prime 0}=\left\langle T^{0},\left\langle^{0}\right\rangle\right.$ be a normal Aronszajn tree; i.e.,
(1) $\mathfrak{T}^{\prime 0}$ is a poset, and
(2) for every $a \in T^{0},\left.T^{0}\right|_{a} \stackrel{\mathrm{~d}}{=}\left\{x \in T^{0}: x<^{0} a\right\}$ is well-ordered by $<^{0}$.

If for any ordinal β

$$
T_{\beta}^{o} \stackrel{d}{=}\left\{a \in T^{0}: \operatorname{Typ}\left(\left.T^{0}\right|_{a},<\left.^{0} \upharpoonright T^{0}\right|_{a}\right)=\beta\right\}
$$

then the following assertions hold true:
(3) $\left|T_{0}^{0}\right|=1$.
(4) There are no ordered subsets of $\mathfrak{I}^{\prime 0}$ of order type ω_{1}.
(5) For every $\beta<\omega_{1},\left|T_{\beta}^{0}\right| \leq \aleph_{0}$.
(6) If $\beta<\omega_{1}$ is a limit ordinal, $a, b \in T_{\beta}^{0}$ and $\left.T^{0}\right|_{a}=T^{0}{ }_{b}$, then $a=b$.
(7) Each $a \in T^{0}$ has \aleph_{0} immediate successors.
(8) If $\beta<\gamma<\omega_{1}$ and $x \in T_{\beta}^{0}$, then there is a $y \in T_{\gamma}^{0}$ such that $x<^{0} y$.
(As is well known, ZFC implies the existence of normal Aronszajn trees.)
Let our language \mathscr{L} have one binary relation symbol $<$ and \aleph_{1} unary relation symbols $T_{\beta}\left(\beta<\omega_{1}\right)$. Let $\mathfrak{I}^{0}=\left(\mathfrak{I}^{\prime 0}, T_{\beta}^{0}\right)_{\beta<\omega_{1}} \in \operatorname{Md}_{\mathscr{L}}$. Let $\operatorname{Th}=\operatorname{Th}\left(\mathfrak{T}^{0}\right)$, the full first order theory of \mathfrak{I}^{0}. Define \mathfrak{I}^{1} as follows.

$$
\begin{aligned}
& T^{1} \stackrel{\mathrm{~d}}{=}\left\{f: f \text { is a function from some } \beta<\omega_{1} \text { into } \omega\right. \text { with } \\
& \left.|\{\beta: f(\beta)>0\}|<\aleph_{0}\right\} .
\end{aligned}
$$

Let $\mathfrak{Z}^{\prime 1}=\left(T^{1},<^{1}\right)$, where $f<^{1} g$ iff $f \subseteq g$; i.e., $f<^{1} g$ iff f is a restriction of g.

For $\beta<\omega_{1}$, define T_{β}^{1} as follows: $T_{\beta}^{1}=\left\{f \in T^{1}: \operatorname{Dom}(f)=\beta\right\}$. Let $\mathfrak{I}^{1}=$ $\left(\mathfrak{I}^{\prime 1}, T_{\beta}^{1}\right)_{\beta<\omega_{1}} \in \operatorname{Md}_{\mathscr{L}}$.

Trivially, Th is a complete theory. We prove the following facts:
(9) $\mathfrak{T}^{1} \vDash \mathrm{Th}$; i.e., $\mathfrak{I}^{0} \equiv{ }_{e \mathrm{e}} \mathfrak{T}^{1}$.
(10) For every $n \in \omega, F_{\mathscr{P}}^{n} /$ Th, the Boolean algebra of the n-ary formulas in $F_{\mathscr{L}}$ modulo Th , is atomic.
(11) Every elementary submodel of \mathfrak{T}^{0} satisfies (4), but no elementary submodels of \mathfrak{I}^{1} satisfy (4).

In fact, by (2), (3) and (6), $\mathfrak{I}^{\prime 0}$ is a meet semilattice. It is also easy to see that \mathfrak{T}^{1} is a meet semilattice too. Therefore from now on, throughout, we shall work in a definitional expansion of $(\mathscr{L}, \mathrm{Th})$ with the binary operation symbol \cdot with definition
$\left(\forall v_{0} \forall v_{1} \forall v_{2}\right)\left(v_{2}=v_{0} \cdot v_{1} \leftrightarrow v_{2} \leq v_{0} \& v_{2} \leq v_{1} \&\left(\forall v_{3}\right)\left(v_{3} \leq v_{0} \& v_{3} \leq v_{1} \rightarrow v_{3} \leq v_{2}\right)\right)$.
If, for an $i \in \omega, \mathfrak{I}^{i}$ is a model of \mathscr{L} and it is a meet semilattice, then the interpretation of \cdot in \mathfrak{T}^{i} is denoted by ${ }^{i}$.
(12) \mathfrak{I}^{1} satisfies (1)-(3) and (5)-(8).

For $k, m \in \omega$ and $\beta \in \omega_{1}$ let the formula $\varphi^{k, m, \beta} \in F_{\mathscr{L}}$ be defined as $\varphi^{k, m, \beta}=$ $T_{\beta}\left(v_{k} \cdot v_{m}\right)$. (In our models this above formula means that the meet of v_{k} and v_{m} belongs to the β th level of the tree.) For $n \in \omega, i<2$, and $q \in^{n} T^{i}$ define Φ_{q} (a finite subset of $F_{\mathscr{L}}$) as follows:

$$
\Phi_{q}=\left\{\varphi^{k, m, \beta}: k, m<n \text { and } \mathfrak{I}^{i} \vDash \varphi^{k, m, \beta}[q]\right\} .
$$

For any $q \epsilon^{n} T^{i}$ let $\varphi_{q}=\bigwedge \Phi_{q}$. For $i, j<2, n \in \omega, q \in^{n} T^{i}$ and $r \in^{n} T^{j}$ define

$$
q I_{n} r \quad \text { iff } \quad \vDash \varphi_{q} \leftrightarrow \varphi_{r}
$$

By (7), (8) and (12),
(13) If $q \in{ }^{n} T^{i}, r \in{ }^{n} T^{j}, q I_{n} r$ and $a \in T^{i}$ then there is a $b \in T^{j}$ such that $\left\langle q_{0}, \ldots, q_{n-1}, a\right\rangle I_{n+1}\left\langle r_{0}, \ldots, r_{n-1}, b\right\rangle$.

Using (13) for $i \neq j$, one can easily show (9) (see [M 76, Lemmas 26.5 and 26.8]). Using (13) for $i=j=0$, we can see that, for every $q E^{n} T^{0}, \varphi_{q}$ is an atomic formula in $F_{\mathscr{L}}^{n} / \mathrm{Th}$, and hence, $F_{\mathscr{L}}^{n} / \mathrm{Th}$ is atomic (see [M 76, Chapters 26 and 27]).

Next we prove (11). Trivially, every elementary submodel of $\mathfrak{I}^{\mathbf{0}}$ satisfies (1)-(8). Let

$$
\mathfrak{I}^{*}=\left(T^{*},<^{*}, T_{\beta}^{*}\right)_{\beta<\omega_{1}} \leqslant \mathfrak{I}^{1}
$$

(where \preccurlyeq means elementary substructure). For any $\beta<\omega_{1}$, choose $f_{\beta} \in T_{\beta}^{*}$. Define $H: \omega_{1} \rightarrow \omega_{1}$ as follows:

$$
H(\beta)=\left\{\begin{array}{l}
\text { the greatest } \gamma \text { such that } f_{\beta}(\gamma) \neq 0, \quad \text { if such a } \gamma \text { exists, } \\
0 \quad \text { otherwise. }
\end{array}\right.
$$

H is well-defined since $\left\{\gamma: f_{\beta}(\gamma) \neq 0\right\}$ is finite. H is a regressive function so, by Fodor's theorem, there exists a $\gamma<\omega_{1}$ such that $\left|H^{-1}\{\gamma\}\right|=\aleph_{1} . T_{\gamma}^{*}$ is countable; so, by (8), there is an $h \in T_{\gamma}^{*}$ such that for each δ, if $\gamma<\delta<\omega_{1}$, then $h \cup\{(\kappa, 0): \gamma<\kappa \leq \delta\}$
$\in T^{*}$. Then $\left\{h \cup\{(\kappa, 0): \gamma<\kappa \leq \delta\}: \gamma<\delta<\omega_{1}\right\}$ is an ordered subset of $\left(T^{*},<^{*}\right)$ of order type ω_{1}.
(9), (10) and (11) prove Lemma 3.
q.e.d.

Definition 4. Let \mathscr{L} be a first-order language with set of variable symbols $\left\{v_{i}: i\right.$ $<\alpha\}, \varphi \in F_{\mathscr{L}}$, and \mathfrak{M} a model of \mathscr{L}. In this case $\varphi^{\mathfrak{M} \alpha}=\left\{v \in{ }^{\alpha} M: \mathfrak{M} \vDash \varphi[v]\right)$ and $\mathfrak{C}_{\mathfrak{s}_{\alpha}^{\text {M }}}$ is the cylindric set algebra associated with \mathfrak{M}; i.e., it is the cylindric set algebra with underlying set $\left\{\varphi^{201 \alpha}: \varphi \in F_{\mathscr{P}}\right\}$ (cf. the bottom of p. 154 and Definition 4.3.3 in [HMT 85]). Sometimes, if there is no danger of confusion, the superscript α will be omitted.

Theorem 5. For every $\alpha \geq \omega$, there exists an \aleph_{1}-generated $\mathfrak{A} \in \operatorname{Lf}_{\alpha}$ such that, for every $n \in \omega, \mathfrak{P r}_{n} \mathfrak{H}$ is atomic and for $i=0$ and $i=1$ there exist $\mathfrak{B}_{i} \in \mathrm{Cs}_{\alpha}^{\mathrm{reg}}$ and $f_{i} \in \operatorname{Is}\left(\mathscr{A}, \mathfrak{B}_{i}\right)$ such that $f_{1} \circ f_{0}^{-1}$ is not a lower base-isomorphism.

Proof. It is easily seen that if \mathfrak{I}_{0} and \mathfrak{T}_{1} satisfy the requirements of Lemma 3 then
 and

$$
f_{1}=\left\{\left\langle\varphi^{\mathfrak{I}^{0}}, \varphi^{\mathfrak{x}^{1}}: \varphi \in F_{\mathscr{L}}\right\} . \quad\right. \text { q.e.d. }
$$

With the aid of Theorem 5 and Lemma 3 we can solve Problem 2(b). To begin with we prove two lemmas.

Lemma 6. Let \mathscr{L} and Th be the language and theory, respectively, which were defined in the proof of Lemma 3, and let $\mathfrak{I}^{2}=\left(T^{2},<^{2}, T_{\beta}^{2}\right)_{\beta<\omega_{1}}$ and $\mathfrak{I}^{3}=\left(T^{3},<^{3}, T_{\beta}^{3}\right)_{\beta<\omega_{1}}$ be two models of Th. For $i=2,3$ let $\mathfrak{B}_{i}=\mathfrak{C}_{\alpha}^{\mathfrak{x}_{i}}$. For $\beta<\omega_{1}$ let φ_{β} be the formula $T_{\beta}\left(v_{0}\right)$. Finally, let η be a bijection from T^{2} onto T^{3} such that $\tilde{\eta}: \mathfrak{B}_{2} \rightarrow \mathfrak{B}_{3}$ is a baseisomorphism. Under these conditions, for any $\beta<\omega_{1}$

$$
\tilde{\eta}\left(\varphi_{\beta}^{\mathfrak{x}^{2}}\right)=\varphi_{\beta}^{\mathfrak{I}^{3}}
$$

i.e., η preserves the relations T_{β} for any $\beta<\omega_{1}$.

Proof. For $i=2,3$ and $\beta<\omega_{1}$ set $\bar{T}_{\beta}^{i}=\left\{x \in^{a} T^{i}: x_{0} \in T_{\beta}^{i}\right\}$. By the proof of Lemma 3 one can see that, for any $n \in \omega$ and $\varphi \in F_{\mathscr{L}}^{n}, \varphi$ is n-atomic over Th iff there is a $q \in{ }^{n} T^{0}$ such that $\mathrm{Th} \vDash \varphi \leftrightarrow \varphi_{q}$. In particular,
(14) The l-atomic formulas over Th are exactly those unary formulas which are equivalent over Th to the formulas $T_{\beta}\left(v_{0}\right)$ for some $\beta<\omega_{1}$.
(15) The 2 -atomic formulas over Th are those formulas that are equivalent over Th to one of the formulas $T_{\beta}\left(v_{0}\right) \& T_{\gamma}\left(v_{1}\right) \& T_{\delta}\left(v_{0} \cdot v_{1}\right)$, where $\delta \leq \beta<\omega_{1}$ and $\delta \leq \gamma<\omega_{1}$.

Clearly if $\beta<\omega_{1}$ and $i<4, \varphi_{\beta}^{\mathcal{T}^{i}}=\bar{T}_{\beta}^{i}$.
Since $\tilde{\eta}$ is an isomorphism of the CA's, the image of an atom of $\mathfrak{9 r}_{n} \mathfrak{B}_{2}$ is an atom of $\mathfrak{M r}_{n} \mathfrak{B}_{3}$; i.e.,
(16) If $x \epsilon^{\alpha} T^{2}$ satisfies an n-atomic formula in \mathfrak{I}^{2}, then so does $\eta \circ x$ in \mathfrak{I}^{3}.

Assume that the statement of Lemma 6 is not true; i.e., η does not preserve T_{β} for some $\beta<\omega_{1}$. Let γ be the least β such that $\tilde{\eta}\left(\bar{T}_{\beta}^{2}\right) \neq \bar{T}_{\beta}^{3}$. By (14), (16) and the minimality of γ there is a $\delta>\gamma$ such that $\tilde{\eta}\left(\bar{T}_{\gamma}^{2}\right)=\bar{T}_{\delta}^{3}$. Let $x \in T_{\gamma}^{2}$. Since η is a bijection and $\mathfrak{I}^{3}=T h$, there is a $y_{1} \in T^{2}$ with $\eta y_{1}<{ }^{3} \eta x$ and $\eta y_{1} \in T_{\gamma}^{3}$. Since ($\eta x, \eta y_{1}$) satisfies the 2-atomic formula $T_{\delta}\left(v_{0}\right) \& T_{y}\left(v_{1}\right) \& T_{\gamma}\left(v_{0} \cdot v_{1}\right)$, by (15) and (16), $\left(x, y_{1}\right)=\eta^{-1} \circ\left(\eta x, \eta y_{1}\right)$ satisfies a 2-atomic formula of the form $T_{y}\left(v_{0}\right) \& T_{\varepsilon}\left(v_{1}\right) \&$

Figure 1/a

Figure 1/b
$T_{\xi}\left(v_{0} \cdot v_{1}\right)$ for some $\xi \leq \gamma$ and $\xi \leq \varepsilon<\omega_{1}$. By $\tilde{\eta}\left(\bar{T}_{\gamma}^{2}\right) \neq \bar{T}_{\gamma}^{3}$ and the minimality of γ we have $\varepsilon>\gamma$. Let $x \cdot{ }^{2} y_{1}=z$ (see Figure 1/a). By (7) and (8) there is a y_{2} such that y_{1} $\neq y_{2} \in T_{\varepsilon}^{2}$ and $x \cdot{ }^{2} y_{2}=z$ holds. Since (x, y_{2}) satisfies the above 2-atomic formula in $\mathfrak{I}^{2},\left(\eta x, \eta y_{2}\right)$ satisfies the previous one in \mathfrak{I}^{3} (see Figure $\left.1 / \mathrm{b}\right)$.
However, this is impossible, as in the models of Th the statements $\eta y_{1}<{ }^{3} \eta x, \eta y_{2}$ $<^{3} \eta x, \eta y_{1} \neq \eta y_{2}$ and " ηy_{1} is not comparable with ηy_{2} " cannot hold simultaneously. q.e.d.

Lemma 7. Suppose the conditions of Lemma 6 hold. In addition assume that $T^{2}=\bigcup_{\beta<\omega_{1}} T_{\beta}^{2}$. Under these conditions $\tilde{\eta}\left(<^{2}\right)=<^{3}$.

Proof. Assume to the contrary that there are x_{1} and $y \in T^{2}$ such that $x_{1}<2 y$ but $\eta x_{1} \not 女^{3} \eta y$. By the additional hypotheses of the lemma there exist $\beta<\gamma<\omega_{1}$ such that $x_{1} \in T_{\beta}^{2}$ and $y \in T_{\gamma}^{2}$. By Lemma 6, $\eta x_{1} \in T_{\beta}^{3}$ and $\eta y \in T_{\gamma}^{3}$. Since (x_{1}, y) satisfies the 2-atomic formula over Th

$$
\chi\left(v_{0}, v_{1}\right) \stackrel{\mathrm{d}}{=}\left(T_{\beta}\left(v_{0}\right) \& T_{\gamma}\left(v_{1}\right) \& T_{\beta}\left(v_{0} \cdot v_{1}\right)\right)
$$

Figure 2/a

Figure 2/b
by (15), (16) and the indirect hypothesis, $\left(\eta x_{1}, \eta y\right)$ satisfies the formula

$$
\psi\left(v_{0}, v_{1}\right) \stackrel{d}{=}\left(T_{\beta}\left(v_{0}\right) \& T_{\gamma}\left(v_{1}\right) \& T_{\delta}\left(v_{0} \cdot v_{1}\right)\right)
$$

for a $\delta<\beta$ (see Figure 2/a).
Let $z=\eta x_{1} \cdot{ }^{3} \eta y$. By (16),
(17) $\tilde{\eta}^{-1}\left(\psi^{\mathfrak{z}^{3}}\right)=\chi^{\mathfrak{I}^{2}}$.

By (7) and (8) choose $\eta x_{2} \in T_{\beta}^{3}$ so that $\eta x_{2} \neq \eta x_{1}$ and $\eta x_{2} \cdot{ }^{3} \eta y=z$, so ($\eta x_{2}, \eta y$) satisfies ψ in \mathfrak{T}^{3}; hence, by (17), $\left(x_{2}, y\right)$ satisfies χ in \mathfrak{T}^{2} (see Figure 2/b).

However, this, similarly to the proof of Lemma 6, yields a contradiction. q.e.d.
Theorem 8. For any ordinal $\alpha \geq \omega$ and for $i \in 2$ there exists an \aleph_{1}-generated $\mathfrak{B}_{i} \in \mathrm{Lf}_{\alpha} \cap \mathrm{Cs}_{\alpha}^{\text {reg }}$ such that, for any $n \in \omega, \mathfrak{P r}_{n} \mathfrak{B}_{i}$ is atomic ($i=0,1$) and $\mathfrak{B}_{0} \cong \mathfrak{B}_{1}$ but they are not lower base-isomorphic. Actually, \mathfrak{B}_{0} and \mathfrak{B}_{1} which were constructed in the proof of Theorem 5 satisfy the conditions.

Proof. We prove the theorem by showing that if $f \in \operatorname{Is}\left(\mathfrak{B}_{0}, \mathfrak{B}_{1}\right)$ is a lower baseisomorphism then $f=f_{1}$ (which was defined at the end of the proof of Theorem 5), which is not a lower base-isomorphism by Theorem 5. That is, we will show that if f is a lower base-isomorphism from \mathfrak{B}_{0} onto \mathfrak{B}_{1} then f preserves each relation of \mathscr{L}.

Now suppose that $F=k^{-1} \circ h \circ t$ is a lower base-isomorphism from \mathfrak{B}_{0} onto \mathfrak{B}_{1}, where k and t are strong ext-isomorphisms and h is a base-isomorphism. (A strong ext-isomorphism is "an isomorphism that is obtained by relativization with respect to a Cartesian space". Cf. the definition of lower base-isomorphism in [HMTAN 81] or the Introduction to the present paper.)

For $i=2,3$ denote base $\left(\mathfrak{B}_{i}\right)$ by T^{i}; i.e., $k=\left\langle X \cap{ }^{a} T^{3}: X \in B_{1}\right\rangle$ and $t=$ $\left\langle X \cap^{\alpha} T^{2}: X \in B_{0}\right\rangle$.

For $i<2$ let \mathfrak{T}^{i+2} be the substructure of \mathfrak{I}^{i} with underlying set \mathfrak{I}^{i+2}. Let $h=\tilde{\eta}$ for an η : $T_{2} \rightarrow T_{3}$. Since k and t are strong ext-isomorphisms, $\mathfrak{T}^{2}, \mathfrak{T}^{3}$ and η satisfy the conditions of Lemmas 6 and 7; hence, by these lemmas, η preserves all formulas of $F_{\mathscr{P}}$. Thus, trivially, $F=f_{1}$ (f_{1} was defined in the proof of Theorem 5). However, by Theorem 5, f_{1} is not a lower-base isomorphism. This contradiction proves Theorem 8.
q.e.d.

We note that Theorems 5 and 8 are true not only for cylindric algebras of infinite dimension but for cyclindric algebras of any dimension greater than one (see [B86]). We also note that none of the other conditions of Theorem 1 can be omitted. In more detail, it follows from the results of [B 85] that the condition "for every $n \in \omega, \mathfrak{N r}_{n} \mathfrak{H}$ is atomic" cannot be omitted. It is shown in [B 86a] and [B 87] that the same holds for the condition " $\alpha \geq \omega$ " and the conditions " \mathscr{A} is regular" and " $\mathfrak{M} \in \mathrm{Lf}_{\alpha}$ "; moreover, Lf cannot be replaced by Dc.

Acknowledgement. We thank M. Makkai for his precious help.

REFERENCES

[AN 81] H. Andréka and I. Németı, On cylindric-relativized set algebras, [HMTAN 81], pp. 131-315. [B 85] B. Bıró, Isomorphic but not base-isomorphic base-minimal cylindric algebras, Algebra Universalis (to appear).
[B 86] -, Lower base-isomorphisms of relation algebras and cylindric algebras, manuscript, Mathematical Institute of the Hungarian Academy of Sciences, Budapest.
[B 86a] ——. Isomorphic but not lower base-isomorphic cylindric algebras of finite dimension, Notre Dame Journal of Formal Logic (to appear).
[B 87] ——, Isomorphism does not imply base-isomorphism for cylindric algebras that are not locally finite or not regular, Commentationes Mathematicae Universitatis Carolinae, vol. 28 (1987), pp. 221-226.
[ChK 73] C. C. Chang and H. J. Keisler, Model theory, North-Holland, Amsterdam.
[HMT 71] L. Henkin, J. D. Monk and A. Tarski, Cylindric algebras. Part I, North-Holland, Amsterdam.
[HMT 81] -, Cylindric set algebras and related structures, [HMTAN 81], pp. 1-129.
[HMT 85] ——, Cylindric algebras. Part II, North-Holland, Amsterdam.
[HMTAN 81] L. Henkin, J. D. Monk, A. Tarski, H. Andréka and I. Németl, Cylindric set algebras, Lecture Notes in Mathematics, vol. 883, Springer-Verlag, Berlin.
[L 85] J. Larson, The number of one-generated cylindric set algebras of dimension greater than two, this Journal, vol. 50, pp. 59-71.
[M 76] J. D. Monk, Mathematical logic, Springer-Verlag, Berlin.
[N 83] I. NEmeri, Cylindric relativised set algebras and Boolean algebras with operators have SAP;
which lead to notes on algebraic model theory, Preprint No. 1983/4, Mathematical Institute of the Hungarian Academy of Sciences, Budapest.
[S 83] G. Serény, On regular locally finite-dimensional cylindric set algebras with atomic neat reducts, preprint, Polytechnical University of Budapest.

[^1]
[^0]: Received June 11, 1986; revised April 14, 1987.
 The first author's research was supported by the Hungarian National Foundation for Scientific Research, grant number 1810.

[^1]: MATHEMATICAL INSTITUTE
 HUNGARIAN ACADEMY OF SCIENCES
 H-1364 BUDAPEST, HUNGARY
 INSTITUTE OF MATHEMATICS THE HEBREW UNIVERSITY JERUSALEM, ISRAEL

